Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data

•Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step. Processing and quantitative analysis of magnetic resonance spec...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 343; p. 108827
Main Authors Oeltzschner, Georg, Zöllner, Helge J., Hui, Steve C.N., Mikkelsen, Mark, Saleh, Muhammad G., Tapper, Sofie, Edden, Richard A.E.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step. Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization. Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects. Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques. Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey’s open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis. Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.
AbstractList Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization. Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects. Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques. Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis. Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.
Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.BACKGROUNDProcessing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.NEW METHODOsprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.RESULTSOsprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.COMPARISON WITH EXISTING METHOD(S)Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.CONCLUSIONSOsprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.
•Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step. Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization. Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects. Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques. Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey’s open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis. Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.
ArticleNumber 108827
Author Oeltzschner, Georg
Saleh, Muhammad G.
Mikkelsen, Mark
Zöllner, Helge J.
Hui, Steve C.N.
Edden, Richard A.E.
Tapper, Sofie
AuthorAffiliation 2 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
1 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
AuthorAffiliation_xml – name: 2 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
– name: 1 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
Author_xml – sequence: 1
  givenname: Georg
  orcidid: 0000-0003-3083-9811
  surname: Oeltzschner
  fullname: Oeltzschner, Georg
  email: goeltzs1@jhmi.edu
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 2
  givenname: Helge J.
  surname: Zöllner
  fullname: Zöllner, Helge J.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 3
  givenname: Steve C.N.
  orcidid: 0000-0002-1523-4040
  surname: Hui
  fullname: Hui, Steve C.N.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 4
  givenname: Mark
  surname: Mikkelsen
  fullname: Mikkelsen, Mark
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 5
  givenname: Muhammad G.
  surname: Saleh
  fullname: Saleh, Muhammad G.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 6
  givenname: Sofie
  surname: Tapper
  fullname: Tapper, Sofie
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
– sequence: 7
  givenname: Richard A.E.
  surname: Edden
  fullname: Edden, Richard A.E.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32603810$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu3CAURVWqZJL2FyKvqiziKWAMuIqqVlEfkSLNJpW6QxhfTxjZ4AKONH8fJpOJ2m6yQhfOg3vOKTpy3gFC5wQvCSb842a5cTCPkO6XFNPdpZRUvEELIgUtuZC_j9AiA-sSU4FP0GmMG4wxazA_RicV5biSBC-QWcUpwPZTsZrAldHPwUAxBW8gRuvWl0UA411MYTbJeld8KCAmO-qnwffFqNcOkjUZF73TLrPjBCYFH42ftkWnk36H3vZ6iPD--TxDv75_u7v-Wd6uftxcf70tTV2JVPaiha6nFWM9bbnuWauJYLrimlUat1BTLSUYwzoMmvSUc9G1uu5AyqahEqoz9HmvO83tCJ0Bl4Ie1BTyf8NWeW3Vvy_O3qu1f1CCCdGQKgtcPAsE_2fOi6rRRgPDoB34OSrKSMOIoLzO0PO_vV5MDslmwNUeYHIUMUCvjE1PsWVrOyiC1a5ItVGHItWuSLUvMtP5f_SDw6vEL3si5KQfLAQVjYXcS2dzlUl13r4m8Qh0P8Ax
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e18357
crossref_primary_10_2139_ssrn_4122065
crossref_primary_10_1016_j_neuroscience_2024_02_021
crossref_primary_10_1002_nbm_5300
crossref_primary_10_1016_j_mri_2024_110219
crossref_primary_10_1016_j_neuroimage_2023_120194
crossref_primary_10_1002_nbm_4618
crossref_primary_10_1002_mrm_29711
crossref_primary_10_1002_nbm_4854
crossref_primary_10_1016_j_amjmed_2024_04_007
crossref_primary_10_1016_j_jneumeth_2025_110430
crossref_primary_10_1016_j_neuroimage_2021_118430
crossref_primary_10_3389_fpsyt_2022_872403
crossref_primary_10_1002_prot_26580
crossref_primary_10_3390_metabo12121248
crossref_primary_10_1016_j_drugalcdep_2024_111254
crossref_primary_10_1016_j_conctc_2024_101341
crossref_primary_10_1192_bjo_2024_841
crossref_primary_10_1002_nbm_5092
crossref_primary_10_3389_fnins_2023_1258408
crossref_primary_10_1002_mrm_29387
crossref_primary_10_1080_10408347_2022_2124839
crossref_primary_10_1002_mrm_28976
crossref_primary_10_1007_s00415_023_12146_7
crossref_primary_10_1186_s12888_024_05646_x
crossref_primary_10_1038_s41380_022_01860_9
crossref_primary_10_1002_mrm_29706
crossref_primary_10_1038_s41598_023_39881_1
crossref_primary_10_1002_jmri_28868
crossref_primary_10_1038_s41398_025_03302_w
crossref_primary_10_3389_fneur_2022_1045678
crossref_primary_10_1002_mrm_28525
crossref_primary_10_1002_nbm_4839
crossref_primary_10_1002_mrm_29456
crossref_primary_10_1038_s41386_023_01553_z
crossref_primary_10_1002_hbm_70057
crossref_primary_10_1371_journal_pone_0299142
crossref_primary_10_1002_nbm_5076
crossref_primary_10_1002_jmri_29709
crossref_primary_10_1016_j_xpro_2023_102493
crossref_primary_10_1002_hbm_26531
crossref_primary_10_1002_mrm_29686
crossref_primary_10_1002_mrm_30158
crossref_primary_10_1016_j_neuroimage_2025_121153
crossref_primary_10_1002_mrm_28630
crossref_primary_10_1002_nbm_5236
crossref_primary_10_1186_s13229_023_00577_y
crossref_primary_10_1016_j_dcn_2024_101452
crossref_primary_10_3389_fphy_2022_927162
crossref_primary_10_1002_ima_22748
crossref_primary_10_1002_nbm_4702
crossref_primary_10_1016_j_jmr_2023_107601
crossref_primary_10_1162_imag_a_00237
crossref_primary_10_1016_j_dcn_2025_101514
crossref_primary_10_1002_mrm_30340
crossref_primary_10_1002_mrm_30462
crossref_primary_10_1007_s11011_023_01174_x
crossref_primary_10_1002_nbm_4897
crossref_primary_10_1186_s13063_023_07551_2
crossref_primary_10_1016_j_compbiomed_2023_106837
crossref_primary_10_1002_mrm_29877
crossref_primary_10_1002_mrm_28941
crossref_primary_10_3389_fnhum_2025_1478534
crossref_primary_10_1093_cercor_bhae046
crossref_primary_10_1002_nbm_4482
crossref_primary_10_1016_j_bandc_2024_106230
crossref_primary_10_1016_j_ejrad_2022_110568
crossref_primary_10_1177_14738716231181545
crossref_primary_10_1002_mrm_29103
crossref_primary_10_1177_24705470241277451
crossref_primary_10_1002_nbm_5056
crossref_primary_10_1002_aur_3253
crossref_primary_10_1002_mrm_30209
crossref_primary_10_3390_cancers15174311
crossref_primary_10_3389_fpsyt_2023_1155689
crossref_primary_10_1002_nbm_70010
crossref_primary_10_1002_mrm_28654
crossref_primary_10_1002_aur_3097
crossref_primary_10_1002_nbm_70013
crossref_primary_10_1002_mrm_29370
crossref_primary_10_1113_EP092252
crossref_primary_10_1002_mrm_29093
crossref_primary_10_1016_j_neuroimage_2022_119740
crossref_primary_10_1002_mrm_29895
crossref_primary_10_21105_joss_03646
crossref_primary_10_1016_j_pnpbp_2023_110892
crossref_primary_10_3390_diagnostics14232668
crossref_primary_10_1002_mrm_29418
crossref_primary_10_1162_imag_a_00025
crossref_primary_10_1002_hbm_70097
crossref_primary_10_1093_cercor_bhad247
crossref_primary_10_1016_j_neurobiolaging_2024_06_003
crossref_primary_10_1002_nbm_5152
crossref_primary_10_1002_mrm_30110
crossref_primary_10_1016_j_neurobiolaging_2022_11_006
crossref_primary_10_1002_mrm_29008
crossref_primary_10_1007_s10916_023_01969_6
crossref_primary_10_1002_nbm_4907
Cites_doi 10.1002/jmri.22865
10.1006/jmre.1997.1244
10.1002/mrm.24751
10.1002/mp.12375
10.1002/mrm.22579
10.1002/nbm.4199
10.1016/j.neuroimage.2011.09.015
10.1002/nbm.994
10.1002/mrm.1910140104
10.1137/0916069
10.1073/pnas.90.12.5662
10.1002/nbm.3804
10.1016/j.neuroimage.2016.10.009
10.1002/mrm.1910300604
10.12688/wellcomeopenres.15191.1
10.1016/j.neuroimage.2019.01.056
10.1002/nbm.1112
10.1002/jmri.24478
10.1002/mrm.25094
10.1002/mrm.26619
10.1002/jmri.26846
10.1137/0111030
10.1016/j.neuroimage.2018.10.002
10.1002/mrm.26091
10.1002/nbm.4236
10.1002/mrm.26233
10.1016/S0730-725X(03)00179-6
10.1090/qam/10666
10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J
10.1371/journal.pone.0185356
10.1155/2013/169526
10.1145/279232.279236
10.1016/j.neuroimage.2019.02.059
10.1002/nbm.713
10.1016/j.neuroimage.2017.07.021
10.1002/jmri.24903
10.1016/j.neuroimage.2016.07.056
10.1002/mrm.27067
10.1002/mrm.20901
10.1002/mrm.27742
10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1002/jmri.23817
10.1088/0957-0233/20/10/104035
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2020.108827
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 108827
ExternalDocumentID PMC7477913
32603810
10_1016_j_jneumeth_2020_108827
S0165027020302508
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB023963
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: R01 EB016089
– fundername: NIA NIH HHS
  grantid: K99 AG062230
– fundername: NIA NIH HHS
  grantid: R21 AG060245
– fundername: NIH HHS
  grantid: S10 OD021648
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c537t-f7bedf2344f2b6af4ba174a36a43a0be52a88ecc4d0ea1f2667dba5de889928e3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 14:09:03 EDT 2025
Fri Jul 11 01:12:59 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Tue Jul 01 02:57:13 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Sun Apr 06 06:53:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetic resonance spectroscopy
Tissue correction
Quantification
Linear-combination modelling
Pre-processing
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-f7bedf2344f2b6af4ba174a36a43a0be52a88ecc4d0ea1f2667dba5de889928e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Steve Hui: Methodology, Software, Data Curation, Writing - Review & Editing
Mark Mikkelsen: Methodology, Software, Writing - Review & Editing
Richard Edden: Methodology, Resources, Writing - Original Draft, Writing - Review & Editing, Supervision, Project Administration, Funding Acquisition
CRediT author statement
Helge Zöllner: Methodology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization
Sofie Tapper: Methodology, Software, Formal Analysis, Writing - Review & Editing, Visualization
Georg Oeltzschner: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project Administration, Funding Acquisition
Muhammad Saleh: Methodology, Software, Writing - Review & Editing, Supervision
ORCID 0000-0003-3083-9811
0000-0002-1523-4040
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7477913
PMID 32603810
PQID 2419417265
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477913
proquest_miscellaneous_2419417265
pubmed_primary_32603810
crossref_citationtrail_10_1016_j_jneumeth_2020_108827
crossref_primary_10_1016_j_jneumeth_2020_108827
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wilson, Reynolds, Kauppinen, Arvanitis, Peet (bib0270) 2011; 65
Bhogal, Schür, Houtepen, van de Bank, Boer, Marsman, Barker, Scheenen, Wijnen, Vinkers, Klomp (bib0020) 2017; 30
Saleh, Oeltzschner, Chan, Puts, Mikkelsen, Sch??r, Harris, Edden (bib0220) 2016; 142
Purvis, Clarke, Biasiolli, Valkovič, Robson, Rodgers (bib0205) 2017; 12
Barkhuijsen, De Beer, Van Ormondt (bib0010) 1987; 73
Sampson (bib0230) 2019
Oeltzschner, Zupan, Edden (bib0185) 2019
Puts, Barker, Edden (bib0210) 2013; 37
Poullet, Sima, Simonetti, Neuter, Vanhamme, Lemmerling, Huffel (bib0195) 2007; 20
Mescher, Merkle, Kirsch, Garwood, Gruetter (bib0145) 1998; 11
Mlynárik, Gruber, Moser (bib0160) 2001; 14
Wyss, Bianchini, Scheidegger, Giapitzakis, Hock, Fuchs, Henning (bib0280) 2018; 80
Provencher (bib0200) 1993; 30
Gasparovic, Song, Devier, Bockholt, Caprihan, Mullins, Posse, Jung, Morrison (bib0080) 2006; 55
Edden, Intrapiromkul, Zhu, Cheng, Barker (bib0065) 2012; 35
Mikkelsen, Rimbault, Barker, Bhattacharyya, Brix, Buur, Cecil, Chan, Chen, Craven, Cuypers, Dacko, Duncan, Dydak, Edmondson, Ende, Ersland, Forbes, Gao, Greenhouse, Harris, He, Heba, Hoggard, Hsu, Jansen, Kangarlu, Lange, Lebel, Li, Lin, Liou, Lirng, Liu, Long, Ma, Maes, Moreno-Ortega, Murray, Noah, Noeske, Noseworthy, Oeltzschner, Porges, Prisciandaro, Puts, Roberts, Sack, Sailasuta, Saleh, Schallmo, Simard, Stoffers, Swinnen, Tegenthoff, Truong, Wang, Wilkinson, Wittsack, Woods, Xu, Yan, Zhang, Zipunnikov, Zollner, Edden (bib0155) 2019; 191
Soher, Semanchuk, Todd, Steinberg, Young (bib0240) 2011
Rothman, Petroff, Behar, Mattson (bib0215) 1993; 90
Crane, Olson, Nelson (bib0040) 2013
Harris, Puts, Edden (bib0085) 2015; 42
Marquardt (bib0140) 1963; 11
Becker (bib0015) 2015
Murdoch, Dydak (bib0165) 2011
Whitaker, Rhys-Marshall, van Mourik, Martinez, Poggiali, Ye, Klug (bib0265) 2019
Center for Magnetic Resonance Research, University of Minnesota (bib0030) 2018
Jackey (bib0095) 2019
Zöllner, Považan, Hui, Tapper, Edden, Oeltzschner (bib0295) 2020
Öz, Deelchand, Wijnen, Mlynárik, Xin, Mekle, Noeske, Scheenen, Tkáč (bib0190) 2020
Byrd, Lu, Nocedal, Zhu (bib0025) 1995; 16
Juchem (bib0110) 2018
Dentler (bib0060) 2015
Wansapura, Holland, Dunn, Ball (bib0260) 1999; 9
Allen, Poggiali, Whitaker, Marshall, Kievit (bib0005) 2019; 4
De Leener, Lévy, Dupont, Fonov, Stikov, Louis Collins, Callot, Cohen-Adad (bib0045) 2017; 145
Zhang, An, Shen (bib0285) 2017; 44
Deelchand, Berrington, Noeske, Joers, Arani, Gillen, Schär, Nielsen, Peltier, Seraji-Bozorgzad, Landheer, Juchem, Soher, Noll, Kantarci, Ratai, Mareci, Barker, Öz (bib0050) 2019
Vanhamme, van den Boogaart, Van Huffel (bib0255) 1997; 129
Stefan, Cesare, Andrasescu, Popa, Lazariev, Vescovo, Strbak, Williams, Starcuk, Cabanas, van Ormondt, Graveron-Demilly (bib0245) 2009; 20
Near (bib0170) 2014
Chan, Puts, Schär, Barker, Edden (bib0035) 2016; 76
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0100) 2012; 62
Simpson, Devenyi, Jezzard, Hennessy, Near (bib0235) 2017; 77
Uecker, Lai, Murphy, Virtue, Elad, Pauly, Vasanawala, Lustig (bib0250) 2014; 71
Levenberg (bib0130) 1944; 2
Mikkelsen, Barker, Bhattacharyya, Brix, Buur, Cecil, Chan, Chen, Craven, Cuypers, Dacko, Duncan, Dydak, Edmondson, Ende, Ersland, Gao, Greenhouse, Harris, He, Heba, Hoggard, Hsu, Jansen, Kangarlu, Lange, Lebel, Li, Lin, Liou, Lirng, Liu, Ma, Maes, Moreno-Ortega, Murray, Noah, Noeske, Noseworthy, Oeltzschner, Prisciandaro, Puts, Roberts, Sack, Sailasuta, Saleh, Schallmo, Simard, Swinnen, Tegenthoff, Truong, Wang, Wilkinson, Wittsack, Xu, Yan, Zhang, Zipunnikov, Zöllner, Edden (bib0150) 2017; 159
Klose (bib0115) 1990; 14
Jensen, de, Frederick, Renshaw (bib0105) 2005; 18
Landheer, Schulte, Treacy, Swanberg, Juchem (bib0125) 2020
Wilson, Andronesi, Barker, Bartha, Bizzi, Bolan, Brindle, Choi, Cudalbu, Dydak, Emir, Gonzalez, Gruber, Gruetter, Gupta, Heerschap, Henning, Hetherington, Huppi, Hurd, Kantarci, Kauppinen, Klomp, Kreis, Kruiskamp, Leach, Lin, Luijten, Marjańska, Maudsley, Meyerhoff, Mountford, Mullins, Murdoch, Nelson, Noeske, Öz, Pan, Peet, Poptani, Posse, Ratai, Salibi, Scheenen, Smith, Soher, Tkáč, Vigneron, Howe (bib0275) 2019; 82
Oeltzschner, Saleh, Rimbault, Mikkelsen, Chan, Puts, Edden (bib0180) 2019; 185
Near, Edden, Evans, Paquin, Harris, Jezzard (bib0175) 2015; 73
Zhu, Byrd, Lu, Nocedal (bib0290) 1997; 23
Friston (bib0075) 2007
Deelchand, Marjańska, Henry, Terpstra (bib0055) 2019
Harris, Saleh, Edden (bib0090) 2017; 77
Edden, Puts, Harris, Barker, Evans (bib0070) 2014; 40
Knight-Scott, Haley, Rossmiller, Farace, Mai, Christopher, Manning, Simnad, Siragy (bib0120) 2003; 21
Marjanska, Terpstra (bib0135) 2019
Saleh, Rimbault, Mikkelsen, Oeltzschner, Wang, Jiang, Alhamud, Near, Schär, Noeske, Murdoch, Ersland, Craven, Dwyer, Grüner, Pan, Ahn, Edden (bib0225) 2019; 189
Jenkinson (10.1016/j.jneumeth.2020.108827_bib0100) 2012; 62
Wyss (10.1016/j.jneumeth.2020.108827_bib0280) 2018; 80
Bhogal (10.1016/j.jneumeth.2020.108827_bib0020) 2017; 30
Friston (10.1016/j.jneumeth.2020.108827_bib0075) 2007
Harris (10.1016/j.jneumeth.2020.108827_bib0090) 2017; 77
Oeltzschner (10.1016/j.jneumeth.2020.108827_bib0180) 2019; 185
Wilson (10.1016/j.jneumeth.2020.108827_bib0275) 2019; 82
Edden (10.1016/j.jneumeth.2020.108827_bib0065) 2012; 35
Juchem (10.1016/j.jneumeth.2020.108827_bib0110) 2018
Sampson (10.1016/j.jneumeth.2020.108827_bib0230) 2019
Soher (10.1016/j.jneumeth.2020.108827_bib0240) 2011
Oeltzschner (10.1016/j.jneumeth.2020.108827_bib0185) 2019
Wansapura (10.1016/j.jneumeth.2020.108827_bib0260) 1999; 9
De Leener (10.1016/j.jneumeth.2020.108827_bib0045) 2017; 145
Marquardt (10.1016/j.jneumeth.2020.108827_bib0140) 1963; 11
Near (10.1016/j.jneumeth.2020.108827_bib0170) 2014
Zhang (10.1016/j.jneumeth.2020.108827_bib0285) 2017; 44
Allen (10.1016/j.jneumeth.2020.108827_bib0005) 2019; 4
Zhu (10.1016/j.jneumeth.2020.108827_bib0290) 1997; 23
Landheer (10.1016/j.jneumeth.2020.108827_bib0125) 2020
Deelchand (10.1016/j.jneumeth.2020.108827_bib0050) 2019
Mikkelsen (10.1016/j.jneumeth.2020.108827_bib0155) 2019; 191
Whitaker (10.1016/j.jneumeth.2020.108827_bib0265) 2019
Byrd (10.1016/j.jneumeth.2020.108827_bib0025) 1995; 16
Levenberg (10.1016/j.jneumeth.2020.108827_bib0130) 1944; 2
Knight-Scott (10.1016/j.jneumeth.2020.108827_bib0120) 2003; 21
Near (10.1016/j.jneumeth.2020.108827_bib0175) 2015; 73
Harris (10.1016/j.jneumeth.2020.108827_bib0085) 2015; 42
Jackey (10.1016/j.jneumeth.2020.108827_bib0095) 2019
Murdoch (10.1016/j.jneumeth.2020.108827_bib0165) 2011
Edden (10.1016/j.jneumeth.2020.108827_bib0070) 2014; 40
Center for Magnetic Resonance Research (10.1016/j.jneumeth.2020.108827_bib0030) 2018
Deelchand (10.1016/j.jneumeth.2020.108827_bib0055) 2019
Purvis (10.1016/j.jneumeth.2020.108827_bib0205) 2017; 12
Vanhamme (10.1016/j.jneumeth.2020.108827_bib0255) 1997; 129
Mikkelsen (10.1016/j.jneumeth.2020.108827_bib0150) 2017; 159
Provencher (10.1016/j.jneumeth.2020.108827_bib0200) 1993; 30
Jensen (10.1016/j.jneumeth.2020.108827_bib0105) 2005; 18
Saleh (10.1016/j.jneumeth.2020.108827_bib0220) 2016; 142
Stefan (10.1016/j.jneumeth.2020.108827_bib0245) 2009; 20
Becker (10.1016/j.jneumeth.2020.108827_bib0015) 2015
Gasparovic (10.1016/j.jneumeth.2020.108827_bib0080) 2006; 55
Mlynárik (10.1016/j.jneumeth.2020.108827_bib0160) 2001; 14
Uecker (10.1016/j.jneumeth.2020.108827_bib0250) 2014; 71
Wilson (10.1016/j.jneumeth.2020.108827_bib0270) 2011; 65
Mescher (10.1016/j.jneumeth.2020.108827_bib0145) 1998; 11
Puts (10.1016/j.jneumeth.2020.108827_bib0210) 2013; 37
Saleh (10.1016/j.jneumeth.2020.108827_bib0225) 2019; 189
Simpson (10.1016/j.jneumeth.2020.108827_bib0235) 2017; 77
Crane (10.1016/j.jneumeth.2020.108827_bib0040) 2013
Dentler (10.1016/j.jneumeth.2020.108827_bib0060) 2015
Zöllner (10.1016/j.jneumeth.2020.108827_bib0295) 2020
Öz (10.1016/j.jneumeth.2020.108827_bib0190) 2020
Barkhuijsen (10.1016/j.jneumeth.2020.108827_bib0010) 1987; 73
Poullet (10.1016/j.jneumeth.2020.108827_bib0195) 2007; 20
Rothman (10.1016/j.jneumeth.2020.108827_bib0215) 1993; 90
Marjanska (10.1016/j.jneumeth.2020.108827_bib0135) 2019
Klose (10.1016/j.jneumeth.2020.108827_bib0115) 1990; 14
Chan (10.1016/j.jneumeth.2020.108827_bib0035) 2016; 76
References_xml – volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: bib0290
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw. TOMS
– volume: 14
  start-page: 325
  year: 2001
  end-page: 331
  ident: bib0160
  article-title: Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla
  publication-title: NMR Biomed.
– volume: 145
  start-page: 24
  year: 2017
  end-page: 43
  ident: bib0045
  article-title: SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data
  publication-title: NeuroImage
– start-page: 510
  year: 2019
  ident: bib0185
  article-title: Simultaneous linear-combination modeling of MEGA-PRESS sum and difference spectra without soft constraints
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 185
  start-page: 181
  year: 2019
  end-page: 190
  ident: bib0180
  article-title: Advanced Hadamard-encoded editing of seven low-concentration brain metabolites: Principles of HERCULES
  publication-title: NeuroImage
– volume: 80
  start-page: 452
  year: 2018
  end-page: 461
  ident: bib0280
  article-title: In vivo estimation of transverse relaxation time constant (T 2) of 17 human brain metabolites at 3T
  publication-title: Magn. Reson. Med.
– year: 2018
  ident: bib0030
  article-title: MRspa: Magnetic Resonance Signal Processing and Analysis
– volume: 82
  start-page: 527
  year: 2019
  end-page: 550
  ident: bib0275
  article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations
  publication-title: Magn. Reson. Med.
– volume: 44
  start-page: 4169
  year: 2017
  end-page: 4178
  ident: bib0285
  article-title: Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy
  publication-title: Med. Phys.
– start-page: 1008
  year: 2020
  end-page: 1029
  ident: bib0125
  article-title: Theoretical description of modern (1) H in Vivo magnetic resonance spectroscopic pulse sequences
  publication-title: J. Magn. Reson. Imaging
– start-page: 1410
  year: 2011
  ident: bib0240
  article-title: VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– year: 2019
  ident: bib0135
  article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline
  publication-title: NMR Biomed., e4197.
– year: 2013
  ident: bib0040
  article-title: SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows
  publication-title: Int. J. Biomed. Imaging
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0100
  article-title: FSL
  publication-title: NeuroImage
– volume: 21
  start-page: 787
  year: 2003
  end-page: 797
  ident: bib0120
  article-title: Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo
  publication-title: Magn. Reson. Imaging
– volume: 42
  start-page: 1431
  year: 2015
  end-page: 1440
  ident: bib0085
  article-title: Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations
  publication-title: J. Magn. Reson. Imaging
– volume: 9
  start-page: 531
  year: 1999
  end-page: 538
  ident: bib0260
  article-title: NMR relaxation times in the human brain at 3.0 tesla
  publication-title: J. Magn. Reson. Imaging
– year: 2019
  ident: bib0265
  article-title: RainCloudPlots/RainCloudPlots: WellcomeOpenResearch
  publication-title: Zenodo
– volume: 55
  start-page: 1219
  year: 2006
  end-page: 1226
  ident: bib0080
  article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging
  publication-title: Magn. Reson. Med.
– volume: 20
  start-page: 493
  year: 2007
  end-page: 504
  ident: bib0195
  article-title: An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES
  publication-title: NMR Biomed.
– volume: 189
  start-page: 425
  year: 2019
  end-page: 431
  ident: bib0225
  article-title: Multi-vendor standardized sequence for edited magnetic resonance spectroscopy
  publication-title: NeuroImage
– year: 2007
  ident: bib0075
  article-title: Statistical Parametric Mapping the Analysis of Functional Brain Images
– volume: 77
  start-page: 23
  year: 2017
  end-page: 33
  ident: bib0235
  article-title: Advanced processing and simulation of MRS data using the FID appliance (FID-A) - An open source, MATLAB-based toolkit
  publication-title: Magn. Reson. Med.
– volume: 20
  year: 2009
  ident: bib0245
  article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package
  publication-title: Meas. Sci. Technol.
– volume: 76
  start-page: 11
  year: 2016
  end-page: 19
  ident: bib0035
  article-title: HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy
  publication-title: Magn. Reson. Med.
– volume: 73
  start-page: 553
  year: 1987
  end-page: 557
  ident: bib0010
  article-title: Improved Algorithm for Noniterative Time-Domain Model Fitting to Exponentially Damped Magnetic Resonance Signals
  publication-title: J. Magn. Reson.
– year: 2015
  ident: bib0015
  article-title: LBFGSB (L-BFGS-B) Mex Wrapper - File Exchange - MATLAB Central [WWW Document]
– year: 2019
  ident: bib0095
  article-title: Widgets Toolbox [WWW Document]
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bib0130
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 18
  start-page: 570
  year: 2005
  end-page: 576
  ident: bib0105
  article-title: Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging
  publication-title: NMR Biomed.
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  ident: bib0255
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J. Magn. Reson.
– year: 2019
  ident: bib0055
  article-title: MEGA-PRESS of GABA+: influences of acquisition parameters
  publication-title: NMR Biomed
– start-page: 5666
  year: 2018
  ident: bib0110
  article-title: INSPECTOR - A Tool for Teaching Magnetic Resonance Spectroscopy
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 30
  start-page: e3804
  year: 2017
  ident: bib0020
  article-title: 1H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization
  publication-title: NMR Biomed.
– volume: 142
  start-page: 576
  year: 2016
  end-page: 582
  ident: bib0220
  article-title: Simultaneous edited MRS of GABA and glutathione
  publication-title: NeuroImage
– year: 2020
  ident: bib0295
  article-title: Comparison of algorithms for linear-combination modelling of short-echo-time magnetic resonance spectra
  publication-title: bioRxiv
– volume: 12
  start-page: e0185356
  year: 2017
  ident: bib0205
  article-title: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB
  publication-title: PLoS One.
– volume: 77
  start-page: 1377
  year: 2017
  end-page: 1389
  ident: bib0090
  article-title: Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites
  publication-title: Magn. Reson. Med.
– volume: 37
  start-page: 999
  year: 2013
  end-page: 1003
  ident: bib0210
  article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla
  publication-title: J. Magn. Reson. Imaging
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bib0140
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 30
  start-page: 672
  year: 1993
  end-page: 679
  ident: bib0200
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn. Reson. Med.
– start-page: 1394
  year: 2011
  ident: bib0165
  article-title: Modeling MEGA-PRESS macromolecules for a better grasp of GABA
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 2915
  year: 2014
  ident: bib0170
  article-title: Investigating the effect of spectral linewidth on metabolite measurement bias in short-TE MRS
  publication-title: in: Proc. Int. Soc. Magn. Reson. Med.
– volume: 35
  start-page: 229
  year: 2012
  end-page: 234
  ident: bib0065
  article-title: Measuring T2 in vivo with J-difference editing: application to GABA at 3 Tesla
  publication-title: J. Magn. Reson. Imaging
– year: 2019
  ident: bib0230
  article-title: GUI Layout Toolbox [WWW Document]
– volume: 73
  start-page: 44
  year: 2015
  end-page: 50
  ident: bib0175
  article-title: Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain
  publication-title: Magn. Reson. Med.
– volume: 159
  start-page: 32
  year: 2017
  end-page: 45
  ident: bib0150
  article-title: Big GABA: Edited MR spectroscopy at 24 research sites
  publication-title: NeuroImage
– volume: 14
  start-page: 26
  year: 1990
  end-page: 30
  ident: bib0115
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn. Reson. Med.
– volume: 40
  start-page: 1445
  year: 2014
  end-page: 1452
  ident: bib0070
  article-title: Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra
  publication-title: J. Magn. Reson. Imaging
– start-page: e4218
  year: 2019
  ident: bib0050
  article-title: cross-vendor standardization of semi-LASER for single-voxel MRS at 3T
  publication-title: NMR Biomed.
– volume: 90
  start-page: 5662
  year: 1993
  end-page: 5666
  ident: bib0215
  article-title: Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2020
  ident: bib0190
  article-title: Experts' Working Group on Advanced Single Voxel 1H MRS. Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations
  publication-title: NMR Biomed.
– volume: 11
  start-page: 266
  year: 1998
  end-page: 272
  ident: bib0145
  article-title: Simultaneous in vivo spectral editing and water suppression
  publication-title: NMR Biomed.
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  ident: bib0250
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA
  publication-title: Magn. Reson. Med.
– year: 2015
  ident: bib0060
  article-title: Levenberg-Marquardt Toolbox - File Exchange - MATLAB Central [WWW Document]
– volume: 65
  start-page: 1
  year: 2011
  end-page: 12
  ident: bib0270
  article-title: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: bib0025
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 4
  start-page: 63
  year: 2019
  ident: bib0005
  article-title: Raincloud plots: a multi-platform tool for robust data visualization
  publication-title: Wellcome Open Res.
– volume: 191
  start-page: 537
  year: 2019
  end-page: 548
  ident: bib0155
  article-title: Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites
  publication-title: Neuroimage
– volume: 35
  start-page: 229
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108827_bib0065
  article-title: Measuring T2 in vivo with J-difference editing: application to GABA at 3 Tesla
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22865
– start-page: 510
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0185
  article-title: Simultaneous linear-combination modeling of MEGA-PRESS sum and difference spectra without soft constraints
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 129
  start-page: 35
  year: 1997
  ident: 10.1016/j.jneumeth.2020.108827_bib0255
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1997.1244
– volume: 71
  start-page: 990
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108827_bib0250
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24751
– year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0230
– volume: 44
  start-page: 4169
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0285
  article-title: Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy
  publication-title: Med. Phys.
  doi: 10.1002/mp.12375
– volume: 65
  start-page: 1
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108827_bib0270
  article-title: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22579
– year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0055
  article-title: MEGA-PRESS of GABA+: influences of acquisition parameters
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4199
– volume: 62
  start-page: 782
  year: 2012
  ident: 10.1016/j.jneumeth.2020.108827_bib0100
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 18
  start-page: 570
  year: 2005
  ident: 10.1016/j.jneumeth.2020.108827_bib0105
  article-title: Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.994
– year: 2007
  ident: 10.1016/j.jneumeth.2020.108827_bib0075
– volume: 14
  start-page: 26
  year: 1990
  ident: 10.1016/j.jneumeth.2020.108827_bib0115
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910140104
– start-page: 1394
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108827_bib0165
  article-title: Modeling MEGA-PRESS macromolecules for a better grasp of GABA
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 73
  start-page: 553
  year: 1987
  ident: 10.1016/j.jneumeth.2020.108827_bib0010
  article-title: Improved Algorithm for Noniterative Time-Domain Model Fitting to Exponentially Damped Magnetic Resonance Signals
  publication-title: J. Magn. Reson.
– year: 2015
  ident: 10.1016/j.jneumeth.2020.108827_bib0015
– start-page: e4218
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0050
  article-title: cross-vendor standardization of semi-LASER for single-voxel MRS at 3T
  publication-title: NMR Biomed.
– volume: 16
  start-page: 1190
  year: 1995
  ident: 10.1016/j.jneumeth.2020.108827_bib0025
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 90
  start-page: 5662
  year: 1993
  ident: 10.1016/j.jneumeth.2020.108827_bib0215
  article-title: Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.90.12.5662
– volume: 30
  start-page: e3804
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0020
  article-title: 1H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3804
– start-page: 2915
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108827_bib0170
  article-title: Investigating the effect of spectral linewidth on metabolite measurement bias in short-TE MRS
  publication-title: in: Proc. Int. Soc. Magn. Reson. Med.
– volume: 145
  start-page: 24
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0045
  article-title: SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.009
– volume: 30
  start-page: 672
  year: 1993
  ident: 10.1016/j.jneumeth.2020.108827_bib0200
  article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910300604
– volume: 4
  start-page: 63
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0005
  article-title: Raincloud plots: a multi-platform tool for robust data visualization
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.15191.1
– volume: 189
  start-page: 425
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0225
  article-title: Multi-vendor standardized sequence for edited magnetic resonance spectroscopy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.056
– volume: 20
  start-page: 493
  year: 2007
  ident: 10.1016/j.jneumeth.2020.108827_bib0195
  article-title: An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1112
– volume: 40
  start-page: 1445
  year: 2014
  ident: 10.1016/j.jneumeth.2020.108827_bib0070
  article-title: Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24478
– volume: 73
  start-page: 44
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108827_bib0175
  article-title: Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25094
– volume: 77
  start-page: 1377
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0090
  article-title: Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26619
– start-page: 1008
  year: 2020
  ident: 10.1016/j.jneumeth.2020.108827_bib0125
  article-title: Theoretical description of modern (1) H in Vivo magnetic resonance spectroscopic pulse sequences
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26846
– year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0095
– volume: 11
  start-page: 431
  year: 1963
  ident: 10.1016/j.jneumeth.2020.108827_bib0140
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 185
  start-page: 181
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0180
  article-title: Advanced Hadamard-encoded editing of seven low-concentration brain metabolites: Principles of HERCULES
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.002
– year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0135
  article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline
  publication-title: NMR Biomed., e4197.
– start-page: 1410
  year: 2011
  ident: 10.1016/j.jneumeth.2020.108827_bib0240
  article-title: VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– start-page: 5666
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108827_bib0110
  article-title: INSPECTOR - A Tool for Teaching Magnetic Resonance Spectroscopy
  publication-title: Proc. Int. Soc. Magn. Reson. Med.
– volume: 77
  start-page: 23
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0235
  article-title: Advanced processing and simulation of MRS data using the FID appliance (FID-A) - An open source, MATLAB-based toolkit
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26091
– year: 2020
  ident: 10.1016/j.jneumeth.2020.108827_bib0190
  article-title: Experts' Working Group on Advanced Single Voxel 1H MRS. Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4236
– volume: 76
  start-page: 11
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108827_bib0035
  article-title: HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26233
– volume: 21
  start-page: 787
  year: 2003
  ident: 10.1016/j.jneumeth.2020.108827_bib0120
  article-title: Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(03)00179-6
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.jneumeth.2020.108827_bib0130
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 11
  start-page: 266
  year: 1998
  ident: 10.1016/j.jneumeth.2020.108827_bib0145
  article-title: Simultaneous in vivo spectral editing and water suppression
  publication-title: NMR Biomed.
  doi: 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J
– year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0265
  article-title: RainCloudPlots/RainCloudPlots: WellcomeOpenResearch
  publication-title: Zenodo
– volume: 12
  start-page: e0185356
  issue: 9
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0205
  article-title: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0185356
– year: 2013
  ident: 10.1016/j.jneumeth.2020.108827_bib0040
  article-title: SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/2013/169526
– volume: 23
  start-page: 550
  year: 1997
  ident: 10.1016/j.jneumeth.2020.108827_bib0290
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw. TOMS
  doi: 10.1145/279232.279236
– volume: 191
  start-page: 537
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0155
  article-title: Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.059
– volume: 14
  start-page: 325
  year: 2001
  ident: 10.1016/j.jneumeth.2020.108827_bib0160
  article-title: Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.713
– volume: 159
  start-page: 32
  year: 2017
  ident: 10.1016/j.jneumeth.2020.108827_bib0150
  article-title: Big GABA: Edited MR spectroscopy at 24 research sites
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.021
– volume: 42
  start-page: 1431
  year: 2015
  ident: 10.1016/j.jneumeth.2020.108827_bib0085
  article-title: Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24903
– year: 2015
  ident: 10.1016/j.jneumeth.2020.108827_bib0060
– volume: 142
  start-page: 576
  year: 2016
  ident: 10.1016/j.jneumeth.2020.108827_bib0220
  article-title: Simultaneous edited MRS of GABA and glutathione
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.056
– volume: 80
  start-page: 452
  year: 2018
  ident: 10.1016/j.jneumeth.2020.108827_bib0280
  article-title: In vivo estimation of transverse relaxation time constant (T 2) of 17 human brain metabolites at 3T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27067
– year: 2020
  ident: 10.1016/j.jneumeth.2020.108827_bib0295
  article-title: Comparison of algorithms for linear-combination modelling of short-echo-time magnetic resonance spectra
  publication-title: bioRxiv
– year: 2018
  ident: 10.1016/j.jneumeth.2020.108827_bib0030
– volume: 55
  start-page: 1219
  year: 2006
  ident: 10.1016/j.jneumeth.2020.108827_bib0080
  article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20901
– volume: 82
  start-page: 527
  year: 2019
  ident: 10.1016/j.jneumeth.2020.108827_bib0275
  article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27742
– volume: 9
  start-page: 531
  year: 1999
  ident: 10.1016/j.jneumeth.2020.108827_bib0260
  article-title: NMR relaxation times in the human brain at 3.0 tesla
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– volume: 37
  start-page: 999
  year: 2013
  ident: 10.1016/j.jneumeth.2020.108827_bib0210
  article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23817
– volume: 20
  year: 2009
  ident: 10.1016/j.jneumeth.2020.108827_bib0245
  article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/10/104035
SSID ssj0004906
Score 2.6028922
Snippet •Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and...
Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108827
SubjectTerms Ecosystem
Healthy Volunteers
Humans
Linear-combination modelling
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Pre-processing
Quantification
Software
Tissue correction
Title Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data
URI https://dx.doi.org/10.1016/j.jneumeth.2020.108827
https://www.ncbi.nlm.nih.gov/pubmed/32603810
https://www.proquest.com/docview/2419417265
https://pubmed.ncbi.nlm.nih.gov/PMC7477913
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hKlW9oBbasqUgI1U9NWw-7NjhtkJFCxX00CJxs5zYaXfVzUaCPeyF394ZO9myBYkDxyR2ZHnGnhn7vRmAT1Vpc26yJFK5iSPa8KLCiCyyIim5M1K6ig70Ly7z8RU_vxbXG3DSc2EIVtnt_WFP97t192bYzeawnUyGP4iIExOdCvUUDTkRfjmXpOVHd_9gHrzw9TWpMd1XxvdYwtOjaeMWVKkZ48TUw-0UVZd53EA9dED_x1HeM0ynr2Gr8yjZKAz6DWy4Zht2Rg1G07Ml-8w8xtMfnm_Dy4vuKn0Hqu83LYrxmBGkJApn-KwNtAE0Z1-YD5VX6WXxR5SPIxAd2bxmM_OrIQIktiNvHueNedYmZcect0tG0NO3cHX69efJOOoqLkSVyORtVMvS2TrNOK_TMjc1Lw1GLCbLDc9MXDqRGqVQ6NzGziQ1GndpSyOsUxi2pcpl72CzmTduF1htsJVMLBep5c5n4ZHcYvikVK5snQxA9NOsqy4dOVXF-KN73NlU9-LRJB4dxDOA4apfGxJyPNmj6KWo11RLo9V4su9hL3aN644uU0zj5osbjZ5PwdH7y8UA3gc1WI0HXWK6gI0HINcUZNWAcnqvf2kmv31ub4zuZJFkH54x5j14RU8BCPcRNlFR3D56TrflgV8aB_BidPZtfPkX_2gceg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQS9oNICXaBgJMSJsPmwY4fbqqLa0u5yoJV6s5zYgV3RbKS2h_57Zuxk2y1IPXCN7cjyjD0z9rw3AB-q0ubcZEmkchNHdOBFhRFZZEVScmekdBVd6E9n-eSMfzsX5xtw0GNhKK2yO_vDme5P6-7LqFvNUTufj34QECcmOBXqKRpy9Qg2iZ1KDGBzfHQ8md3CIwtfYpP605NlfAcovPi8aNw1FWvGUDH1GXeKCsz820b97YPeT6W8Y5sOt-Fp51SycZj3M9hwzQ7sjhsMqC9u2Efm0zz9_fkOPJ52r-m7UH2_bFGSXxhllUThGp-1ATmAFu0T89HyimEWf0SUHAHryJY1uzA_G8JAYj9y6HHpmAduEkHmsr1hlH36HM4Ov54eTKKu6EJUiUxeRbUsna3TjPM6LXNT89Jg0GKy3PDMxKUTqVEK5c5t7ExSo32XtjTCOoWRW6pc9gIGzbJxe8Bqg71kYrlILXeeiEdyixGUUrmydTIE0S-zrjpGciqM8Vv3qWcL3YtHk3h0EM8QRqtxbeDkeHBE0UtRr2mXRsPx4Nj3vdg1bj16TzGNW15fanR-Co4OYC6G8DKowWo-6BXTG2w8BLmmIKsOROu93tLMf3l6bwzwZJFkr_5jzu_gyeR0eqJPjmbHr2GLWkJe3BsYoNK4fXSkrsq33Ub5A6IqHys
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osprey%3A+Open-Source+Processing%2C+Reconstruction+%26+Estimation+of+Magnetic+Resonance+Spectroscopy+Data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Oeltzschner%2C+Georg&rft.au=Z%C3%B6llner%2C+Helge+J.&rft.au=Hui%2C+Steve+C.+N.&rft.au=Mikkelsen%2C+Mark&rft.date=2020-09-01&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=343&rft.spage=108827&rft.epage=108827&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108827&rft_id=info%3Apmid%2F32603810&rft.externalDocID=PMC7477913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon