Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data
•Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step. Processing and quantitative analysis of magnetic resonance spec...
Saved in:
Published in | Journal of neuroscience methods Vol. 343; p. 108827 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step.
Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.
Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.
Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.
Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey’s open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.
Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods. |
---|---|
AbstractList | Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.
Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.
Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.
Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.
Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods. Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.BACKGROUNDProcessing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization.Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.NEW METHODOsprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects.Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.RESULTSOsprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques.Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.COMPARISON WITH EXISTING METHOD(S)Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey's open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis.Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods.CONCLUSIONSOsprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods. •Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and quantification.•Includes a graphical user interface for visualization of each analysis step. Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software. Here, we present Osprey, a fully integrated open-source data analysis pipeline for MRS data, with seamless integration of pre-processing, linear-combination modelling, quantification, and data visualization. Osprey loads multiple common MRS data formats, performs phased-array coil combination, frequency-and phase-correction of individual transients, signal averaging and Fourier transformation. Linear combination modelling of the processed spectrum is carried out using simulated basis sets and a spline baseline. The MRS voxel is coregistered to an anatomical image, which is segmented for tissue correction and quantification is performed based upon modelling parameters and tissue segmentation. The results of each analysis step are visualized in the Osprey GUI. The analysis pipeline is demonstrated in 12 PRESS, 11 MEGA-PRESS, and 8 HERMES datasets acquired in healthy subjects. Osprey successfully loads, processes, models, and quantifies MRS data acquired with a variety of conventional and spectral editing techniques. Osprey is the first MRS software to combine uniform pre-processing, linear-combination modelling, tissue correction and quantification into a coherent ecosystem. Compared to existing compiled, often closed-source modelling software, Osprey’s open-source code philosophy allows researchers to integrate state-of-the-art data processing and modelling routines, and potentially converge towards standardization of analysis. Osprey combines robust, peer-reviewed data processing methods into a modular workflow that is easily augmented by community developers, allowing the rapid implementation of new methods. |
ArticleNumber | 108827 |
Author | Oeltzschner, Georg Saleh, Muhammad G. Mikkelsen, Mark Zöllner, Helge J. Hui, Steve C.N. Edden, Richard A.E. Tapper, Sofie |
AuthorAffiliation | 2 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States 1 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States |
AuthorAffiliation_xml | – name: 2 F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States – name: 1 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States |
Author_xml | – sequence: 1 givenname: Georg orcidid: 0000-0003-3083-9811 surname: Oeltzschner fullname: Oeltzschner, Georg email: goeltzs1@jhmi.edu organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 2 givenname: Helge J. surname: Zöllner fullname: Zöllner, Helge J. organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 3 givenname: Steve C.N. orcidid: 0000-0002-1523-4040 surname: Hui fullname: Hui, Steve C.N. organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 4 givenname: Mark surname: Mikkelsen fullname: Mikkelsen, Mark organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 5 givenname: Muhammad G. surname: Saleh fullname: Saleh, Muhammad G. organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 6 givenname: Sofie surname: Tapper fullname: Tapper, Sofie organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States – sequence: 7 givenname: Richard A.E. surname: Edden fullname: Edden, Richard A.E. organization: Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32603810$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu3CAURVWqZJL2FyKvqiziKWAMuIqqVlEfkSLNJpW6QxhfTxjZ4AKONH8fJpOJ2m6yQhfOg3vOKTpy3gFC5wQvCSb842a5cTCPkO6XFNPdpZRUvEELIgUtuZC_j9AiA-sSU4FP0GmMG4wxazA_RicV5biSBC-QWcUpwPZTsZrAldHPwUAxBW8gRuvWl0UA411MYTbJeld8KCAmO-qnwffFqNcOkjUZF73TLrPjBCYFH42ftkWnk36H3vZ6iPD--TxDv75_u7v-Wd6uftxcf70tTV2JVPaiha6nFWM9bbnuWauJYLrimlUat1BTLSUYwzoMmvSUc9G1uu5AyqahEqoz9HmvO83tCJ0Bl4Ie1BTyf8NWeW3Vvy_O3qu1f1CCCdGQKgtcPAsE_2fOi6rRRgPDoB34OSrKSMOIoLzO0PO_vV5MDslmwNUeYHIUMUCvjE1PsWVrOyiC1a5ItVGHItWuSLUvMtP5f_SDw6vEL3si5KQfLAQVjYXcS2dzlUl13r4m8Qh0P8Ax |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e18357 crossref_primary_10_2139_ssrn_4122065 crossref_primary_10_1016_j_neuroscience_2024_02_021 crossref_primary_10_1002_nbm_5300 crossref_primary_10_1016_j_mri_2024_110219 crossref_primary_10_1016_j_neuroimage_2023_120194 crossref_primary_10_1002_nbm_4618 crossref_primary_10_1002_mrm_29711 crossref_primary_10_1002_nbm_4854 crossref_primary_10_1016_j_amjmed_2024_04_007 crossref_primary_10_1016_j_jneumeth_2025_110430 crossref_primary_10_1016_j_neuroimage_2021_118430 crossref_primary_10_3389_fpsyt_2022_872403 crossref_primary_10_1002_prot_26580 crossref_primary_10_3390_metabo12121248 crossref_primary_10_1016_j_drugalcdep_2024_111254 crossref_primary_10_1016_j_conctc_2024_101341 crossref_primary_10_1192_bjo_2024_841 crossref_primary_10_1002_nbm_5092 crossref_primary_10_3389_fnins_2023_1258408 crossref_primary_10_1002_mrm_29387 crossref_primary_10_1080_10408347_2022_2124839 crossref_primary_10_1002_mrm_28976 crossref_primary_10_1007_s00415_023_12146_7 crossref_primary_10_1186_s12888_024_05646_x crossref_primary_10_1038_s41380_022_01860_9 crossref_primary_10_1002_mrm_29706 crossref_primary_10_1038_s41598_023_39881_1 crossref_primary_10_1002_jmri_28868 crossref_primary_10_1038_s41398_025_03302_w crossref_primary_10_3389_fneur_2022_1045678 crossref_primary_10_1002_mrm_28525 crossref_primary_10_1002_nbm_4839 crossref_primary_10_1002_mrm_29456 crossref_primary_10_1038_s41386_023_01553_z crossref_primary_10_1002_hbm_70057 crossref_primary_10_1371_journal_pone_0299142 crossref_primary_10_1002_nbm_5076 crossref_primary_10_1002_jmri_29709 crossref_primary_10_1016_j_xpro_2023_102493 crossref_primary_10_1002_hbm_26531 crossref_primary_10_1002_mrm_29686 crossref_primary_10_1002_mrm_30158 crossref_primary_10_1016_j_neuroimage_2025_121153 crossref_primary_10_1002_mrm_28630 crossref_primary_10_1002_nbm_5236 crossref_primary_10_1186_s13229_023_00577_y crossref_primary_10_1016_j_dcn_2024_101452 crossref_primary_10_3389_fphy_2022_927162 crossref_primary_10_1002_ima_22748 crossref_primary_10_1002_nbm_4702 crossref_primary_10_1016_j_jmr_2023_107601 crossref_primary_10_1162_imag_a_00237 crossref_primary_10_1016_j_dcn_2025_101514 crossref_primary_10_1002_mrm_30340 crossref_primary_10_1002_mrm_30462 crossref_primary_10_1007_s11011_023_01174_x crossref_primary_10_1002_nbm_4897 crossref_primary_10_1186_s13063_023_07551_2 crossref_primary_10_1016_j_compbiomed_2023_106837 crossref_primary_10_1002_mrm_29877 crossref_primary_10_1002_mrm_28941 crossref_primary_10_3389_fnhum_2025_1478534 crossref_primary_10_1093_cercor_bhae046 crossref_primary_10_1002_nbm_4482 crossref_primary_10_1016_j_bandc_2024_106230 crossref_primary_10_1016_j_ejrad_2022_110568 crossref_primary_10_1177_14738716231181545 crossref_primary_10_1002_mrm_29103 crossref_primary_10_1177_24705470241277451 crossref_primary_10_1002_nbm_5056 crossref_primary_10_1002_aur_3253 crossref_primary_10_1002_mrm_30209 crossref_primary_10_3390_cancers15174311 crossref_primary_10_3389_fpsyt_2023_1155689 crossref_primary_10_1002_nbm_70010 crossref_primary_10_1002_mrm_28654 crossref_primary_10_1002_aur_3097 crossref_primary_10_1002_nbm_70013 crossref_primary_10_1002_mrm_29370 crossref_primary_10_1113_EP092252 crossref_primary_10_1002_mrm_29093 crossref_primary_10_1016_j_neuroimage_2022_119740 crossref_primary_10_1002_mrm_29895 crossref_primary_10_21105_joss_03646 crossref_primary_10_1016_j_pnpbp_2023_110892 crossref_primary_10_3390_diagnostics14232668 crossref_primary_10_1002_mrm_29418 crossref_primary_10_1162_imag_a_00025 crossref_primary_10_1002_hbm_70097 crossref_primary_10_1093_cercor_bhad247 crossref_primary_10_1016_j_neurobiolaging_2024_06_003 crossref_primary_10_1002_nbm_5152 crossref_primary_10_1002_mrm_30110 crossref_primary_10_1016_j_neurobiolaging_2022_11_006 crossref_primary_10_1002_mrm_29008 crossref_primary_10_1007_s10916_023_01969_6 crossref_primary_10_1002_nbm_4907 |
Cites_doi | 10.1002/jmri.22865 10.1006/jmre.1997.1244 10.1002/mrm.24751 10.1002/mp.12375 10.1002/mrm.22579 10.1002/nbm.4199 10.1016/j.neuroimage.2011.09.015 10.1002/nbm.994 10.1002/mrm.1910140104 10.1137/0916069 10.1073/pnas.90.12.5662 10.1002/nbm.3804 10.1016/j.neuroimage.2016.10.009 10.1002/mrm.1910300604 10.12688/wellcomeopenres.15191.1 10.1016/j.neuroimage.2019.01.056 10.1002/nbm.1112 10.1002/jmri.24478 10.1002/mrm.25094 10.1002/mrm.26619 10.1002/jmri.26846 10.1137/0111030 10.1016/j.neuroimage.2018.10.002 10.1002/mrm.26091 10.1002/nbm.4236 10.1002/mrm.26233 10.1016/S0730-725X(03)00179-6 10.1090/qam/10666 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J 10.1371/journal.pone.0185356 10.1155/2013/169526 10.1145/279232.279236 10.1016/j.neuroimage.2019.02.059 10.1002/nbm.713 10.1016/j.neuroimage.2017.07.021 10.1002/jmri.24903 10.1016/j.neuroimage.2016.07.056 10.1002/mrm.27067 10.1002/mrm.20901 10.1002/mrm.27742 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1002/jmri.23817 10.1088/0957-0233/20/10/104035 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2020.108827 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 108827 |
ExternalDocumentID | PMC7477913 32603810 10_1016_j_jneumeth_2020_108827 S0165027020302508 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB023963 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: R01 EB016089 – fundername: NIA NIH HHS grantid: K99 AG062230 – fundername: NIA NIH HHS grantid: R21 AG060245 – fundername: NIH HHS grantid: S10 OD021648 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSH SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS WUQ X7M ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c537t-f7bedf2344f2b6af4ba174a36a43a0be52a88ecc4d0ea1f2667dba5de889928e3 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 14:09:03 EDT 2025 Fri Jul 11 01:12:59 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Tue Jul 01 02:57:13 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Sun Apr 06 06:53:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Magnetic resonance spectroscopy Tissue correction Quantification Linear-combination modelling Pre-processing |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-f7bedf2344f2b6af4ba174a36a43a0be52a88ecc4d0ea1f2667dba5de889928e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Steve Hui: Methodology, Software, Data Curation, Writing - Review & Editing Mark Mikkelsen: Methodology, Software, Writing - Review & Editing Richard Edden: Methodology, Resources, Writing - Original Draft, Writing - Review & Editing, Supervision, Project Administration, Funding Acquisition CRediT author statement Helge Zöllner: Methodology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization Sofie Tapper: Methodology, Software, Formal Analysis, Writing - Review & Editing, Visualization Georg Oeltzschner: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project Administration, Funding Acquisition Muhammad Saleh: Methodology, Software, Writing - Review & Editing, Supervision |
ORCID | 0000-0003-3083-9811 0000-0002-1523-4040 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7477913 |
PMID | 32603810 |
PQID | 2419417265 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477913 proquest_miscellaneous_2419417265 pubmed_primary_32603810 crossref_citationtrail_10_1016_j_jneumeth_2020_108827 crossref_primary_10_1016_j_jneumeth_2020_108827 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2020_108827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wilson, Reynolds, Kauppinen, Arvanitis, Peet (bib0270) 2011; 65 Bhogal, Schür, Houtepen, van de Bank, Boer, Marsman, Barker, Scheenen, Wijnen, Vinkers, Klomp (bib0020) 2017; 30 Saleh, Oeltzschner, Chan, Puts, Mikkelsen, Sch??r, Harris, Edden (bib0220) 2016; 142 Purvis, Clarke, Biasiolli, Valkovič, Robson, Rodgers (bib0205) 2017; 12 Barkhuijsen, De Beer, Van Ormondt (bib0010) 1987; 73 Sampson (bib0230) 2019 Oeltzschner, Zupan, Edden (bib0185) 2019 Puts, Barker, Edden (bib0210) 2013; 37 Poullet, Sima, Simonetti, Neuter, Vanhamme, Lemmerling, Huffel (bib0195) 2007; 20 Mescher, Merkle, Kirsch, Garwood, Gruetter (bib0145) 1998; 11 Mlynárik, Gruber, Moser (bib0160) 2001; 14 Wyss, Bianchini, Scheidegger, Giapitzakis, Hock, Fuchs, Henning (bib0280) 2018; 80 Provencher (bib0200) 1993; 30 Gasparovic, Song, Devier, Bockholt, Caprihan, Mullins, Posse, Jung, Morrison (bib0080) 2006; 55 Edden, Intrapiromkul, Zhu, Cheng, Barker (bib0065) 2012; 35 Mikkelsen, Rimbault, Barker, Bhattacharyya, Brix, Buur, Cecil, Chan, Chen, Craven, Cuypers, Dacko, Duncan, Dydak, Edmondson, Ende, Ersland, Forbes, Gao, Greenhouse, Harris, He, Heba, Hoggard, Hsu, Jansen, Kangarlu, Lange, Lebel, Li, Lin, Liou, Lirng, Liu, Long, Ma, Maes, Moreno-Ortega, Murray, Noah, Noeske, Noseworthy, Oeltzschner, Porges, Prisciandaro, Puts, Roberts, Sack, Sailasuta, Saleh, Schallmo, Simard, Stoffers, Swinnen, Tegenthoff, Truong, Wang, Wilkinson, Wittsack, Woods, Xu, Yan, Zhang, Zipunnikov, Zollner, Edden (bib0155) 2019; 191 Soher, Semanchuk, Todd, Steinberg, Young (bib0240) 2011 Rothman, Petroff, Behar, Mattson (bib0215) 1993; 90 Crane, Olson, Nelson (bib0040) 2013 Harris, Puts, Edden (bib0085) 2015; 42 Marquardt (bib0140) 1963; 11 Becker (bib0015) 2015 Murdoch, Dydak (bib0165) 2011 Whitaker, Rhys-Marshall, van Mourik, Martinez, Poggiali, Ye, Klug (bib0265) 2019 Center for Magnetic Resonance Research, University of Minnesota (bib0030) 2018 Jackey (bib0095) 2019 Zöllner, Považan, Hui, Tapper, Edden, Oeltzschner (bib0295) 2020 Öz, Deelchand, Wijnen, Mlynárik, Xin, Mekle, Noeske, Scheenen, Tkáč (bib0190) 2020 Byrd, Lu, Nocedal, Zhu (bib0025) 1995; 16 Juchem (bib0110) 2018 Dentler (bib0060) 2015 Wansapura, Holland, Dunn, Ball (bib0260) 1999; 9 Allen, Poggiali, Whitaker, Marshall, Kievit (bib0005) 2019; 4 De Leener, Lévy, Dupont, Fonov, Stikov, Louis Collins, Callot, Cohen-Adad (bib0045) 2017; 145 Zhang, An, Shen (bib0285) 2017; 44 Deelchand, Berrington, Noeske, Joers, Arani, Gillen, Schär, Nielsen, Peltier, Seraji-Bozorgzad, Landheer, Juchem, Soher, Noll, Kantarci, Ratai, Mareci, Barker, Öz (bib0050) 2019 Vanhamme, van den Boogaart, Van Huffel (bib0255) 1997; 129 Stefan, Cesare, Andrasescu, Popa, Lazariev, Vescovo, Strbak, Williams, Starcuk, Cabanas, van Ormondt, Graveron-Demilly (bib0245) 2009; 20 Near (bib0170) 2014 Chan, Puts, Schär, Barker, Edden (bib0035) 2016; 76 Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0100) 2012; 62 Simpson, Devenyi, Jezzard, Hennessy, Near (bib0235) 2017; 77 Uecker, Lai, Murphy, Virtue, Elad, Pauly, Vasanawala, Lustig (bib0250) 2014; 71 Levenberg (bib0130) 1944; 2 Mikkelsen, Barker, Bhattacharyya, Brix, Buur, Cecil, Chan, Chen, Craven, Cuypers, Dacko, Duncan, Dydak, Edmondson, Ende, Ersland, Gao, Greenhouse, Harris, He, Heba, Hoggard, Hsu, Jansen, Kangarlu, Lange, Lebel, Li, Lin, Liou, Lirng, Liu, Ma, Maes, Moreno-Ortega, Murray, Noah, Noeske, Noseworthy, Oeltzschner, Prisciandaro, Puts, Roberts, Sack, Sailasuta, Saleh, Schallmo, Simard, Swinnen, Tegenthoff, Truong, Wang, Wilkinson, Wittsack, Xu, Yan, Zhang, Zipunnikov, Zöllner, Edden (bib0150) 2017; 159 Klose (bib0115) 1990; 14 Jensen, de, Frederick, Renshaw (bib0105) 2005; 18 Landheer, Schulte, Treacy, Swanberg, Juchem (bib0125) 2020 Wilson, Andronesi, Barker, Bartha, Bizzi, Bolan, Brindle, Choi, Cudalbu, Dydak, Emir, Gonzalez, Gruber, Gruetter, Gupta, Heerschap, Henning, Hetherington, Huppi, Hurd, Kantarci, Kauppinen, Klomp, Kreis, Kruiskamp, Leach, Lin, Luijten, Marjańska, Maudsley, Meyerhoff, Mountford, Mullins, Murdoch, Nelson, Noeske, Öz, Pan, Peet, Poptani, Posse, Ratai, Salibi, Scheenen, Smith, Soher, Tkáč, Vigneron, Howe (bib0275) 2019; 82 Oeltzschner, Saleh, Rimbault, Mikkelsen, Chan, Puts, Edden (bib0180) 2019; 185 Near, Edden, Evans, Paquin, Harris, Jezzard (bib0175) 2015; 73 Zhu, Byrd, Lu, Nocedal (bib0290) 1997; 23 Friston (bib0075) 2007 Deelchand, Marjańska, Henry, Terpstra (bib0055) 2019 Harris, Saleh, Edden (bib0090) 2017; 77 Edden, Puts, Harris, Barker, Evans (bib0070) 2014; 40 Knight-Scott, Haley, Rossmiller, Farace, Mai, Christopher, Manning, Simnad, Siragy (bib0120) 2003; 21 Marjanska, Terpstra (bib0135) 2019 Saleh, Rimbault, Mikkelsen, Oeltzschner, Wang, Jiang, Alhamud, Near, Schär, Noeske, Murdoch, Ersland, Craven, Dwyer, Grüner, Pan, Ahn, Edden (bib0225) 2019; 189 Jenkinson (10.1016/j.jneumeth.2020.108827_bib0100) 2012; 62 Wyss (10.1016/j.jneumeth.2020.108827_bib0280) 2018; 80 Bhogal (10.1016/j.jneumeth.2020.108827_bib0020) 2017; 30 Friston (10.1016/j.jneumeth.2020.108827_bib0075) 2007 Harris (10.1016/j.jneumeth.2020.108827_bib0090) 2017; 77 Oeltzschner (10.1016/j.jneumeth.2020.108827_bib0180) 2019; 185 Wilson (10.1016/j.jneumeth.2020.108827_bib0275) 2019; 82 Edden (10.1016/j.jneumeth.2020.108827_bib0065) 2012; 35 Juchem (10.1016/j.jneumeth.2020.108827_bib0110) 2018 Sampson (10.1016/j.jneumeth.2020.108827_bib0230) 2019 Soher (10.1016/j.jneumeth.2020.108827_bib0240) 2011 Oeltzschner (10.1016/j.jneumeth.2020.108827_bib0185) 2019 Wansapura (10.1016/j.jneumeth.2020.108827_bib0260) 1999; 9 De Leener (10.1016/j.jneumeth.2020.108827_bib0045) 2017; 145 Marquardt (10.1016/j.jneumeth.2020.108827_bib0140) 1963; 11 Near (10.1016/j.jneumeth.2020.108827_bib0170) 2014 Zhang (10.1016/j.jneumeth.2020.108827_bib0285) 2017; 44 Allen (10.1016/j.jneumeth.2020.108827_bib0005) 2019; 4 Zhu (10.1016/j.jneumeth.2020.108827_bib0290) 1997; 23 Landheer (10.1016/j.jneumeth.2020.108827_bib0125) 2020 Deelchand (10.1016/j.jneumeth.2020.108827_bib0050) 2019 Mikkelsen (10.1016/j.jneumeth.2020.108827_bib0155) 2019; 191 Whitaker (10.1016/j.jneumeth.2020.108827_bib0265) 2019 Byrd (10.1016/j.jneumeth.2020.108827_bib0025) 1995; 16 Levenberg (10.1016/j.jneumeth.2020.108827_bib0130) 1944; 2 Knight-Scott (10.1016/j.jneumeth.2020.108827_bib0120) 2003; 21 Near (10.1016/j.jneumeth.2020.108827_bib0175) 2015; 73 Harris (10.1016/j.jneumeth.2020.108827_bib0085) 2015; 42 Jackey (10.1016/j.jneumeth.2020.108827_bib0095) 2019 Murdoch (10.1016/j.jneumeth.2020.108827_bib0165) 2011 Edden (10.1016/j.jneumeth.2020.108827_bib0070) 2014; 40 Center for Magnetic Resonance Research (10.1016/j.jneumeth.2020.108827_bib0030) 2018 Deelchand (10.1016/j.jneumeth.2020.108827_bib0055) 2019 Purvis (10.1016/j.jneumeth.2020.108827_bib0205) 2017; 12 Vanhamme (10.1016/j.jneumeth.2020.108827_bib0255) 1997; 129 Mikkelsen (10.1016/j.jneumeth.2020.108827_bib0150) 2017; 159 Provencher (10.1016/j.jneumeth.2020.108827_bib0200) 1993; 30 Jensen (10.1016/j.jneumeth.2020.108827_bib0105) 2005; 18 Saleh (10.1016/j.jneumeth.2020.108827_bib0220) 2016; 142 Stefan (10.1016/j.jneumeth.2020.108827_bib0245) 2009; 20 Becker (10.1016/j.jneumeth.2020.108827_bib0015) 2015 Gasparovic (10.1016/j.jneumeth.2020.108827_bib0080) 2006; 55 Mlynárik (10.1016/j.jneumeth.2020.108827_bib0160) 2001; 14 Uecker (10.1016/j.jneumeth.2020.108827_bib0250) 2014; 71 Wilson (10.1016/j.jneumeth.2020.108827_bib0270) 2011; 65 Mescher (10.1016/j.jneumeth.2020.108827_bib0145) 1998; 11 Puts (10.1016/j.jneumeth.2020.108827_bib0210) 2013; 37 Saleh (10.1016/j.jneumeth.2020.108827_bib0225) 2019; 189 Simpson (10.1016/j.jneumeth.2020.108827_bib0235) 2017; 77 Crane (10.1016/j.jneumeth.2020.108827_bib0040) 2013 Dentler (10.1016/j.jneumeth.2020.108827_bib0060) 2015 Zöllner (10.1016/j.jneumeth.2020.108827_bib0295) 2020 Öz (10.1016/j.jneumeth.2020.108827_bib0190) 2020 Barkhuijsen (10.1016/j.jneumeth.2020.108827_bib0010) 1987; 73 Poullet (10.1016/j.jneumeth.2020.108827_bib0195) 2007; 20 Rothman (10.1016/j.jneumeth.2020.108827_bib0215) 1993; 90 Marjanska (10.1016/j.jneumeth.2020.108827_bib0135) 2019 Klose (10.1016/j.jneumeth.2020.108827_bib0115) 1990; 14 Chan (10.1016/j.jneumeth.2020.108827_bib0035) 2016; 76 |
References_xml | – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: bib0290 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. TOMS – volume: 14 start-page: 325 year: 2001 end-page: 331 ident: bib0160 article-title: Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla publication-title: NMR Biomed. – volume: 145 start-page: 24 year: 2017 end-page: 43 ident: bib0045 article-title: SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data publication-title: NeuroImage – start-page: 510 year: 2019 ident: bib0185 article-title: Simultaneous linear-combination modeling of MEGA-PRESS sum and difference spectra without soft constraints publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 185 start-page: 181 year: 2019 end-page: 190 ident: bib0180 article-title: Advanced Hadamard-encoded editing of seven low-concentration brain metabolites: Principles of HERCULES publication-title: NeuroImage – volume: 80 start-page: 452 year: 2018 end-page: 461 ident: bib0280 article-title: In vivo estimation of transverse relaxation time constant (T 2) of 17 human brain metabolites at 3T publication-title: Magn. Reson. Med. – year: 2018 ident: bib0030 article-title: MRspa: Magnetic Resonance Signal Processing and Analysis – volume: 82 start-page: 527 year: 2019 end-page: 550 ident: bib0275 article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations publication-title: Magn. Reson. Med. – volume: 44 start-page: 4169 year: 2017 end-page: 4178 ident: bib0285 article-title: Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy publication-title: Med. Phys. – start-page: 1008 year: 2020 end-page: 1029 ident: bib0125 article-title: Theoretical description of modern (1) H in Vivo magnetic resonance spectroscopic pulse sequences publication-title: J. Magn. Reson. Imaging – start-page: 1410 year: 2011 ident: bib0240 article-title: VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis publication-title: Proc. Int. Soc. Magn. Reson. Med. – year: 2019 ident: bib0135 article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline publication-title: NMR Biomed., e4197. – year: 2013 ident: bib0040 article-title: SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows publication-title: Int. J. Biomed. Imaging – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0100 article-title: FSL publication-title: NeuroImage – volume: 21 start-page: 787 year: 2003 end-page: 797 ident: bib0120 article-title: Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo publication-title: Magn. Reson. Imaging – volume: 42 start-page: 1431 year: 2015 end-page: 1440 ident: bib0085 article-title: Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations publication-title: J. Magn. Reson. Imaging – volume: 9 start-page: 531 year: 1999 end-page: 538 ident: bib0260 article-title: NMR relaxation times in the human brain at 3.0 tesla publication-title: J. Magn. Reson. Imaging – year: 2019 ident: bib0265 article-title: RainCloudPlots/RainCloudPlots: WellcomeOpenResearch publication-title: Zenodo – volume: 55 start-page: 1219 year: 2006 end-page: 1226 ident: bib0080 article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging publication-title: Magn. Reson. Med. – volume: 20 start-page: 493 year: 2007 end-page: 504 ident: bib0195 article-title: An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES publication-title: NMR Biomed. – volume: 189 start-page: 425 year: 2019 end-page: 431 ident: bib0225 article-title: Multi-vendor standardized sequence for edited magnetic resonance spectroscopy publication-title: NeuroImage – year: 2007 ident: bib0075 article-title: Statistical Parametric Mapping the Analysis of Functional Brain Images – volume: 77 start-page: 23 year: 2017 end-page: 33 ident: bib0235 article-title: Advanced processing and simulation of MRS data using the FID appliance (FID-A) - An open source, MATLAB-based toolkit publication-title: Magn. Reson. Med. – volume: 20 year: 2009 ident: bib0245 article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package publication-title: Meas. Sci. Technol. – volume: 76 start-page: 11 year: 2016 end-page: 19 ident: bib0035 article-title: HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy publication-title: Magn. Reson. Med. – volume: 73 start-page: 553 year: 1987 end-page: 557 ident: bib0010 article-title: Improved Algorithm for Noniterative Time-Domain Model Fitting to Exponentially Damped Magnetic Resonance Signals publication-title: J. Magn. Reson. – year: 2015 ident: bib0015 article-title: LBFGSB (L-BFGS-B) Mex Wrapper - File Exchange - MATLAB Central [WWW Document] – year: 2019 ident: bib0095 article-title: Widgets Toolbox [WWW Document] – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bib0130 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 18 start-page: 570 year: 2005 end-page: 576 ident: bib0105 article-title: Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging publication-title: NMR Biomed. – volume: 129 start-page: 35 year: 1997 end-page: 43 ident: bib0255 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J. Magn. Reson. – year: 2019 ident: bib0055 article-title: MEGA-PRESS of GABA+: influences of acquisition parameters publication-title: NMR Biomed – start-page: 5666 year: 2018 ident: bib0110 article-title: INSPECTOR - A Tool for Teaching Magnetic Resonance Spectroscopy publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 30 start-page: e3804 year: 2017 ident: bib0020 article-title: 1H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization publication-title: NMR Biomed. – volume: 142 start-page: 576 year: 2016 end-page: 582 ident: bib0220 article-title: Simultaneous edited MRS of GABA and glutathione publication-title: NeuroImage – year: 2020 ident: bib0295 article-title: Comparison of algorithms for linear-combination modelling of short-echo-time magnetic resonance spectra publication-title: bioRxiv – volume: 12 start-page: e0185356 year: 2017 ident: bib0205 article-title: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB publication-title: PLoS One. – volume: 77 start-page: 1377 year: 2017 end-page: 1389 ident: bib0090 article-title: Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites publication-title: Magn. Reson. Med. – volume: 37 start-page: 999 year: 2013 end-page: 1003 ident: bib0210 article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla publication-title: J. Magn. Reson. Imaging – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: bib0140 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. – volume: 30 start-page: 672 year: 1993 end-page: 679 ident: bib0200 article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra publication-title: Magn. Reson. Med. – start-page: 1394 year: 2011 ident: bib0165 article-title: Modeling MEGA-PRESS macromolecules for a better grasp of GABA publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 2915 year: 2014 ident: bib0170 article-title: Investigating the effect of spectral linewidth on metabolite measurement bias in short-TE MRS publication-title: in: Proc. Int. Soc. Magn. Reson. Med. – volume: 35 start-page: 229 year: 2012 end-page: 234 ident: bib0065 article-title: Measuring T2 in vivo with J-difference editing: application to GABA at 3 Tesla publication-title: J. Magn. Reson. Imaging – year: 2019 ident: bib0230 article-title: GUI Layout Toolbox [WWW Document] – volume: 73 start-page: 44 year: 2015 end-page: 50 ident: bib0175 article-title: Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain publication-title: Magn. Reson. Med. – volume: 159 start-page: 32 year: 2017 end-page: 45 ident: bib0150 article-title: Big GABA: Edited MR spectroscopy at 24 research sites publication-title: NeuroImage – volume: 14 start-page: 26 year: 1990 end-page: 30 ident: bib0115 article-title: In vivo proton spectroscopy in presence of eddy currents publication-title: Magn. Reson. Med. – volume: 40 start-page: 1445 year: 2014 end-page: 1452 ident: bib0070 article-title: Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra publication-title: J. Magn. Reson. Imaging – start-page: e4218 year: 2019 ident: bib0050 article-title: cross-vendor standardization of semi-LASER for single-voxel MRS at 3T publication-title: NMR Biomed. – volume: 90 start-page: 5662 year: 1993 end-page: 5666 ident: bib0215 article-title: Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2020 ident: bib0190 article-title: Experts' Working Group on Advanced Single Voxel 1H MRS. Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations publication-title: NMR Biomed. – volume: 11 start-page: 266 year: 1998 end-page: 272 ident: bib0145 article-title: Simultaneous in vivo spectral editing and water suppression publication-title: NMR Biomed. – volume: 71 start-page: 990 year: 2014 end-page: 1001 ident: bib0250 article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA publication-title: Magn. Reson. Med. – year: 2015 ident: bib0060 article-title: Levenberg-Marquardt Toolbox - File Exchange - MATLAB Central [WWW Document] – volume: 65 start-page: 1 year: 2011 end-page: 12 ident: bib0270 article-title: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data publication-title: Magn. Reson. Med. – volume: 16 start-page: 1190 year: 1995 end-page: 1208 ident: bib0025 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. – volume: 4 start-page: 63 year: 2019 ident: bib0005 article-title: Raincloud plots: a multi-platform tool for robust data visualization publication-title: Wellcome Open Res. – volume: 191 start-page: 537 year: 2019 end-page: 548 ident: bib0155 article-title: Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites publication-title: Neuroimage – volume: 35 start-page: 229 year: 2012 ident: 10.1016/j.jneumeth.2020.108827_bib0065 article-title: Measuring T2 in vivo with J-difference editing: application to GABA at 3 Tesla publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22865 – start-page: 510 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0185 article-title: Simultaneous linear-combination modeling of MEGA-PRESS sum and difference spectra without soft constraints publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 129 start-page: 35 year: 1997 ident: 10.1016/j.jneumeth.2020.108827_bib0255 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J. Magn. Reson. doi: 10.1006/jmre.1997.1244 – volume: 71 start-page: 990 year: 2014 ident: 10.1016/j.jneumeth.2020.108827_bib0250 article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24751 – year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0230 – volume: 44 start-page: 4169 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0285 article-title: Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy publication-title: Med. Phys. doi: 10.1002/mp.12375 – volume: 65 start-page: 1 year: 2011 ident: 10.1016/j.jneumeth.2020.108827_bib0270 article-title: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22579 – year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0055 article-title: MEGA-PRESS of GABA+: influences of acquisition parameters publication-title: NMR Biomed doi: 10.1002/nbm.4199 – volume: 62 start-page: 782 year: 2012 ident: 10.1016/j.jneumeth.2020.108827_bib0100 article-title: FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 18 start-page: 570 year: 2005 ident: 10.1016/j.jneumeth.2020.108827_bib0105 article-title: Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging publication-title: NMR Biomed. doi: 10.1002/nbm.994 – year: 2007 ident: 10.1016/j.jneumeth.2020.108827_bib0075 – volume: 14 start-page: 26 year: 1990 ident: 10.1016/j.jneumeth.2020.108827_bib0115 article-title: In vivo proton spectroscopy in presence of eddy currents publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910140104 – start-page: 1394 year: 2011 ident: 10.1016/j.jneumeth.2020.108827_bib0165 article-title: Modeling MEGA-PRESS macromolecules for a better grasp of GABA publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 73 start-page: 553 year: 1987 ident: 10.1016/j.jneumeth.2020.108827_bib0010 article-title: Improved Algorithm for Noniterative Time-Domain Model Fitting to Exponentially Damped Magnetic Resonance Signals publication-title: J. Magn. Reson. – year: 2015 ident: 10.1016/j.jneumeth.2020.108827_bib0015 – start-page: e4218 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0050 article-title: cross-vendor standardization of semi-LASER for single-voxel MRS at 3T publication-title: NMR Biomed. – volume: 16 start-page: 1190 year: 1995 ident: 10.1016/j.jneumeth.2020.108827_bib0025 article-title: A limited memory algorithm for bound constrained optimization publication-title: SIAM J. Sci. Comput. doi: 10.1137/0916069 – volume: 90 start-page: 5662 year: 1993 ident: 10.1016/j.jneumeth.2020.108827_bib0215 article-title: Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.90.12.5662 – volume: 30 start-page: e3804 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0020 article-title: 1H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization publication-title: NMR Biomed. doi: 10.1002/nbm.3804 – start-page: 2915 year: 2014 ident: 10.1016/j.jneumeth.2020.108827_bib0170 article-title: Investigating the effect of spectral linewidth on metabolite measurement bias in short-TE MRS publication-title: in: Proc. Int. Soc. Magn. Reson. Med. – volume: 145 start-page: 24 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0045 article-title: SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.009 – volume: 30 start-page: 672 year: 1993 ident: 10.1016/j.jneumeth.2020.108827_bib0200 article-title: Estimation of metabolite concentrations from localized in vivo proton NMR spectra publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910300604 – volume: 4 start-page: 63 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0005 article-title: Raincloud plots: a multi-platform tool for robust data visualization publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.15191.1 – volume: 189 start-page: 425 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0225 article-title: Multi-vendor standardized sequence for edited magnetic resonance spectroscopy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.056 – volume: 20 start-page: 493 year: 2007 ident: 10.1016/j.jneumeth.2020.108827_bib0195 article-title: An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES publication-title: NMR Biomed. doi: 10.1002/nbm.1112 – volume: 40 start-page: 1445 year: 2014 ident: 10.1016/j.jneumeth.2020.108827_bib0070 article-title: Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24478 – volume: 73 start-page: 44 year: 2015 ident: 10.1016/j.jneumeth.2020.108827_bib0175 article-title: Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25094 – volume: 77 start-page: 1377 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0090 article-title: Edited 1H magnetic resonance spectroscopy in vivo: Methods and metabolites publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26619 – start-page: 1008 year: 2020 ident: 10.1016/j.jneumeth.2020.108827_bib0125 article-title: Theoretical description of modern (1) H in Vivo magnetic resonance spectroscopic pulse sequences publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26846 – year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0095 – volume: 11 start-page: 431 year: 1963 ident: 10.1016/j.jneumeth.2020.108827_bib0140 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111030 – volume: 185 start-page: 181 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0180 article-title: Advanced Hadamard-encoded editing of seven low-concentration brain metabolites: Principles of HERCULES publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.002 – year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0135 article-title: Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline publication-title: NMR Biomed., e4197. – start-page: 1410 year: 2011 ident: 10.1016/j.jneumeth.2020.108827_bib0240 article-title: VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis publication-title: Proc. Int. Soc. Magn. Reson. Med. – start-page: 5666 year: 2018 ident: 10.1016/j.jneumeth.2020.108827_bib0110 article-title: INSPECTOR - A Tool for Teaching Magnetic Resonance Spectroscopy publication-title: Proc. Int. Soc. Magn. Reson. Med. – volume: 77 start-page: 23 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0235 article-title: Advanced processing and simulation of MRS data using the FID appliance (FID-A) - An open source, MATLAB-based toolkit publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26091 – year: 2020 ident: 10.1016/j.jneumeth.2020.108827_bib0190 article-title: Experts' Working Group on Advanced Single Voxel 1H MRS. Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations publication-title: NMR Biomed. doi: 10.1002/nbm.4236 – volume: 76 start-page: 11 year: 2016 ident: 10.1016/j.jneumeth.2020.108827_bib0035 article-title: HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26233 – volume: 21 start-page: 787 year: 2003 ident: 10.1016/j.jneumeth.2020.108827_bib0120 article-title: Molality as a unit of measure for expressing 1H MRS brain metabolite concentrations in vivo publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(03)00179-6 – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.jneumeth.2020.108827_bib0130 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 11 start-page: 266 year: 1998 ident: 10.1016/j.jneumeth.2020.108827_bib0145 article-title: Simultaneous in vivo spectral editing and water suppression publication-title: NMR Biomed. doi: 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J – year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0265 article-title: RainCloudPlots/RainCloudPlots: WellcomeOpenResearch publication-title: Zenodo – volume: 12 start-page: e0185356 issue: 9 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0205 article-title: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB publication-title: PLoS One. doi: 10.1371/journal.pone.0185356 – year: 2013 ident: 10.1016/j.jneumeth.2020.108827_bib0040 article-title: SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows publication-title: Int. J. Biomed. Imaging doi: 10.1155/2013/169526 – volume: 23 start-page: 550 year: 1997 ident: 10.1016/j.jneumeth.2020.108827_bib0290 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. TOMS doi: 10.1145/279232.279236 – volume: 191 start-page: 537 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0155 article-title: Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.059 – volume: 14 start-page: 325 year: 2001 ident: 10.1016/j.jneumeth.2020.108827_bib0160 article-title: Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla publication-title: NMR Biomed. doi: 10.1002/nbm.713 – volume: 159 start-page: 32 year: 2017 ident: 10.1016/j.jneumeth.2020.108827_bib0150 article-title: Big GABA: Edited MR spectroscopy at 24 research sites publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.021 – volume: 42 start-page: 1431 year: 2015 ident: 10.1016/j.jneumeth.2020.108827_bib0085 article-title: Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24903 – year: 2015 ident: 10.1016/j.jneumeth.2020.108827_bib0060 – volume: 142 start-page: 576 year: 2016 ident: 10.1016/j.jneumeth.2020.108827_bib0220 article-title: Simultaneous edited MRS of GABA and glutathione publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.056 – volume: 80 start-page: 452 year: 2018 ident: 10.1016/j.jneumeth.2020.108827_bib0280 article-title: In vivo estimation of transverse relaxation time constant (T 2) of 17 human brain metabolites at 3T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27067 – year: 2020 ident: 10.1016/j.jneumeth.2020.108827_bib0295 article-title: Comparison of algorithms for linear-combination modelling of short-echo-time magnetic resonance spectra publication-title: bioRxiv – year: 2018 ident: 10.1016/j.jneumeth.2020.108827_bib0030 – volume: 55 start-page: 1219 year: 2006 ident: 10.1016/j.jneumeth.2020.108827_bib0080 article-title: Use of tissue water as a concentration reference for proton spectroscopic imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20901 – volume: 82 start-page: 527 year: 2019 ident: 10.1016/j.jneumeth.2020.108827_bib0275 article-title: Methodological consensus on clinical proton MRS of the brain: Review and recommendations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27742 – volume: 9 start-page: 531 year: 1999 ident: 10.1016/j.jneumeth.2020.108827_bib0260 article-title: NMR relaxation times in the human brain at 3.0 tesla publication-title: J. Magn. Reson. Imaging doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – volume: 37 start-page: 999 year: 2013 ident: 10.1016/j.jneumeth.2020.108827_bib0210 article-title: Measuring the longitudinal relaxation time of GABA in vivo at 3 tesla publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23817 – volume: 20 year: 2009 ident: 10.1016/j.jneumeth.2020.108827_bib0245 article-title: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/10/104035 |
SSID | ssj0004906 |
Score | 2.6028922 |
Snippet | •Osprey is an open-source analysis toolbox for magnetic resonance spectroscopy data.•Includes pre-processing, linear-combination modelling, and... Processing and quantitative analysis of magnetic resonance spectroscopy (MRS) data are far from standardized and require interfacing with third-party software.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108827 |
SubjectTerms | Ecosystem Healthy Volunteers Humans Linear-combination modelling Magnetic Resonance Imaging Magnetic Resonance Spectroscopy Pre-processing Quantification Software Tissue correction |
Title | Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data |
URI | https://dx.doi.org/10.1016/j.jneumeth.2020.108827 https://www.ncbi.nlm.nih.gov/pubmed/32603810 https://www.proquest.com/docview/2419417265 https://pubmed.ncbi.nlm.nih.gov/PMC7477913 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hKlW9oBbasqUgI1U9NWw-7NjhtkJFCxX00CJxs5zYaXfVzUaCPeyF394ZO9myBYkDxyR2ZHnGnhn7vRmAT1Vpc26yJFK5iSPa8KLCiCyyIim5M1K6ig70Ly7z8RU_vxbXG3DSc2EIVtnt_WFP97t192bYzeawnUyGP4iIExOdCvUUDTkRfjmXpOVHd_9gHrzw9TWpMd1XxvdYwtOjaeMWVKkZ48TUw-0UVZd53EA9dED_x1HeM0ynr2Gr8yjZKAz6DWy4Zht2Rg1G07Ml-8w8xtMfnm_Dy4vuKn0Hqu83LYrxmBGkJApn-KwNtAE0Z1-YD5VX6WXxR5SPIxAd2bxmM_OrIQIktiNvHueNedYmZcect0tG0NO3cHX69efJOOoqLkSVyORtVMvS2TrNOK_TMjc1Lw1GLCbLDc9MXDqRGqVQ6NzGziQ1GndpSyOsUxi2pcpl72CzmTduF1htsJVMLBep5c5n4ZHcYvikVK5snQxA9NOsqy4dOVXF-KN73NlU9-LRJB4dxDOA4apfGxJyPNmj6KWo11RLo9V4su9hL3aN644uU0zj5osbjZ5PwdH7y8UA3gc1WI0HXWK6gI0HINcUZNWAcnqvf2kmv31ub4zuZJFkH54x5j14RU8BCPcRNlFR3D56TrflgV8aB_BidPZtfPkX_2gceg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrQS9oNICXaBgJMSJsPmwY4fbqqLa0u5yoJV6s5zYgV3RbKS2h_57Zuxk2y1IPXCN7cjyjD0z9rw3AB-q0ubcZEmkchNHdOBFhRFZZEVScmekdBVd6E9n-eSMfzsX5xtw0GNhKK2yO_vDme5P6-7LqFvNUTufj34QECcmOBXqKRpy9Qg2iZ1KDGBzfHQ8md3CIwtfYpP605NlfAcovPi8aNw1FWvGUDH1GXeKCsz820b97YPeT6W8Y5sOt-Fp51SycZj3M9hwzQ7sjhsMqC9u2Efm0zz9_fkOPJ52r-m7UH2_bFGSXxhllUThGp-1ATmAFu0T89HyimEWf0SUHAHryJY1uzA_G8JAYj9y6HHpmAduEkHmsr1hlH36HM4Ov54eTKKu6EJUiUxeRbUsna3TjPM6LXNT89Jg0GKy3PDMxKUTqVEK5c5t7ExSo32XtjTCOoWRW6pc9gIGzbJxe8Bqg71kYrlILXeeiEdyixGUUrmydTIE0S-zrjpGciqM8Vv3qWcL3YtHk3h0EM8QRqtxbeDkeHBE0UtRr2mXRsPx4Nj3vdg1bj16TzGNW15fanR-Co4OYC6G8DKowWo-6BXTG2w8BLmmIKsOROu93tLMf3l6bwzwZJFkr_5jzu_gyeR0eqJPjmbHr2GLWkJe3BsYoNK4fXSkrsq33Ub5A6IqHys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osprey%3A+Open-Source+Processing%2C+Reconstruction+%26+Estimation+of+Magnetic+Resonance+Spectroscopy+Data&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Oeltzschner%2C+Georg&rft.au=Z%C3%B6llner%2C+Helge+J.&rft.au=Hui%2C+Steve+C.+N.&rft.au=Mikkelsen%2C+Mark&rft.date=2020-09-01&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=343&rft.spage=108827&rft.epage=108827&rft_id=info:doi/10.1016%2Fj.jneumeth.2020.108827&rft_id=info%3Apmid%2F32603810&rft.externalDocID=PMC7477913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |