Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface
•Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtaine...
Saved in:
Published in | Ultrasonics sonochemistry Vol. 71; p. 105356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region.•High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation.
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid. |
---|---|
AbstractList | Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid. • Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid. • Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results. • High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region. • High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid. •Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region.•High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid. |
ArticleNumber | 105356 |
Author | Yan, Jiuchun Xu, Zhiwu Zhao, Degang Li, Zhengwei Chen, Shu |
Author_xml | – sequence: 1 givenname: Zhengwei surname: Li fullname: Li, Zhengwei – sequence: 2 givenname: Zhiwu surname: Xu fullname: Xu, Zhiwu email: xuzw@hit.edu.cn – sequence: 3 givenname: Degang surname: Zhao fullname: Zhao, Degang – sequence: 4 givenname: Shu surname: Chen fullname: Chen, Shu – sequence: 5 givenname: Jiuchun surname: Yan fullname: Yan, Jiuchun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33049423$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfcAvVF6yydSvOI6EEKiCMlIlNnRtHPum45Enbm1nUHf8A3_Il-BpZhBl042vdX0e8r3ntDoawwhVdU7wgmAiLtaLyecURrNaUEx3zYY14kV1QmTLaiqpPCp31uCak7Y9rk5TWmOMWUfxq-qYMcw7TtlJ9f3G56iLkDPI6K3LOrswIp2Rd_eTsxcpeGeRGzPEQRsoN6RRXpVypX___LUc90Dk9QNE9MPlFRoiAErTI-F19XLQPsGbfT2rbj5_-nb5pb7-erW8_Hhdm4a1uQZj-qGBlnXcCqEF1xooEwysHaQoPy6H4b3kAx047kC0HbNS2raXsqVNz86q5axrg16ru-g2Oj6ooJ16bIR4q3TMznhQveEUoDNEc8OlgL4nQ0MZkz0WHe1J0Xo_a91N_QasgbHMyD8RffoyupW6DVvVtlI0DSsCb_cCMdxPkLLauGTAez1CmJKivCGEEd6JAj3_1-uvyWFFBfBuBpgYUoowKLPfUrF2XhGsdolQa3VIhNolQs2JKHTxH_3g8Czxw0yEsrWtg6iScTAasC6CyWWs7jmJP5Z_1t8 |
CitedBy_id | crossref_primary_10_1016_j_jmatprotec_2024_118481 crossref_primary_10_1016_j_msea_2022_142984 crossref_primary_10_1016_j_ultsonch_2021_105697 crossref_primary_10_1016_j_cep_2023_109470 crossref_primary_10_1016_j_ultsonch_2021_105893 crossref_primary_10_1063_5_0124416 crossref_primary_10_1007_s10008_024_06158_0 crossref_primary_10_1016_j_chemosphere_2023_141024 crossref_primary_10_1051_e3sconf_202127305012 crossref_primary_10_1016_j_dt_2021_08_003 crossref_primary_10_1016_j_jmapro_2021_02_020 crossref_primary_10_7498_aps_70_20211244 crossref_primary_10_1002_smll_202302744 crossref_primary_10_1016_j_jmatprotec_2022_117830 crossref_primary_10_1016_j_mtcomm_2022_104451 crossref_primary_10_1016_j_jmatprotec_2021_117397 crossref_primary_10_1016_j_ultsonch_2024_107001 crossref_primary_10_25699_SSSB_2021_38_4_001 crossref_primary_10_35848_1347_4065_adafb1 crossref_primary_10_1016_j_matchar_2022_111753 crossref_primary_10_1016_j_ceramint_2021_09_274 crossref_primary_10_1063_5_0253098 crossref_primary_10_1016_j_ijmecsci_2022_107221 |
Cites_doi | 10.1016/j.matlet.2015.11.022 10.1016/j.ultsonch.2017.12.053 10.1016/j.ultsonch.2011.06.008 10.1016/j.ultsonch.2015.07.023 10.1016/j.cherd.2013.07.002 10.1016/j.ultras.2014.10.004 10.1016/j.ultsonch.2014.02.027 10.1016/j.ultsonch.2013.07.011 10.1016/j.ultsonch.2016.10.019 10.1016/j.actamat.2018.11.053 10.1017/S0022112098008738 10.1016/j.ultsonch.2016.01.017 10.1179/174591908X371122 10.1016/j.jmatprotec.2015.03.006 10.1016/j.ultsonch.2012.04.013 10.1063/1.5060645 10.1016/j.jeurceramsoc.2017.04.037 10.1007/s11431-009-0132-2 10.1016/j.ultsonch.2018.10.031 10.1088/0370-1301/63/9/305 10.1016/j.matdes.2015.11.010 10.1016/j.ultsonch.2012.01.001 10.1016/j.apor.2015.02.003 10.1016/j.ultsonch.2004.09.001 10.1021/ja00278a055 10.1179/174329308X271742 10.1016/j.jmatprotec.2015.10.009 10.1016/j.ultsonch.2010.03.003 10.1016/1350-4177(95)00020-7 10.1016/j.matchemphys.2014.08.057 10.1016/j.ultras.2017.08.004 10.1017/S0022112098001207 10.1016/j.cej.2007.01.037 10.1016/S1350-4177(02)00152-9 10.1016/j.phpro.2015.08.172 10.1016/j.matlet.2008.06.016 10.1016/j.ultsonch.2016.02.024 10.1016/j.ultsonch.2017.03.002 10.1016/j.matlet.2004.09.027 10.1016/j.ultsonch.2018.12.028 10.1126/science.253.5026.1397 10.1016/j.ultsonch.2013.12.024 10.1016/j.ultsonch.2015.10.015 10.1016/j.ultsonch.2018.02.030 10.1115/1.4014586 10.1103/PhysRevE.75.046304 10.1016/j.rinp.2019.102528 10.1016/j.fuel.2019.01.043 10.1017/S0022112071001058 10.1039/c2sm25379h 10.1016/j.ultsonch.2015.02.013 10.1016/j.ultsonch.2018.09.027 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. 2020 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.ultsonch.2020.105356 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-2828 |
ExternalDocumentID | oai_doaj_org_article_bc42ee9c1a4c486ebb1f52338b0692b1 PMC7786553 33049423 10_1016_j_ultsonch_2020_105356 S1350417720316606 |
Genre | Journal Article |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c537t-eccbf5e7394d66a64aae2363eddf86016860c4b84f2f409e6793d88d7b88725b3 |
IEDL.DBID | .~1 |
ISSN | 1350-4177 1873-2828 |
IngestDate | Wed Aug 27 01:30:44 EDT 2025 Thu Aug 21 17:42:37 EDT 2025 Wed Aug 20 00:25:55 EDT 2025 Wed Feb 19 02:29:18 EST 2025 Tue Jul 01 03:33:09 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Fri Feb 23 02:47:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Amplitude Bubble Ultrasonication power Thin liquid layer Cavitation Acoustic pressure |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-eccbf5e7394d66a64aae2363eddf86016860c4b84f2f409e6793d88d7b88725b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350417720316606 |
PMID | 33049423 |
PQID | 2451131496 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bc42ee9c1a4c486ebb1f52338b0692b1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7786553 proquest_miscellaneous_2451131496 pubmed_primary_33049423 crossref_citationtrail_10_1016_j_ultsonch_2020_105356 crossref_primary_10_1016_j_ultsonch_2020_105356 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2020_105356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ultrasonics sonochemistry |
PublicationTitleAlternate | Ultrason Sonochem |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Eskin, Al-Helal, Tzanakisa (b0250) 2015; 222 Bai, Wu, Liu, Yan, Su, Li (b0135) 2018; 44 Tian, Liu, Li, Zhang, Li, Jiang, Dong (b0065) 2018; 43 Li, Wang, Chen, Liang (b0070) 2015; 26 Kim, Byun, Kwak (b0030) 2007; 132 Bai, Chen, Zhu, Xu, Lin, Wu, Li, Xu, Yan (b0120) 2017; 35 Tzanakis, Lebon, Eskin, Pericleous (b0240) 2016; 90 Bai, Xu, Deng, Li, Xu, Gao (b0105) 2014; 21 Pokhrel, Vabbina, Pala (b0060) 2016; 29 Xu, Tzanakis, Srirangam, Mirihanage, Eskin, Bodey, Lee (b0170) 2016; 31 Plesset, Chapman (b0215) 1971; 47 Moussatov, Granger, Dubus (b0115) 2005; 12 Wang, Guo, Zhang, Zhang, Kang (b0190) 2019; 51 Philipp, Lauterborn (b0210) 1998; 361 Li, Momono, Tayu, Fu (b0255) 2008; 62 Zhao, Yan, Yang, Yang (b0160) 2008; 13 Ida, Naoe, Futakawa (b0220) 2007; 75 Eskin, Tzanakis, Wang, Lebon, Subroto, Pericleous, Mi (b0225) 2019; 52 Niazi, Hashemabadi, Razi (b0245) 2014; 92 Mirihanage, Xu, Tamayo-Ariztondo, Eskin, Garcia-Fernandez, Srirangam, Lee (b0180) 2016; 164 Xu, Ma, Yan, Chen, Yang (b0150) 2014; 148 Bai, Deng, Li, Xu, Xu (b0090) 2014; 21 Rundquist, Paci, von Gal (b0145) 2019; 10 Wu, Bai, Lin, Yan (b0130) 2017; 38 Bai, Xu, Zhang, Li, Zhang, Huang (b0080) 2009; 52 Li, Xu, Ma, Wang, Liu, Yan (b0155) 2019; 50 Niemczewski (b0050) 2008; 86 Huang, Shu, Fu, Wang, Sun (b0185) 2014; 21 Tzanakis, Xu, Lebon, Eskin, Pericleous, Lee (b0175) 2015; 70 Noltingk, Neppiras (b0005) 1950; 63 Dubus, Vanhille, Campos-Pozuelo, Granger (b0095) 2010; 17 Li, Xu, Ma, Wang, Liu, Yan (b0165) 2018; 49 Jian, Xu, Meek, Han (b0140) 2005; 59 Rooze, Rebrov, Schouten, Keurentjes (b0010) 2013; 20 Suslick, Hammerton, Cline (b0025) 1986; 108 Zhang, Yang, Li, Huang, Zhang, Zhang, Li (b0055) 2019; 242 Flint, Suslick (b0015) 1991; 253 Bai, Ying, Li, Deng (b0085) 2012; 19 Bai, Lin, Wu, Deng, Li, Xu, Wang, Chen (b0125) 2016; 32 Wang, Zhang, Chen, Li (b0270) 2019; 15 Wang, Kang, Guo, Lee, Zhang, Wang, Deng, Mi (b0195) 2019; 165 Brujan, Ikeda, Matsumoto (b0040) 2012; 8 Li, Li, Zhang (b0035) 2015; 50 Shen, Yasui, Sun, Mei, You, Zhu (b0020) 2016; 29 Wang, Kang, Zhang, Guo (b0200) 2018; 83 Eskin (b0260) 1995; 2 Hilgenfeldt, Brenner, Grossmann, Lohse (b0265) 1998; 365 Kang, Zhang, Wang, Ma, Huang (b0230) 2015; 57 Tzanakis, Lebon, Eskin, Pericleous (b0235) 2016; 229 Wang, Darut, Poirier, Stella, Liao, Planche (b0075) 2017; 37 Knapp (b0205) 1955; 77 Supponen, Akimura, Minami, Nakajima, Uehara, Ohtani, Kaneko, Farhat, Sato (b0045) 2018; 113 Louisnard (b0110) 2012; 19 Moussatov, Granger, Dubus (b0100) 2003; 10 Zhang (10.1016/j.ultsonch.2020.105356_b0055) 2019; 242 Huang (10.1016/j.ultsonch.2020.105356_b0185) 2014; 21 Wang (10.1016/j.ultsonch.2020.105356_b0190) 2019; 51 Ida (10.1016/j.ultsonch.2020.105356_b0220) 2007; 75 Plesset (10.1016/j.ultsonch.2020.105356_b0215) 1971; 47 Li (10.1016/j.ultsonch.2020.105356_b0165) 2018; 49 Tzanakis (10.1016/j.ultsonch.2020.105356_b0235) 2016; 229 Jian (10.1016/j.ultsonch.2020.105356_b0140) 2005; 59 Zhao (10.1016/j.ultsonch.2020.105356_b0160) 2008; 13 Hilgenfeldt (10.1016/j.ultsonch.2020.105356_b0265) 1998; 365 Moussatov (10.1016/j.ultsonch.2020.105356_b0115) 2005; 12 Wang (10.1016/j.ultsonch.2020.105356_b0270) 2019; 15 Rooze (10.1016/j.ultsonch.2020.105356_b0010) 2013; 20 Bai (10.1016/j.ultsonch.2020.105356_b0120) 2017; 35 Xu (10.1016/j.ultsonch.2020.105356_b0170) 2016; 31 Flint (10.1016/j.ultsonch.2020.105356_b0015) 1991; 253 Bai (10.1016/j.ultsonch.2020.105356_b0080) 2009; 52 Li (10.1016/j.ultsonch.2020.105356_b0255) 2008; 62 Shen (10.1016/j.ultsonch.2020.105356_b0020) 2016; 29 Kim (10.1016/j.ultsonch.2020.105356_b0030) 2007; 132 Wang (10.1016/j.ultsonch.2020.105356_b0195) 2019; 165 Li (10.1016/j.ultsonch.2020.105356_b0070) 2015; 26 Niemczewski (10.1016/j.ultsonch.2020.105356_b0050) 2008; 86 Mirihanage (10.1016/j.ultsonch.2020.105356_b0180) 2016; 164 Bai (10.1016/j.ultsonch.2020.105356_b0135) 2018; 44 Philipp (10.1016/j.ultsonch.2020.105356_b0210) 1998; 361 Eskin (10.1016/j.ultsonch.2020.105356_b0250) 2015; 222 Eskin (10.1016/j.ultsonch.2020.105356_b0225) 2019; 52 Rundquist (10.1016/j.ultsonch.2020.105356_b0145) 2019; 10 Eskin (10.1016/j.ultsonch.2020.105356_b0260) 1995; 2 Wang (10.1016/j.ultsonch.2020.105356_b0200) 2018; 83 Dubus (10.1016/j.ultsonch.2020.105356_b0095) 2010; 17 Wang (10.1016/j.ultsonch.2020.105356_b0075) 2017; 37 Moussatov (10.1016/j.ultsonch.2020.105356_b0100) 2003; 10 Bai (10.1016/j.ultsonch.2020.105356_b0125) 2016; 32 Suslick (10.1016/j.ultsonch.2020.105356_b0025) 1986; 108 Noltingk (10.1016/j.ultsonch.2020.105356_b0005) 1950; 63 Kang (10.1016/j.ultsonch.2020.105356_b0230) 2015; 57 Wu (10.1016/j.ultsonch.2020.105356_b0130) 2017; 38 Tzanakis (10.1016/j.ultsonch.2020.105356_b0175) 2015; 70 Knapp (10.1016/j.ultsonch.2020.105356_b0205) 1955; 77 Bai (10.1016/j.ultsonch.2020.105356_b0085) 2012; 19 Brujan (10.1016/j.ultsonch.2020.105356_b0040) 2012; 8 Louisnard (10.1016/j.ultsonch.2020.105356_b0110) 2012; 19 Bai (10.1016/j.ultsonch.2020.105356_b0090) 2014; 21 Li (10.1016/j.ultsonch.2020.105356_b0035) 2015; 50 Bai (10.1016/j.ultsonch.2020.105356_b0105) 2014; 21 Xu (10.1016/j.ultsonch.2020.105356_b0150) 2014; 148 Supponen (10.1016/j.ultsonch.2020.105356_b0045) 2018; 113 Pokhrel (10.1016/j.ultsonch.2020.105356_b0060) 2016; 29 Li (10.1016/j.ultsonch.2020.105356_b0155) 2019; 50 Tian (10.1016/j.ultsonch.2020.105356_b0065) 2018; 43 Tzanakis (10.1016/j.ultsonch.2020.105356_b0240) 2016; 90 Niazi (10.1016/j.ultsonch.2020.105356_b0245) 2014; 92 |
References_xml | – volume: 47 start-page: 283 year: 1971 end-page: 290 ident: b0215 article-title: Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary publication-title: J. Fluid. Mech. – volume: 229 start-page: 582 year: 2016 end-page: 586 ident: b0235 article-title: Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer publication-title: J. Mater. Process. Technol. – volume: 20 start-page: 1 year: 2013 end-page: 11 ident: b0010 article-title: Dissolved gas and ultrasonic cavitation – A review publication-title: Ultrason. Sonochem. – volume: 15 year: 2019 ident: b0270 article-title: Theoretical analysis of engine coolant cavitation with different additives based on ultrasonic induced bubble dynamics publication-title: Results. Phys. – volume: 62 start-page: 4152 year: 2008 end-page: 4154 ident: b0255 article-title: Application of ultrasonic treating to degassing of metal ingots publication-title: Mater. Lett. – volume: 10 start-page: 288 year: 2019 end-page: 295 ident: b0145 article-title: The Development of an ultrasonic degassing process for aluminium casting publication-title: Materials Today: Proceedings. – volume: 52 start-page: 455 year: 2019 end-page: 467 ident: b0225 article-title: Fundamental studies of ultrasonic melt processing publication-title: Ultrason. Sonochem. – volume: 17 start-page: 810 year: 2010 end-page: 818 ident: b0095 article-title: On the physical origin of conical bubble structure under an ultrasonic horn publication-title: Ultrason. Sonochem. – volume: 222 start-page: 148 year: 2015 end-page: 154 ident: b0250 article-title: Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study publication-title: J. Mater. Process. Technol. – volume: 37 start-page: 3623 year: 2017 end-page: 3630 ident: b0075 article-title: Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings publication-title: J. Eur. Ceram. Soc. – volume: 57 start-page: 11 year: 2015 end-page: 17 ident: b0230 article-title: The comparison of ultrasonic effects in different metal melts publication-title: Ultrasonics. – volume: 365 start-page: 171 year: 1998 end-page: 204 ident: b0265 article-title: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles publication-title: J. Fluid. Mech. – volume: 43 start-page: 29 year: 2018 end-page: 37 ident: b0065 article-title: The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation publication-title: Ultrason. Sonochem. – volume: 19 start-page: 66 year: 2012 end-page: 76 ident: b0110 article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures publication-title: Ultrason. Sonochem. – volume: 164 start-page: 484 year: 2016 end-page: 487 ident: b0180 article-title: Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites publication-title: Mater. Lett. – volume: 75 year: 2007 ident: b0220 article-title: Direct observation and theoretical study of cavitation bubbles in liquid mercury publication-title: Phys. Rev. E. – volume: 21 start-page: 121 year: 2014 end-page: 128 ident: b0090 article-title: Acoustic cavitation structures produced by artificial implants of nuclei publication-title: Ultrason. Sonochem. – volume: 70 start-page: 841 year: 2015 end-page: 845 ident: b0175 article-title: In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy publication-title: Physics Procedia – volume: 29 start-page: 104 year: 2016 end-page: 128 ident: b0060 article-title: Sonochemistry: science and engineering publication-title: Ultrason. Sonochem. – volume: 29 start-page: 394 year: 2016 end-page: 400 ident: b0020 article-title: Study on the spatial distribution of the liquid temperature near a cavitation bubble wall publication-title: Ultrason. Sonochem. – volume: 38 start-page: 75 year: 2017 end-page: 83 ident: b0130 article-title: Stability of cavitation structures in a thin liquid layer publication-title: Ultrason. Sonochem. – volume: 83 start-page: 26 year: 2018 end-page: 32 ident: b0200 article-title: Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field publication-title: Ultrasonics. – volume: 108 start-page: 5641 year: 1986 end-page: 5642 ident: b0025 article-title: The sonochemical hot spot publication-title: J. Am. Chem. SOC. – volume: 50 start-page: 278 year: 2019 end-page: 288 ident: b0155 article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect publication-title: Ultrason. Sonochem. – volume: 31 start-page: 355 year: 2016 end-page: 361 ident: b0170 article-title: Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts publication-title: Ultrason. Sonochem. – volume: 12 start-page: 415 year: 2005 end-page: 422 ident: b0115 article-title: Ultrasonic cavitation in thin liquid layers publication-title: Ultrason. Sonochem. – volume: 63 start-page: 674 year: 1950 end-page: 685 ident: b0005 article-title: Cavitation produced by ultrasonics publication-title: Proc. Phys. Soc. B. – volume: 2 start-page: 137 year: 1995 end-page: 141 ident: b0260 article-title: Cavitation mechanism of ultrasonic melt degassing publication-title: Ultrason. Sonochem. – volume: 253 start-page: 1397 year: 1991 end-page: 1399 ident: b0015 article-title: The temperature of cavitation publication-title: Science. – volume: 77 start-page: 1045 year: 1955 end-page: 1054 ident: b0205 article-title: Recent investigations of the mechanics of cavitation and cavitation damage publication-title: Trans. Am. Soc. Mech. Eng. – volume: 49 start-page: 249 year: 2018 end-page: 259 ident: b0165 article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering publication-title: Part I: Cavitation characteristics. Ultrason. Sonochem. – volume: 26 start-page: 99 year: 2015 end-page: 110 ident: b0070 article-title: Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen publication-title: Ultrason. Sonochem. – volume: 52 start-page: 1974 year: 2009 end-page: 1980 ident: b0080 article-title: Cavitation characteristics of pit structure in ultrasonic field publication-title: Sci China. Ser. E-Tech. Sci. – volume: 21 start-page: 1696 year: 2014 end-page: 1706 ident: b0105 article-title: Generation and control of acoustic cavitation structure publication-title: Ultrasonics Sonochem. – volume: 86 start-page: 332 year: 2008 end-page: 336 ident: b0050 article-title: Dependence of cavitation intensity on ultrasound frequency in ultrasonic cleaning processes in alkaline solutions publication-title: Transactions of the IMF. – volume: 165 start-page: 388 year: 2019 end-page: 397 ident: b0195 article-title: In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields publication-title: Acta. Mater. – volume: 44 start-page: 184 year: 2018 end-page: 195 ident: b0135 article-title: Rod-shaped cavitation bubble structure in ultrasonic field publication-title: Ultrason. Sonochem. – volume: 50 start-page: 227 year: 2015 end-page: 236 ident: b0035 article-title: Numerical analysis of the bubble jet impact on a rigid wall publication-title: Appl. Ocean. Res. – volume: 148 start-page: 824 year: 2014 end-page: 832 ident: b0150 article-title: Solidification microstructure of SiC particulate reinforced Zn-Al composites under ultrasonic exposure publication-title: Mater. Chem. Phys. – volume: 10 start-page: 191 year: 2003 end-page: 195 ident: b0100 article-title: Cone-like bubble formation in ultrasonic cavitation field publication-title: Ultrason. Sonochem. – volume: 51 start-page: 160 year: 2019 end-page: 165 ident: b0190 article-title: On the mechanism of dendritic fragmentation by ultrasound induced Cavitation publication-title: Ultrason. Sonochem. – volume: 21 start-page: 1275 year: 2014 end-page: 1278 ident: b0185 article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt publication-title: Ultrason. Sonochem. – volume: 19 start-page: 762 year: 2012 end-page: 766 ident: b0085 article-title: The structures and evolution of Smoker in an ultrasonic field publication-title: Ultrason. Sonochem. – volume: 92 start-page: 166 year: 2014 end-page: 173 ident: b0245 article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble publication-title: Chem. Eng. Res. Des. – volume: 32 start-page: 213 year: 2016 end-page: 217 ident: b0125 article-title: Memory effect and redistribution of cavitation nuclei in a thin liquid layer publication-title: Ultrason. Sonochem. – volume: 113 year: 2018 ident: b0045 article-title: Jetting from cavitation bubbles due to multiple shockwaves publication-title: Appl. Phys. Lett. – volume: 361 start-page: 75 year: 1998 end-page: 116 ident: b0210 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid. Mech. – volume: 13 start-page: 66 year: 2008 end-page: 69 ident: b0160 article-title: Capillary filling process during ultrasonically brazing of aluminium matrix composites publication-title: Sci. Technol. Weld. Join. – volume: 242 start-page: 287 year: 2019 end-page: 294 ident: b0055 article-title: Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion publication-title: Fuel. – volume: 35 start-page: 405 year: 2017 end-page: 414 ident: b0120 article-title: Surface tension and quasi-emulsion of cavitation bubble cloud publication-title: Ultrason. Sonochem. – volume: 132 start-page: 125 year: 2007 end-page: 135 ident: b0030 article-title: Temperature and pressure fields due to collapsing bubble under ultrasound publication-title: Chem. Eng. J. – volume: 59 start-page: 190 year: 2005 end-page: 193 ident: b0140 article-title: Effect of power ultrasound on solidification of aluminum A356 alloy publication-title: Mater. Lett. – volume: 90 start-page: 979 year: 2016 end-page: 983 ident: b0240 article-title: Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium publication-title: Mater. Des. – volume: 8 start-page: 5777 year: 2012 end-page: 5783 ident: b0040 article-title: Shock wave emission from a cloud of bubbles publication-title: Soft. Mater. – volume: 164 start-page: 484 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0180 article-title: Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.11.022 – volume: 43 start-page: 29 year: 2018 ident: 10.1016/j.ultsonch.2020.105356_b0065 article-title: The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.12.053 – volume: 19 start-page: 66 year: 2012 ident: 10.1016/j.ultsonch.2020.105356_b0110 article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2011.06.008 – volume: 49 start-page: 249 year: 2018 ident: 10.1016/j.ultsonch.2020.105356_b0165 article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering publication-title: Part I: Cavitation characteristics. Ultrason. Sonochem. – volume: 29 start-page: 104 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0060 article-title: Sonochemistry: science and engineering publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.07.023 – volume: 92 start-page: 166 year: 2014 ident: 10.1016/j.ultsonch.2020.105356_b0245 article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.07.002 – volume: 57 start-page: 11 year: 2015 ident: 10.1016/j.ultsonch.2020.105356_b0230 article-title: The comparison of ultrasonic effects in different metal melts publication-title: Ultrasonics. doi: 10.1016/j.ultras.2014.10.004 – volume: 21 start-page: 1696 year: 2014 ident: 10.1016/j.ultsonch.2020.105356_b0105 article-title: Generation and control of acoustic cavitation structure publication-title: Ultrasonics Sonochem. doi: 10.1016/j.ultsonch.2014.02.027 – volume: 21 start-page: 121 year: 2014 ident: 10.1016/j.ultsonch.2020.105356_b0090 article-title: Acoustic cavitation structures produced by artificial implants of nuclei publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.07.011 – volume: 35 start-page: 405 year: 2017 ident: 10.1016/j.ultsonch.2020.105356_b0120 article-title: Surface tension and quasi-emulsion of cavitation bubble cloud publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.10.019 – volume: 165 start-page: 388 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0195 article-title: In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields publication-title: Acta. Mater. doi: 10.1016/j.actamat.2018.11.053 – volume: 361 start-page: 75 year: 1998 ident: 10.1016/j.ultsonch.2020.105356_b0210 article-title: Cavitation erosion by single laser-produced bubbles publication-title: J. Fluid. Mech. doi: 10.1017/S0022112098008738 – volume: 31 start-page: 355 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0170 article-title: Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.01.017 – volume: 86 start-page: 332 issue: 6 year: 2008 ident: 10.1016/j.ultsonch.2020.105356_b0050 article-title: Dependence of cavitation intensity on ultrasound frequency in ultrasonic cleaning processes in alkaline solutions publication-title: Transactions of the IMF. doi: 10.1179/174591908X371122 – volume: 222 start-page: 148 year: 2015 ident: 10.1016/j.ultsonch.2020.105356_b0250 article-title: Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.03.006 – volume: 20 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.ultsonch.2020.105356_b0010 article-title: Dissolved gas and ultrasonic cavitation – A review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.04.013 – volume: 10 start-page: 288 issue: 2 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0145 article-title: The Development of an ultrasonic degassing process for aluminium casting publication-title: Materials Today: Proceedings. – volume: 113 year: 2018 ident: 10.1016/j.ultsonch.2020.105356_b0045 article-title: Jetting from cavitation bubbles due to multiple shockwaves publication-title: Appl. Phys. Lett. doi: 10.1063/1.5060645 – volume: 37 start-page: 3623 issue: 11 year: 2017 ident: 10.1016/j.ultsonch.2020.105356_b0075 article-title: Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.04.037 – volume: 52 start-page: 1974 issue: 7 year: 2009 ident: 10.1016/j.ultsonch.2020.105356_b0080 article-title: Cavitation characteristics of pit structure in ultrasonic field publication-title: Sci China. Ser. E-Tech. Sci. doi: 10.1007/s11431-009-0132-2 – volume: 51 start-page: 160 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0190 article-title: On the mechanism of dendritic fragmentation by ultrasound induced Cavitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.10.031 – volume: 63 start-page: 674 year: 1950 ident: 10.1016/j.ultsonch.2020.105356_b0005 article-title: Cavitation produced by ultrasonics publication-title: Proc. Phys. Soc. B. doi: 10.1088/0370-1301/63/9/305 – volume: 90 start-page: 979 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0240 article-title: Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.11.010 – volume: 19 start-page: 762 year: 2012 ident: 10.1016/j.ultsonch.2020.105356_b0085 article-title: The structures and evolution of Smoker in an ultrasonic field publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2012.01.001 – volume: 50 start-page: 227 year: 2015 ident: 10.1016/j.ultsonch.2020.105356_b0035 article-title: Numerical analysis of the bubble jet impact on a rigid wall publication-title: Appl. Ocean. Res. doi: 10.1016/j.apor.2015.02.003 – volume: 12 start-page: 415 year: 2005 ident: 10.1016/j.ultsonch.2020.105356_b0115 article-title: Ultrasonic cavitation in thin liquid layers publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.09.001 – volume: 108 start-page: 5641 year: 1986 ident: 10.1016/j.ultsonch.2020.105356_b0025 article-title: The sonochemical hot spot publication-title: J. Am. Chem. SOC. doi: 10.1021/ja00278a055 – volume: 13 start-page: 66 issue: 1 year: 2008 ident: 10.1016/j.ultsonch.2020.105356_b0160 article-title: Capillary filling process during ultrasonically brazing of aluminium matrix composites publication-title: Sci. Technol. Weld. Join. doi: 10.1179/174329308X271742 – volume: 229 start-page: 582 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0235 article-title: Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.10.009 – volume: 17 start-page: 810 year: 2010 ident: 10.1016/j.ultsonch.2020.105356_b0095 article-title: On the physical origin of conical bubble structure under an ultrasonic horn publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2010.03.003 – volume: 2 start-page: 137 issue: 2 year: 1995 ident: 10.1016/j.ultsonch.2020.105356_b0260 article-title: Cavitation mechanism of ultrasonic melt degassing publication-title: Ultrason. Sonochem. doi: 10.1016/1350-4177(95)00020-7 – volume: 148 start-page: 824 year: 2014 ident: 10.1016/j.ultsonch.2020.105356_b0150 article-title: Solidification microstructure of SiC particulate reinforced Zn-Al composites under ultrasonic exposure publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.08.057 – volume: 83 start-page: 26 year: 2018 ident: 10.1016/j.ultsonch.2020.105356_b0200 article-title: Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field publication-title: Ultrasonics. doi: 10.1016/j.ultras.2017.08.004 – volume: 365 start-page: 171 year: 1998 ident: 10.1016/j.ultsonch.2020.105356_b0265 article-title: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles publication-title: J. Fluid. Mech. doi: 10.1017/S0022112098001207 – volume: 132 start-page: 125 year: 2007 ident: 10.1016/j.ultsonch.2020.105356_b0030 article-title: Temperature and pressure fields due to collapsing bubble under ultrasound publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.01.037 – volume: 10 start-page: 191 year: 2003 ident: 10.1016/j.ultsonch.2020.105356_b0100 article-title: Cone-like bubble formation in ultrasonic cavitation field publication-title: Ultrason. Sonochem. doi: 10.1016/S1350-4177(02)00152-9 – volume: 70 start-page: 841 year: 2015 ident: 10.1016/j.ultsonch.2020.105356_b0175 article-title: In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy publication-title: Physics Procedia doi: 10.1016/j.phpro.2015.08.172 – volume: 62 start-page: 4152 year: 2008 ident: 10.1016/j.ultsonch.2020.105356_b0255 article-title: Application of ultrasonic treating to degassing of metal ingots publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.06.016 – volume: 32 start-page: 213 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0125 article-title: Memory effect and redistribution of cavitation nuclei in a thin liquid layer publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.02.024 – volume: 38 start-page: 75 year: 2017 ident: 10.1016/j.ultsonch.2020.105356_b0130 article-title: Stability of cavitation structures in a thin liquid layer publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.03.002 – volume: 59 start-page: 190 year: 2005 ident: 10.1016/j.ultsonch.2020.105356_b0140 article-title: Effect of power ultrasound on solidification of aluminum A356 alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2004.09.027 – volume: 52 start-page: 455 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0225 article-title: Fundamental studies of ultrasonic melt processing publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.12.028 – volume: 253 start-page: 1397 year: 1991 ident: 10.1016/j.ultsonch.2020.105356_b0015 article-title: The temperature of cavitation publication-title: Science. doi: 10.1126/science.253.5026.1397 – volume: 21 start-page: 1275 year: 2014 ident: 10.1016/j.ultsonch.2020.105356_b0185 article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.12.024 – volume: 29 start-page: 394 year: 2016 ident: 10.1016/j.ultsonch.2020.105356_b0020 article-title: Study on the spatial distribution of the liquid temperature near a cavitation bubble wall publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.10.015 – volume: 44 start-page: 184 year: 2018 ident: 10.1016/j.ultsonch.2020.105356_b0135 article-title: Rod-shaped cavitation bubble structure in ultrasonic field publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.02.030 – volume: 77 start-page: 1045 year: 1955 ident: 10.1016/j.ultsonch.2020.105356_b0205 article-title: Recent investigations of the mechanics of cavitation and cavitation damage publication-title: Trans. Am. Soc. Mech. Eng. doi: 10.1115/1.4014586 – volume: 75 year: 2007 ident: 10.1016/j.ultsonch.2020.105356_b0220 article-title: Direct observation and theoretical study of cavitation bubbles in liquid mercury publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.75.046304 – volume: 15 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0270 article-title: Theoretical analysis of engine coolant cavitation with different additives based on ultrasonic induced bubble dynamics publication-title: Results. Phys. doi: 10.1016/j.rinp.2019.102528 – volume: 242 start-page: 287 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0055 article-title: Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion publication-title: Fuel. doi: 10.1016/j.fuel.2019.01.043 – volume: 47 start-page: 283 issue: 2 year: 1971 ident: 10.1016/j.ultsonch.2020.105356_b0215 article-title: Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary publication-title: J. Fluid. Mech. doi: 10.1017/S0022112071001058 – volume: 8 start-page: 5777 year: 2012 ident: 10.1016/j.ultsonch.2020.105356_b0040 article-title: Shock wave emission from a cloud of bubbles publication-title: Soft. Mater. doi: 10.1039/c2sm25379h – volume: 26 start-page: 99 year: 2015 ident: 10.1016/j.ultsonch.2020.105356_b0070 article-title: Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.02.013 – volume: 50 start-page: 278 year: 2019 ident: 10.1016/j.ultsonch.2020.105356_b0155 article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.09.027 |
SSID | ssj0003920 |
Score | 2.4371562 |
Snippet | •Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under... Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the... • Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid. • Cavitation characteristics under... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105356 |
SubjectTerms | Acoustic pressure Amplitude Bubble Cavitation Original Thin liquid layer Ultrasonication power |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSgguCJZXeclIXMM2ju0kR1ixLEhwotLejB9jbVdRCm2y5_0P_EN-CTNOUrVw6IVLEiW25clMMt84k28Ye6OCij53iNxsXWdS-5ihKessh7mUocwh97Te8eWrPl_IzxfqYqfUF-WEDfTAw407cV4KgNrnVnpZaXAujxg8FZWb61q4FPigz5uCqfEdjF5_-D9YzTOZl-XOv8FXb_umQyybPkWIVOi2oPLVO24psffvead_0effSZQ7XunsPrs3wkn-bhDjAbsF7TG7czpVcTtmt1OKp988ZN8XDY6wISpc7u31yM3Nbceb5c-ebHLVLAMn_oh1tB7wiFveXeLuo_198-tTOzbkjUWczmkFl8c1AN_0qcMjtjj78O30PBvrK2ReFWWXofZcVFAWtQxaWy2tBVHoAkKIFdG04MZLV8koIoaBoPFZDlUVSofqFMoVj9lRu2rhKeMxutxaq8AFLT14i-8BS-APewQBesbUdHuNHwWkGhiNmbLMrsykFkNqMYNaZuxk2-_HQL9xsMd70t62NdFnpxNoVGY0KnPIqGasnnRvRiQyIAwcanlwAq8nYzGoa_r-YltY9RsjiAuuwJAU2zwZjGc7TVpWqhHazli5Z1Z7cuxfaZeXiQ6cGACVKp79D8Gfs7uCknZSkt0LdtSte3iJqKtzr9ID9gezCS09 priority: 102 providerName: Directory of Open Access Journals |
Title | Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface |
URI | https://dx.doi.org/10.1016/j.ultsonch.2020.105356 https://www.ncbi.nlm.nih.gov/pubmed/33049423 https://www.proquest.com/docview/2451131496 https://pubmed.ncbi.nlm.nih.gov/PMC7786553 https://doaj.org/article/bc42ee9c1a4c486ebb1f52338b0692b1 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIgQXBOWny8_KSFzTXSe2kxzLirIF0Qus1JuxHZumirJlN-FY9R14Q56EGSdZduHQA5ckcsaW7Rnb4_H4G0LeiEJ4ywxobjrPIy6tj0CUZcTclPMiZY5ZtHd8OpPzBf9wLs73yGy4C4Nulf3c383pYbbuUyZ9b06uynLymSViylmK54hMygC7zXmKUn50_cfNA9b_7qawmEZIvXVL-PKorRrQasOhRBxC3iYYyHprgQo4_jvr1L966N_ulFvr08lD8qBXLOlxV_dHZM_VB-TebIjndkDuBmdPu35Mvi4qKGGNoLjU6h89SjfVDa3K7y1K57IqC4pIEiuvrYMvqmlzAa_3-tfNz9O6J6SVBo2doi2X-pVzdN2GDE_I4uTdl9k86iMtRFYkaRMBH40XLk1yXkipJdfaxYlMXFH4DAFb4GG5ybiPPWwInYRRXWRZkRpgbCxM8pTs18vaHRLqvWFaa-FMIbl1VsOMoFENhBxF7OSIiKF7le0biNEwKjX4m12qgS0K2aI6tozIZJPvqgPiuDXHW-TehhqBtEPCcvVN9ZKkjOWxc7llmlueSWcM87A3TzIzlXls2IjkA-_VjlxCUeWtFXg9CIsCXuNJjK7dsl2rGFHhEticAs2zTng21UQDUw5K7oikO2K1047dP3V5EYDBEQtQiOT5f9T5Bbkfo9dO8LJ7SfabVetegdrVmHEYV2Ny5_j04_xsHIwXvwFGRzFU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlQuCMpreRqJa7rr-JHkCCvKFtpe6Eq9Gdux21RRtuwmHBH_gX_IL2Emj2UXDj1wSSLHtmzP2P5sj78h5I3MZXDMAnIzWRYJ5UIEqqwi5idC5AnzzOF-x8mpms3Fx3N5vkOmw10YNKvsx_5uTG9H6z5k3Lfm-Looxp8ZlxPBEjxHZEoh7fYtAd0X3RgcfP9j5wEAoLsqLCcRRt-4Jnx10JQ1wNr2VCJufd5y9GS9MUO1RP5bE9W_QPRve8qNCerwHrnbI0v6tiv8fbLjq32yNx0cuu2T2621p1s9IF_mJeSwQlZc6sy3nqabmpqWxdcG1XNRFjlFKollMM7DFzW0voTXB_Prx8-jqo9ISwOQneJmLg1L7-mqaRM8JPPD92fTWdS7Woic5EkdgSBtkD7hmciVMkoY42OuuM_zkCJjCzycsKkIcYAVoVfQrfM0zRMLko2l5Y_IbrWo_BNCQ7DMGCO9zZVw3hkYEgziQEiRx16NiByaV7u-gugOo9SDwdmVHsSiUSy6E8uIjNfprjsmjhtTvEPprWMjk3YbsFhe6F6VtHUi9j5zzAgnUuWtZQEW5zy1E5XFlo1INshebykmZFXcWIDXg7JokDUexZjKL5qVjpEWjsPqFOI87pRnXUzcYcoA5Y5IsqVWW_XY_lMVly0zOJIBSsmf_keZX5G92dnJsT4-Ov30jNyJ0YSnNbl7TnbrZeNfAAar7cu2j_0Gx4sx7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasonic+cavitation+at+liquid%2Fsolid+interface+in+a+thin+Ga%E2%80%93In+liquid+layer+with+free+surface&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Li%2C+Zhengwei&rft.au=Xu%2C+Zhiwu&rft.au=Zhao%2C+Degang&rft.au=Chen%2C+Shu&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=71&rft_id=info:doi/10.1016%2Fj.ultsonch.2020.105356&rft.externalDocID=S1350417720316606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |