Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface

•Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtaine...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics sonochemistry Vol. 71; p. 105356
Main Authors Li, Zhengwei, Xu, Zhiwu, Zhao, Degang, Chen, Shu, Yan, Jiuchun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region.•High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.
AbstractList Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.
• Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid. • Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results. • High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region. • High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga-In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.
•Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under different parameters are correlated with the acoustic pressure simulation results.•High acoustic pressure and strong cavitation can still be obtained at the weakly vibrated region.•High bubble growth speed of 16.8 m/s is obtained and evidenced by bubble dynamics calculation. Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the cavitation characteristics and acoustic pressure of a thin liquid Ga–In alloy were studied by high speed photography, numerical simulation, and bubble dynamics calculation. A self-made ultrasonic system with a TC4 sonotrode, was operated at a frequency of 20 kHz and a max output power of 1000 W during the cavitation recording experiment. The pressure field characteristic inside the thin liquid layer and its influence on the intensity, types, dimensions, and life cycles of cavitation bubbles and on the cavitation evolution process against experimental parameters were systematically studied. The results showed that acoustic pressure inside the thin liquid layer presented alternating positive and negative characteristics within 1 acoustic period (T). Cavitation bubbles nucleated and grew during the negative-pressure stage and shrank and collapsed during the positive-pressure stage. A high bubble growth speed of 16.8 m/s was obtained and evidenced by bubble dynamics calculation. The maximum absolute pressure was obtained at the bottom of the thin liquid layer and resulted in the strongest cavitation. Cavitation was divided into violent and weak stages. The violent cavitation stage lasted several hundreds of acoustic periods and had higher bubble intensity than the weak cavitation stage. Cavitation cloud preferentially appeared during the violent cavitation stage and had a life of several acoustic periods. Tiny cavitation bubbles with life cycles shorter than 1 T dominated the cavitation field. High cavitation intensities were observed at high ultrasonication power and when Q235B alloy was used because such conditions lead to high amplitudes on the substrate and further high acoustic pressure inside the liquid.
ArticleNumber 105356
Author Yan, Jiuchun
Xu, Zhiwu
Zhao, Degang
Li, Zhengwei
Chen, Shu
Author_xml – sequence: 1
  givenname: Zhengwei
  surname: Li
  fullname: Li, Zhengwei
– sequence: 2
  givenname: Zhiwu
  surname: Xu
  fullname: Xu, Zhiwu
  email: xuzw@hit.edu.cn
– sequence: 3
  givenname: Degang
  surname: Zhao
  fullname: Zhao, Degang
– sequence: 4
  givenname: Shu
  surname: Chen
  fullname: Chen, Shu
– sequence: 5
  givenname: Jiuchun
  surname: Yan
  fullname: Yan, Jiuchun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33049423$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfcAvVF6yydSvOI6EEKiCMlIlNnRtHPum45Enbm1nUHf8A3_Il-BpZhBl042vdX0e8r3ntDoawwhVdU7wgmAiLtaLyecURrNaUEx3zYY14kV1QmTLaiqpPCp31uCak7Y9rk5TWmOMWUfxq-qYMcw7TtlJ9f3G56iLkDPI6K3LOrswIp2Rd_eTsxcpeGeRGzPEQRsoN6RRXpVypX___LUc90Dk9QNE9MPlFRoiAErTI-F19XLQPsGbfT2rbj5_-nb5pb7-erW8_Hhdm4a1uQZj-qGBlnXcCqEF1xooEwysHaQoPy6H4b3kAx047kC0HbNS2raXsqVNz86q5axrg16ru-g2Oj6ooJ16bIR4q3TMznhQveEUoDNEc8OlgL4nQ0MZkz0WHe1J0Xo_a91N_QasgbHMyD8RffoyupW6DVvVtlI0DSsCb_cCMdxPkLLauGTAez1CmJKivCGEEd6JAj3_1-uvyWFFBfBuBpgYUoowKLPfUrF2XhGsdolQa3VIhNolQs2JKHTxH_3g8Czxw0yEsrWtg6iScTAasC6CyWWs7jmJP5Z_1t8
CitedBy_id crossref_primary_10_1016_j_jmatprotec_2024_118481
crossref_primary_10_1016_j_msea_2022_142984
crossref_primary_10_1016_j_ultsonch_2021_105697
crossref_primary_10_1016_j_cep_2023_109470
crossref_primary_10_1016_j_ultsonch_2021_105893
crossref_primary_10_1063_5_0124416
crossref_primary_10_1007_s10008_024_06158_0
crossref_primary_10_1016_j_chemosphere_2023_141024
crossref_primary_10_1051_e3sconf_202127305012
crossref_primary_10_1016_j_dt_2021_08_003
crossref_primary_10_1016_j_jmapro_2021_02_020
crossref_primary_10_7498_aps_70_20211244
crossref_primary_10_1002_smll_202302744
crossref_primary_10_1016_j_jmatprotec_2022_117830
crossref_primary_10_1016_j_mtcomm_2022_104451
crossref_primary_10_1016_j_jmatprotec_2021_117397
crossref_primary_10_1016_j_ultsonch_2024_107001
crossref_primary_10_25699_SSSB_2021_38_4_001
crossref_primary_10_35848_1347_4065_adafb1
crossref_primary_10_1016_j_matchar_2022_111753
crossref_primary_10_1016_j_ceramint_2021_09_274
crossref_primary_10_1063_5_0253098
crossref_primary_10_1016_j_ijmecsci_2022_107221
Cites_doi 10.1016/j.matlet.2015.11.022
10.1016/j.ultsonch.2017.12.053
10.1016/j.ultsonch.2011.06.008
10.1016/j.ultsonch.2015.07.023
10.1016/j.cherd.2013.07.002
10.1016/j.ultras.2014.10.004
10.1016/j.ultsonch.2014.02.027
10.1016/j.ultsonch.2013.07.011
10.1016/j.ultsonch.2016.10.019
10.1016/j.actamat.2018.11.053
10.1017/S0022112098008738
10.1016/j.ultsonch.2016.01.017
10.1179/174591908X371122
10.1016/j.jmatprotec.2015.03.006
10.1016/j.ultsonch.2012.04.013
10.1063/1.5060645
10.1016/j.jeurceramsoc.2017.04.037
10.1007/s11431-009-0132-2
10.1016/j.ultsonch.2018.10.031
10.1088/0370-1301/63/9/305
10.1016/j.matdes.2015.11.010
10.1016/j.ultsonch.2012.01.001
10.1016/j.apor.2015.02.003
10.1016/j.ultsonch.2004.09.001
10.1021/ja00278a055
10.1179/174329308X271742
10.1016/j.jmatprotec.2015.10.009
10.1016/j.ultsonch.2010.03.003
10.1016/1350-4177(95)00020-7
10.1016/j.matchemphys.2014.08.057
10.1016/j.ultras.2017.08.004
10.1017/S0022112098001207
10.1016/j.cej.2007.01.037
10.1016/S1350-4177(02)00152-9
10.1016/j.phpro.2015.08.172
10.1016/j.matlet.2008.06.016
10.1016/j.ultsonch.2016.02.024
10.1016/j.ultsonch.2017.03.002
10.1016/j.matlet.2004.09.027
10.1016/j.ultsonch.2018.12.028
10.1126/science.253.5026.1397
10.1016/j.ultsonch.2013.12.024
10.1016/j.ultsonch.2015.10.015
10.1016/j.ultsonch.2018.02.030
10.1115/1.4014586
10.1103/PhysRevE.75.046304
10.1016/j.rinp.2019.102528
10.1016/j.fuel.2019.01.043
10.1017/S0022112071001058
10.1039/c2sm25379h
10.1016/j.ultsonch.2015.02.013
10.1016/j.ultsonch.2018.09.027
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. 2020 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.ultsonch.2020.105356
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID oai_doaj_org_article_bc42ee9c1a4c486ebb1f52338b0692b1
PMC7786553
33049423
10_1016_j_ultsonch_2020_105356
S1350417720316606
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c537t-eccbf5e7394d66a64aae2363eddf86016860c4b84f2f409e6793d88d7b88725b3
IEDL.DBID .~1
ISSN 1350-4177
1873-2828
IngestDate Wed Aug 27 01:30:44 EDT 2025
Thu Aug 21 17:42:37 EDT 2025
Wed Aug 20 00:25:55 EDT 2025
Wed Feb 19 02:29:18 EST 2025
Tue Jul 01 03:33:09 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Fri Feb 23 02:47:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Amplitude
Bubble
Ultrasonication power
Thin liquid layer
Cavitation
Acoustic pressure
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-eccbf5e7394d66a64aae2363eddf86016860c4b84f2f409e6793d88d7b88725b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350417720316606
PMID 33049423
PQID 2451131496
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bc42ee9c1a4c486ebb1f52338b0692b1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7786553
proquest_miscellaneous_2451131496
pubmed_primary_33049423
crossref_citationtrail_10_1016_j_ultsonch_2020_105356
crossref_primary_10_1016_j_ultsonch_2020_105356
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2020_105356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Eskin, Al-Helal, Tzanakisa (b0250) 2015; 222
Bai, Wu, Liu, Yan, Su, Li (b0135) 2018; 44
Tian, Liu, Li, Zhang, Li, Jiang, Dong (b0065) 2018; 43
Li, Wang, Chen, Liang (b0070) 2015; 26
Kim, Byun, Kwak (b0030) 2007; 132
Bai, Chen, Zhu, Xu, Lin, Wu, Li, Xu, Yan (b0120) 2017; 35
Tzanakis, Lebon, Eskin, Pericleous (b0240) 2016; 90
Bai, Xu, Deng, Li, Xu, Gao (b0105) 2014; 21
Pokhrel, Vabbina, Pala (b0060) 2016; 29
Xu, Tzanakis, Srirangam, Mirihanage, Eskin, Bodey, Lee (b0170) 2016; 31
Plesset, Chapman (b0215) 1971; 47
Moussatov, Granger, Dubus (b0115) 2005; 12
Wang, Guo, Zhang, Zhang, Kang (b0190) 2019; 51
Philipp, Lauterborn (b0210) 1998; 361
Li, Momono, Tayu, Fu (b0255) 2008; 62
Zhao, Yan, Yang, Yang (b0160) 2008; 13
Ida, Naoe, Futakawa (b0220) 2007; 75
Eskin, Tzanakis, Wang, Lebon, Subroto, Pericleous, Mi (b0225) 2019; 52
Niazi, Hashemabadi, Razi (b0245) 2014; 92
Mirihanage, Xu, Tamayo-Ariztondo, Eskin, Garcia-Fernandez, Srirangam, Lee (b0180) 2016; 164
Xu, Ma, Yan, Chen, Yang (b0150) 2014; 148
Bai, Deng, Li, Xu, Xu (b0090) 2014; 21
Rundquist, Paci, von Gal (b0145) 2019; 10
Wu, Bai, Lin, Yan (b0130) 2017; 38
Bai, Xu, Zhang, Li, Zhang, Huang (b0080) 2009; 52
Li, Xu, Ma, Wang, Liu, Yan (b0155) 2019; 50
Niemczewski (b0050) 2008; 86
Huang, Shu, Fu, Wang, Sun (b0185) 2014; 21
Tzanakis, Xu, Lebon, Eskin, Pericleous, Lee (b0175) 2015; 70
Noltingk, Neppiras (b0005) 1950; 63
Dubus, Vanhille, Campos-Pozuelo, Granger (b0095) 2010; 17
Li, Xu, Ma, Wang, Liu, Yan (b0165) 2018; 49
Jian, Xu, Meek, Han (b0140) 2005; 59
Rooze, Rebrov, Schouten, Keurentjes (b0010) 2013; 20
Suslick, Hammerton, Cline (b0025) 1986; 108
Zhang, Yang, Li, Huang, Zhang, Zhang, Li (b0055) 2019; 242
Flint, Suslick (b0015) 1991; 253
Bai, Ying, Li, Deng (b0085) 2012; 19
Bai, Lin, Wu, Deng, Li, Xu, Wang, Chen (b0125) 2016; 32
Wang, Zhang, Chen, Li (b0270) 2019; 15
Wang, Kang, Guo, Lee, Zhang, Wang, Deng, Mi (b0195) 2019; 165
Brujan, Ikeda, Matsumoto (b0040) 2012; 8
Li, Li, Zhang (b0035) 2015; 50
Shen, Yasui, Sun, Mei, You, Zhu (b0020) 2016; 29
Wang, Kang, Zhang, Guo (b0200) 2018; 83
Eskin (b0260) 1995; 2
Hilgenfeldt, Brenner, Grossmann, Lohse (b0265) 1998; 365
Kang, Zhang, Wang, Ma, Huang (b0230) 2015; 57
Tzanakis, Lebon, Eskin, Pericleous (b0235) 2016; 229
Wang, Darut, Poirier, Stella, Liao, Planche (b0075) 2017; 37
Knapp (b0205) 1955; 77
Supponen, Akimura, Minami, Nakajima, Uehara, Ohtani, Kaneko, Farhat, Sato (b0045) 2018; 113
Louisnard (b0110) 2012; 19
Moussatov, Granger, Dubus (b0100) 2003; 10
Zhang (10.1016/j.ultsonch.2020.105356_b0055) 2019; 242
Huang (10.1016/j.ultsonch.2020.105356_b0185) 2014; 21
Wang (10.1016/j.ultsonch.2020.105356_b0190) 2019; 51
Ida (10.1016/j.ultsonch.2020.105356_b0220) 2007; 75
Plesset (10.1016/j.ultsonch.2020.105356_b0215) 1971; 47
Li (10.1016/j.ultsonch.2020.105356_b0165) 2018; 49
Tzanakis (10.1016/j.ultsonch.2020.105356_b0235) 2016; 229
Jian (10.1016/j.ultsonch.2020.105356_b0140) 2005; 59
Zhao (10.1016/j.ultsonch.2020.105356_b0160) 2008; 13
Hilgenfeldt (10.1016/j.ultsonch.2020.105356_b0265) 1998; 365
Moussatov (10.1016/j.ultsonch.2020.105356_b0115) 2005; 12
Wang (10.1016/j.ultsonch.2020.105356_b0270) 2019; 15
Rooze (10.1016/j.ultsonch.2020.105356_b0010) 2013; 20
Bai (10.1016/j.ultsonch.2020.105356_b0120) 2017; 35
Xu (10.1016/j.ultsonch.2020.105356_b0170) 2016; 31
Flint (10.1016/j.ultsonch.2020.105356_b0015) 1991; 253
Bai (10.1016/j.ultsonch.2020.105356_b0080) 2009; 52
Li (10.1016/j.ultsonch.2020.105356_b0255) 2008; 62
Shen (10.1016/j.ultsonch.2020.105356_b0020) 2016; 29
Kim (10.1016/j.ultsonch.2020.105356_b0030) 2007; 132
Wang (10.1016/j.ultsonch.2020.105356_b0195) 2019; 165
Li (10.1016/j.ultsonch.2020.105356_b0070) 2015; 26
Niemczewski (10.1016/j.ultsonch.2020.105356_b0050) 2008; 86
Mirihanage (10.1016/j.ultsonch.2020.105356_b0180) 2016; 164
Bai (10.1016/j.ultsonch.2020.105356_b0135) 2018; 44
Philipp (10.1016/j.ultsonch.2020.105356_b0210) 1998; 361
Eskin (10.1016/j.ultsonch.2020.105356_b0250) 2015; 222
Eskin (10.1016/j.ultsonch.2020.105356_b0225) 2019; 52
Rundquist (10.1016/j.ultsonch.2020.105356_b0145) 2019; 10
Eskin (10.1016/j.ultsonch.2020.105356_b0260) 1995; 2
Wang (10.1016/j.ultsonch.2020.105356_b0200) 2018; 83
Dubus (10.1016/j.ultsonch.2020.105356_b0095) 2010; 17
Wang (10.1016/j.ultsonch.2020.105356_b0075) 2017; 37
Moussatov (10.1016/j.ultsonch.2020.105356_b0100) 2003; 10
Bai (10.1016/j.ultsonch.2020.105356_b0125) 2016; 32
Suslick (10.1016/j.ultsonch.2020.105356_b0025) 1986; 108
Noltingk (10.1016/j.ultsonch.2020.105356_b0005) 1950; 63
Kang (10.1016/j.ultsonch.2020.105356_b0230) 2015; 57
Wu (10.1016/j.ultsonch.2020.105356_b0130) 2017; 38
Tzanakis (10.1016/j.ultsonch.2020.105356_b0175) 2015; 70
Knapp (10.1016/j.ultsonch.2020.105356_b0205) 1955; 77
Bai (10.1016/j.ultsonch.2020.105356_b0085) 2012; 19
Brujan (10.1016/j.ultsonch.2020.105356_b0040) 2012; 8
Louisnard (10.1016/j.ultsonch.2020.105356_b0110) 2012; 19
Bai (10.1016/j.ultsonch.2020.105356_b0090) 2014; 21
Li (10.1016/j.ultsonch.2020.105356_b0035) 2015; 50
Bai (10.1016/j.ultsonch.2020.105356_b0105) 2014; 21
Xu (10.1016/j.ultsonch.2020.105356_b0150) 2014; 148
Supponen (10.1016/j.ultsonch.2020.105356_b0045) 2018; 113
Pokhrel (10.1016/j.ultsonch.2020.105356_b0060) 2016; 29
Li (10.1016/j.ultsonch.2020.105356_b0155) 2019; 50
Tian (10.1016/j.ultsonch.2020.105356_b0065) 2018; 43
Tzanakis (10.1016/j.ultsonch.2020.105356_b0240) 2016; 90
Niazi (10.1016/j.ultsonch.2020.105356_b0245) 2014; 92
References_xml – volume: 47
  start-page: 283
  year: 1971
  end-page: 290
  ident: b0215
  article-title: Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary
  publication-title: J. Fluid. Mech.
– volume: 229
  start-page: 582
  year: 2016
  end-page: 586
  ident: b0235
  article-title: Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer
  publication-title: J. Mater. Process. Technol.
– volume: 20
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0010
  article-title: Dissolved gas and ultrasonic cavitation – A review
  publication-title: Ultrason. Sonochem.
– volume: 15
  year: 2019
  ident: b0270
  article-title: Theoretical analysis of engine coolant cavitation with different additives based on ultrasonic induced bubble dynamics
  publication-title: Results. Phys.
– volume: 62
  start-page: 4152
  year: 2008
  end-page: 4154
  ident: b0255
  article-title: Application of ultrasonic treating to degassing of metal ingots
  publication-title: Mater. Lett.
– volume: 10
  start-page: 288
  year: 2019
  end-page: 295
  ident: b0145
  article-title: The Development of an ultrasonic degassing process for aluminium casting
  publication-title: Materials Today: Proceedings.
– volume: 52
  start-page: 455
  year: 2019
  end-page: 467
  ident: b0225
  article-title: Fundamental studies of ultrasonic melt processing
  publication-title: Ultrason. Sonochem.
– volume: 17
  start-page: 810
  year: 2010
  end-page: 818
  ident: b0095
  article-title: On the physical origin of conical bubble structure under an ultrasonic horn
  publication-title: Ultrason. Sonochem.
– volume: 222
  start-page: 148
  year: 2015
  end-page: 154
  ident: b0250
  article-title: Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study
  publication-title: J. Mater. Process. Technol.
– volume: 37
  start-page: 3623
  year: 2017
  end-page: 3630
  ident: b0075
  article-title: Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings
  publication-title: J. Eur. Ceram. Soc.
– volume: 57
  start-page: 11
  year: 2015
  end-page: 17
  ident: b0230
  article-title: The comparison of ultrasonic effects in different metal melts
  publication-title: Ultrasonics.
– volume: 365
  start-page: 171
  year: 1998
  end-page: 204
  ident: b0265
  article-title: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles
  publication-title: J. Fluid. Mech.
– volume: 43
  start-page: 29
  year: 2018
  end-page: 37
  ident: b0065
  article-title: The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation
  publication-title: Ultrason. Sonochem.
– volume: 19
  start-page: 66
  year: 2012
  end-page: 76
  ident: b0110
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures
  publication-title: Ultrason. Sonochem.
– volume: 164
  start-page: 484
  year: 2016
  end-page: 487
  ident: b0180
  article-title: Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites
  publication-title: Mater. Lett.
– volume: 75
  year: 2007
  ident: b0220
  article-title: Direct observation and theoretical study of cavitation bubbles in liquid mercury
  publication-title: Phys. Rev. E.
– volume: 21
  start-page: 121
  year: 2014
  end-page: 128
  ident: b0090
  article-title: Acoustic cavitation structures produced by artificial implants of nuclei
  publication-title: Ultrason. Sonochem.
– volume: 70
  start-page: 841
  year: 2015
  end-page: 845
  ident: b0175
  article-title: In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy
  publication-title: Physics Procedia
– volume: 29
  start-page: 104
  year: 2016
  end-page: 128
  ident: b0060
  article-title: Sonochemistry: science and engineering
  publication-title: Ultrason. Sonochem.
– volume: 29
  start-page: 394
  year: 2016
  end-page: 400
  ident: b0020
  article-title: Study on the spatial distribution of the liquid temperature near a cavitation bubble wall
  publication-title: Ultrason. Sonochem.
– volume: 38
  start-page: 75
  year: 2017
  end-page: 83
  ident: b0130
  article-title: Stability of cavitation structures in a thin liquid layer
  publication-title: Ultrason. Sonochem.
– volume: 83
  start-page: 26
  year: 2018
  end-page: 32
  ident: b0200
  article-title: Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field
  publication-title: Ultrasonics.
– volume: 108
  start-page: 5641
  year: 1986
  end-page: 5642
  ident: b0025
  article-title: The sonochemical hot spot
  publication-title: J. Am. Chem. SOC.
– volume: 50
  start-page: 278
  year: 2019
  end-page: 288
  ident: b0155
  article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect
  publication-title: Ultrason. Sonochem.
– volume: 31
  start-page: 355
  year: 2016
  end-page: 361
  ident: b0170
  article-title: Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts
  publication-title: Ultrason. Sonochem.
– volume: 12
  start-page: 415
  year: 2005
  end-page: 422
  ident: b0115
  article-title: Ultrasonic cavitation in thin liquid layers
  publication-title: Ultrason. Sonochem.
– volume: 63
  start-page: 674
  year: 1950
  end-page: 685
  ident: b0005
  article-title: Cavitation produced by ultrasonics
  publication-title: Proc. Phys. Soc. B.
– volume: 2
  start-page: 137
  year: 1995
  end-page: 141
  ident: b0260
  article-title: Cavitation mechanism of ultrasonic melt degassing
  publication-title: Ultrason. Sonochem.
– volume: 253
  start-page: 1397
  year: 1991
  end-page: 1399
  ident: b0015
  article-title: The temperature of cavitation
  publication-title: Science.
– volume: 77
  start-page: 1045
  year: 1955
  end-page: 1054
  ident: b0205
  article-title: Recent investigations of the mechanics of cavitation and cavitation damage
  publication-title: Trans. Am. Soc. Mech. Eng.
– volume: 49
  start-page: 249
  year: 2018
  end-page: 259
  ident: b0165
  article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering
  publication-title: Part I: Cavitation characteristics. Ultrason. Sonochem.
– volume: 26
  start-page: 99
  year: 2015
  end-page: 110
  ident: b0070
  article-title: Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen
  publication-title: Ultrason. Sonochem.
– volume: 52
  start-page: 1974
  year: 2009
  end-page: 1980
  ident: b0080
  article-title: Cavitation characteristics of pit structure in ultrasonic field
  publication-title: Sci China. Ser. E-Tech. Sci.
– volume: 21
  start-page: 1696
  year: 2014
  end-page: 1706
  ident: b0105
  article-title: Generation and control of acoustic cavitation structure
  publication-title: Ultrasonics Sonochem.
– volume: 86
  start-page: 332
  year: 2008
  end-page: 336
  ident: b0050
  article-title: Dependence of cavitation intensity on ultrasound frequency in ultrasonic cleaning processes in alkaline solutions
  publication-title: Transactions of the IMF.
– volume: 165
  start-page: 388
  year: 2019
  end-page: 397
  ident: b0195
  article-title: In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields
  publication-title: Acta. Mater.
– volume: 44
  start-page: 184
  year: 2018
  end-page: 195
  ident: b0135
  article-title: Rod-shaped cavitation bubble structure in ultrasonic field
  publication-title: Ultrason. Sonochem.
– volume: 50
  start-page: 227
  year: 2015
  end-page: 236
  ident: b0035
  article-title: Numerical analysis of the bubble jet impact on a rigid wall
  publication-title: Appl. Ocean. Res.
– volume: 148
  start-page: 824
  year: 2014
  end-page: 832
  ident: b0150
  article-title: Solidification microstructure of SiC particulate reinforced Zn-Al composites under ultrasonic exposure
  publication-title: Mater. Chem. Phys.
– volume: 10
  start-page: 191
  year: 2003
  end-page: 195
  ident: b0100
  article-title: Cone-like bubble formation in ultrasonic cavitation field
  publication-title: Ultrason. Sonochem.
– volume: 51
  start-page: 160
  year: 2019
  end-page: 165
  ident: b0190
  article-title: On the mechanism of dendritic fragmentation by ultrasound induced Cavitation
  publication-title: Ultrason. Sonochem.
– volume: 21
  start-page: 1275
  year: 2014
  end-page: 1278
  ident: b0185
  article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt
  publication-title: Ultrason. Sonochem.
– volume: 19
  start-page: 762
  year: 2012
  end-page: 766
  ident: b0085
  article-title: The structures and evolution of Smoker in an ultrasonic field
  publication-title: Ultrason. Sonochem.
– volume: 92
  start-page: 166
  year: 2014
  end-page: 173
  ident: b0245
  article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble
  publication-title: Chem. Eng. Res. Des.
– volume: 32
  start-page: 213
  year: 2016
  end-page: 217
  ident: b0125
  article-title: Memory effect and redistribution of cavitation nuclei in a thin liquid layer
  publication-title: Ultrason. Sonochem.
– volume: 113
  year: 2018
  ident: b0045
  article-title: Jetting from cavitation bubbles due to multiple shockwaves
  publication-title: Appl. Phys. Lett.
– volume: 361
  start-page: 75
  year: 1998
  end-page: 116
  ident: b0210
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid. Mech.
– volume: 13
  start-page: 66
  year: 2008
  end-page: 69
  ident: b0160
  article-title: Capillary filling process during ultrasonically brazing of aluminium matrix composites
  publication-title: Sci. Technol. Weld. Join.
– volume: 242
  start-page: 287
  year: 2019
  end-page: 294
  ident: b0055
  article-title: Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion
  publication-title: Fuel.
– volume: 35
  start-page: 405
  year: 2017
  end-page: 414
  ident: b0120
  article-title: Surface tension and quasi-emulsion of cavitation bubble cloud
  publication-title: Ultrason. Sonochem.
– volume: 132
  start-page: 125
  year: 2007
  end-page: 135
  ident: b0030
  article-title: Temperature and pressure fields due to collapsing bubble under ultrasound
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 190
  year: 2005
  end-page: 193
  ident: b0140
  article-title: Effect of power ultrasound on solidification of aluminum A356 alloy
  publication-title: Mater. Lett.
– volume: 90
  start-page: 979
  year: 2016
  end-page: 983
  ident: b0240
  article-title: Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium
  publication-title: Mater. Des.
– volume: 8
  start-page: 5777
  year: 2012
  end-page: 5783
  ident: b0040
  article-title: Shock wave emission from a cloud of bubbles
  publication-title: Soft. Mater.
– volume: 164
  start-page: 484
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0180
  article-title: Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.11.022
– volume: 43
  start-page: 29
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105356_b0065
  article-title: The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.12.053
– volume: 19
  start-page: 66
  year: 2012
  ident: 10.1016/j.ultsonch.2020.105356_b0110
  article-title: A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.06.008
– volume: 49
  start-page: 249
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105356_b0165
  article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering
  publication-title: Part I: Cavitation characteristics. Ultrason. Sonochem.
– volume: 29
  start-page: 104
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0060
  article-title: Sonochemistry: science and engineering
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.07.023
– volume: 92
  start-page: 166
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105356_b0245
  article-title: CFD simulation of acoustic cavitation in a crude oil upgrading sonoreactor and prediction of collapse temperature and pressure of a cavitation bubble
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.07.002
– volume: 57
  start-page: 11
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105356_b0230
  article-title: The comparison of ultrasonic effects in different metal melts
  publication-title: Ultrasonics.
  doi: 10.1016/j.ultras.2014.10.004
– volume: 21
  start-page: 1696
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105356_b0105
  article-title: Generation and control of acoustic cavitation structure
  publication-title: Ultrasonics Sonochem.
  doi: 10.1016/j.ultsonch.2014.02.027
– volume: 21
  start-page: 121
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105356_b0090
  article-title: Acoustic cavitation structures produced by artificial implants of nuclei
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.07.011
– volume: 35
  start-page: 405
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105356_b0120
  article-title: Surface tension and quasi-emulsion of cavitation bubble cloud
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.10.019
– volume: 165
  start-page: 388
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0195
  article-title: In situ high speed imaging study and modelling of the fatigue fragmentation of dendritic structures in ultrasonic fields
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2018.11.053
– volume: 361
  start-page: 75
  year: 1998
  ident: 10.1016/j.ultsonch.2020.105356_b0210
  article-title: Cavitation erosion by single laser-produced bubbles
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112098008738
– volume: 31
  start-page: 355
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0170
  article-title: Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.01.017
– volume: 86
  start-page: 332
  issue: 6
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105356_b0050
  article-title: Dependence of cavitation intensity on ultrasound frequency in ultrasonic cleaning processes in alkaline solutions
  publication-title: Transactions of the IMF.
  doi: 10.1179/174591908X371122
– volume: 222
  start-page: 148
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105356_b0250
  article-title: Application of a plate sonotrode to ultrasonic degassing of aluminum melt: Acoustic measurements and feasibility study
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.03.006
– volume: 20
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.ultsonch.2020.105356_b0010
  article-title: Dissolved gas and ultrasonic cavitation – A review
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.04.013
– volume: 10
  start-page: 288
  issue: 2
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0145
  article-title: The Development of an ultrasonic degassing process for aluminium casting
  publication-title: Materials Today: Proceedings.
– volume: 113
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105356_b0045
  article-title: Jetting from cavitation bubbles due to multiple shockwaves
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5060645
– volume: 37
  start-page: 3623
  issue: 11
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105356_b0075
  article-title: Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.04.037
– volume: 52
  start-page: 1974
  issue: 7
  year: 2009
  ident: 10.1016/j.ultsonch.2020.105356_b0080
  article-title: Cavitation characteristics of pit structure in ultrasonic field
  publication-title: Sci China. Ser. E-Tech. Sci.
  doi: 10.1007/s11431-009-0132-2
– volume: 51
  start-page: 160
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0190
  article-title: On the mechanism of dendritic fragmentation by ultrasound induced Cavitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.10.031
– volume: 63
  start-page: 674
  year: 1950
  ident: 10.1016/j.ultsonch.2020.105356_b0005
  article-title: Cavitation produced by ultrasonics
  publication-title: Proc. Phys. Soc. B.
  doi: 10.1088/0370-1301/63/9/305
– volume: 90
  start-page: 979
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0240
  article-title: Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.11.010
– volume: 19
  start-page: 762
  year: 2012
  ident: 10.1016/j.ultsonch.2020.105356_b0085
  article-title: The structures and evolution of Smoker in an ultrasonic field
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2012.01.001
– volume: 50
  start-page: 227
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105356_b0035
  article-title: Numerical analysis of the bubble jet impact on a rigid wall
  publication-title: Appl. Ocean. Res.
  doi: 10.1016/j.apor.2015.02.003
– volume: 12
  start-page: 415
  year: 2005
  ident: 10.1016/j.ultsonch.2020.105356_b0115
  article-title: Ultrasonic cavitation in thin liquid layers
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.09.001
– volume: 108
  start-page: 5641
  year: 1986
  ident: 10.1016/j.ultsonch.2020.105356_b0025
  article-title: The sonochemical hot spot
  publication-title: J. Am. Chem. SOC.
  doi: 10.1021/ja00278a055
– volume: 13
  start-page: 66
  issue: 1
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105356_b0160
  article-title: Capillary filling process during ultrasonically brazing of aluminium matrix composites
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329308X271742
– volume: 229
  start-page: 582
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0235
  article-title: Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.10.009
– volume: 17
  start-page: 810
  year: 2010
  ident: 10.1016/j.ultsonch.2020.105356_b0095
  article-title: On the physical origin of conical bubble structure under an ultrasonic horn
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2010.03.003
– volume: 2
  start-page: 137
  issue: 2
  year: 1995
  ident: 10.1016/j.ultsonch.2020.105356_b0260
  article-title: Cavitation mechanism of ultrasonic melt degassing
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/1350-4177(95)00020-7
– volume: 148
  start-page: 824
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105356_b0150
  article-title: Solidification microstructure of SiC particulate reinforced Zn-Al composites under ultrasonic exposure
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.08.057
– volume: 83
  start-page: 26
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105356_b0200
  article-title: Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field
  publication-title: Ultrasonics.
  doi: 10.1016/j.ultras.2017.08.004
– volume: 365
  start-page: 171
  year: 1998
  ident: 10.1016/j.ultsonch.2020.105356_b0265
  article-title: Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112098001207
– volume: 132
  start-page: 125
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105356_b0030
  article-title: Temperature and pressure fields due to collapsing bubble under ultrasound
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.01.037
– volume: 10
  start-page: 191
  year: 2003
  ident: 10.1016/j.ultsonch.2020.105356_b0100
  article-title: Cone-like bubble formation in ultrasonic cavitation field
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/S1350-4177(02)00152-9
– volume: 70
  start-page: 841
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105356_b0175
  article-title: In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2015.08.172
– volume: 62
  start-page: 4152
  year: 2008
  ident: 10.1016/j.ultsonch.2020.105356_b0255
  article-title: Application of ultrasonic treating to degassing of metal ingots
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.06.016
– volume: 32
  start-page: 213
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0125
  article-title: Memory effect and redistribution of cavitation nuclei in a thin liquid layer
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.02.024
– volume: 38
  start-page: 75
  year: 2017
  ident: 10.1016/j.ultsonch.2020.105356_b0130
  article-title: Stability of cavitation structures in a thin liquid layer
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.03.002
– volume: 59
  start-page: 190
  year: 2005
  ident: 10.1016/j.ultsonch.2020.105356_b0140
  article-title: Effect of power ultrasound on solidification of aluminum A356 alloy
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2004.09.027
– volume: 52
  start-page: 455
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0225
  article-title: Fundamental studies of ultrasonic melt processing
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.12.028
– volume: 253
  start-page: 1397
  year: 1991
  ident: 10.1016/j.ultsonch.2020.105356_b0015
  article-title: The temperature of cavitation
  publication-title: Science.
  doi: 10.1126/science.253.5026.1397
– volume: 21
  start-page: 1275
  year: 2014
  ident: 10.1016/j.ultsonch.2020.105356_b0185
  article-title: Synchrotron radiation X-ray imaging of cavitation bubbles in Al–Cu alloy melt
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.12.024
– volume: 29
  start-page: 394
  year: 2016
  ident: 10.1016/j.ultsonch.2020.105356_b0020
  article-title: Study on the spatial distribution of the liquid temperature near a cavitation bubble wall
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.10.015
– volume: 44
  start-page: 184
  year: 2018
  ident: 10.1016/j.ultsonch.2020.105356_b0135
  article-title: Rod-shaped cavitation bubble structure in ultrasonic field
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.02.030
– volume: 77
  start-page: 1045
  year: 1955
  ident: 10.1016/j.ultsonch.2020.105356_b0205
  article-title: Recent investigations of the mechanics of cavitation and cavitation damage
  publication-title: Trans. Am. Soc. Mech. Eng.
  doi: 10.1115/1.4014586
– volume: 75
  year: 2007
  ident: 10.1016/j.ultsonch.2020.105356_b0220
  article-title: Direct observation and theoretical study of cavitation bubbles in liquid mercury
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.75.046304
– volume: 15
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0270
  article-title: Theoretical analysis of engine coolant cavitation with different additives based on ultrasonic induced bubble dynamics
  publication-title: Results. Phys.
  doi: 10.1016/j.rinp.2019.102528
– volume: 242
  start-page: 287
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0055
  article-title: Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion
  publication-title: Fuel.
  doi: 10.1016/j.fuel.2019.01.043
– volume: 47
  start-page: 283
  issue: 2
  year: 1971
  ident: 10.1016/j.ultsonch.2020.105356_b0215
  article-title: Collapse of an initially spherical vapor cavity in the neighbourhood of a solid boundary
  publication-title: J. Fluid. Mech.
  doi: 10.1017/S0022112071001058
– volume: 8
  start-page: 5777
  year: 2012
  ident: 10.1016/j.ultsonch.2020.105356_b0040
  article-title: Shock wave emission from a cloud of bubbles
  publication-title: Soft. Mater.
  doi: 10.1039/c2sm25379h
– volume: 26
  start-page: 99
  year: 2015
  ident: 10.1016/j.ultsonch.2020.105356_b0070
  article-title: Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.02.013
– volume: 50
  start-page: 278
  year: 2019
  ident: 10.1016/j.ultsonch.2020.105356_b0155
  article-title: Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2018.09.027
SSID ssj0003920
Score 2.4371562
Snippet •Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid.•Cavitation characteristics under...
Cavitation in thin layer of liquid metal has potential applications in chemical reaction, soldering, extraction, and therapeutic equipment. In this work, the...
• Thin liquid metal layer produces stronger cavitation with more uniform bubble size and distribution than bulk liquid. • Cavitation characteristics under...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105356
SubjectTerms Acoustic pressure
Amplitude
Bubble
Cavitation
Original
Thin liquid layer
Ultrasonication power
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSgguCJZXeclIXMM2ju0kR1ixLEhwotLejB9jbVdRCm2y5_0P_EN-CTNOUrVw6IVLEiW25clMMt84k28Ye6OCij53iNxsXWdS-5ihKessh7mUocwh97Te8eWrPl_IzxfqYqfUF-WEDfTAw407cV4KgNrnVnpZaXAujxg8FZWb61q4FPigz5uCqfEdjF5_-D9YzTOZl-XOv8FXb_umQyybPkWIVOi2oPLVO24psffvead_0effSZQ7XunsPrs3wkn-bhDjAbsF7TG7czpVcTtmt1OKp988ZN8XDY6wISpc7u31yM3Nbceb5c-ebHLVLAMn_oh1tB7wiFveXeLuo_198-tTOzbkjUWczmkFl8c1AN_0qcMjtjj78O30PBvrK2ReFWWXofZcVFAWtQxaWy2tBVHoAkKIFdG04MZLV8koIoaBoPFZDlUVSofqFMoVj9lRu2rhKeMxutxaq8AFLT14i-8BS-APewQBesbUdHuNHwWkGhiNmbLMrsykFkNqMYNaZuxk2-_HQL9xsMd70t62NdFnpxNoVGY0KnPIqGasnnRvRiQyIAwcanlwAq8nYzGoa_r-YltY9RsjiAuuwJAU2zwZjGc7TVpWqhHazli5Z1Z7cuxfaZeXiQ6cGACVKp79D8Gfs7uCknZSkt0LdtSte3iJqKtzr9ID9gezCS09
  priority: 102
  providerName: Directory of Open Access Journals
Title Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface
URI https://dx.doi.org/10.1016/j.ultsonch.2020.105356
https://www.ncbi.nlm.nih.gov/pubmed/33049423
https://www.proquest.com/docview/2451131496
https://pubmed.ncbi.nlm.nih.gov/PMC7786553
https://doaj.org/article/bc42ee9c1a4c486ebb1f52338b0692b1
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIgQXBOWny8_KSFzTXSe2kxzLirIF0Qus1JuxHZumirJlN-FY9R14Q56EGSdZduHQA5ckcsaW7Rnb4_H4G0LeiEJ4ywxobjrPIy6tj0CUZcTclPMiZY5ZtHd8OpPzBf9wLs73yGy4C4Nulf3c383pYbbuUyZ9b06uynLymSViylmK54hMygC7zXmKUn50_cfNA9b_7qawmEZIvXVL-PKorRrQasOhRBxC3iYYyHprgQo4_jvr1L966N_ulFvr08lD8qBXLOlxV_dHZM_VB-TebIjndkDuBmdPu35Mvi4qKGGNoLjU6h89SjfVDa3K7y1K57IqC4pIEiuvrYMvqmlzAa_3-tfNz9O6J6SVBo2doi2X-pVzdN2GDE_I4uTdl9k86iMtRFYkaRMBH40XLk1yXkipJdfaxYlMXFH4DAFb4GG5ybiPPWwInYRRXWRZkRpgbCxM8pTs18vaHRLqvWFaa-FMIbl1VsOMoFENhBxF7OSIiKF7le0biNEwKjX4m12qgS0K2aI6tozIZJPvqgPiuDXHW-TehhqBtEPCcvVN9ZKkjOWxc7llmlueSWcM87A3TzIzlXls2IjkA-_VjlxCUeWtFXg9CIsCXuNJjK7dsl2rGFHhEticAs2zTng21UQDUw5K7oikO2K1047dP3V5EYDBEQtQiOT5f9T5Bbkfo9dO8LJ7SfabVetegdrVmHEYV2Ny5_j04_xsHIwXvwFGRzFU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlQuCMpreRqJa7rr-JHkCCvKFtpe6Eq9Gdux21RRtuwmHBH_gX_IL2Emj2UXDj1wSSLHtmzP2P5sj78h5I3MZXDMAnIzWRYJ5UIEqqwi5idC5AnzzOF-x8mpms3Fx3N5vkOmw10YNKvsx_5uTG9H6z5k3Lfm-Looxp8ZlxPBEjxHZEoh7fYtAd0X3RgcfP9j5wEAoLsqLCcRRt-4Jnx10JQ1wNr2VCJufd5y9GS9MUO1RP5bE9W_QPRve8qNCerwHrnbI0v6tiv8fbLjq32yNx0cuu2T2621p1s9IF_mJeSwQlZc6sy3nqabmpqWxdcG1XNRFjlFKollMM7DFzW0voTXB_Prx8-jqo9ISwOQneJmLg1L7-mqaRM8JPPD92fTWdS7Woic5EkdgSBtkD7hmciVMkoY42OuuM_zkCJjCzycsKkIcYAVoVfQrfM0zRMLko2l5Y_IbrWo_BNCQ7DMGCO9zZVw3hkYEgziQEiRx16NiByaV7u-gugOo9SDwdmVHsSiUSy6E8uIjNfprjsmjhtTvEPprWMjk3YbsFhe6F6VtHUi9j5zzAgnUuWtZQEW5zy1E5XFlo1INshebykmZFXcWIDXg7JokDUexZjKL5qVjpEWjsPqFOI87pRnXUzcYcoA5Y5IsqVWW_XY_lMVly0zOJIBSsmf_keZX5G92dnJsT4-Ov30jNyJ0YSnNbl7TnbrZeNfAAar7cu2j_0Gx4sx7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasonic+cavitation+at+liquid%2Fsolid+interface+in+a+thin+Ga%E2%80%93In+liquid+layer+with+free+surface&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Li%2C+Zhengwei&rft.au=Xu%2C+Zhiwu&rft.au=Zhao%2C+Degang&rft.au=Chen%2C+Shu&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=71&rft_id=info:doi/10.1016%2Fj.ultsonch.2020.105356&rft.externalDocID=S1350417720316606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon