Methods for enrichment of novel electrochemically-active microorganisms

•Current methods for EAM enrichment have uncovered only a small part of EAM diversity.•Potentiostat-controlled electrochemical cells provide higher repeatability than MFC-based enrichment.•Microbial-rich environments like sediments and soil are preferable to wastewater as inocula for EAM enrichment....

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 195; pp. 273 - 282
Main Authors Doyle, Lucinda Elizabeth, Marsili, Enrico
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Current methods for EAM enrichment have uncovered only a small part of EAM diversity.•Potentiostat-controlled electrochemical cells provide higher repeatability than MFC-based enrichment.•Microbial-rich environments like sediments and soil are preferable to wastewater as inocula for EAM enrichment. Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.
AbstractList •Current methods for EAM enrichment have uncovered only a small part of EAM diversity.•Potentiostat-controlled electrochemical cells provide higher repeatability than MFC-based enrichment.•Microbial-rich environments like sediments and soil are preferable to wastewater as inocula for EAM enrichment. Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.
Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.
Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.
Author Doyle, Lucinda Elizabeth
Marsili, Enrico
Author_xml – sequence: 1
  givenname: Lucinda Elizabeth
  surname: Doyle
  fullname: Doyle, Lucinda Elizabeth
  organization: Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore
– sequence: 2
  givenname: Enrico
  orcidid: 0000-0003-3150-1564
  surname: Marsili
  fullname: Marsili, Enrico
  email: emarsili@ntu.edu.sg
  organization: Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26189782$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LJDEQhsOirKO7f0H6uJdu89H5Ag-7iF-geNFzyKQrTobuxE0yA_57W8a5eNFTUfC8VVQ9x-ggpggInRLcEUzE2bpbhpQruFVHMeEdlh2m_AdaECVZS7UUB2iBtcCt4rQ_QselrDHGjEj6Ex1RQZSWii7Q9T3UVRpK41NuIObgVhPE2iTfxLSFsYERXM3JrWAKzo7ja2tdDVto5janlJ9tDGUqv9Cht2OB3x_1BD1dXT5e3LR3D9e3F__uWseZrC1YjWHptQAO1DEmtOCKqsExAGYpVsC9IlZLj73kPddCOO57Alz0AnzPTtCf3dyXnP5voFQzheJgHG2EtCmGqF4wpqT4Bipxz3qhMZ3R0w90s5xgMC85TDa_mv2fZuB8B8w3l5LBGxeqrSHFmm0YDcHmXYtZm70W867FYGlmLXNcfIrvN3wZ_LsLwvzTbYBsigsQHQwhz17MkMJXI94A6--rcw
CitedBy_id crossref_primary_10_1016_j_jenvman_2025_124809
crossref_primary_10_1016_j_procbio_2021_01_003
crossref_primary_10_1016_j_trechm_2024_01_005
crossref_primary_10_1007_s10311_023_01625_y
crossref_primary_10_1016_j_chemosphere_2020_128366
crossref_primary_10_1186_s13213_020_01568_7
crossref_primary_10_1016_j_envpol_2021_118771
crossref_primary_10_1021_acsomega_1c04108
crossref_primary_10_1016_j_jece_2021_106054
crossref_primary_10_1016_j_jelechem_2017_06_003
crossref_primary_10_1016_j_jenvman_2019_109517
crossref_primary_10_1016_j_bioelechem_2020_107724
crossref_primary_10_1016_j_psep_2025_106946
crossref_primary_10_1016_j_scitotenv_2022_157745
crossref_primary_10_1007_s11356_017_9112_4
crossref_primary_10_1016_j_biortech_2019_121881
crossref_primary_10_1016_j_jclepro_2024_142018
crossref_primary_10_1016_j_biortech_2016_07_015
crossref_primary_10_1007_s00449_019_02074_0
crossref_primary_10_1016_j_biortech_2017_04_122
crossref_primary_10_1016_j_scitotenv_2024_175013
crossref_primary_10_1016_j_ijhydene_2022_07_154
crossref_primary_10_1016_j_jpowsour_2017_03_147
crossref_primary_10_3390_mi13111953
crossref_primary_10_1016_j_biortech_2016_03_115
crossref_primary_10_1016_j_biortech_2018_02_073
crossref_primary_10_1016_j_apenergy_2016_08_177
crossref_primary_10_1016_j_jpowsour_2019_01_027
crossref_primary_10_1002_jctb_7635
crossref_primary_10_1016_j_scitotenv_2023_169186
crossref_primary_10_1016_j_seta_2022_102183
crossref_primary_10_1016_j_apsusc_2023_159207
crossref_primary_10_1016_j_biortech_2020_123808
crossref_primary_10_1016_j_biortech_2018_03_053
crossref_primary_10_1042_EBC20200178
crossref_primary_10_1080_01490451_2018_1526986
crossref_primary_10_1021_acsabm_3c00601
crossref_primary_10_3390_en11102577
crossref_primary_10_1002_er_5391
crossref_primary_10_1016_j_chemosphere_2021_131489
crossref_primary_10_1016_j_cej_2022_140597
crossref_primary_10_1146_annurev_micro_030117_020420
crossref_primary_10_1016_j_proeng_2016_11_481
crossref_primary_10_1016_j_scitotenv_2020_144361
crossref_primary_10_1007_s11368_017_1769_2
crossref_primary_10_1016_j_electacta_2017_03_186
crossref_primary_10_1016_j_scitotenv_2019_05_120
crossref_primary_10_1016_j_scitotenv_2019_05_003
crossref_primary_10_1186_s40643_019_0245_9
crossref_primary_10_1016_j_jece_2023_109551
crossref_primary_10_1002_celc_201700929
crossref_primary_10_1016_j_ibiod_2024_105886
crossref_primary_10_1021_acsami_2c07638
crossref_primary_10_1016_j_sajce_2019_10_002
crossref_primary_10_1016_j_cej_2017_10_139
crossref_primary_10_1002_er_6154
crossref_primary_10_1016_j_bej_2018_10_007
crossref_primary_10_1002_jctb_5916
crossref_primary_10_1007_s13205_021_02802_y
crossref_primary_10_1016_j_ijhydene_2022_01_075
crossref_primary_10_3390_en13123218
crossref_primary_10_1016_j_envres_2020_109867
crossref_primary_10_1016_j_rser_2020_110184
crossref_primary_10_1016_j_ijhydene_2017_06_095
crossref_primary_10_1007_s11356_023_28500_1
crossref_primary_10_1007_s13762_017_1424_x
crossref_primary_10_1016_j_chemosphere_2019_04_066
Cites_doi 10.1080/09168451.2015.1015952
10.1016/j.bioelechem.2015.03.011
10.1016/j.electacta.2015.01.029
10.1038/srep06961
10.1371/journal.pone.0030495
10.1016/j.electacta.2008.02.115
10.1016/j.elecom.2007.12.009
10.1016/j.ijhydene.2014.03.236
10.1002/bit.23351
10.1128/AEM.60.10.3752-3759.1994
10.1016/j.ijhydene.2014.01.001
10.1128/AEM.06434-11
10.1016/j.copbio.2013.02.012
10.1016/j.biotechadv.2010.07.008
10.1111/j.1751-7915.2008.00049.x
10.1016/j.procbio.2013.11.008
10.1126/science.240.4857.1319
10.1016/j.jpowsour.2012.12.112
10.1016/j.biortech.2012.05.131
10.1128/AEM.01639-08
10.1016/j.apenergy.2012.03.011
10.1039/C4CC08590F
10.1039/c2cs35026b
10.1038/ismej.2007.4
10.1016/j.watres.2013.07.048
10.1098/rspb.1911.0073
10.1016/S0378-1097(03)00356-2
10.1002/bit.25105
10.1002/cssc.201200283
10.1371/journal.pone.0077443
10.1073/pnas.0710525105
10.1016/j.biortech.2014.08.096
10.1016/j.bios.2008.08.001
10.1016/j.biortech.2009.10.017
10.1016/j.bios.2011.05.014
10.1038/ncomms2615
10.1128/AEM.00480-12
10.1002/bit.22267
10.1007/s00253-010-2624-1
10.1128/AEM.00177-08
10.1016/j.bioelechem.2015.02.003
10.1016/j.colsurfb.2010.10.015
10.1021/sc400330r
10.1016/j.biortech.2011.11.136
10.1021/es404690q
10.1021/es2032532
10.1016/j.bios.2013.02.033
10.1038/srep01315
10.1007/s00253-011-3226-2
10.1039/B814914C
10.1016/j.watres.2014.06.046
10.1021/es301902h
10.1039/b819866g
10.1146/annurev.mi.48.100194.001523
10.1007/s00253-008-1410-9
10.1039/c3cp54045f
10.1038/ismej.2013.217
10.1016/j.electacta.2007.05.006
10.1016/j.biortech.2010.05.012
10.1016/j.biortech.2012.07.049
10.1016/j.procbio.2012.07.032
10.1007/s00253-003-1412-6
10.1016/j.bej.2013.01.012
10.1021/es902165y
10.1002/cssc.201402736
10.1111/1751-7915.12267
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2015.07.025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 282
ExternalDocumentID 26189782
10_1016_j_biortech_2015_07_025
S0960852415009785
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c537t-ea90ebf96e5e2c336965828dc3ee3a208e5f81a97f0f7545966c5f41e5646ef43
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 11:04:06 EDT 2025
Thu Jul 10 16:35:52 EDT 2025
Thu Apr 03 07:02:49 EDT 2025
Tue Jul 01 02:06:32 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Fri Feb 23 02:16:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Enrichment
Microbial fuel cells
Electrochemically-active bacteria
Sediments
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-ea90ebf96e5e2c336965828dc3ee3a208e5f81a97f0f7545966c5f41e5646ef43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3150-1564
PMID 26189782
PQID 1704346902
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1846338764
proquest_miscellaneous_1704346902
pubmed_primary_26189782
crossref_citationtrail_10_1016_j_biortech_2015_07_025
crossref_primary_10_1016_j_biortech_2015_07_025
elsevier_sciencedirect_doi_10_1016_j_biortech_2015_07_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rabaey, Rodriguez, Blackall, Keller, Gross, Batstone, Verstraete, Nealson (b0290) 2007; 1
Wang, Cai, Zhou, Zhang, Chen (b0335) 2012; 109
Marsili, Rollefson, Baron, Hozalski, Bond (b0215) 2008; 74
Ishii, Suzuki, Norden-Krichmar, Phan, Wanger, Nealson, Sekiguchi, Gorby, Bretschger (b0135) 2014; 8
Zhu, Yates, Hatzell, Ananda Rao, Saikaly, Logan (b0375) 2014; 48
Dunaj, Vallino, Hines, Gay, Kobyljanec, Rooney-Varga (b0060) 2012; 46
Faimali, Chelossi, Garaventa, Corrà, Greco, Mollica (b0070) 2008; 54
Liengen, Basséguy, Feron, Beech, Birrien (b0185) 2014
Pisciotta, Zaybak, Call, Nam, Logan (b0280) 2012; 78
Oh, Kim, Premier, Lee, Kim, Sloan (b0250) 2010; 28
Pham, Boon, Aelterman, Clauwaert, De Schamphelaire, Van Oostveldt, Verbeken, Rabaey, Verstraete (b0270) 2008; 1
Lovley, Nevin (b0200) 2013; 24
Parameswaran, Torres, Lee, Krajmalnik-Brown, Rittmann (b0265) 2009; 103
Seviour, Doyle, Lauw, Hinks, Rice, Nesati, Webster, Kjellenberg, Marsili (b0310) 2015; 51
Yang, Xu, Guo, Sun (b0345) 2012; 47
He, Mansfeld (b0095) 2009; 2
Ishii, Watanabe, Yabuki, Logan, Sekiguchi (b0115) 2008; 74
Rismani-Yazdi, Christy, Carver, Yu, Dehority, Tuovinen (b0300) 2011; 102
Hou, Sun, Hu (b0105) 2011; 90
Varrone, Van Nostrand, Liu, Zhou, Wang, Liu, He, Wu, Zhou, Wang (b0330) 2014; 39
Mansfeld (b0205) 2007; 52
Torres, Krajmalnik-Brown, Parameswaran, Marcus, Wanger, Gorby, Rittmann (b0325) 2009; 43
Karthikeyan, Wang, Xuan, Wong, Lee, Leung (b0150) 2015; 157
Call, Logan (b0025) 2011; 26
Kaku, Yonezawa, Kodama, Watanabe (b0140) 2008; 79
Myers, Nealson (b0235) 1988; 240
Larrosa-Guerrero, Scott, Katuri, Godinez, Head, Curtis (b0175) 2010; 87
Metcalf and Eddy, Tchobanoglous, Burton, Stensel (b0220) 2002
Srikanth, Venkata Mohan (b0320) 2012; 123
Zhang, Cui, Chen, Yang, Shen (b0360) 2008; 10
Call, Logan (b0030) 2011; 77
Carmona-Martínez, Pierra, Trably, Bernet (b0035) 2013; 15
Salvin, Roos, Robert (b0305) 2012; 120
Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (b0210) 2008; 105
Song, Cai, Yan, Zhao, Jiang (b0315) 2012; 108
Yuan, He, Sheng, Chen, Tong, Cheng, Li, Lin, Zhang, Yu (b0355) 2013; 3
Zhao, Slade, Varcoe (b0365) 2009; 38
Zhi, Ge, He, Zhang (b0370) 2014; 171
Miceli, Parameswaran, Kang, Krajmalnik-Brown, Torres (b0225) 2012; 46
Oliveira, Simões, Melo, Pinto (b0255) 2013; 73
Kaur, Kim, Michie, Dinsdale, Guwy, Premier (b0155) 2013; 47
Nealson, Saffarini (b0240) 1994; 48
Potter (b0285) 1911
Kouzuma, Kasai, Nakagawa, Yamamuro, Abe, Watanabe (b0170) 2013; 8
Wong, Cheng, Kaksonen, Sutton, Ginige (b0340) 2014; 64
Logan (b0195) 2008
Raman, Lan (b0295) 2012; 100
Bard, Faulkner (b0010) 2001
Chou, Whiteley, Lee (b0045) 2014; 39
Harnisch, Rosa, Kracke, Virdis, Krömer (b0090) 2014; 8
Ieropoulos, Greenman, Melhuish, Horsfield (b0110) 2012; 5
Ishii, Suzuki, Norden-Krichmar, Nealson, Sekiguchi, Gorby, Bretschger (b0120) 2012; 7
Dominguez-Benetton, Sevda, Vanbroekhoven, Pant (b0050) 2012; 41
Lee, Phung, Chang, Kim, Sung (b0180) 2003; 223
Choi, Kim, Woo, Um (b0040) 2014; 4
Fu, Fukushima, Maeda, Sato, Kobayashi (b0075) 2015; 79
Epifanio, Inguva, Kitching, Mosnier, Marsili (b0065) 2015
Liu, Harnisch, Fricke, Sietmann, Schröder (b0190) 2008; 24
Yuan, Zhou, Xu, Zhuang (b0350) 2011; 82
Babauta, Beyenal (b0005) 2014; 111
Ishii, Suzuki, Norden-Krichmar, Tenney, Chain, Scholz, Nealson, Bretschger (b0130) 2013; 4
Nguyen, Luong, Tran, Bui, Nguyen, Dinh, Kim, Pham (b0245) 2015; 8
Donovan, Dewan, Heo, Lewandowski, Beyenal (b0055) 2013; 233
Khan, Ansari, Lee, Lee, Cho (b0160) 2013; 2
Caccavo, Lonergan, Lovley, Davis, Stolz, McInerney (b0020) 1994; 60
Pant, Van Bogaert, Diels, Vanbroekhoven (b0260) 2010; 101
Kim, Park, Kim, Kim, Chang, Lee, Phung (b0165) 2004; 63
He, Yuan, Tong, Huang, Lin, Yu (b0100) 2014; 49
Ishii, Suzuki, Norden-Krichmar, Wu, Yamanaka, Nealson, Bretschger (b0125) 2013; 47
Pierra, Carmona-Martínez, Trably, Godon, Bernet (b0275) 2015
Ishii (10.1016/j.biortech.2015.07.025_b0125) 2013; 47
Ishii (10.1016/j.biortech.2015.07.025_b0115) 2008; 74
He (10.1016/j.biortech.2015.07.025_b0100) 2014; 49
Yuan (10.1016/j.biortech.2015.07.025_b0350) 2011; 82
Pant (10.1016/j.biortech.2015.07.025_b0260) 2010; 101
Hou (10.1016/j.biortech.2015.07.025_b0105) 2011; 90
Ishii (10.1016/j.biortech.2015.07.025_b0120) 2012; 7
Bard (10.1016/j.biortech.2015.07.025_b0010) 2001
Carmona-Martínez (10.1016/j.biortech.2015.07.025_b0035) 2013; 15
Wang (10.1016/j.biortech.2015.07.025_b0335) 2012; 109
Oh (10.1016/j.biortech.2015.07.025_b0250) 2010; 28
Srikanth (10.1016/j.biortech.2015.07.025_b0320) 2012; 123
Fu (10.1016/j.biortech.2015.07.025_b0075) 2015; 79
Zhu (10.1016/j.biortech.2015.07.025_b0375) 2014; 48
Kouzuma (10.1016/j.biortech.2015.07.025_b0170) 2013; 8
Yang (10.1016/j.biortech.2015.07.025_b0345) 2012; 47
Zhang (10.1016/j.biortech.2015.07.025_b0360) 2008; 10
Pisciotta (10.1016/j.biortech.2015.07.025_b0280) 2012; 78
Pham (10.1016/j.biortech.2015.07.025_b0270) 2008; 1
Pierra (10.1016/j.biortech.2015.07.025_b0275) 2015
Myers (10.1016/j.biortech.2015.07.025_b0235) 1988; 240
Mansfeld (10.1016/j.biortech.2015.07.025_b0205) 2007; 52
Rismani-Yazdi (10.1016/j.biortech.2015.07.025_b0300) 2011; 102
Logan (10.1016/j.biortech.2015.07.025_b0195) 2008
Marsili (10.1016/j.biortech.2015.07.025_b0210) 2008; 105
Karthikeyan (10.1016/j.biortech.2015.07.025_b0150) 2015; 157
Zhi (10.1016/j.biortech.2015.07.025_b0370) 2014; 171
Varrone (10.1016/j.biortech.2015.07.025_b0330) 2014; 39
Chou (10.1016/j.biortech.2015.07.025_b0045) 2014; 39
Salvin (10.1016/j.biortech.2015.07.025_b0305) 2012; 120
Ishii (10.1016/j.biortech.2015.07.025_b0135) 2014; 8
Parameswaran (10.1016/j.biortech.2015.07.025_b0265) 2009; 103
Kaku (10.1016/j.biortech.2015.07.025_b0140) 2008; 79
Liengen (10.1016/j.biortech.2015.07.025_b0185) 2014
Torres (10.1016/j.biortech.2015.07.025_b0325) 2009; 43
Larrosa-Guerrero (10.1016/j.biortech.2015.07.025_b0175) 2010; 87
He (10.1016/j.biortech.2015.07.025_b0095) 2009; 2
Ieropoulos (10.1016/j.biortech.2015.07.025_b0110) 2012; 5
Harnisch (10.1016/j.biortech.2015.07.025_b0090) 2014; 8
Miceli (10.1016/j.biortech.2015.07.025_b0225) 2012; 46
Dunaj (10.1016/j.biortech.2015.07.025_b0060) 2012; 46
Ishii (10.1016/j.biortech.2015.07.025_b0130) 2013; 4
Raman (10.1016/j.biortech.2015.07.025_b0295) 2012; 100
Kim (10.1016/j.biortech.2015.07.025_b0165) 2004; 63
Zhao (10.1016/j.biortech.2015.07.025_b0365) 2009; 38
Caccavo (10.1016/j.biortech.2015.07.025_b0020) 1994; 60
Choi (10.1016/j.biortech.2015.07.025_b0040) 2014; 4
Kaur (10.1016/j.biortech.2015.07.025_b0155) 2013; 47
Lee (10.1016/j.biortech.2015.07.025_b0180) 2003; 223
Epifanio (10.1016/j.biortech.2015.07.025_b0065) 2015
Song (10.1016/j.biortech.2015.07.025_b0315) 2012; 108
Yuan (10.1016/j.biortech.2015.07.025_b0355) 2013; 3
Donovan (10.1016/j.biortech.2015.07.025_b0055) 2013; 233
Nguyen (10.1016/j.biortech.2015.07.025_b0245) 2015; 8
Lovley (10.1016/j.biortech.2015.07.025_b0200) 2013; 24
Call (10.1016/j.biortech.2015.07.025_b0030) 2011; 77
Seviour (10.1016/j.biortech.2015.07.025_b0310) 2015; 51
Rabaey (10.1016/j.biortech.2015.07.025_b0290) 2007; 1
Potter (10.1016/j.biortech.2015.07.025_b0285) 1911
Nealson (10.1016/j.biortech.2015.07.025_b0240) 1994; 48
Metcalf and Eddy (10.1016/j.biortech.2015.07.025_b0220) 2002
Wong (10.1016/j.biortech.2015.07.025_b0340) 2014; 64
Liu (10.1016/j.biortech.2015.07.025_b0190) 2008; 24
Oliveira (10.1016/j.biortech.2015.07.025_b0255) 2013; 73
Babauta (10.1016/j.biortech.2015.07.025_b0005) 2014; 111
Dominguez-Benetton (10.1016/j.biortech.2015.07.025_b0050) 2012; 41
Marsili (10.1016/j.biortech.2015.07.025_b0215) 2008; 74
Call (10.1016/j.biortech.2015.07.025_b0025) 2011; 26
Khan (10.1016/j.biortech.2015.07.025_b0160) 2013; 2
Faimali (10.1016/j.biortech.2015.07.025_b0070) 2008; 54
References_xml – volume: 79
  start-page: 43
  year: 2008
  end-page: 49
  ident: b0140
  article-title: Plant/microbe cooperation for electricity generation in a rice paddy field
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 24
  start-page: 1006
  year: 2008
  end-page: 1011
  ident: b0190
  article-title: Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure
  publication-title: Biosens. Bioelectron.
– volume: 77
  start-page: 8791
  year: 2011
  end-page: 8794
  ident: b0030
  article-title: Lactate oxidation coupled to iron or electrode reduction by
  publication-title: Appl. Environ. Microbiol.
– volume: 15
  start-page: 19699
  year: 2013
  end-page: 19707
  ident: b0035
  article-title: High current density via direct electron transfer by the halophilic anode respiring bacterium
  publication-title: Phys. Chem. Chem. Phys.
– volume: 101
  start-page: 1533
  year: 2010
  end-page: 1543
  ident: b0260
  article-title: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
  publication-title: Bioresour. Technol.
– year: 2008
  ident: b0195
  article-title: Microbial Fuel Cells
– volume: 60
  start-page: 3752
  year: 1994
  end-page: 3759
  ident: b0020
  article-title: sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism
  publication-title: Appl. Environ. Microbiol.
– volume: 223
  start-page: 185
  year: 2003
  end-page: 191
  ident: b0180
  article-title: Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses
  publication-title: FEMS Microbiol. Lett.
– volume: 46
  start-page: 10349
  year: 2012
  end-page: 10355
  ident: b0225
  article-title: Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 487
  year: 2008
  end-page: 496
  ident: b0270
  article-title: High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell
  publication-title: Microb. Biotechnol.
– volume: 1
  start-page: 9
  year: 2007
  end-page: 18
  ident: b0290
  article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities
  publication-title: ISME J.
– volume: 64
  start-page: 73
  year: 2014
  end-page: 81
  ident: b0340
  article-title: Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system
  publication-title: Water Res.
– volume: 87
  start-page: 1699
  year: 2010
  end-page: 1713
  ident: b0175
  article-title: Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities
  publication-title: Appl. Microbiol. Biotechnol.
– year: 2015
  ident: b0065
  article-title: Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from
  publication-title: Bioelectrochemistry
– volume: 47
  start-page: 1707
  year: 2012
  end-page: 1714
  ident: b0345
  article-title: Bacterial extracellular electron transfer in bioelectrochemical systems
  publication-title: Process Biochem.
– volume: 26
  start-page: 4526
  year: 2011
  end-page: 4531
  ident: b0025
  article-title: A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 758
  year: 2014
  end-page: 766
  ident: b0090
  article-title: Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production
  publication-title: ChemSusChem
– volume: 103
  start-page: 513
  year: 2009
  end-page: 523
  ident: b0265
  article-title: Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances
  publication-title: Biotechnol. Bioeng.
– volume: 52
  start-page: 7670
  year: 2007
  end-page: 7680
  ident: b0205
  article-title: The interaction of bacteria and metal surfaces
  publication-title: Electrochim. Acta
– volume: 157
  start-page: 314
  year: 2015
  end-page: 323
  ident: b0150
  article-title: Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell
  publication-title: Electrochim. Acta
– volume: 3
  year: 2013
  ident: b0355
  article-title: A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe
  publication-title: Sci. Rep.
– volume: 38
  start-page: 1926
  year: 2009
  end-page: 1939
  ident: b0365
  article-title: Techniques for the study and development of microbial fuel cells: an electrochemical perspective
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 7120
  year: 2013
  end-page: 7130
  ident: b0125
  article-title: Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells
  publication-title: Water Res.
– volume: 63
  start-page: 672
  year: 2004
  end-page: 681
  ident: b0165
  article-title: Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 48
  start-page: 1352
  year: 2014
  end-page: 1358
  ident: b0375
  article-title: Microbial community composition is unaffected by anode potential
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 215
  year: 2009
  end-page: 219
  ident: b0095
  article-title: Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 385
  year: 2013
  end-page: 390
  ident: b0200
  article-title: Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
  publication-title: Curr. Opin. Biotechnol.
– volume: 4
  year: 2014
  ident: b0040
  article-title: Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph
  publication-title: Sci. Rep.
– volume: 109
  start-page: 426
  year: 2012
  end-page: 433
  ident: b0335
  article-title: Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells
  publication-title: Biotechnol. Bioeng.
– volume: 4
  start-page: 1601
  year: 2013
  ident: b0130
  article-title: A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer
  publication-title: Nat. Commun.
– volume: 123
  start-page: 480
  year: 2012
  end-page: 487
  ident: b0320
  article-title: Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC)
  publication-title: Bioresour. Technol.
– year: 2002
  ident: b0220
  article-title: Wastewater Engineering: Treatment and Reuse
– volume: 90
  start-page: 1563
  year: 2011
  end-page: 1572
  ident: b0105
  article-title: Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 7
  start-page: e30495
  year: 2012
  ident: b0120
  article-title: Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment
  publication-title: PLoS One
– volume: 39
  start-page: 19225
  year: 2014
  end-page: 19231
  ident: b0045
  article-title: Anodic potential on dual-chambered microbial fuel cell with sulphate reducing bacteria biofilm
  publication-title: Int. J. Hydrogen Energy
– volume: 108
  start-page: 68
  year: 2012
  end-page: 75
  ident: b0315
  article-title: Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake
  publication-title: Bioresour. Technol.
– volume: 111
  start-page: 285
  year: 2014
  end-page: 294
  ident: b0005
  article-title: Mass transfer studies of
  publication-title: Biotechnol. Bioeng.
– volume: 8
  start-page: 579
  year: 2015
  end-page: 589
  ident: b0245
  article-title: A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode
  publication-title: Microb. Biotechnol.
– year: 2001
  ident: b0010
  article-title: Electrochemical Methods: Principles and Applications
– volume: 5
  start-page: 1020
  year: 2012
  end-page: 1026
  ident: b0110
  article-title: Microbial fuel cells for robotics: energy autonomy through artificial symbiosis
  publication-title: ChemSusChem
– volume: 10
  start-page: 293
  year: 2008
  end-page: 297
  ident: b0360
  article-title: The direct electrocatalysis of
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: e77443
  year: 2013
  ident: b0170
  article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells
  publication-title: PloS One
– volume: 74
  start-page: 7348
  year: 2008
  end-page: 7355
  ident: b0115
  article-title: Comparison of electrode reduction activities of
  publication-title: Appl. Environ. Microbiol.
– volume: 46
  start-page: 1914
  year: 2012
  end-page: 1922
  ident: b0060
  article-title: Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 50
  year: 2013
  end-page: 55
  ident: b0155
  article-title: Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities
  publication-title: Biosens. Bioelectron.
– volume: 120
  start-page: 45
  year: 2012
  end-page: 51
  ident: b0305
  article-title: Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 9519
  year: 2009
  end-page: 9524
  ident: b0325
  article-title: Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization
  publication-title: Environ. Sci. Technol.
– start-page: 260
  year: 1911
  end-page: 276
  ident: b0285
  article-title: Electrical effects accompanying the decomposition of organic compounds
  publication-title: Proc. R. Soc. London Ser B Containing Papers Biol. Charact.
– volume: 8
  start-page: 963
  year: 2014
  end-page: 978
  ident: b0135
  article-title: Microbial population and functional dynamics associated with surface potential and carbon metabolism
  publication-title: ISME J.
– volume: 171
  start-page: 461
  year: 2014
  end-page: 468
  ident: b0370
  article-title: Methods for understanding microbial community structures and functions in microbial fuel cells: a review
  publication-title: Bioresour. Technol.
– year: 2014
  ident: b0185
  article-title: Understanding Biocorrosion: Fundamentals and Applications
– volume: 105
  start-page: 3968
  year: 2008
  end-page: 3973
  ident: b0210
  article-title: secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 7228
  year: 2012
  end-page: 7246
  ident: b0050
  article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 311
  year: 1994
  end-page: 343
  ident: b0240
  article-title: Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation
  publication-title: Annu. Rev. Microbiol.
– volume: 51
  start-page: 3789
  year: 2015
  end-page: 3792
  ident: b0310
  article-title: Voltammetric profiling of redox-active metabolites expressed by
  publication-title: Chem. Commun.
– volume: 233
  start-page: 79
  year: 2013
  end-page: 85
  ident: b0055
  article-title: Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring
  publication-title: J. Power Sources
– volume: 102
  start-page: 278
  year: 2011
  end-page: 283
  ident: b0300
  article-title: Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 5212
  year: 2012
  end-page: 5219
  ident: b0280
  article-title: Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
  publication-title: Appl. Environ. Microbiol.
– volume: 2
  start-page: 423
  year: 2013
  end-page: 432
  ident: b0160
  article-title: Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies
  publication-title: ACS Sustainable Chem. Eng.
– volume: 100
  start-page: 100
  year: 2012
  end-page: 105
  ident: b0295
  article-title: Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances
  publication-title: Appl. Energy
– volume: 74
  start-page: 7329
  year: 2008
  end-page: 7337
  ident: b0215
  article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 49
  start-page: 290
  year: 2014
  end-page: 294
  ident: b0100
  article-title: Characterization of a new electrochemically active bacterium,
  publication-title: Process Biochem.
– volume: 54
  start-page: 148
  year: 2008
  end-page: 153
  ident: b0070
  article-title: Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater
  publication-title: Electrochim. Acta
– volume: 79
  start-page: 1200
  year: 2015
  end-page: 1206
  ident: b0075
  article-title: Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 240
  year: 1988
  ident: b0235
  article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
  publication-title: Science
– volume: 28
  start-page: 871
  year: 2010
  end-page: 881
  ident: b0250
  article-title: Sustainable wastewater treatment: how might microbial fuel cells contribute
  publication-title: Biotechnol. Adv.
– volume: 73
  start-page: 53
  year: 2013
  end-page: 64
  ident: b0255
  article-title: Overview on the developments of microbial fuel cells
  publication-title: Biochem. Eng. J.
– volume: 39
  start-page: 4222
  year: 2014
  end-page: 4233
  ident: b0330
  article-title: Metagenomic-based analysis of biofilm communities for electrohydrogenesis: from wastewater to hydrogen
  publication-title: Int. J. Hydrogen Energy
– year: 2015
  ident: b0275
  article-title: Specific and efficient electrochemical selection of
  publication-title: Bioelectrochemistry
– volume: 82
  start-page: 641
  year: 2011
  end-page: 646
  ident: b0350
  article-title: Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells
  publication-title: Colloids Surf. B Biointerfaces
– volume: 79
  start-page: 1200
  year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0075
  article-title: Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80°C
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2015.1015952
– year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0065
  article-title: Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2015.03.011
– volume: 157
  start-page: 314
  year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0150
  article-title: Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.029
– volume: 4
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0040
  article-title: Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum
  publication-title: Sci. Rep.
  doi: 10.1038/srep06961
– volume: 7
  start-page: e30495
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0120
  article-title: Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030495
– volume: 54
  start-page: 148
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0070
  article-title: Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.115
– volume: 10
  start-page: 293
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0360
  article-title: The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.12.009
– volume: 39
  start-page: 19225
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0045
  article-title: Anodic potential on dual-chambered microbial fuel cell with sulphate reducing bacteria biofilm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.236
– year: 2002
  ident: 10.1016/j.biortech.2015.07.025_b0220
– volume: 109
  start-page: 426
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0335
  article-title: Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.23351
– volume: 60
  start-page: 3752
  year: 1994
  ident: 10.1016/j.biortech.2015.07.025_b0020
  article-title: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.60.10.3752-3759.1994
– year: 2001
  ident: 10.1016/j.biortech.2015.07.025_b0010
– volume: 39
  start-page: 4222
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0330
  article-title: Metagenomic-based analysis of biofilm communities for electrohydrogenesis: from wastewater to hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.001
– volume: 77
  start-page: 8791
  year: 2011
  ident: 10.1016/j.biortech.2015.07.025_b0030
  article-title: Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06434-11
– year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0185
– volume: 24
  start-page: 385
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0200
  article-title: Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2013.02.012
– volume: 28
  start-page: 871
  year: 2010
  ident: 10.1016/j.biortech.2015.07.025_b0250
  article-title: Sustainable wastewater treatment: how might microbial fuel cells contribute
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.07.008
– volume: 1
  start-page: 487
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0270
  article-title: High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell
  publication-title: Microb. Biotechnol.
  doi: 10.1111/j.1751-7915.2008.00049.x
– volume: 49
  start-page: 290
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0100
  article-title: Characterization of a new electrochemically active bacterium, Lysinibacillus sphaericus D-8, isolated with a WO 3 nanocluster probe
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.11.008
– volume: 240
  year: 1988
  ident: 10.1016/j.biortech.2015.07.025_b0235
  article-title: Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
  publication-title: Science
  doi: 10.1126/science.240.4857.1319
– volume: 233
  start-page: 79
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0055
  article-title: Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.112
– volume: 120
  start-page: 45
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0305
  article-title: Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.131
– volume: 74
  start-page: 7348
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0115
  article-title: Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01639-08
– volume: 100
  start-page: 100
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0295
  article-title: Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.011
– volume: 51
  start-page: 3789
  year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0310
  article-title: Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08590F
– year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0195
– volume: 41
  start-page: 7228
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0050
  article-title: The accurate use of impedance analysis for the study of microbial electrochemical systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35026b
– volume: 1
  start-page: 9
  year: 2007
  ident: 10.1016/j.biortech.2015.07.025_b0290
  article-title: Microbial ecology meets electrochemistry: electricity-driven and driving communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2007.4
– volume: 47
  start-page: 7120
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0125
  article-title: Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.07.048
– start-page: 260
  year: 1911
  ident: 10.1016/j.biortech.2015.07.025_b0285
  article-title: Electrical effects accompanying the decomposition of organic compounds
  publication-title: Proc. R. Soc. London Ser B Containing Papers Biol. Charact.
  doi: 10.1098/rspb.1911.0073
– volume: 223
  start-page: 185
  year: 2003
  ident: 10.1016/j.biortech.2015.07.025_b0180
  article-title: Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00356-2
– volume: 111
  start-page: 285
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0005
  article-title: Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25105
– volume: 5
  start-page: 1020
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0110
  article-title: Microbial fuel cells for robotics: energy autonomy through artificial symbiosis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200283
– volume: 8
  start-page: e77443
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0170
  article-title: Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0077443
– volume: 105
  start-page: 3968
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0210
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710525105
– volume: 171
  start-page: 461
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0370
  article-title: Methods for understanding microbial community structures and functions in microbial fuel cells: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.096
– volume: 24
  start-page: 1006
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0190
  article-title: Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.08.001
– volume: 101
  start-page: 1533
  year: 2010
  ident: 10.1016/j.biortech.2015.07.025_b0260
  article-title: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.10.017
– volume: 26
  start-page: 4526
  year: 2011
  ident: 10.1016/j.biortech.2015.07.025_b0025
  article-title: A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.05.014
– volume: 4
  start-page: 1601
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0130
  article-title: A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2615
– volume: 78
  start-page: 5212
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0280
  article-title: Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00480-12
– volume: 103
  start-page: 513
  year: 2009
  ident: 10.1016/j.biortech.2015.07.025_b0265
  article-title: Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22267
– volume: 87
  start-page: 1699
  year: 2010
  ident: 10.1016/j.biortech.2015.07.025_b0175
  article-title: Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2624-1
– volume: 74
  start-page: 7329
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0215
  article-title: Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00177-08
– year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0275
  article-title: Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2015.02.003
– volume: 82
  start-page: 641
  year: 2011
  ident: 10.1016/j.biortech.2015.07.025_b0350
  article-title: Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2010.10.015
– volume: 2
  start-page: 423
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0160
  article-title: Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc400330r
– volume: 108
  start-page: 68
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0315
  article-title: Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.136
– volume: 48
  start-page: 1352
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0375
  article-title: Microbial community composition is unaffected by anode potential
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404690q
– volume: 46
  start-page: 1914
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0060
  article-title: Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2032532
– volume: 47
  start-page: 50
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0155
  article-title: Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.02.033
– volume: 3
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0355
  article-title: A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe
  publication-title: Sci. Rep.
  doi: 10.1038/srep01315
– volume: 90
  start-page: 1563
  year: 2011
  ident: 10.1016/j.biortech.2015.07.025_b0105
  article-title: Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3226-2
– volume: 2
  start-page: 215
  year: 2009
  ident: 10.1016/j.biortech.2015.07.025_b0095
  article-title: Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B814914C
– volume: 64
  start-page: 73
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0340
  article-title: Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.06.046
– volume: 46
  start-page: 10349
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0225
  article-title: Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301902h
– volume: 38
  start-page: 1926
  year: 2009
  ident: 10.1016/j.biortech.2015.07.025_b0365
  article-title: Techniques for the study and development of microbial fuel cells: an electrochemical perspective
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819866g
– volume: 48
  start-page: 311
  year: 1994
  ident: 10.1016/j.biortech.2015.07.025_b0240
  article-title: Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.48.100194.001523
– volume: 79
  start-page: 43
  year: 2008
  ident: 10.1016/j.biortech.2015.07.025_b0140
  article-title: Plant/microbe cooperation for electricity generation in a rice paddy field
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1410-9
– volume: 15
  start-page: 19699
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0035
  article-title: High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54045f
– volume: 8
  start-page: 963
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0135
  article-title: Microbial population and functional dynamics associated with surface potential and carbon metabolism
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.217
– volume: 52
  start-page: 7670
  year: 2007
  ident: 10.1016/j.biortech.2015.07.025_b0205
  article-title: The interaction of bacteria and metal surfaces
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.05.006
– volume: 102
  start-page: 278
  year: 2011
  ident: 10.1016/j.biortech.2015.07.025_b0300
  article-title: Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.05.012
– volume: 123
  start-page: 480
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0320
  article-title: Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.07.049
– volume: 47
  start-page: 1707
  year: 2012
  ident: 10.1016/j.biortech.2015.07.025_b0345
  article-title: Bacterial extracellular electron transfer in bioelectrochemical systems
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.07.032
– volume: 63
  start-page: 672
  year: 2004
  ident: 10.1016/j.biortech.2015.07.025_b0165
  article-title: Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-003-1412-6
– volume: 73
  start-page: 53
  year: 2013
  ident: 10.1016/j.biortech.2015.07.025_b0255
  article-title: Overview on the developments of microbial fuel cells
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2013.01.012
– volume: 43
  start-page: 9519
  year: 2009
  ident: 10.1016/j.biortech.2015.07.025_b0325
  article-title: Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902165y
– volume: 8
  start-page: 758
  year: 2014
  ident: 10.1016/j.biortech.2015.07.025_b0090
  article-title: Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402736
– volume: 8
  start-page: 579
  year: 2015
  ident: 10.1016/j.biortech.2015.07.025_b0245
  article-title: A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12267
SSID ssj0003172
Score 2.4543707
SecondaryResourceType review_article
Snippet •Current methods for EAM enrichment have uncovered only a small part of EAM diversity.•Potentiostat-controlled electrochemical cells provide higher...
Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 273
SubjectTerms Bacteria - metabolism
Bioelectric Energy Sources - microbiology
biogeochemistry
Bioreactors - microbiology
bioremediation
catalytic activity
Culture Media
Electrochemically-active bacteria
electrochemistry
Electrochemistry - methods
Enrichment
Geobacter
inoculum
metagenomics
Microbial fuel cells
Sediments
Shewanella
Waste Water - microbiology
Title Methods for enrichment of novel electrochemically-active microorganisms
URI https://dx.doi.org/10.1016/j.biortech.2015.07.025
https://www.ncbi.nlm.nih.gov/pubmed/26189782
https://www.proquest.com/docview/1704346902
https://www.proquest.com/docview/1846338764
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxQxDLWqcgAOCMpHF2g1SFzTnZkkk5njakW7BbUXqNRblEkd2Go7W3W3SFz47diZTCkStAeOO5tIkW352YntB_C-IdTCHBsRCJ6FCq4RdXBSBJQENq458y1f6B8dV7MT9fFUn27AdOiF4bLK5Pt7nx69dfoyTtIcX87n488cfNeaESg2I3CjuVKGrXzv5-8yD8LH-JJAiwWvvtUlfL7XzrmiNT5KFDoO8WTK7L8D1L8C0AhE-0_hSYogs0l_yGewgd0WPJ58vUpTNHALHk4HGjf659bEwedwcBQZo1cZxaoZmc7cf-PrwWwZsm75HRdZosXxaY7A4odw0SNmF1y513NArS5WL-Bk_8OX6UwkLgXhtTRrga7JsQ1NhRpLL5nFjx_MzrxElK7Ma9ShLlxjQh4MqY2yIK-DKlBXqsKg5EvY7JYdbkMWCleaXHuPlGq50LamakusiqCdlBLlCPQgQOvToHHmu1jYoaLs3A6Ctyx4mxtLgh_B-GbfZT9q494dzaAf-4fRWMKDe_e-GxRqSSP8TOI6XF6vbGFyJfnWoLxjDYVtlNybSo3gVW8NN2emnLQmeyxf_8fp3sAj_tU3Pb6FzfXVNe5Q9LNud6N578KDyeGn2fEv1i4Feg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPQCHqqXQbl8EqVezSRzncUSr0m3LcgEkbpZjxu2ulixiFyQu_PbOOA4FCcqh19iWrJnJPDyPD-BLRVYLY6yEI_MsMmcqUTojhUNJxsZUZ7bmB_3RYT48yX6cqtMlGHS9MFxWGXR_q9O9tg5f-oGa_YvxuH_Eznep2AL5ZgS1DC8y-n0ZxmD39m-dBxlIn0qg3YK332sTnuzWYy5p9VmJRPkpnoyZ_biFesoD9ZZo_xW8DC5ktNfe8jUsYbMB63u_LsMYDdyA1UGH40Yr90YOvoFvIw8ZPY_IWY1Idsb2N78PRjMXNbNrnEYBF8eGQQLTG2G8SozOuXSvBYGan8834WT_6_FgKAKYgrBKFguBpoqxdlWOClMrGcaPM2ZnViJKk8YlKlcmpipc7AriG4VBVrksQZVnObpMbsFKM2vwHUQuMWkRK2uRYi3j6rrI6xTzxCkjpUTZA9URUNswaZwBL6a6Kymb6I7wmgmv40IT4XvQvzt30c7aePZE1fFHP5AaTQbh2bM7HUM1cYTzJKbB2dVcJ0WcSX42SP-xh_w2iu6LPOvB21Ya7u5MQWlJApm-_4_bbcPq8Hh0oA--H_78AGu80nZAfoSVxeUVfiJXaFF_9qL-B7k8Bwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+enrichment+of+novel+electrochemically-active+microorganisms&rft.jtitle=Bioresource+technology&rft.au=Doyle%2C+Lucinda+Elizabeth&rft.au=Marsili%2C+Enrico&rft.date=2015-11-01&rft.issn=0960-8524&rft.volume=195+p.273-282&rft.spage=273&rft.epage=282&rft_id=info:doi/10.1016%2Fj.biortech.2015.07.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon