Regulation of Alternative Splicing by Reversible Protein Phosphorylation
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological prope...
Saved in:
Published in | The Journal of biological chemistry Vol. 283; no. 3; pp. 1223 - 1227 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
18.01.2008
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a “splicing” or “messenger ribonucleoprotein code” that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites. |
---|---|
AbstractList | The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites. The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a âsplicingâ or âmessenger ribonucleoprotein codeâ that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites. The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites. |
Author | Stamm, Stefan |
Author_xml | – sequence: 1 givenname: Stefan surname: Stamm fullname: Stamm, Stefan email: stefan@stamms-lab.net organization: Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0509 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18024427$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHDEYhkOx1F3t1aMMHnqb7ZcfM8kcRWwtCMqq0FvIZL7ZicxO1mR2y_73jR3bgiCewgfP8xLed04OBj8gIScUFhSk-PpY28VSAgAXDOADmVFQPOcF_XlAZgCM5hUr1CGZx_iYKBAV_UQOqQImBJMzcrXE1bY3o_ND5tvsvB8xDOncYXa36Z11wyqr99kSdxiiq3vMboMf0Q3ZbefjpvNhP9nH5GNr-oifX94j8vDt8v7iKr---f7j4vw6twWXY47MIjOAjSir0giJWNiWlwJbUTNpmrqklWiUKduqorJSnFqFrG4FCoOqRH5Evky5m-CfthhHvXbRYt-bAf02agm0UiyV8B4oZEEZh_JdkEGRMMUTePoCbus1NnoT3NqEvf7bZgLEBNjgYwzYauvGP-2MwbheU9DPo-k0mv4_WtIWr7R_yW8JZ5PQuVX3ywXUtfO2w7VmimuuKWPPv1UThGmNncOgo3U4WGySYEfdePdW_m82Z7cK |
CitedBy_id | crossref_primary_10_1016_j_molmed_2012_06_006 crossref_primary_10_1016_j_ceb_2009_02_006 crossref_primary_10_4161_23723548_2014_970955 crossref_primary_10_1186_1476_4598_9_189 crossref_primary_10_1128_MCB_06327_11 crossref_primary_10_1093_nar_gkac1048 crossref_primary_10_1016_j_molcel_2010_08_011 crossref_primary_10_1091_mbc_E17_07_0442 crossref_primary_10_3390_ijms151017541 crossref_primary_10_1038_nsmb_3057 crossref_primary_10_3390_ijms140816168 crossref_primary_10_1111_tpj_14861 crossref_primary_10_1371_journal_pone_0059137 crossref_primary_10_1158_0008_5472_CAN_10_1037 crossref_primary_10_1016_j_bbamcr_2008_12_006 crossref_primary_10_1074_jbc_M110_119255 crossref_primary_10_1093_hmg_ddp317 crossref_primary_10_1074_jbc_M901026200 crossref_primary_10_1186_1471_2164_15_364 crossref_primary_10_1016_j_joca_2010_10_008 crossref_primary_10_3390_ijms22137011 crossref_primary_10_1111_nph_17175 crossref_primary_10_1016_j_celrep_2019_09_078 crossref_primary_10_1016_j_mce_2009_05_012 crossref_primary_10_1016_j_gene_2010_04_008 crossref_primary_10_1074_jbc_M115_710350 crossref_primary_10_4161_rna_8_6_17606 crossref_primary_10_1016_j_tplants_2017_09_019 crossref_primary_10_1007_s12672_024_01149_z crossref_primary_10_1534_genetics_118_301515 crossref_primary_10_1002_jcb_22181 crossref_primary_10_1261_rna_041376_113 crossref_primary_10_1007_s00439_017_1835_2 crossref_primary_10_1186_s12977_022_00605_4 crossref_primary_10_1371_journal_pone_0011067 crossref_primary_10_1038_msb_2013_25 crossref_primary_10_1261_rna_080198_124 crossref_primary_10_1073_pnas_1214394109 crossref_primary_10_1093_nar_gky095 crossref_primary_10_1371_journal_pone_0035972 crossref_primary_10_1002_jcp_25237 crossref_primary_10_1002_mnfr_201100670 crossref_primary_10_1158_1078_0432_CCR_20_0184 crossref_primary_10_1073_pnas_1018805108 crossref_primary_10_1080_07352689_2020_1770942 crossref_primary_10_1038_s41467_021_25202_5 crossref_primary_10_1074_jbc_M117_784371 crossref_primary_10_1016_j_bbrc_2014_02_060 crossref_primary_10_3389_fendo_2021_613213 crossref_primary_10_3390_ncrna7010019 crossref_primary_10_1016_j_jbc_2023_103041 crossref_primary_10_1161_CIRCRESAHA_108_183905 crossref_primary_10_1016_j_bbalip_2014_08_017 crossref_primary_10_1016_j_bbadis_2018_01_004 crossref_primary_10_1080_14728222_2023_2185511 crossref_primary_10_1186_s12953_014_0056_z crossref_primary_10_1371_journal_pone_0061980 crossref_primary_10_1093_nar_gkt170 crossref_primary_10_3892_ijo_2023_5604 crossref_primary_10_1002_wrna_1501 crossref_primary_10_1016_j_nbd_2010_06_011 crossref_primary_10_1097_FPC_0b013e328336ef1c crossref_primary_10_7243_2052_4358_1_8 crossref_primary_10_1073_pnas_1116712108 crossref_primary_10_3390_ncrna7010021 crossref_primary_10_3390_ijms252011175 crossref_primary_10_1007_s00294_017_0802_8 crossref_primary_10_1593_neo_08644 crossref_primary_10_1002_path_2649 crossref_primary_10_1038_emboj_2010_333 crossref_primary_10_1083_jcb_201007131 crossref_primary_10_1093_jxb_erad433 crossref_primary_10_1016_j_bbcan_2021_188612 crossref_primary_10_1111_j_1742_4658_2009_06894_x crossref_primary_10_1111_nph_19699 crossref_primary_10_1016_j_molcel_2022_03_024 crossref_primary_10_5483_BMBRep_2009_42_3_125 crossref_primary_10_3390_life13030604 crossref_primary_10_3109_03602530903210682 crossref_primary_10_1101_gad_1837009 crossref_primary_10_1016_j_gde_2010_06_001 crossref_primary_10_1093_nar_gkt1307 crossref_primary_10_3389_fonc_2022_989483 crossref_primary_10_1007_s00018_019_03120_6 crossref_primary_10_1016_j_str_2012_10_020 crossref_primary_10_1158_1541_7786_MCR_12_0213 crossref_primary_10_1242_dev_199448 crossref_primary_10_1016_j_molcel_2016_05_034 crossref_primary_10_1111_nph_19339 crossref_primary_10_1002_iub_1075 crossref_primary_10_1016_j_gene_2022_147056 crossref_primary_10_1002_bies_201800166 crossref_primary_10_1007_s00018_013_1390_5 crossref_primary_10_1093_nar_gks504 crossref_primary_10_1016_j_canlet_2017_03_013 crossref_primary_10_1111_ppl_14280 crossref_primary_10_1042_BST0360483 crossref_primary_10_1074_jbc_M110_183970 crossref_primary_10_1093_iob_obaa033 crossref_primary_10_1016_j_gene_2012_07_083 crossref_primary_10_1186_s12867_015_0044_6 crossref_primary_10_3390_v14010060 crossref_primary_10_17795_zjrms_6663 crossref_primary_10_3390_genes14030599 crossref_primary_10_1002_pmic_201000793 crossref_primary_10_2478_v10042_009_0068_1 crossref_primary_10_1016_j_tox_2012_01_014 crossref_primary_10_1111_febs_16057 crossref_primary_10_1093_nar_gkr1289 crossref_primary_10_1371_journal_pone_0167509 crossref_primary_10_3389_fgene_2022_902718 crossref_primary_10_1038_emboj_2010_199 crossref_primary_10_1016_j_plasmid_2015_07_004 crossref_primary_10_1074_jbc_R700033200 crossref_primary_10_1074_jbc_M112_410803 crossref_primary_10_1186_s12870_021_03377_9 crossref_primary_10_1253_circj_CJ_99_0225 crossref_primary_10_1074_jbc_M110_162644 crossref_primary_10_1016_j_ymeth_2017_06_007 crossref_primary_10_1152_ajpcell_00400_2011 crossref_primary_10_1038_nsmb_1485 crossref_primary_10_2353_ajpath_2009_081135 crossref_primary_10_1016_j_virol_2008_07_028 crossref_primary_10_1093_dnares_dst038 crossref_primary_10_1038_nrc_2016_51 crossref_primary_10_1074_jbc_M709495200 crossref_primary_10_1016_j_cell_2010_09_014 crossref_primary_10_1074_jbc_M109_083139 crossref_primary_10_1210_me_2009_0165 crossref_primary_10_2217_hep_13_17 crossref_primary_10_7554_eLife_96048 crossref_primary_10_1002_wrna_1823 crossref_primary_10_1016_j_bbadis_2008_09_017 crossref_primary_10_1016_j_biocel_2017_06_002 crossref_primary_10_1155_2012_950508 crossref_primary_10_1371_journal_pone_0105732 crossref_primary_10_1038_cddis_2013_291 crossref_primary_10_1016_j_bbagen_2012_06_004 crossref_primary_10_1016_j_ibmb_2019_03_008 crossref_primary_10_1038_nature20789 crossref_primary_10_1016_j_bbagrm_2010_01_003 crossref_primary_10_1016_j_bbamcr_2021_119142 crossref_primary_10_1039_c002828b crossref_primary_10_1093_bfgp_elr020 crossref_primary_10_1016_j_canlet_2024_217085 crossref_primary_10_1074_jbc_R700046200 crossref_primary_10_1002_jcp_25246 crossref_primary_10_1016_j_bcp_2011_12_041 crossref_primary_10_1016_j_molcel_2009_01_025 crossref_primary_10_1089_ars_2017_7163 crossref_primary_10_1261_rna_1230209 crossref_primary_10_1155_2013_568931 crossref_primary_10_1016_j_neulet_2017_09_059 crossref_primary_10_1016_j_bj_2019_05_007 crossref_primary_10_1091_mbc_e12_03_0206 crossref_primary_10_1186_s13046_020_01798_2 crossref_primary_10_1016_j_neulet_2018_06_051 crossref_primary_10_1074_jbc_M900393200 crossref_primary_10_1074_jbc_R700035200 crossref_primary_10_1007_s11899_016_0344_z crossref_primary_10_1002_jcp_30311 crossref_primary_10_1016_j_braindev_2016_03_003 crossref_primary_10_1016_j_tplants_2012_06_001 crossref_primary_10_1016_j_chembiol_2010_11_009 crossref_primary_10_1158_2159_8290_CD_19_1436 crossref_primary_10_1021_cb500860x crossref_primary_10_1126_scisignal_aaa2104 crossref_primary_10_1152_physiol_00014_2012 crossref_primary_10_1371_journal_pcbi_1002603 crossref_primary_10_1021_acs_jproteome_7b00126 crossref_primary_10_1038_s41467_020_20481_w crossref_primary_10_1074_jbc_M805468200 crossref_primary_10_3390_ijms23126493 crossref_primary_10_4161_rna_8_6_16691 crossref_primary_10_1002_1873_3468_14723 crossref_primary_10_1261_rna_032912_112 crossref_primary_10_1371_journal_pgen_1002717 |
Cites_doi | 10.1016/j.molcel.2006.07.022 10.1016/j.chembiol.2005.10.009 10.1038/nsmb0106-5 10.1093/nar/20.20.5263 10.1016/j.molcel.2005.02.020 10.1016/j.biocel.2007.04.004 10.1091/mbc.e02-07-0376 10.1083/jcb.143.2.297 10.1074/jbc.C600198200 10.1016/S1097-2765(03)00270-3 10.1016/S1097-2765(03)00434-9 10.1523/JNEUROSCI.22-14-05889.2002 10.1126/science.1111443 10.1038/nature05304 10.1210/en.2006-0750 10.1101/gad.1422106 10.1074/jbc.M505802200 10.1073/pnas.0604616103 10.1101/gad.1382806 10.1073/pnas.1635129100 10.1074/jbc.M411485200 10.1038/363283a0 10.1016/j.yexcr.2007.05.014 10.1101/gr.2094104 10.1128/MCB.00224-06 10.1091/mbc.10.11.3909 10.1016/j.abb.2007.07.017 10.1038/nsmb961 10.1016/0014-5793(94)00973-2 10.1016/S1367-5931(02)00320-4 10.1210/rp.56.1.157 10.1073/pnas.0507827102 10.1101/gad.11.3.334 10.1093/hmg/ddh167 10.1046/j.1460-9568.1999.00486.x 10.1074/jbc.M314298200 10.1074/jbc.M311512200 10.1093/nar/21.18.4210 10.1038/nrm1467 10.1073/pnas.0403533101 10.1093/hmg/11.20.2409 10.1038/nsmb1020 10.1016/0092-8674(84)90049-7 10.1186/gb-2003-4-5-111 10.1083/jcb.149.2.307 10.1074/jbc.M211714200 10.1006/mcne.2001.1000 10.1371/journal.pgen.0030204 10.1038/nsmb1257 10.1042/BST0330443 10.1101/gad.13.1.87 10.1038/nature02288 10.1073/pnas.0604970103 10.1126/science.1090100 10.1152/physrev.00013.2003 10.1038/nrm760 10.1074/jbc.275.11.7950 10.1091/mbc.7.10.1559 10.1186/gb-2004-5-2-r8 10.1073/pnas.0409889102 10.1074/jbc.273.51.34341 10.1074/jbc.M200847200 10.1016/j.gene.2004.10.022 10.1074/jbc.M112010200 10.1083/jcb.200508154 |
ContentType | Journal Article |
Copyright | 2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
Copyright_xml | – notice: 2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 7X8 |
DOI | 10.1074/jbc.R700034200 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 1227 |
ExternalDocumentID | 18024427 10_1074_jbc_R700034200 283_3_1223 S0021925820696132 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -ET -~X .55 0SF 186 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFFNX AFMIJ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B MVM N9A OHT OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VQA W8F WH7 WHG WOQ X7M XFK XSW Y6R YQT YSK YWH YZZ ZA5 ZE2 ~02 ~KM - 02 55 AAWZA ABFLS ABPTK ABUFD ABZEH ADACO ADCOW AEILP AIZTS DL DZ ET FH7 H13 KM LI LI0 MYA O0- X XHC .7T .GJ 0R~ 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP CITATION E.L FA8 J5H NHB QZG VH1 XJT YYP ZGI ZY4 CGR CUY CVF ECM EIF NPM PKN Z5M 7TM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c537t-e2ce2a0ed4696a47ee5cf364ef4b27adb6194d8a6f99179831c8e2bf4e4ae86e3 |
ISSN | 0021-9258 |
IngestDate | Thu Jul 10 22:09:33 EDT 2025 Fri Jul 11 09:43:57 EDT 2025 Fri Jul 11 11:03:37 EDT 2025 Wed Feb 19 02:29:15 EST 2025 Tue Jul 01 02:13:27 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Tue Jan 05 14:52:02 EST 2021 Fri Feb 23 02:46:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c537t-e2ce2a0ed4696a47ee5cf364ef4b27adb6194d8a6f99179831c8e2bf4e4ae86e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.R700034200 |
PMID | 18024427 |
PQID | 20530683 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_70198208 proquest_miscellaneous_47512306 proquest_miscellaneous_20530683 pubmed_primary_18024427 crossref_citationtrail_10_1074_jbc_R700034200 crossref_primary_10_1074_jbc_R700034200 highwire_biochem_283_3_1223 elsevier_sciencedirect_doi_10_1074_jbc_R700034200 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-18 |
PublicationDateYYYYMMDD | 2008-01-18 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2008 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Cao, Jamison, Garcia-Blanco (bib55) 1997; 3 Beullens, Bollen (bib61) 2002; 277 Muraki, Ohkawara, Hosoya, Onogi, Koizumi, Koizumi, Sumi, Yomoda, Murray, Kimura, Furuichi, Shibuya, Krainer, Suzuki, Hagiwara (bib26) 2004; 279 Daoud, da Penha Berzaghi, Siedler, Hübener, Stamm (bib23) 1999; 11 Patel, Kaneko, Apostolatos, Bae, Watson, Davidowitz, Chappell, Birnbaum, Cheng, Cooper (bib49) 2005; 280 Moore (bib6) 2005; 309 Jurica, Moore (bib11) 2003; 12 Kanadia, Shin, Yuan, Beattie, Wheeler, Thornton, Swanson (bib68) 2006; 103 Hanks (bib53) 2003; 4 Ceulemans, Bollen (bib54) 2004; 84 Izquierdo, Valcárcel (bib35) 2007; 282 Hiller, Zhang, Backofen, Stamm (bib7) 2007; 3 Krainer, Maniatis, Ruskin, Green (bib28) 1984; 36 Nayler, Schnorrer, Stamm, Ullrich (bib43) 1998; 273 Hartmann, Rujescu, Giannakouros, Nikolakaki, Goedert, Mandelkow, Gao, Andreadis, Stamm (bib24) 2001; 18 Brady, Saltiel (bib65) 2001; 56 Soret, Gabut, Dupon, Kohlhagen, Stevenin, Pommier, Tazi (bib52) 2003; 63 Cardinali, Cohen, Lamond (bib57) 1994; 352 Kornblihtt (bib15) 2006; 13 Hernandez, Perez, Lucas, Mata, Bhat, Avila (bib48) 2004; 279 Pan, Saltzman, Kim, Misquitta, Shai, Maquat, Frey, Blencowe (bib5) 2006; 20 Sanford, Ellis, Cazalla, Caceres (bib37) 2005; 102 Ule, Stefani, Mele, Ruggiu, Wang, Taneri, Gaasterland, Blencowe, Darnell (bib12) 2006; 444 Misteli, Caceres, Clement, Krainer, Wilkinson, Spector (bib47) 1998; 143 Yun, Velazquez-Dones, Lyman, Fu (bib42) 2003; 278 Murray, Kobayashi, Krainer (bib66) 1999; 13 Lukong, Larocque, Tyner, Richard (bib39) 2005; 280 Ghosh, Patel, Jiang, Watson, Cheng, Chalfant, Cooper (bib58) 2007; 148 Xiao, Manley (bib32) 1997; 11 Lai, Lin, Huang, Tsai, Tarn (bib46) 2000; 275 Mermoud, Cohen, Lamond (bib27) 1992; 20 Huang, Steitz (bib36) 2005; 17 Sanford, Ellis, Caceres (bib30) 2005; 33 Trinkle-Mulcahy, Andersen, Lam, Moorhead, Mann, Lamond (bib63) 2006; 172 Soulard, Della Valle, Siomi, Pinol-Roma, Codogno, Bauvy, Bellini, Lacroix, Monod, Dreyfuss, Larsen (bib16) 1993; 21 Fukuhara, Hosoya, Shimizu, Sumi, Oshiro, Yoshinaka, Suzuki, Yamamoto, Herzenberg, Hagiwara (bib69) 2006; 103 Blaustein, Pelisch, Tanos, Munoz, Wengier, Quadrana, Sanford, Muschietti, Kornblihtt, Caceres, Coso, Srebrow (bib50) 2005; 12 Tazi, Kornstädt, Rossi, Jeanteur, Cathala, Brunel, Lührmann (bib29) 1993; 363 Johnson, Castle, Garrett-Engele, Kan, Loerch, Armour, Santos, Schadt, Stoughton, Shoemaker (bib2) 2003; 302 Shin, Manley (bib21) 2004; 5 Stamm (bib14) 2002; 11 Kampa, Cheng, Kapranov, Yamanaka, Brubaker, Cawley, Drenkow, Piccolboni, Bekiranov, Helt, Tammana, Gingeras (bib1) 2004; 14 (bib67) 2006; 44 Singh, Valcárcel (bib8) 2005; 12 Hanamura, Caceres, Mayeda, Franza, Krainer (bib9) 1998; 4 Hillman, Green, Brenner (bib4) 2004; 5 Shi, Reddy, Manley (bib56) 2006; 23 van der Houven van Oordt, Diaz-Meco, Lozano, Krainer, Moscat, Caceres (bib20) 2000; 149 Meiselbach, Sticht, Enz (bib60) 2006; 13 Aubol, Chakrabarti, Ngo, Shaffer, Nolen, Fu, Ghosh, Adams (bib45) 2003; 100 Daoud, Mies, Smialowska, Oláh, Hossmann, Stamm (bib41) 2002; 22 Shen, Green (bib31) 2006; 20 Kvissel, Orstavik, Eikvar, Brede, Jahnsen, Collas, Akusjarvi, Skalhegg (bib51) 2007; 313 Rothrock, Cannon, Hahm, Lynch (bib18) 2003; 12 Allemand, Guil, Myers, Moscat, Caceres, Krainer (bib38) 2005; 102 Rafalska, Zhang, Benderska, Wolff, Hartmann, Brack-Werner, Stamm (bib44) 2004; 13 Misteli, Spector (bib64) 1996; 7 Stamm, Ben-Ari, Rafalska, Tang, Zhang, Toiber, Thanaraj, Soreq (bib3) 2005; 344C Allemand, Hastings, Murray, Myers, Krainer (bib25) 2007; 14 Dreyfuss, Kim, Kataoka (bib34) 2002; 3 Guil, Long, Caceres (bib40) 2006; 26 Chalfant, Rathman, Pinkerman, Wood, Obeid, Ogretmen, Hannun (bib59) 2002; 277 Huang, Yario, Steitz (bib33) 2004; 101 Blaustein, Pelisch, Srebrow (bib22) 2007; 39 Trinkle-Mulcahy, Andrews, Wickramasinghe, Sleeman, Prescott, Lam, Lyon, Swedlow, Lamond (bib62) 2003; 14 Roberts, Smith (bib10) 2002; 6 Rho, Choi, Jung, Im (bib17) 2007; 466 Shin, Feng, Manley (bib19) 2004; 427 Hartmann, Nayler, Schwaiger, Obermeier, Stamm (bib13) 1999; 10 Dreyfuss (10.1074/jbc.R700034200_bib34) 2002; 3 Moore (10.1074/jbc.R700034200_bib6) 2005; 309 Kampa (10.1074/jbc.R700034200_bib1) 2004; 14 Daoud (10.1074/jbc.R700034200_bib23) 1999; 11 Rafalska (10.1074/jbc.R700034200_bib44) 2004; 13 Beullens (10.1074/jbc.R700034200_bib61) 2002; 277 Kornblihtt (10.1074/jbc.R700034200_bib15) 2006; 13 Kanadia (10.1074/jbc.R700034200_bib68) 2006; 103 Xiao (10.1074/jbc.R700034200_bib32) 1997; 11 Cardinali (10.1074/jbc.R700034200_bib57) 1994; 352 Misteli (10.1074/jbc.R700034200_bib64) 1996; 7 Muraki (10.1074/jbc.R700034200_bib26) 2004; 279 Soulard (10.1074/jbc.R700034200_bib16) 1993; 21 Shi (10.1074/jbc.R700034200_bib56) 2006; 23 Murray (10.1074/jbc.R700034200_bib66) 1999; 13 (10.1074/jbc.R700034200_bib67) 2006; 44 Soret (10.1074/jbc.R700034200_bib52) 2003; 63 Hanamura (10.1074/jbc.R700034200_bib9) 1998; 4 Trinkle-Mulcahy (10.1074/jbc.R700034200_bib62) 2003; 14 Roberts (10.1074/jbc.R700034200_bib10) 2002; 6 Hartmann (10.1074/jbc.R700034200_bib24) 2001; 18 Kvissel (10.1074/jbc.R700034200_bib51) 2007; 313 Sanford (10.1074/jbc.R700034200_bib30) 2005; 33 Tazi (10.1074/jbc.R700034200_bib29) 1993; 363 Hanks (10.1074/jbc.R700034200_bib53) 2003; 4 Shin (10.1074/jbc.R700034200_bib21) 2004; 5 Lai (10.1074/jbc.R700034200_bib46) 2000; 275 Aubol (10.1074/jbc.R700034200_bib45) 2003; 100 Pan (10.1074/jbc.R700034200_bib5) 2006; 20 Misteli (10.1074/jbc.R700034200_bib47) 1998; 143 Huang (10.1074/jbc.R700034200_bib33) 2004; 101 Sanford (10.1074/jbc.R700034200_bib37) 2005; 102 Blaustein (10.1074/jbc.R700034200_bib22) 2007; 39 Huang (10.1074/jbc.R700034200_bib36) 2005; 17 Meiselbach (10.1074/jbc.R700034200_bib60) 2006; 13 Rothrock (10.1074/jbc.R700034200_bib18) 2003; 12 Blaustein (10.1074/jbc.R700034200_bib50) 2005; 12 van der Houven van Oordt (10.1074/jbc.R700034200_bib20) 2000; 149 Allemand (10.1074/jbc.R700034200_bib25) 2007; 14 Cao (10.1074/jbc.R700034200_bib55) 1997; 3 Singh (10.1074/jbc.R700034200_bib8) 2005; 12 Izquierdo (10.1074/jbc.R700034200_bib35) 2007; 282 Chalfant (10.1074/jbc.R700034200_bib59) 2002; 277 Patel (10.1074/jbc.R700034200_bib49) 2005; 280 Hiller (10.1074/jbc.R700034200_bib7) 2007; 3 Ghosh (10.1074/jbc.R700034200_bib58) 2007; 148 Ule (10.1074/jbc.R700034200_bib12) 2006; 444 Guil (10.1074/jbc.R700034200_bib40) 2006; 26 Rho (10.1074/jbc.R700034200_bib17) 2007; 466 Jurica (10.1074/jbc.R700034200_bib11) 2003; 12 Fukuhara (10.1074/jbc.R700034200_bib69) 2006; 103 Hernandez (10.1074/jbc.R700034200_bib48) 2004; 279 Trinkle-Mulcahy (10.1074/jbc.R700034200_bib63) 2006; 172 Stamm (10.1074/jbc.R700034200_bib3) 2005; 344C Nayler (10.1074/jbc.R700034200_bib43) 1998; 273 Ceulemans (10.1074/jbc.R700034200_bib54) 2004; 84 Yun (10.1074/jbc.R700034200_bib42) 2003; 278 Shen (10.1074/jbc.R700034200_bib31) 2006; 20 Brady (10.1074/jbc.R700034200_bib65) 2001; 56 Stamm (10.1074/jbc.R700034200_bib14) 2002; 11 Daoud (10.1074/jbc.R700034200_bib41) 2002; 22 Shin (10.1074/jbc.R700034200_bib19) 2004; 427 Allemand (10.1074/jbc.R700034200_bib38) 2005; 102 Krainer (10.1074/jbc.R700034200_bib28) 1984; 36 Johnson (10.1074/jbc.R700034200_bib2) 2003; 302 Mermoud (10.1074/jbc.R700034200_bib27) 1992; 20 Hartmann (10.1074/jbc.R700034200_bib13) 1999; 10 Hillman (10.1074/jbc.R700034200_bib4) 2004; 5 Lukong (10.1074/jbc.R700034200_bib39) 2005; 280 |
References_xml | – volume: 279 start-page: 24246 year: 2004 end-page: 24254 ident: bib26 publication-title: J. Biol. Chem. – volume: 12 start-page: 645 year: 2005 end-page: 653 ident: bib8 publication-title: Nat. Struct. Mol. Biol. – volume: 14 start-page: 331 year: 2004 end-page: 342 ident: bib1 publication-title: Genome Res. – volume: 148 start-page: 1359 year: 2007 end-page: 1366 ident: bib58 publication-title: Endocrinology – volume: 5 start-page: R8 year: 2004 ident: bib4 publication-title: Genome Biol. – volume: 6 start-page: 375 year: 2002 end-page: 383 ident: bib10 publication-title: Curr. Opin. Chem. Biol. – volume: 11 start-page: 2409 year: 2002 end-page: 2416 ident: bib14 publication-title: Hum. Mol. Genet. – volume: 7 start-page: 1559 year: 1996 end-page: 1572 ident: bib64 publication-title: Mol. Biol. Cell – volume: 280 start-page: 38639 year: 2005 end-page: 38647 ident: bib39 publication-title: J. Biol. Chem. – volume: 36 start-page: 993 year: 1984 end-page: 1005 ident: bib28 publication-title: Cell – volume: 12 start-page: 1037 year: 2005 end-page: 1044 ident: bib50 publication-title: Nat. Struct. Mol. Biol. – volume: 101 start-page: 9666 year: 2004 end-page: 9670 ident: bib33 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 100 start-page: 12601 year: 2003 end-page: 12606 ident: bib45 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 4210 year: 1993 end-page: 4217 ident: bib16 publication-title: Nucleic Acids Res. – volume: 149 start-page: 307 year: 2000 end-page: 316 ident: bib20 publication-title: J. Cell Biol. – volume: 4 start-page: 111 year: 2003 ident: bib53 publication-title: Genome Biol. – volume: 13 start-page: 5 year: 2006 end-page: 7 ident: bib15 publication-title: Nat. Struct. Mol. Biol. – volume: 103 start-page: 11329 year: 2006 end-page: 11333 ident: bib69 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 195 year: 2002 end-page: 205 ident: bib34 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 56 start-page: 157 year: 2001 end-page: 173 ident: bib65 publication-title: Recent Prog. Horm. Res. – volume: 3 start-page: 1456 year: 1997 end-page: 1467 ident: bib55 publication-title: RNA (Cold Spring Harbor) – volume: 444 start-page: 580 year: 2006 end-page: 586 ident: bib12 publication-title: Nature – volume: 103 start-page: 11748 year: 2006 end-page: 11753 ident: bib68 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 1755 year: 2006 end-page: 1765 ident: bib31 publication-title: Genes Dev. – volume: 277 start-page: 12587 year: 2002 end-page: 12595 ident: bib59 publication-title: J. Biol. Chem. – volume: 3 start-page: 2147 year: 2007 end-page: 2155 ident: bib7 publication-title: PLOS Genet. – volume: 302 start-page: 2141 year: 2003 end-page: 2144 ident: bib2 publication-title: Science – volume: 275 start-page: 7950 year: 2000 end-page: 7957 ident: bib46 publication-title: J. Biol. Chem. – volume: 63 start-page: 8203 year: 2003 end-page: 8211 ident: bib52 publication-title: Cancer Res. – volume: 344C start-page: 1 year: 2005 end-page: 20 ident: bib3 publication-title: Gene (Amst.) – volume: 309 start-page: 1514 year: 2005 end-page: 1518 ident: bib6 publication-title: Science – volume: 84 start-page: 1 year: 2004 end-page: 39 ident: bib54 publication-title: Physiol. Rev. – volume: 17 start-page: 613 year: 2005 end-page: 615 ident: bib36 publication-title: Mol. Cell – volume: 11 start-page: 788 year: 1999 end-page: 802 ident: bib23 publication-title: Eur. J. Neurosci. – volume: 12 start-page: 5 year: 2003 end-page: 14 ident: bib11 publication-title: Mol. Cell – volume: 427 start-page: 553 year: 2004 end-page: 558 ident: bib19 publication-title: Nature – volume: 14 start-page: 630 year: 2007 end-page: 638 ident: bib25 publication-title: Nat. Struct. Mol. Biol. – volume: 18 start-page: 80 year: 2001 end-page: 90 ident: bib24 publication-title: Mol. Cell. Neurosci. – volume: 23 start-page: 819 year: 2006 end-page: 829 ident: bib56 publication-title: Mol. Cell – volume: 13 start-page: 49 year: 2006 end-page: 59 ident: bib60 publication-title: Chem. Biol. – volume: 5 start-page: 727 year: 2004 end-page: 738 ident: bib21 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 102 start-page: 3605 year: 2005 end-page: 3610 ident: bib38 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 277 start-page: 19855 year: 2002 end-page: 19860 ident: bib61 publication-title: J. Biol. Chem. – volume: 39 start-page: 2031 year: 2007 end-page: 2048 ident: bib22 publication-title: Int. J. Biochem. Cell Biol. – volume: 20 start-page: 5263 year: 1992 end-page: 5269 ident: bib27 publication-title: Nucleic Acids Res. – volume: 278 start-page: 18050 year: 2003 end-page: 18055 ident: bib42 publication-title: J. Biol. Chem. – volume: 352 start-page: 276 year: 1994 end-page: 280 ident: bib57 publication-title: FEBS Lett. – volume: 14 start-page: 107 year: 2003 end-page: 117 ident: bib62 publication-title: Mol. Biol. Cell – volume: 363 start-page: 283 year: 1993 end-page: 286 ident: bib29 publication-title: Nature – volume: 273 start-page: 34341 year: 1998 end-page: 34348 ident: bib43 publication-title: J. Biol. Chem. – volume: 4 start-page: 430 year: 1998 end-page: 444 ident: bib9 publication-title: RNA (Cold Spring Harbor) – volume: 10 start-page: 3909 year: 1999 end-page: 3926 ident: bib13 publication-title: Mol. Biol. Cell – volume: 279 start-page: 3801 year: 2004 end-page: 3806 ident: bib48 publication-title: J. Biol. Chem. – volume: 313 start-page: 2795 year: 2007 end-page: 2809 ident: bib51 publication-title: Exp. Cell Res. – volume: 172 start-page: 679 year: 2006 end-page: 692 ident: bib63 publication-title: J. Cell Biol. – volume: 102 start-page: 15042 year: 2005 end-page: 15047 ident: bib37 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 year: 2006 ident: bib67 publication-title: Progress in Molecular and Subcellular Biology: Alternative Splicing and Disease – volume: 466 start-page: 49 year: 2007 end-page: 57 ident: bib17 publication-title: Arch. Biochem. Biophys. – volume: 143 start-page: 297 year: 1998 end-page: 307 ident: bib47 publication-title: J. Cell Biol. – volume: 11 start-page: 334 year: 1997 end-page: 344 ident: bib32 publication-title: Genes Dev. – volume: 13 start-page: 1535 year: 2004 end-page: 1549 ident: bib44 publication-title: Hum. Mol. Genet. – volume: 13 start-page: 87 year: 1999 end-page: 97 ident: bib66 publication-title: Genes Dev. – volume: 33 start-page: 443 year: 2005 end-page: 446 ident: bib30 publication-title: Biochem. Soc. Trans. – volume: 282 start-page: 1539 year: 2007 end-page: 1543 ident: bib35 publication-title: J. Biol. Chem. – volume: 20 start-page: 153 year: 2006 end-page: 158 ident: bib5 publication-title: Genes Dev. – volume: 22 start-page: 5889 year: 2002 end-page: 5899 ident: bib41 publication-title: J. Neurosci. – volume: 12 start-page: 1317 year: 2003 end-page: 1324 ident: bib18 publication-title: Mol. Cell – volume: 26 start-page: 5744 year: 2006 end-page: 5758 ident: bib40 publication-title: Mol. Cell. Biol. – volume: 280 start-page: 14302 year: 2005 end-page: 14309 ident: bib49 publication-title: J. Biol. Chem. – volume: 23 start-page: 819 year: 2006 ident: 10.1074/jbc.R700034200_bib56 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.07.022 – volume: 13 start-page: 49 year: 2006 ident: 10.1074/jbc.R700034200_bib60 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2005.10.009 – volume: 13 start-page: 5 year: 2006 ident: 10.1074/jbc.R700034200_bib15 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb0106-5 – volume: 20 start-page: 5263 year: 1992 ident: 10.1074/jbc.R700034200_bib27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/20.20.5263 – volume: 17 start-page: 613 year: 2005 ident: 10.1074/jbc.R700034200_bib36 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.020 – volume: 39 start-page: 2031 year: 2007 ident: 10.1074/jbc.R700034200_bib22 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.04.004 – volume: 14 start-page: 107 year: 2003 ident: 10.1074/jbc.R700034200_bib62 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-07-0376 – volume: 143 start-page: 297 year: 1998 ident: 10.1074/jbc.R700034200_bib47 publication-title: J. Cell Biol. doi: 10.1083/jcb.143.2.297 – volume: 282 start-page: 1539 year: 2007 ident: 10.1074/jbc.R700034200_bib35 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C600198200 – volume: 12 start-page: 5 year: 2003 ident: 10.1074/jbc.R700034200_bib11 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00270-3 – volume: 12 start-page: 1317 year: 2003 ident: 10.1074/jbc.R700034200_bib18 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00434-9 – volume: 22 start-page: 5889 year: 2002 ident: 10.1074/jbc.R700034200_bib41 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-14-05889.2002 – volume: 309 start-page: 1514 year: 2005 ident: 10.1074/jbc.R700034200_bib6 publication-title: Science doi: 10.1126/science.1111443 – volume: 4 start-page: 430 year: 1998 ident: 10.1074/jbc.R700034200_bib9 publication-title: RNA (Cold Spring Harbor) – volume: 444 start-page: 580 year: 2006 ident: 10.1074/jbc.R700034200_bib12 publication-title: Nature doi: 10.1038/nature05304 – volume: 148 start-page: 1359 year: 2007 ident: 10.1074/jbc.R700034200_bib58 publication-title: Endocrinology doi: 10.1210/en.2006-0750 – volume: 44 year: 2006 ident: 10.1074/jbc.R700034200_bib67 – volume: 3 start-page: 1456 year: 1997 ident: 10.1074/jbc.R700034200_bib55 publication-title: RNA (Cold Spring Harbor) – volume: 20 start-page: 1755 year: 2006 ident: 10.1074/jbc.R700034200_bib31 publication-title: Genes Dev. doi: 10.1101/gad.1422106 – volume: 280 start-page: 38639 year: 2005 ident: 10.1074/jbc.R700034200_bib39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505802200 – volume: 103 start-page: 11329 year: 2006 ident: 10.1074/jbc.R700034200_bib69 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604616103 – volume: 20 start-page: 153 year: 2006 ident: 10.1074/jbc.R700034200_bib5 publication-title: Genes Dev. doi: 10.1101/gad.1382806 – volume: 100 start-page: 12601 year: 2003 ident: 10.1074/jbc.R700034200_bib45 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1635129100 – volume: 280 start-page: 14302 year: 2005 ident: 10.1074/jbc.R700034200_bib49 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411485200 – volume: 363 start-page: 283 year: 1993 ident: 10.1074/jbc.R700034200_bib29 publication-title: Nature doi: 10.1038/363283a0 – volume: 313 start-page: 2795 year: 2007 ident: 10.1074/jbc.R700034200_bib51 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2007.05.014 – volume: 14 start-page: 331 year: 2004 ident: 10.1074/jbc.R700034200_bib1 publication-title: Genome Res. doi: 10.1101/gr.2094104 – volume: 26 start-page: 5744 year: 2006 ident: 10.1074/jbc.R700034200_bib40 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00224-06 – volume: 10 start-page: 3909 year: 1999 ident: 10.1074/jbc.R700034200_bib13 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.11.3909 – volume: 466 start-page: 49 year: 2007 ident: 10.1074/jbc.R700034200_bib17 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.07.017 – volume: 12 start-page: 645 year: 2005 ident: 10.1074/jbc.R700034200_bib8 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb961 – volume: 352 start-page: 276 year: 1994 ident: 10.1074/jbc.R700034200_bib57 publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)00973-2 – volume: 6 start-page: 375 year: 2002 ident: 10.1074/jbc.R700034200_bib10 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/S1367-5931(02)00320-4 – volume: 56 start-page: 157 year: 2001 ident: 10.1074/jbc.R700034200_bib65 publication-title: Recent Prog. Horm. Res. doi: 10.1210/rp.56.1.157 – volume: 102 start-page: 15042 year: 2005 ident: 10.1074/jbc.R700034200_bib37 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507827102 – volume: 11 start-page: 334 year: 1997 ident: 10.1074/jbc.R700034200_bib32 publication-title: Genes Dev. doi: 10.1101/gad.11.3.334 – volume: 13 start-page: 1535 year: 2004 ident: 10.1074/jbc.R700034200_bib44 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddh167 – volume: 11 start-page: 788 year: 1999 ident: 10.1074/jbc.R700034200_bib23 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00486.x – volume: 279 start-page: 24246 year: 2004 ident: 10.1074/jbc.R700034200_bib26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M314298200 – volume: 279 start-page: 3801 year: 2004 ident: 10.1074/jbc.R700034200_bib48 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311512200 – volume: 21 start-page: 4210 year: 1993 ident: 10.1074/jbc.R700034200_bib16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.18.4210 – volume: 5 start-page: 727 year: 2004 ident: 10.1074/jbc.R700034200_bib21 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1467 – volume: 101 start-page: 9666 year: 2004 ident: 10.1074/jbc.R700034200_bib33 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0403533101 – volume: 11 start-page: 2409 year: 2002 ident: 10.1074/jbc.R700034200_bib14 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.20.2409 – volume: 12 start-page: 1037 year: 2005 ident: 10.1074/jbc.R700034200_bib50 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1020 – volume: 36 start-page: 993 year: 1984 ident: 10.1074/jbc.R700034200_bib28 publication-title: Cell doi: 10.1016/0092-8674(84)90049-7 – volume: 4 start-page: 111 year: 2003 ident: 10.1074/jbc.R700034200_bib53 publication-title: Genome Biol. doi: 10.1186/gb-2003-4-5-111 – volume: 149 start-page: 307 year: 2000 ident: 10.1074/jbc.R700034200_bib20 publication-title: J. Cell Biol. doi: 10.1083/jcb.149.2.307 – volume: 278 start-page: 18050 year: 2003 ident: 10.1074/jbc.R700034200_bib42 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211714200 – volume: 18 start-page: 80 year: 2001 ident: 10.1074/jbc.R700034200_bib24 publication-title: Mol. Cell. Neurosci. doi: 10.1006/mcne.2001.1000 – volume: 3 start-page: 2147 year: 2007 ident: 10.1074/jbc.R700034200_bib7 publication-title: PLOS Genet. doi: 10.1371/journal.pgen.0030204 – volume: 14 start-page: 630 year: 2007 ident: 10.1074/jbc.R700034200_bib25 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1257 – volume: 33 start-page: 443 year: 2005 ident: 10.1074/jbc.R700034200_bib30 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0330443 – volume: 13 start-page: 87 year: 1999 ident: 10.1074/jbc.R700034200_bib66 publication-title: Genes Dev. doi: 10.1101/gad.13.1.87 – volume: 427 start-page: 553 year: 2004 ident: 10.1074/jbc.R700034200_bib19 publication-title: Nature doi: 10.1038/nature02288 – volume: 103 start-page: 11748 year: 2006 ident: 10.1074/jbc.R700034200_bib68 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604970103 – volume: 302 start-page: 2141 year: 2003 ident: 10.1074/jbc.R700034200_bib2 publication-title: Science doi: 10.1126/science.1090100 – volume: 84 start-page: 1 year: 2004 ident: 10.1074/jbc.R700034200_bib54 publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2003 – volume: 63 start-page: 8203 year: 2003 ident: 10.1074/jbc.R700034200_bib52 publication-title: Cancer Res. – volume: 3 start-page: 195 year: 2002 ident: 10.1074/jbc.R700034200_bib34 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm760 – volume: 275 start-page: 7950 year: 2000 ident: 10.1074/jbc.R700034200_bib46 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.11.7950 – volume: 7 start-page: 1559 year: 1996 ident: 10.1074/jbc.R700034200_bib64 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.7.10.1559 – volume: 5 start-page: R8 year: 2004 ident: 10.1074/jbc.R700034200_bib4 publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r8 – volume: 102 start-page: 3605 year: 2005 ident: 10.1074/jbc.R700034200_bib38 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0409889102 – volume: 273 start-page: 34341 year: 1998 ident: 10.1074/jbc.R700034200_bib43 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.51.34341 – volume: 277 start-page: 19855 year: 2002 ident: 10.1074/jbc.R700034200_bib61 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200847200 – volume: 344C start-page: 1 year: 2005 ident: 10.1074/jbc.R700034200_bib3 publication-title: Gene (Amst.) doi: 10.1016/j.gene.2004.10.022 – volume: 277 start-page: 12587 year: 2002 ident: 10.1074/jbc.R700034200_bib59 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112010200 – volume: 172 start-page: 679 year: 2006 ident: 10.1074/jbc.R700034200_bib63 publication-title: J. Cell Biol. doi: 10.1083/jcb.200508154 |
SSID | ssj0000491 |
Score | 2.3647587 |
SecondaryResourceType | review_article |
Snippet | The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single... The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single... |
SourceID | proquest pubmed crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1223 |
SubjectTerms | Alternative Splicing - genetics Animals Disease Humans Phosphorylation Proteins - metabolism RNA Processing, Post-Transcriptional RNA Splice Sites - genetics |
Title | Regulation of Alternative Splicing by Reversible Protein Phosphorylation |
URI | https://dx.doi.org/10.1074/jbc.R700034200 http://www.jbc.org/content/283/3/1223.abstract https://www.ncbi.nlm.nih.gov/pubmed/18024427 https://www.proquest.com/docview/20530683 https://www.proquest.com/docview/47512306 https://www.proquest.com/docview/70198208 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo1LGRc_IHhAGant2MljNW2qYAwYrdQ3K3ZsDdQ205YhlV_PcWw3ZVq4vURtdGq15zs9_mIffwehl1RTInRqkmpYVAkzJUsK5YrGbVqojLCMtQp8H475eMrezbJZ14KzPV3SqD3949pzJf-DKtwDXN0p2X9Adj0o3IDXgC9cAWG4_hXGJ76RfOB8o3lY3Ptu3nxx29JuFUA5jt2WXrgjUp-cKsNXSHun9cXZaX2-mnfAfOviZoOlepEmLyMSe8OtV2WacrEIpWI2RFlcQHC1a8lmzvNVGsQrqMekSHx7mYA-3UhxQ-IPCIfpEt6Ka1MxcBOXipXeOxGtDI6XJL2ieX38UR5Oj47k5GA2uYluESD7Llu9_9xpvsMzjO97GL5mlN4U7O2vo_dRi7Xyc_9TRMsmJvfQ3eBgPPKY3kc3zHIb7YwAvXqxwq9wW5jb7nhso9v70fE7aNxBjmuLNyDHEXKsVriDHAfI8RXIH6Dp4cFkf5yEZhiJzqhoEkNc67bUVIwXvGTCmExbypmxTBFRVsotR1V5yS0wflHkdKhzQ5RlhpUm54Y-RFvLemkeI5wLQXMNsxynJWOpLqzhMAQtaWbTqqADlEQ_Sh2U4l3DkrlsKxYEk-B32fl9gF6v7c-8Rkqv5TDCIgPD88xNQtT0fmY34ich5l2sS4hOSaWLxAF6ESGVAIXb7SqXpr68kASml5Tnv7FgAtgu2PRbuF4FQJHzAXrko6X7fTmQW0bEkz-OvovudP-6p2irOb80z4DINup5G-c_ASzInoI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Alternative+Splicing+by+Reversible+Protein+Phosphorylation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Stamm%2C+Stefan&rft.date=2008-01-18&rft.issn=0021-9258&rft.volume=283&rft.issue=3&rft.spage=1223&rft.epage=1227&rft_id=info:doi/10.1074%2Fjbc.R700034200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |