Deep-Learning-Aided Evaluation of Spondylolysis Imaged with Ultrashort Echo Time Magnetic Resonance Imaging

Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproducti...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 18; p. 8001
Main Authors Achar, Suraj, Hwang, Dosik, Finkenstaedt, Tim, Malis, Vadim, Bae, Won C.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.
AbstractList Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.
Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.
Audience Academic
Author Hwang, Dosik
Finkenstaedt, Tim
Achar, Suraj
Malis, Vadim
Bae, Won C.
AuthorAffiliation 3 Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
7 Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
5 Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
4 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
1 Department of Family Medicine, University of California-San Diego, La Jolla, CA 92093, USA
8 Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
2 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
6 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
AuthorAffiliation_xml – name: 1 Department of Family Medicine, University of California-San Diego, La Jolla, CA 92093, USA
– name: 4 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
– name: 7 Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA
– name: 8 Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA
– name: 3 Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
– name: 2 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
– name: 6 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
– name: 5 Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
Author_xml – sequence: 1
  givenname: Suraj
  surname: Achar
  fullname: Achar, Suraj
– sequence: 2
  givenname: Dosik
  orcidid: 0000-0002-2217-2837
  surname: Hwang
  fullname: Hwang, Dosik
– sequence: 3
  givenname: Tim
  orcidid: 0000-0002-8807-7306
  surname: Finkenstaedt
  fullname: Finkenstaedt, Tim
– sequence: 4
  givenname: Vadim
  surname: Malis
  fullname: Malis, Vadim
– sequence: 5
  givenname: Won C.
  orcidid: 0000-0003-2616-0339
  surname: Bae
  fullname: Bae, Won C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37766055$$D View this record in MEDLINE/PubMed
BookMark eNptkk9v2yAYh62p0_pnO-wLTJZ22Q5uwWADpynqsi1Spklbe0YYXjtkNqTgdMq3H0m6rKkqDiB43gde9DvPTpx3kGVvMbokRKCrWBLMOUL4RXaGaUkLXpbo5NH6NDuPcYlQSQjhr7JTwlhdo6o6y35_BlgVc1DBWdcVE2vA5NN71a_VaL3LfZv_WnlnNr3vN9HGfDaoLiF_7LjIb_sxqLjwYcyneuHzGztA_l11Dkar858QvVNOw64m2V9nL1vVR3jzMF9kt1-mN9ffivmPr7PrybzQFWFjYZhquEACC9pSwpTBhFZI0ZYhahBiDBrctKrWAkAJUatWE9TqWhgARBtOLrLZ3mu8WspVsIMKG-mVlbsNHzqpQnphD7IhqYQJo3ml02exhqmqTCqiK0UbunV92rtW62YAo8Gllvsj6fGJswvZ-XuJUUU4qlgyfHgwBH-3hjjKwUYNfa8c-HWUJWcIU0q4SOj7J-jSr4NLf5WoWtSkZBj9pzqVOrCu9elivZXKCWOYJ4SRRF0-Q6VhYLA65ae1af-o4N3jTg8t_stKAj7uAR18jAHaA4KR3OZQHnKY2KsnrLbjLlHpFbZ_puIvFUHdDg
CitedBy_id crossref_primary_10_1007_s00586_025_08698_z
crossref_primary_10_3390_computation12080152
crossref_primary_10_3390_jcm13164595
crossref_primary_10_1186_s12891_025_08357_w
crossref_primary_10_3390_s24206639
crossref_primary_10_1177_20552076241311939
Cites_doi 10.1118/1.3578928
10.1007/978-3-319-24574-4_28
10.1097/BPO.0b013e318287fffb
10.1002/mrm.21620
10.1002/mrm.29356
10.1136/bjsm.2006.030023
10.1088/1361-6560/abc5cb
10.1007/s40134-013-0035-7
10.3390/cancers13051082
10.1002/jbmr.1535
10.1016/j.ijrobp.2019.08.049
10.1001/archpedi.1995.02170130017004
10.1118/1.4842575
10.1016/j.future.2018.10.009
10.1016/j.ptsp.2021.08.009
10.1016/j.jmr.2006.05.014
10.2105/AJPH.82.4.606
10.1097/00004728-200311000-00001
10.1080/17453674.2019.1711323
10.1016/S0165-1684(98)00124-8
10.1109/TIP.2003.819861
10.1088/1361-6560/ac4123
10.1007/s00256-008-0449-0
10.1002/mp.13617
10.1007/s11832-012-0409-z
10.1088/1361-6560/aa66bf
10.1016/j.crad.2010.06.011
10.2214/ajr.169.1.9207531
10.1177/0363546512464946
10.1177/0009922819832643
10.1177/03635465000280012101
10.1007/s00256-013-1738-9
10.1097/RLI.0000000000000506
10.1007/s00256-021-03987-2
10.1097/RLI.0b013e31821c44cd
10.1002/mrm.20868
10.1016/S1361-8415(01)00036-6
10.1002/mrm.27134
10.1155/2020/5193707
10.1097/00004424-198207000-00141
10.1016/j.joca.2012.09.009
10.1016/j.media.2018.03.011
10.1016/j.ijrobp.2015.08.045
10.1002/mp.13047
10.1109/TMI.2020.3015379
10.1016/S1529-9430(02)00200-0
10.1177/036354658100900504
10.1155/2022/3125426
10.3390/s19102361
10.1002/mrm.21174
10.1097/BPO.0000000000000244
10.1056/NEJM200102013440508
10.1002/art.21022
10.1118/1.4914158
10.1088/0031-9155/60/2/825
10.2106/00004623-198466050-00008
10.1007/s00586-017-5305-2
10.1016/j.ijrobp.2017.08.043
10.1097/00008480-200402000-00008
10.1302/0301-620X.75B5.8376435
10.1016/j.joca.2012.01.009
10.1002/nbm.1179
10.1002/mrm.22799
10.1007/s00256-022-04269-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23188001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b3e0479dc85c4247b7a52c693c5a4b48
PMC10538057
A771810373
37766055
10_3390_s23188001
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: NIH HHS
  grantid: AR066622
– fundername: NIH HHS
  grantid: AR073761
– fundername: National Institutes of Health
  grantid: AR073761
– fundername: National Institutes of Health
  grantid: AR066622
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c537t-d7ab8909194f437ad13450a4f704d0077eb1bfa6c9eea996afc30fc69dee04b83
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:53 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 16:58:54 EDT 2025
Fri Jul 25 05:42:32 EDT 2025
Tue Jun 17 22:23:48 EDT 2025
Tue Jun 10 21:17:23 EDT 2025
Mon Jul 21 05:57:15 EDT 2025
Tue Jul 01 03:50:29 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords image processing
lumbar spine
image regression
low back pain
pars
bone fracture
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-d7ab8909194f437ad13450a4f704d0077eb1bfa6c9eea996afc30fc69dee04b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2217-2837
0000-0003-2616-0339
0000-0002-8807-7306
OpenAccessLink https://www.proquest.com/docview/2869632710?pq-origsite=%requestingapplication%
PMID 37766055
PQID 2869632710
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b3e0479dc85c4247b7a52c693c5a4b48
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10538057
proquest_miscellaneous_2870144389
proquest_journals_2869632710
gale_infotracmisc_A771810373
gale_infotracacademiconefile_A771810373
pubmed_primary_37766055
crossref_primary_10_3390_s23188001
crossref_citationtrail_10_3390_s23188001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bechtel (ref_3) 1982; 17
Finkenstaedt (ref_27) 2019; 54
Bae (ref_37) 2012; 27
Johansson (ref_52) 2011; 38
Dowling (ref_49) 2015; 93
ref_56
Techawiboonwong (ref_29) 2008; 21
McCleary (ref_11) 2007; 6
Yamane (ref_17) 1993; 75
Lei (ref_66) 2019; 46
Du (ref_35) 2012; 21
Xiang (ref_63) 2018; 47
Sjolund (ref_50) 2015; 60
ref_59
Fredrickson (ref_2) 1984; 66
Deyo (ref_9) 2001; 344
Andreasen (ref_47) 2015; 42
Eckert (ref_57) 1998; 70
ref_61
ref_60
Wu (ref_30) 2007; 57
Emami (ref_64) 2018; 45
Soler (ref_7) 2000; 28
Dunn (ref_23) 2008; 37
Dhouib (ref_20) 2018; 27
Micheli (ref_4) 1995; 149
Wiesinger (ref_43) 2018; 80
ref_65
Yang (ref_67) 2020; 39
ref_62
Robson (ref_28) 2003; 27
Qian (ref_33) 2008; 60
Largent (ref_53) 2019; 105
Little (ref_19) 2005; 52
Bae (ref_36) 2014; 2
Bharadwaj (ref_38) 2022; 51
Miller (ref_15) 2013; 33
Reitman (ref_8) 2002; 2
West (ref_16) 2019; 58
Dovletov (ref_42) 2022; 2022
Masci (ref_13) 2006; 40
Wiltse (ref_1) 1976; 117
Selhorst (ref_6) 2021; 52
Yamaguchi (ref_21) 2012; 6
Kalmet (ref_54) 2020; 91
Korhonen (ref_51) 2014; 41
Olsen (ref_5) 1992; 82
ref_39
Burgos (ref_44) 2017; 62
Johnstone (ref_48) 2018; 100
Kobayashi (ref_14) 2013; 41
Geiger (ref_40) 2014; 43
Lim (ref_10) 2004; 16
Idiyatullin (ref_34) 2006; 181
Williams (ref_25) 2012; 20
Ganiyusufoglu (ref_18) 2010; 65
ref_46
Zhou (ref_58) 2004; 13
Jackson (ref_12) 1981; 9
Chen (ref_45) 2022; 88
Lakshmanaprabu (ref_68) 2019; Volume 92
ref_41
Jenkinson (ref_55) 2001; 5
Rahmer (ref_31) 2006; 55
Ulmer (ref_22) 1997; 169
Weiger (ref_32) 2011; 66
Springer (ref_26) 2011; 46
Rush (ref_24) 2015; 35
References_xml – volume: 38
  start-page: 2708
  year: 2011
  ident: ref_52
  article-title: CT substitute derived from MRI sequences with ultrashort echo time
  publication-title: Med. Phys.
  doi: 10.1118/1.3578928
– volume: 117
  start-page: 23
  year: 1976
  ident: ref_1
  article-title: Classification of spondylolisis and spondylolisthesis
  publication-title: Clin. Orthop. Relat. Res.
– ident: ref_56
  doi: 10.1007/978-3-319-24574-4_28
– volume: 33
  start-page: 282
  year: 2013
  ident: ref_15
  article-title: Imaging modalities for low back pain in children: A review of spondyloysis and undiagnosed mechanical back pain
  publication-title: J. Pediatr. Orthop.
  doi: 10.1097/BPO.0b013e318287fffb
– volume: 60
  start-page: 135
  year: 2008
  ident: ref_33
  article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21620
– volume: 88
  start-page: 2285
  year: 2022
  ident: ref_45
  article-title: Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29356
– volume: 40
  start-page: 940
  year: 2006
  ident: ref_13
  article-title: Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsm.2006.030023
– ident: ref_61
  doi: 10.1088/1361-6560/abc5cb
– volume: 2
  start-page: 35
  year: 2014
  ident: ref_36
  article-title: UTE MRI of the Osteochondral Junction
  publication-title: Curr. Radiol. Rep.
  doi: 10.1007/s40134-013-0035-7
– volume: 6
  start-page: 62
  year: 2007
  ident: ref_11
  article-title: Current concepts in the diagnosis and treatment of spondylolysis in young athletes
  publication-title: Curr. Sports Med. Rep.
– ident: ref_46
  doi: 10.3390/cancers13051082
– volume: 27
  start-page: 848
  year: 2012
  ident: ref_37
  article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties
  publication-title: J. Bone Min. Res.
  doi: 10.1002/jbmr.1535
– volume: 105
  start-page: 1137
  year: 2019
  ident: ref_53
  article-title: Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2019.08.049
– volume: 149
  start-page: 15
  year: 1995
  ident: ref_4
  article-title: Back pain in young athletes: Significant differences from adults in causes and patterns
  publication-title: Arch. Pediatr. Adolesc. Med.
  doi: 10.1001/archpedi.1995.02170130017004
– volume: 41
  start-page: 011704
  year: 2014
  ident: ref_51
  article-title: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer
  publication-title: Med. Phys.
  doi: 10.1118/1.4842575
– volume: Volume 92
  start-page: 374
  year: 2019
  ident: ref_68
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.10.009
– volume: 52
  start-page: 140
  year: 2021
  ident: ref_6
  article-title: Immediate functional progression program in adolescent athletes with a spondylolysis
  publication-title: Phys. Ther. Sport
  doi: 10.1016/j.ptsp.2021.08.009
– volume: 181
  start-page: 342
  year: 2006
  ident: ref_34
  article-title: Fast and quiet MRI using a swept radiofrequency
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2006.05.014
– volume: 82
  start-page: 606
  year: 1992
  ident: ref_5
  article-title: The epidemiology of low back pain in an adolescent population
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.82.4.606
– volume: 27
  start-page: 825
  year: 2003
  ident: ref_28
  article-title: Magnetic resonance: An introduction to ultrashort TE (UTE) imaging
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-200311000-00001
– volume: 91
  start-page: 215
  year: 2020
  ident: ref_54
  article-title: Deep learning in fracture detection: A narrative review
  publication-title: Acta Orthop.
  doi: 10.1080/17453674.2019.1711323
– volume: 70
  start-page: 177
  year: 1998
  ident: ref_57
  article-title: Perceptual quality metrics applied to still image compression
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(98)00124-8
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_58
  article-title: Image Quality Assessment: From Error Visibility to Structural Similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_41
  doi: 10.1088/1361-6560/ac4123
– volume: 37
  start-page: 443
  year: 2008
  ident: ref_23
  article-title: Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis
  publication-title: Skelet. Radiol.
  doi: 10.1007/s00256-008-0449-0
– volume: 46
  start-page: 3565
  year: 2019
  ident: ref_66
  article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13617
– volume: 6
  start-page: 237
  year: 2012
  ident: ref_21
  article-title: Spondylolysis is frequently missed by MRI in adolescents with back pain
  publication-title: J. Child. Orthop.
  doi: 10.1007/s11832-012-0409-z
– volume: 62
  start-page: 4237
  year: 2017
  ident: ref_44
  article-title: Iterative framework for the joint segmentation and CT synthesis of MR images: Application to MRI-only radiotherapy treatment planning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa66bf
– volume: 65
  start-page: 902
  year: 2010
  ident: ref_18
  article-title: Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2010.06.011
– volume: 169
  start-page: 233
  year: 1997
  ident: ref_22
  article-title: MR imaging of lumbar spondylolysis: The importance of ancillary observations
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.169.1.9207531
– volume: 41
  start-page: 169
  year: 2013
  ident: ref_14
  article-title: Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546512464946
– volume: 58
  start-page: 671
  year: 2019
  ident: ref_16
  article-title: Diagnostic Accuracy of Magnetic Resonance Imaging and Computed Tomography Scan in Young Athletes With Spondylolysis
  publication-title: Clin Pediatr.
  doi: 10.1177/0009922819832643
– volume: 28
  start-page: 57
  year: 2000
  ident: ref_7
  article-title: The prevalence of spondylolysis in the Spanish elite athlete
  publication-title: Am. J. Sports Med.
  doi: 10.1177/03635465000280012101
– volume: 43
  start-page: 19
  year: 2014
  ident: ref_40
  article-title: Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (muCT) evaluation of the temporomandibular joint (TMJ) condylar morphology
  publication-title: Skelet. Radiol.
  doi: 10.1007/s00256-013-1738-9
– volume: 54
  start-page: 32
  year: 2019
  ident: ref_27
  article-title: Ultrashort Time-to-Echo Magnetic Resonance Imaging at 3 T for the Detection of Spondylolysis in Cadaveric Spines: Comparison With CT
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0000000000000506
– volume: 51
  start-page: 1585
  year: 2022
  ident: ref_38
  article-title: CT-like MRI: A qualitative assessment of ZTE sequences for knee osseous abnormalities
  publication-title: Skelet. Radiol.
  doi: 10.1007/s00256-021-03987-2
– volume: 46
  start-page: 610
  year: 2011
  ident: ref_26
  article-title: Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0b013e31821c44cd
– ident: ref_59
– volume: 55
  start-page: 1075
  year: 2006
  ident: ref_31
  article-title: Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20868
– volume: 5
  start-page: 143
  year: 2001
  ident: ref_55
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 80
  start-page: 1440
  year: 2018
  ident: ref_43
  article-title: Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27134
– ident: ref_62
  doi: 10.1155/2020/5193707
– volume: 17
  start-page: S29
  year: 1982
  ident: ref_3
  article-title: The Pathogenesis of Spondylolysis
  publication-title: Investig. Radiol.
  doi: 10.1097/00004424-198207000-00141
– volume: 21
  start-page: 77
  year: 2012
  ident: ref_35
  article-title: Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC)
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.09.009
– volume: 47
  start-page: 31
  year: 2018
  ident: ref_63
  article-title: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.03.011
– volume: 93
  start-page: 1144
  year: 2015
  ident: ref_49
  article-title: Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2015.08.045
– volume: 45
  start-page: 3627
  year: 2018
  ident: ref_64
  article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13047
– volume: 39
  start-page: 4249
  year: 2020
  ident: ref_67
  article-title: Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3015379
– volume: 2
  start-page: 303
  year: 2002
  ident: ref_8
  article-title: Lumbar isthmic defects in teenagers resulting from stress fractures
  publication-title: Spine J.
  doi: 10.1016/S1529-9430(02)00200-0
– volume: 9
  start-page: 304
  year: 1981
  ident: ref_12
  article-title: Stress reactions involving the pars interarticularis in young athletes
  publication-title: Am. J. Sports Med.
  doi: 10.1177/036354658100900504
– ident: ref_60
  doi: 10.1155/2022/3125426
– ident: ref_65
  doi: 10.3390/s19102361
– volume: 57
  start-page: 554
  year: 2007
  ident: ref_30
  article-title: Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21174
– volume: 35
  start-page: 271
  year: 2015
  ident: ref_24
  article-title: Use of magnetic resonance imaging in the evaluation of spondylolysis
  publication-title: J. Pediatr. Orthop.
  doi: 10.1097/BPO.0000000000000244
– volume: 344
  start-page: 363
  year: 2001
  ident: ref_9
  article-title: Low back pain
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200102013440508
– volume: 52
  start-page: 1461
  year: 2005
  ident: ref_19
  article-title: ADAMTS-1-knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.21022
– volume: 42
  start-page: 1596
  year: 2015
  ident: ref_47
  article-title: Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain
  publication-title: Med. Phys.
  doi: 10.1118/1.4914158
– volume: 60
  start-page: 825
  year: 2015
  ident: ref_50
  article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/2/825
– volume: 66
  start-page: 699
  year: 1984
  ident: ref_2
  article-title: The natural history of spondylolysis and spondylolisthesis
  publication-title: J. Bone Jt. Surg. Am.
  doi: 10.2106/00004623-198466050-00008
– volume: 27
  start-page: 1058
  year: 2018
  ident: ref_20
  article-title: Diagnostic accuracy of MR imaging for direct visualization of lumbar pars defect in children and young adults: A systematic review and meta-analysis
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-017-5305-2
– volume: 100
  start-page: 199
  year: 2018
  ident: ref_48
  article-title: Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2017.08.043
– volume: 16
  start-page: 37
  year: 2004
  ident: ref_10
  article-title: Symptomatic spondylolysis: Diagnosis and treatment
  publication-title: Curr. Opin. Pediatr.
  doi: 10.1097/00008480-200402000-00008
– volume: 2022
  start-page: 2071
  year: 2022
  ident: ref_42
  article-title: Grad-CAM Guided U-Net for MRI-based Pseudo-CT Synthesis
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 75
  start-page: 764
  year: 1993
  ident: ref_17
  article-title: Early diagnosis of lumbar spondylolysis by MRI
  publication-title: J. Bone Jt. Surg. Br.
  doi: 10.1302/0301-620X.75B5.8376435
– volume: 20
  start-page: 486
  year: 2012
  ident: ref_25
  article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2012.01.009
– volume: 21
  start-page: 59
  year: 2008
  ident: ref_29
  article-title: In vivo MRI of submillisecond T(2) species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1179
– volume: 66
  start-page: 379
  year: 2011
  ident: ref_32
  article-title: MRI with zero echo time: Hard versus sweep pulse excitation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22799
– ident: ref_39
  doi: 10.1007/s00256-022-04269-1
SSID ssj0023338
Score 2.4311917
Snippet Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8001
SubjectTerms Adolescent
Backache
bone fracture
Comparative analysis
CT imaging
Deep Learning
Defects
Equipment and supplies
Fractures
Fractures, Bone
Humans
image processing
image regression
low back pain
lumbar spine
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging equipment
Morphology
pars
Radiation therapy
Registration
Reproductive organs
Spondylolysis - diagnostic imaging
Teaching
Tomography
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnMoB9QE07bZyq0pwsVhiO06O27IrWoleykrcLL8CCJpddZf_35nEG20EEpde48nD43l9keczwFfnbaBExAt36risg-Sl1ZbnRVC5dpiAIzUKX_wqzufy55W62jrqi_aEdfTAneJOnIjEgh58qbzMpXbaqtwXlfDKSifbNl_MeRswlaCWQOTV8QgJBPUnK6xi0FDTyS-b7NOS9D8OxVu5aLhPcivxzF7BXqoY2aT70tfwIjZvYHeLR_At3J3FuOSJKvWaT25DDGza83izRc1-LxdNQHDeMpCwH38wjARGP2HZ_B7furrBMpxNMRYyagphF_a6ofZGRr_3iZMjtvfg0_dhPptefj_n6RQF7pXQax60dWWFKqpkLYW24VRINbay1mMZiM0Ho7WrbeGrGC2iH1t7Ma5RwyGi5l0pDmCnWTTxHTCN5Z6solJaImwRvhQFkdlUXgfhfW4zON5o1_hEMU4nXdwbhBq0EKZfiAy-9KLLjlfjKaFvtES9AFFhtxfQQEwyEPOcgWRwRAtsyGHxY7xNfQc4JaK-MhON6Zm6JUUGo4EkOpofDm9MxCRHX5m8LDCE5VinZfC5H6Y7afNaExcPJKMJt2JpmMFhZ1H9lITWBSJKlUE5sLXBnIcjze1NSwOOlbEosdx-_z-09AFe5ug23e65Eeys_z7Ej1hurd2n1rP-AYsJKBs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5V5QIHBOXlUtCCkOBiSPfhtQ8IpZCqIIULROpttS-nVVM7JKkE_54Z27FiUXH1ju3dnZmd-eydbwHeOG8DBaI0c8culWWQaW61TXkWFNcOA3CkQuHp9-xsJr-dq_M92J6x2U3g-lZoR-dJzVaL979__fmEDv-RECdC9g9rzFHQDKmK6w4GJE3-OZX9zwQuEIa1pEJD8UEoahj7_12XdwLTcNPkThQ6fQD3u_SRjVt9P4S9WB3AvR1SwUdw9SXGZdrxps7T8WWIgU16Um9Wl-zHsq4CIvWGjoR9vcY1JTD6IstmC3zr-gKng01wbhhViLCpnVdU68joWz8RdMTmHnz6Y5idTn5-Pku7IxVSr4TepEFblxeYIxSylELbcCykGllZ6pEMRO2DS7crbeaLGC1CIVt6MSp9VoQYR9Ll4gnsV3UVnwHTmPvJIiqlJWIY4XOREbNN4XUQ3nObwLvt7Brf8Y3TsRcLg7iDFGF6RSTwuhddtiQbtwmdkIp6AeLFbi7Uq7np3Mw4EYkzP_hcecmldtoqjt0XXlnpZJ7AW1KwIXvCznjbFSHgkIgHy4w1xmoqnRQJHA0k0ev8sHlrImZrtIbnGa5nHJO2BF71zXQn7WSrYn1DMppALOaJCTxtLaofktA6Q3ipEsgHtjYY87ClurxoOMExTRY55t6H_-_Xc7jL0SHaTXJHsL9Z3cQXmFVt3MvGZ_4CsmQhPg
  priority: 102
  providerName: Scholars Portal
Title Deep-Learning-Aided Evaluation of Spondylolysis Imaged with Ultrashort Echo Time Magnetic Resonance Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/37766055
https://www.proquest.com/docview/2869632710
https://www.proquest.com/docview/2870144389
https://pubmed.ncbi.nlm.nih.gov/PMC10538057
https://doaj.org/article/b3e0479dc85c4247b7a52c693c5a4b48
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-C7QIHxDcZozIICS7RutiOnRPqoGUgdUJApd4if6WbGEm3dv8_76Vu1gjEJYf6JbH7vl-efwZ4a53x5IjS3B7bVFRepNook2a5l5my6IADbRSenuWnM_F1Luex4LaKbZVbm9gaat84qpEfZTpHWcnQIX5YXqV0ahR9XY1HaNyFfYIuo5YuNb9NuDjmXxs0IY6p_dEKYxkU13j-y9YHtVD9fxvkHY_U75bccT-Th_Agxo1stGH0I7gT6sdwfwdN8An8-hTCMo2AqYt0dOGDZ-MOzZs1FfuxbGqPKXqLQ8K-_EZj4hmVYtnsEt-6OsdgnI3RIjLaGsKmZlHTJkdGRX5C5gjtPfj0pzCbjH9-PE3jWQqpk1ytU6-M1QUGB4WoBFfGH3Mhh0ZUaig8YfqgzbaVyV0RgsEcyFSODyuXFz6EobCaP4O9uqnDC2AKgz5RBCmVwOSFO81zgrQpnPLcucwk8H7775YuAo3TeReXJSYcxIiyY0QCbzrS5QZd419EJ8SijoAAsdsfmutFGfWrtDwQWL53WjqRCWWVkRlOnztphBU6gXfE4JLUFifjTNx9gEsiAKxypNBJ055JnsBhjxLVzfWHtyJSRnVflbfCmcDrbpjupBa2OjQ3RKMoe8UAMYHnG4nqlsSVyjGvlAnonqz11twfqS_OWzBwjI-5xqD74P_zegn3MlSITXfcIeytr2_CKwyn1nbQ6gxe9eTzAPZPxmffvg_a0gRep0L_AV2dJC8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq61177QNCgaZKaNMLjdSbuy-nFcEOTSrUP8VvZMavxgJx69U7tnc97_XONwBvtVGWHJEf6x3ti9wKP1FS-WFso1BqdMCOCoUnh_FoKr4eR8cb8LuthaFjla1NrAy1LQ3tkW-HSYyyEqJD_LT46VPXKPq72rbQqMVi313-wpRt-XG8i_x9F4Z7w6MvI7_pKuCbiMuVb6XSSYpuMhW54FLZHS6iQIlcBsISug1aL52r2KTOKcwGVG54kJs4tc4FQiccn3sDbqLjDUij5PFVgscx36vRizhPg-0lxk6oHk2_mdbnVa0B_nYAax6wfzpzzd3t3YO7TZzKBrVg3YcNVzyAO2vohQ_h-65zC78BaJ35gzPrLBt26OGszNm3RVnYy3lZ4Z6w8Q80XpbR1i-bzvGty1MM_tkQLTCjUhQ2UbOCiioZ_VQgJBBX3YNPfwTTa_nKj2GzKAv3FJjEIFOkLoqkwGSJm4THBKGTGmm5MaHy4EP7dTPTAJtTf415hgkOMSLrGOHBm450UaN5_IvoM7GoIyAA7upCeT7LGn3ONHcEzm9NEhkRCqmlikKcPjeRElokHrwnBmdkJnAyRjXVDrgkAtzKBhKDAqrR5B5s9ShRvU1_uBWRrDEvy-xKGTx43Q3TnXRkrnDlBdFIypYxIPXgSS1R3ZK4lDHmsZEHSU_WemvujxRnpxX4OMbjPMEg_9n_5_UKbo2OJgfZwfhw_zncDlE56pN5W7C5Or9wLzCUW-mXlf4wOLluhf0D-pJdsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBBcriXfttQ8IBZKoobRCgki5mX05rQh2aFKh_jV-HTN-NRaIW6_ZsbPredsz3wC81EZZckR-pAfaF5kVfqyk8oPIhoHU6IAdNQofHkX7M_FxHs534HfTC0NllY1NLA21LQy9I-8FcYSyEqBD7GV1WcTn0eTd6qdPE6ToS2szTqMSkQN3_gvTt_Xb6Qh5_SoIJuOvH_b9esKAb0IuN76VSscJusxEZIJLZQdchH0lMtkXlpBu0JLpTEUmcU5hZqAyw_uZiRLrXF_omON9r8BVycMB6ZicXyR7HHO_CsmI86TfW2MchapSz55p_F85JuBvZ7DlDbuVmluub3ILbtYxKxtWQnYbdlx-B25sIRnehe8j51Z-Dda68Icn1lk2bpHEWZGxL6sit-fLosRAYdMfaMgso9fAbLbEf10fYyLAxmiNGbWlsEO1yKnBktEHBkIFceU1ePd7MLuUp3wfdvMidw-BSQw4ReLCUApMnLiJeURwOomRlhsTKA_eNE83NTXIOc3aWKaY7BAj0pYRHrxoSVcVsse_iN4Ti1oCAuMufyhOF2mt26nmjoD6rYlDIwIhtVRhgNvnJlRCi9iD18TglEwGbsaouvMBj0TgW-lQYoBA_Zrcg70OJaq66S43IpLWpmadXiiGB8_bZbqSyudyV5wRjaTMGYNTDx5UEtUeiUsZYU4behB3ZK1z5u5KfnJcApFjbM5jDPgf_X9fz-Aaqmr6aXp08BiuB6gbVZHeHuxuTs_cE4zqNvppqT4Mvl22vv4BMDVh5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Aided+Evaluation+of+Spondylolysis+Imaged+with+Ultrashort+Echo+Time+Magnetic+Resonance+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Achar%2C+Suraj&rft.au=Hwang%2C+Dosik&rft.au=Finkenstaedt%2C+Tim&rft.au=Malis%2C+Vadim&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft.spage=8001&rft_id=info:doi/10.3390%2Fs23188001&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon