Deep-Learning-Aided Evaluation of Spondylolysis Imaged with Ultrashort Echo Time Magnetic Resonance Imaging
Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproducti...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 18; p. 8001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis. |
---|---|
AbstractList | Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis. Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis. |
Audience | Academic |
Author | Hwang, Dosik Finkenstaedt, Tim Achar, Suraj Malis, Vadim Bae, Won C. |
AuthorAffiliation | 3 Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea 7 Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA 5 Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea 4 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea 1 Department of Family Medicine, University of California-San Diego, La Jolla, CA 92093, USA 8 Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA 2 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea 6 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland |
AuthorAffiliation_xml | – name: 1 Department of Family Medicine, University of California-San Diego, La Jolla, CA 92093, USA – name: 4 Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea – name: 7 Department of Radiology, University of California-San Diego, La Jolla, CA 92093, USA – name: 8 Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161, USA – name: 3 Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea – name: 2 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea – name: 6 Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland – name: 5 Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea |
Author_xml | – sequence: 1 givenname: Suraj surname: Achar fullname: Achar, Suraj – sequence: 2 givenname: Dosik orcidid: 0000-0002-2217-2837 surname: Hwang fullname: Hwang, Dosik – sequence: 3 givenname: Tim orcidid: 0000-0002-8807-7306 surname: Finkenstaedt fullname: Finkenstaedt, Tim – sequence: 4 givenname: Vadim surname: Malis fullname: Malis, Vadim – sequence: 5 givenname: Won C. orcidid: 0000-0003-2616-0339 surname: Bae fullname: Bae, Won C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37766055$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk9v2yAYh62p0_pnO-wLTJZ22Q5uwWADpynqsi1Spklbe0YYXjtkNqTgdMq3H0m6rKkqDiB43gde9DvPTpx3kGVvMbokRKCrWBLMOUL4RXaGaUkLXpbo5NH6NDuPcYlQSQjhr7JTwlhdo6o6y35_BlgVc1DBWdcVE2vA5NN71a_VaL3LfZv_WnlnNr3vN9HGfDaoLiF_7LjIb_sxqLjwYcyneuHzGztA_l11Dkar858QvVNOw64m2V9nL1vVR3jzMF9kt1-mN9ffivmPr7PrybzQFWFjYZhquEACC9pSwpTBhFZI0ZYhahBiDBrctKrWAkAJUatWE9TqWhgARBtOLrLZ3mu8WspVsIMKG-mVlbsNHzqpQnphD7IhqYQJo3ml02exhqmqTCqiK0UbunV92rtW62YAo8Gllvsj6fGJswvZ-XuJUUU4qlgyfHgwBH-3hjjKwUYNfa8c-HWUJWcIU0q4SOj7J-jSr4NLf5WoWtSkZBj9pzqVOrCu9elivZXKCWOYJ4SRRF0-Q6VhYLA65ae1af-o4N3jTg8t_stKAj7uAR18jAHaA4KR3OZQHnKY2KsnrLbjLlHpFbZ_puIvFUHdDg |
CitedBy_id | crossref_primary_10_1007_s00586_025_08698_z crossref_primary_10_3390_computation12080152 crossref_primary_10_3390_jcm13164595 crossref_primary_10_1186_s12891_025_08357_w crossref_primary_10_3390_s24206639 crossref_primary_10_1177_20552076241311939 |
Cites_doi | 10.1118/1.3578928 10.1007/978-3-319-24574-4_28 10.1097/BPO.0b013e318287fffb 10.1002/mrm.21620 10.1002/mrm.29356 10.1136/bjsm.2006.030023 10.1088/1361-6560/abc5cb 10.1007/s40134-013-0035-7 10.3390/cancers13051082 10.1002/jbmr.1535 10.1016/j.ijrobp.2019.08.049 10.1001/archpedi.1995.02170130017004 10.1118/1.4842575 10.1016/j.future.2018.10.009 10.1016/j.ptsp.2021.08.009 10.1016/j.jmr.2006.05.014 10.2105/AJPH.82.4.606 10.1097/00004728-200311000-00001 10.1080/17453674.2019.1711323 10.1016/S0165-1684(98)00124-8 10.1109/TIP.2003.819861 10.1088/1361-6560/ac4123 10.1007/s00256-008-0449-0 10.1002/mp.13617 10.1007/s11832-012-0409-z 10.1088/1361-6560/aa66bf 10.1016/j.crad.2010.06.011 10.2214/ajr.169.1.9207531 10.1177/0363546512464946 10.1177/0009922819832643 10.1177/03635465000280012101 10.1007/s00256-013-1738-9 10.1097/RLI.0000000000000506 10.1007/s00256-021-03987-2 10.1097/RLI.0b013e31821c44cd 10.1002/mrm.20868 10.1016/S1361-8415(01)00036-6 10.1002/mrm.27134 10.1155/2020/5193707 10.1097/00004424-198207000-00141 10.1016/j.joca.2012.09.009 10.1016/j.media.2018.03.011 10.1016/j.ijrobp.2015.08.045 10.1002/mp.13047 10.1109/TMI.2020.3015379 10.1016/S1529-9430(02)00200-0 10.1177/036354658100900504 10.1155/2022/3125426 10.3390/s19102361 10.1002/mrm.21174 10.1097/BPO.0000000000000244 10.1056/NEJM200102013440508 10.1002/art.21022 10.1118/1.4914158 10.1088/0031-9155/60/2/825 10.2106/00004623-198466050-00008 10.1007/s00586-017-5305-2 10.1016/j.ijrobp.2017.08.043 10.1097/00008480-200402000-00008 10.1302/0301-620X.75B5.8376435 10.1016/j.joca.2012.01.009 10.1002/nbm.1179 10.1002/mrm.22799 10.1007/s00256-022-04269-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23188001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b3e0479dc85c4247b7a52c693c5a4b48 PMC10538057 A771810373 37766055 10_3390_s23188001 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: NIH HHS grantid: AR066622 – fundername: NIH HHS grantid: AR073761 – fundername: National Institutes of Health grantid: AR073761 – fundername: National Institutes of Health grantid: AR066622 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c537t-d7ab8909194f437ad13450a4f704d0077eb1bfa6c9eea996afc30fc69dee04b83 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:53 EDT 2025 Thu Aug 21 18:36:18 EDT 2025 Fri Jul 11 16:58:54 EDT 2025 Fri Jul 25 05:42:32 EDT 2025 Tue Jun 17 22:23:48 EDT 2025 Tue Jun 10 21:17:23 EDT 2025 Mon Jul 21 05:57:15 EDT 2025 Tue Jul 01 03:50:29 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | image processing lumbar spine image regression low back pain pars bone fracture |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-d7ab8909194f437ad13450a4f704d0077eb1bfa6c9eea996afc30fc69dee04b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2217-2837 0000-0003-2616-0339 0000-0002-8807-7306 |
OpenAccessLink | https://www.proquest.com/docview/2869632710?pq-origsite=%requestingapplication% |
PMID | 37766055 |
PQID | 2869632710 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3e0479dc85c4247b7a52c693c5a4b48 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10538057 proquest_miscellaneous_2870144389 proquest_journals_2869632710 gale_infotracmisc_A771810373 gale_infotracacademiconefile_A771810373 pubmed_primary_37766055 crossref_primary_10_3390_s23188001 crossref_citationtrail_10_3390_s23188001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bechtel (ref_3) 1982; 17 Finkenstaedt (ref_27) 2019; 54 Bae (ref_37) 2012; 27 Johansson (ref_52) 2011; 38 Dowling (ref_49) 2015; 93 ref_56 Techawiboonwong (ref_29) 2008; 21 McCleary (ref_11) 2007; 6 Yamane (ref_17) 1993; 75 Lei (ref_66) 2019; 46 Du (ref_35) 2012; 21 Xiang (ref_63) 2018; 47 Sjolund (ref_50) 2015; 60 ref_59 Fredrickson (ref_2) 1984; 66 Deyo (ref_9) 2001; 344 Andreasen (ref_47) 2015; 42 Eckert (ref_57) 1998; 70 ref_61 ref_60 Wu (ref_30) 2007; 57 Emami (ref_64) 2018; 45 Soler (ref_7) 2000; 28 Dunn (ref_23) 2008; 37 Dhouib (ref_20) 2018; 27 Micheli (ref_4) 1995; 149 Wiesinger (ref_43) 2018; 80 ref_65 Yang (ref_67) 2020; 39 ref_62 Robson (ref_28) 2003; 27 Qian (ref_33) 2008; 60 Largent (ref_53) 2019; 105 Little (ref_19) 2005; 52 Bae (ref_36) 2014; 2 Bharadwaj (ref_38) 2022; 51 Miller (ref_15) 2013; 33 Reitman (ref_8) 2002; 2 West (ref_16) 2019; 58 Dovletov (ref_42) 2022; 2022 Masci (ref_13) 2006; 40 Wiltse (ref_1) 1976; 117 Selhorst (ref_6) 2021; 52 Yamaguchi (ref_21) 2012; 6 Kalmet (ref_54) 2020; 91 Korhonen (ref_51) 2014; 41 Olsen (ref_5) 1992; 82 ref_39 Burgos (ref_44) 2017; 62 Johnstone (ref_48) 2018; 100 Kobayashi (ref_14) 2013; 41 Geiger (ref_40) 2014; 43 Lim (ref_10) 2004; 16 Idiyatullin (ref_34) 2006; 181 Williams (ref_25) 2012; 20 Ganiyusufoglu (ref_18) 2010; 65 ref_46 Zhou (ref_58) 2004; 13 Jackson (ref_12) 1981; 9 Chen (ref_45) 2022; 88 Lakshmanaprabu (ref_68) 2019; Volume 92 ref_41 Jenkinson (ref_55) 2001; 5 Rahmer (ref_31) 2006; 55 Ulmer (ref_22) 1997; 169 Weiger (ref_32) 2011; 66 Springer (ref_26) 2011; 46 Rush (ref_24) 2015; 35 |
References_xml | – volume: 38 start-page: 2708 year: 2011 ident: ref_52 article-title: CT substitute derived from MRI sequences with ultrashort echo time publication-title: Med. Phys. doi: 10.1118/1.3578928 – volume: 117 start-page: 23 year: 1976 ident: ref_1 article-title: Classification of spondylolisis and spondylolisthesis publication-title: Clin. Orthop. Relat. Res. – ident: ref_56 doi: 10.1007/978-3-319-24574-4_28 – volume: 33 start-page: 282 year: 2013 ident: ref_15 article-title: Imaging modalities for low back pain in children: A review of spondyloysis and undiagnosed mechanical back pain publication-title: J. Pediatr. Orthop. doi: 10.1097/BPO.0b013e318287fffb – volume: 60 start-page: 135 year: 2008 ident: ref_33 article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21620 – volume: 88 start-page: 2285 year: 2022 ident: ref_45 article-title: Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HiPCB) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29356 – volume: 40 start-page: 940 year: 2006 ident: ref_13 article-title: Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis publication-title: Br. J. Sports Med. doi: 10.1136/bjsm.2006.030023 – ident: ref_61 doi: 10.1088/1361-6560/abc5cb – volume: 2 start-page: 35 year: 2014 ident: ref_36 article-title: UTE MRI of the Osteochondral Junction publication-title: Curr. Radiol. Rep. doi: 10.1007/s40134-013-0035-7 – volume: 6 start-page: 62 year: 2007 ident: ref_11 article-title: Current concepts in the diagnosis and treatment of spondylolysis in young athletes publication-title: Curr. Sports Med. Rep. – ident: ref_46 doi: 10.3390/cancers13051082 – volume: 27 start-page: 848 year: 2012 ident: ref_37 article-title: Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties publication-title: J. Bone Min. Res. doi: 10.1002/jbmr.1535 – volume: 105 start-page: 1137 year: 2019 ident: ref_53 article-title: Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2019.08.049 – volume: 149 start-page: 15 year: 1995 ident: ref_4 article-title: Back pain in young athletes: Significant differences from adults in causes and patterns publication-title: Arch. Pediatr. Adolesc. Med. doi: 10.1001/archpedi.1995.02170130017004 – volume: 41 start-page: 011704 year: 2014 ident: ref_51 article-title: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer publication-title: Med. Phys. doi: 10.1118/1.4842575 – volume: Volume 92 start-page: 374 year: 2019 ident: ref_68 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.10.009 – volume: 52 start-page: 140 year: 2021 ident: ref_6 article-title: Immediate functional progression program in adolescent athletes with a spondylolysis publication-title: Phys. Ther. Sport doi: 10.1016/j.ptsp.2021.08.009 – volume: 181 start-page: 342 year: 2006 ident: ref_34 article-title: Fast and quiet MRI using a swept radiofrequency publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2006.05.014 – volume: 82 start-page: 606 year: 1992 ident: ref_5 article-title: The epidemiology of low back pain in an adolescent population publication-title: Am. J. Public Health doi: 10.2105/AJPH.82.4.606 – volume: 27 start-page: 825 year: 2003 ident: ref_28 article-title: Magnetic resonance: An introduction to ultrashort TE (UTE) imaging publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-200311000-00001 – volume: 91 start-page: 215 year: 2020 ident: ref_54 article-title: Deep learning in fracture detection: A narrative review publication-title: Acta Orthop. doi: 10.1080/17453674.2019.1711323 – volume: 70 start-page: 177 year: 1998 ident: ref_57 article-title: Perceptual quality metrics applied to still image compression publication-title: Signal Process. doi: 10.1016/S0165-1684(98)00124-8 – volume: 13 start-page: 600 year: 2004 ident: ref_58 article-title: Image Quality Assessment: From Error Visibility to Structural Similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_41 doi: 10.1088/1361-6560/ac4123 – volume: 37 start-page: 443 year: 2008 ident: ref_23 article-title: Radiological findings and healing patterns of incomplete stress fractures of the pars interarticularis publication-title: Skelet. Radiol. doi: 10.1007/s00256-008-0449-0 – volume: 46 start-page: 3565 year: 2019 ident: ref_66 article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks publication-title: Med. Phys. doi: 10.1002/mp.13617 – volume: 6 start-page: 237 year: 2012 ident: ref_21 article-title: Spondylolysis is frequently missed by MRI in adolescents with back pain publication-title: J. Child. Orthop. doi: 10.1007/s11832-012-0409-z – volume: 62 start-page: 4237 year: 2017 ident: ref_44 article-title: Iterative framework for the joint segmentation and CT synthesis of MR images: Application to MRI-only radiotherapy treatment planning publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa66bf – volume: 65 start-page: 902 year: 2010 ident: ref_18 article-title: Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine publication-title: Clin. Radiol. doi: 10.1016/j.crad.2010.06.011 – volume: 169 start-page: 233 year: 1997 ident: ref_22 article-title: MR imaging of lumbar spondylolysis: The importance of ancillary observations publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.169.1.9207531 – volume: 41 start-page: 169 year: 2013 ident: ref_14 article-title: Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging publication-title: Am. J. Sports Med. doi: 10.1177/0363546512464946 – volume: 58 start-page: 671 year: 2019 ident: ref_16 article-title: Diagnostic Accuracy of Magnetic Resonance Imaging and Computed Tomography Scan in Young Athletes With Spondylolysis publication-title: Clin Pediatr. doi: 10.1177/0009922819832643 – volume: 28 start-page: 57 year: 2000 ident: ref_7 article-title: The prevalence of spondylolysis in the Spanish elite athlete publication-title: Am. J. Sports Med. doi: 10.1177/03635465000280012101 – volume: 43 start-page: 19 year: 2014 ident: ref_40 article-title: Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (muCT) evaluation of the temporomandibular joint (TMJ) condylar morphology publication-title: Skelet. Radiol. doi: 10.1007/s00256-013-1738-9 – volume: 54 start-page: 32 year: 2019 ident: ref_27 article-title: Ultrashort Time-to-Echo Magnetic Resonance Imaging at 3 T for the Detection of Spondylolysis in Cadaveric Spines: Comparison With CT publication-title: Investig. Radiol. doi: 10.1097/RLI.0000000000000506 – volume: 51 start-page: 1585 year: 2022 ident: ref_38 article-title: CT-like MRI: A qualitative assessment of ZTE sequences for knee osseous abnormalities publication-title: Skelet. Radiol. doi: 10.1007/s00256-021-03987-2 – volume: 46 start-page: 610 year: 2011 ident: ref_26 article-title: Rapid assessment of longitudinal relaxation time in materials and tissues with extremely fast signal decay using UTE sequences and the variable flip angle method publication-title: Investig. Radiol. doi: 10.1097/RLI.0b013e31821c44cd – ident: ref_59 – volume: 55 start-page: 1075 year: 2006 ident: ref_31 article-title: Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20868 – volume: 5 start-page: 143 year: 2001 ident: ref_55 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 80 start-page: 1440 year: 2018 ident: ref_43 article-title: Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27134 – ident: ref_62 doi: 10.1155/2020/5193707 – volume: 17 start-page: S29 year: 1982 ident: ref_3 article-title: The Pathogenesis of Spondylolysis publication-title: Investig. Radiol. doi: 10.1097/00004424-198207000-00141 – volume: 21 start-page: 77 year: 2012 ident: ref_35 article-title: Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC) publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.09.009 – volume: 47 start-page: 31 year: 2018 ident: ref_63 article-title: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.03.011 – volume: 93 start-page: 1144 year: 2015 ident: ref_49 article-title: Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2015.08.045 – volume: 45 start-page: 3627 year: 2018 ident: ref_64 article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks publication-title: Med. Phys. doi: 10.1002/mp.13047 – volume: 39 start-page: 4249 year: 2020 ident: ref_67 article-title: Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3015379 – volume: 2 start-page: 303 year: 2002 ident: ref_8 article-title: Lumbar isthmic defects in teenagers resulting from stress fractures publication-title: Spine J. doi: 10.1016/S1529-9430(02)00200-0 – volume: 9 start-page: 304 year: 1981 ident: ref_12 article-title: Stress reactions involving the pars interarticularis in young athletes publication-title: Am. J. Sports Med. doi: 10.1177/036354658100900504 – ident: ref_60 doi: 10.1155/2022/3125426 – ident: ref_65 doi: 10.3390/s19102361 – volume: 57 start-page: 554 year: 2007 ident: ref_30 article-title: Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21174 – volume: 35 start-page: 271 year: 2015 ident: ref_24 article-title: Use of magnetic resonance imaging in the evaluation of spondylolysis publication-title: J. Pediatr. Orthop. doi: 10.1097/BPO.0000000000000244 – volume: 344 start-page: 363 year: 2001 ident: ref_9 article-title: Low back pain publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200102013440508 – volume: 52 start-page: 1461 year: 2005 ident: ref_19 article-title: ADAMTS-1-knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo publication-title: Arthritis Rheum. doi: 10.1002/art.21022 – volume: 42 start-page: 1596 year: 2015 ident: ref_47 article-title: Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain publication-title: Med. Phys. doi: 10.1118/1.4914158 – volume: 60 start-page: 825 year: 2015 ident: ref_50 article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/2/825 – volume: 66 start-page: 699 year: 1984 ident: ref_2 article-title: The natural history of spondylolysis and spondylolisthesis publication-title: J. Bone Jt. Surg. Am. doi: 10.2106/00004623-198466050-00008 – volume: 27 start-page: 1058 year: 2018 ident: ref_20 article-title: Diagnostic accuracy of MR imaging for direct visualization of lumbar pars defect in children and young adults: A systematic review and meta-analysis publication-title: Eur. Spine J. doi: 10.1007/s00586-017-5305-2 – volume: 100 start-page: 199 year: 2018 ident: ref_48 article-title: Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2017.08.043 – volume: 16 start-page: 37 year: 2004 ident: ref_10 article-title: Symptomatic spondylolysis: Diagnosis and treatment publication-title: Curr. Opin. Pediatr. doi: 10.1097/00008480-200402000-00008 – volume: 2022 start-page: 2071 year: 2022 ident: ref_42 article-title: Grad-CAM Guided U-Net for MRI-based Pseudo-CT Synthesis publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 75 start-page: 764 year: 1993 ident: ref_17 article-title: Early diagnosis of lumbar spondylolysis by MRI publication-title: J. Bone Jt. Surg. Br. doi: 10.1302/0301-620X.75B5.8376435 – volume: 20 start-page: 486 year: 2012 ident: ref_25 article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2012.01.009 – volume: 21 start-page: 59 year: 2008 ident: ref_29 article-title: In vivo MRI of submillisecond T(2) species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water publication-title: NMR Biomed. doi: 10.1002/nbm.1179 – volume: 66 start-page: 379 year: 2011 ident: ref_32 article-title: MRI with zero echo time: Hard versus sweep pulse excitation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22799 – ident: ref_39 doi: 10.1007/s00256-022-04269-1 |
SSID | ssj0023338 |
Score | 2.4311917 |
Snippet | Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8001 |
SubjectTerms | Adolescent Backache bone fracture Comparative analysis CT imaging Deep Learning Defects Equipment and supplies Fractures Fractures, Bone Humans image processing image regression low back pain lumbar spine Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging equipment Morphology pars Radiation therapy Registration Reproductive organs Spondylolysis - diagnostic imaging Teaching Tomography Tomography, X-Ray Computed - methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnMoB9QE07bZyq0pwsVhiO06O27IrWoleykrcLL8CCJpddZf_35nEG20EEpde48nD43l9keczwFfnbaBExAt36risg-Sl1ZbnRVC5dpiAIzUKX_wqzufy55W62jrqi_aEdfTAneJOnIjEgh58qbzMpXbaqtwXlfDKSifbNl_MeRswlaCWQOTV8QgJBPUnK6xi0FDTyS-b7NOS9D8OxVu5aLhPcivxzF7BXqoY2aT70tfwIjZvYHeLR_At3J3FuOSJKvWaT25DDGza83izRc1-LxdNQHDeMpCwH38wjARGP2HZ_B7furrBMpxNMRYyagphF_a6ofZGRr_3iZMjtvfg0_dhPptefj_n6RQF7pXQax60dWWFKqpkLYW24VRINbay1mMZiM0Ho7WrbeGrGC2iH1t7Ma5RwyGi5l0pDmCnWTTxHTCN5Z6solJaImwRvhQFkdlUXgfhfW4zON5o1_hEMU4nXdwbhBq0EKZfiAy-9KLLjlfjKaFvtES9AFFhtxfQQEwyEPOcgWRwRAtsyGHxY7xNfQc4JaK-MhON6Zm6JUUGo4EkOpofDm9MxCRHX5m8LDCE5VinZfC5H6Y7afNaExcPJKMJt2JpmMFhZ1H9lITWBSJKlUE5sLXBnIcjze1NSwOOlbEosdx-_z-09AFe5ug23e65Eeys_z7Ej1hurd2n1rP-AYsJKBs priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5V5QIHBOXlUtCCkOBiSPfhtQ8IpZCqIIULROpttS-nVVM7JKkE_54Z27FiUXH1ju3dnZmd-eydbwHeOG8DBaI0c8culWWQaW61TXkWFNcOA3CkQuHp9-xsJr-dq_M92J6x2U3g-lZoR-dJzVaL979__fmEDv-RECdC9g9rzFHQDKmK6w4GJE3-OZX9zwQuEIa1pEJD8UEoahj7_12XdwLTcNPkThQ6fQD3u_SRjVt9P4S9WB3AvR1SwUdw9SXGZdrxps7T8WWIgU16Um9Wl-zHsq4CIvWGjoR9vcY1JTD6IstmC3zr-gKng01wbhhViLCpnVdU68joWz8RdMTmHnz6Y5idTn5-Pku7IxVSr4TepEFblxeYIxSylELbcCykGllZ6pEMRO2DS7crbeaLGC1CIVt6MSp9VoQYR9Ll4gnsV3UVnwHTmPvJIiqlJWIY4XOREbNN4XUQ3nObwLvt7Brf8Y3TsRcLg7iDFGF6RSTwuhddtiQbtwmdkIp6AeLFbi7Uq7np3Mw4EYkzP_hcecmldtoqjt0XXlnpZJ7AW1KwIXvCznjbFSHgkIgHy4w1xmoqnRQJHA0k0ev8sHlrImZrtIbnGa5nHJO2BF71zXQn7WSrYn1DMppALOaJCTxtLaofktA6Q3ipEsgHtjYY87ClurxoOMExTRY55t6H_-_Xc7jL0SHaTXJHsL9Z3cQXmFVt3MvGZ_4CsmQhPg priority: 102 providerName: Scholars Portal |
Title | Deep-Learning-Aided Evaluation of Spondylolysis Imaged with Ultrashort Echo Time Magnetic Resonance Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37766055 https://www.proquest.com/docview/2869632710 https://www.proquest.com/docview/2870144389 https://pubmed.ncbi.nlm.nih.gov/PMC10538057 https://doaj.org/article/b3e0479dc85c4247b7a52c693c5a4b48 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-C7QIHxDcZozIICS7RutiOnRPqoGUgdUJApd4if6WbGEm3dv8_76Vu1gjEJYf6JbH7vl-efwZ4a53x5IjS3B7bVFRepNook2a5l5my6IADbRSenuWnM_F1Luex4LaKbZVbm9gaat84qpEfZTpHWcnQIX5YXqV0ahR9XY1HaNyFfYIuo5YuNb9NuDjmXxs0IY6p_dEKYxkU13j-y9YHtVD9fxvkHY_U75bccT-Th_Agxo1stGH0I7gT6sdwfwdN8An8-hTCMo2AqYt0dOGDZ-MOzZs1FfuxbGqPKXqLQ8K-_EZj4hmVYtnsEt-6OsdgnI3RIjLaGsKmZlHTJkdGRX5C5gjtPfj0pzCbjH9-PE3jWQqpk1ytU6-M1QUGB4WoBFfGH3Mhh0ZUaig8YfqgzbaVyV0RgsEcyFSODyuXFz6EobCaP4O9uqnDC2AKgz5RBCmVwOSFO81zgrQpnPLcucwk8H7775YuAo3TeReXJSYcxIiyY0QCbzrS5QZd419EJ8SijoAAsdsfmutFGfWrtDwQWL53WjqRCWWVkRlOnztphBU6gXfE4JLUFifjTNx9gEsiAKxypNBJ055JnsBhjxLVzfWHtyJSRnVflbfCmcDrbpjupBa2OjQ3RKMoe8UAMYHnG4nqlsSVyjGvlAnonqz11twfqS_OWzBwjI-5xqD74P_zegn3MlSITXfcIeytr2_CKwyn1nbQ6gxe9eTzAPZPxmffvg_a0gRep0L_AV2dJC8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq61177QNCgaZKaNMLjdSbuy-nFcEOTSrUP8VvZMavxgJx69U7tnc97_XONwBvtVGWHJEf6x3ti9wKP1FS-WFso1BqdMCOCoUnh_FoKr4eR8cb8LuthaFjla1NrAy1LQ3tkW-HSYyyEqJD_LT46VPXKPq72rbQqMVi313-wpRt-XG8i_x9F4Z7w6MvI7_pKuCbiMuVb6XSSYpuMhW54FLZHS6iQIlcBsISug1aL52r2KTOKcwGVG54kJs4tc4FQiccn3sDbqLjDUij5PFVgscx36vRizhPg-0lxk6oHk2_mdbnVa0B_nYAax6wfzpzzd3t3YO7TZzKBrVg3YcNVzyAO2vohQ_h-65zC78BaJ35gzPrLBt26OGszNm3RVnYy3lZ4Z6w8Q80XpbR1i-bzvGty1MM_tkQLTCjUhQ2UbOCiioZ_VQgJBBX3YNPfwTTa_nKj2GzKAv3FJjEIFOkLoqkwGSJm4THBKGTGmm5MaHy4EP7dTPTAJtTf415hgkOMSLrGOHBm450UaN5_IvoM7GoIyAA7upCeT7LGn3ONHcEzm9NEhkRCqmlikKcPjeRElokHrwnBmdkJnAyRjXVDrgkAtzKBhKDAqrR5B5s9ShRvU1_uBWRrDEvy-xKGTx43Q3TnXRkrnDlBdFIypYxIPXgSS1R3ZK4lDHmsZEHSU_WemvujxRnpxX4OMbjPMEg_9n_5_UKbo2OJgfZwfhw_zncDlE56pN5W7C5Or9wLzCUW-mXlf4wOLluhf0D-pJdsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBBcriXfttQ8IBZKoobRCgki5mX05rQh2aFKh_jV-HTN-NRaIW6_ZsbPredsz3wC81EZZckR-pAfaF5kVfqyk8oPIhoHU6IAdNQofHkX7M_FxHs534HfTC0NllY1NLA21LQy9I-8FcYSyEqBD7GV1WcTn0eTd6qdPE6ToS2szTqMSkQN3_gvTt_Xb6Qh5_SoIJuOvH_b9esKAb0IuN76VSscJusxEZIJLZQdchH0lMtkXlpBu0JLpTEUmcU5hZqAyw_uZiRLrXF_omON9r8BVycMB6ZicXyR7HHO_CsmI86TfW2MchapSz55p_F85JuBvZ7DlDbuVmluub3ILbtYxKxtWQnYbdlx-B25sIRnehe8j51Z-Dda68Icn1lk2bpHEWZGxL6sit-fLosRAYdMfaMgso9fAbLbEf10fYyLAxmiNGbWlsEO1yKnBktEHBkIFceU1ePd7MLuUp3wfdvMidw-BSQw4ReLCUApMnLiJeURwOomRlhsTKA_eNE83NTXIOc3aWKaY7BAj0pYRHrxoSVcVsse_iN4Ti1oCAuMufyhOF2mt26nmjoD6rYlDIwIhtVRhgNvnJlRCi9iD18TglEwGbsaouvMBj0TgW-lQYoBA_Zrcg70OJaq66S43IpLWpmadXiiGB8_bZbqSyudyV5wRjaTMGYNTDx5UEtUeiUsZYU4behB3ZK1z5u5KfnJcApFjbM5jDPgf_X9fz-Aaqmr6aXp08BiuB6gbVZHeHuxuTs_cE4zqNvppqT4Mvl22vv4BMDVh5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Aided+Evaluation+of+Spondylolysis+Imaged+with+Ultrashort+Echo+Time+Magnetic+Resonance+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Achar%2C+Suraj&rft.au=Hwang%2C+Dosik&rft.au=Finkenstaedt%2C+Tim&rft.au=Malis%2C+Vadim&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=18&rft.spage=8001&rft_id=info:doi/10.3390%2Fs23188001&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |