Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties
[Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and...
Saved in:
Published in | Ultrasonics sonochemistry Vol. 79; p. 105800 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and easy to operate without any chemical procedures.•Mechanism of ultrasonic effects on protein differents properties are revealed.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. |
---|---|
AbstractList | •
A novel ultrasound technique to fabricate flexible protein materials.
•
Protein structure and properties can be tuned by varying ultrasound power and time.
•
Biological responses can be controlled by ultrasound-generated protein materials.
•
Ultrasound technique is a high efficient and easy to operate without any chemical procedures.
•
Mechanism of ultrasonic effects on protein differents properties are revealed.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl
2
solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular
β
-sheets and
α
-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. [Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and easy to operate without any chemical procedures.•Mechanism of ultrasonic effects on protein differents properties are revealed. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials. |
ArticleNumber | 105800 |
Author | Printon, Kyle Cai, Bowen Wang, Fang Gu, Zhenggui Gu, Hanling Hu, Xiao |
Author_xml | – sequence: 1 givenname: Bowen surname: Cai fullname: Cai, Bowen organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China – sequence: 2 givenname: Hanling surname: Gu fullname: Gu, Hanling organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China – sequence: 3 givenname: Fang surname: Wang fullname: Wang, Fang email: wangfang@njnu.edu.cn organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China – sequence: 4 givenname: Kyle surname: Printon fullname: Printon, Kyle organization: Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA – sequence: 5 givenname: Zhenggui surname: Gu fullname: Gu, Zhenggui organization: School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China – sequence: 6 givenname: Xiao surname: Hu fullname: Hu, Xiao email: hu@rowan.edu organization: Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34673337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URD_gL1Q5ciCLP-LYQQiBqrZUqsSFni3Hnuw68saL7VT03-Ntuohy6cnjmXeesWfmFB1NYQKEzgleEUzaj-Nq9jmFyWxWFFNSnFxi_AqdEClYTSWVR8VmHNcNEeIYnaY0YoxZR_EbdMyaVjDGxAka73yOOoV5slWE9ex1BlsNHn673kO1iyGDm6ptcUenffpUXek-OqOzC9OHKuU4mzxHqHQB7DYPqYR83bvgw3pv7gk7iNlBeoteD4UA757OM3R3dfnz4nt9--P65uLbbW04E7k2uhMwNJYC6fFATFe-10hjuLCD5sJYjMuV9bRlkljR855IXBSWGK0tEewM3SxcG_SodtFtdXxQQTv16AhxrXR5kPGggOqubS2Xkg7NwIksNqOEQ0cMMbgprC8Lazf3W7AGptIt_wz6PDK5jVqHeyV5i1vaFcD7J0AMv2ZIWW1dMuC9niDMSVEum4Y1jZRFev5vrb9FDsMqgs-LwMSQUoRBGZcfB1FKO68IVvvdUKM67Iba74ZadqOkt_-lHyq8mPh1SYQytXsHUSXjYDJgXQSTS1vdS4g_NBja3g |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_119856 crossref_primary_10_1016_j_ijbiomac_2022_04_055 crossref_primary_10_1088_1758_5090_ad9409 crossref_primary_10_1007_s10924_024_03221_9 crossref_primary_10_1007_s10311_024_01743_1 crossref_primary_10_1016_j_ultsonch_2024_107018 crossref_primary_10_1021_acs_biomac_2c01124 crossref_primary_10_1016_j_bcab_2024_103241 crossref_primary_10_1016_j_foodhyd_2022_108190 crossref_primary_10_1016_j_ijbiomac_2024_135686 crossref_primary_10_1021_acs_jafc_3c05645 crossref_primary_10_1016_j_ijbiomac_2025_139554 crossref_primary_10_1002_SMMD_20220011 crossref_primary_10_1016_j_procbio_2023_04_001 crossref_primary_10_1186_s44316_024_00023_w crossref_primary_10_1016_j_crfs_2023_100556 crossref_primary_10_1360_SSC_2021_0234 crossref_primary_10_1016_j_ultsonch_2023_106341 crossref_primary_10_1016_j_matdes_2022_111053 crossref_primary_10_1016_j_actbio_2022_09_069 crossref_primary_10_1016_j_molstruc_2023_135255 crossref_primary_10_1016_j_cis_2023_102950 crossref_primary_10_1016_j_jcis_2022_11_003 crossref_primary_10_1016_j_ijbiomac_2025_142364 |
Cites_doi | 10.1016/j.ultsonch.2017.09.045 10.1016/j.ultsonch.2009.08.008 10.1021/bm100643q 10.1021/acsbiomaterials.1c00181 10.1016/j.msec.2019.109890 10.1016/j.progpolymsci.2010.04.005 10.1016/j.carbpol.2015.06.027 10.1016/j.polymer.2010.10.046 10.1134/S1070427218070194 10.1080/14786440808635681 10.1007/s10973-017-6388-z 10.1002/recl.19941131202 10.3866/PKU.WHXB201611023 10.1016/j.biomaterials.2007.11.003 10.1016/j.msec.2014.12.028 10.1007/s10876-019-01651-3 10.1021/mp3001827 10.3390/polym11122045 10.1002/mame.201200377 10.1002/mame.201900364 10.1016/j.ultsonch.2019.03.018 10.1021/ma802565p 10.1021/acsabm.0c00231 10.3390/ma14030674 10.1016/j.progpolymsci.2015.02.001 10.3390/ijms19113309 10.1016/j.ultsonch.2020.105063 10.3390/ijms17091497 10.1038/nature25476 10.1017/S0033583502003815 10.1088/2053-1591/3/5/055401 10.1007/s10973-015-4736-4 10.1021/bm200062a 10.1038/s41598-020-74254-y 10.1016/j.ultsonch.2021.105653 10.1016/j.biomaterials.2003.10.084 10.1016/j.ultsonch.2016.03.017 10.1016/S0142-9612(02)00084-4 10.1039/D0TB02099K 10.3390/polym11101622 10.1002/bip.22026 10.1002/bip.20905 10.1016/S0142-9612(03)00135-2 10.1073/pnas.1502870112 10.1016/j.actbio.2017.04.001 10.1109/ICBBE.2010.5515644 10.1111/j.1538-7836.2010.03745.x 10.1039/C4TB01873G 10.1021/ma0610109 10.1016/S0142-9612(02)00353-8 10.1016/j.carbpol.2020.116835 10.1007/s10973-019-08420-4 10.1021/acsbiomaterials.9b00577 10.1021/am508319h 10.1016/j.ijbiomac.2019.12.219 10.1039/C4SM01172D 10.1016/j.ijheatmasstransfer.2018.09.104 10.1016/j.msec.2012.02.015 10.1016/j.matdes.2013.02.006 10.1021/acsabm.0c01157 10.1016/j.actbio.2016.04.008 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.ultsonch.2021.105800 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-2828 |
ExternalDocumentID | oai_doaj_org_article_e2a966d5882f4f5186d53215e91c1c04 PMC8560629 34673337 10_1016_j_ultsonch_2021_105800 S1350417721003424 |
Genre | Journal Article |
GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFPKN AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HMV HVGLF HZ~ IHE J1W KOM M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPM RPZ SCB SDF SDG SES SEW SPC SPD SPG SSK SSQ SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c537t-ca97ef4d2e1b0f1c902148cc57dfa57cd0048c3b26381d7b5b180148d1caad173 |
IEDL.DBID | .~1 |
ISSN | 1350-4177 1873-2828 |
IngestDate | Wed Aug 27 01:27:02 EDT 2025 Thu Aug 21 18:01:15 EDT 2025 Fri Jul 11 14:59:29 EDT 2025 Mon Jul 21 06:05:34 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Tue Jul 01 03:33:10 EDT 2025 Fri Feb 23 02:41:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural transformation Silk Beta sheet Biological property Ultrasonic treatment Insolubility |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-ca97ef4d2e1b0f1c902148cc57dfa57cd0048c3b26381d7b5b180148d1caad173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1350417721003424 |
PMID | 34673337 |
PQID | 2584434488 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2a966d5882f4f5186d53215e91c1c04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560629 proquest_miscellaneous_2584434488 pubmed_primary_34673337 crossref_citationtrail_10_1016_j_ultsonch_2021_105800 crossref_primary_10_1016_j_ultsonch_2021_105800 elsevier_sciencedirect_doi_10_1016_j_ultsonch_2021_105800 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ultrasonics sonochemistry |
PublicationTitleAlternate | Ultrason Sonochem |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Su, Cavaco-Paulo (b0120) 2021; 76 Wang, Wu, Venkataraman, Hu (b0295) 2019; 104 Koh, Cheng, Teng, Khin, Loh, Tee, Low, Ye, Yu, Zhang, Han (b0050) 2015; 46 Wang, Yu, Liu, Ma, Gu (b0285) 2017; 33 Mokhothu, John (b0010) 2015; 131 Li, Li, Zhong, Zhai, Li (b0140) 2019; 129 Zhang, You, Dou, Liu, Zuo, Zhang (b0065) 2015; 7 Sivashankari, Prabaharan (b0290) 2020; 146 Wang, Yu, Gu, Si, Liu, Hu (b0160) 2017; 130 Pan, Hurren, Li (b0090) 2018; 41 Wang, Kluge, Leisk, Kaplan (b0260) 2008; 29 Lu, Li, Zhang, Yin, Xing, Kaplan (b0185) 2015; 3 Wang, Chen, Zhang (b0205) 2015; 48 Wang, Guan, Hawkins, Porter, Shao (b0015) 2014; 10 F. Zhang, J.N. Wang, B.Q. Zuo, Effect of Aqueous Ethanol Treatment on the Electrospun SF Nanofiber Mats, C. Bioinformatics and Biomedical Engineering (iCBBE) 2010 4th International Conference on 2010 1-4. Cass, Knower, Pereeia, Holmes, Hughes (b0095) 2010; 17 Li, Wu, Huang, Shao, Hu (b0070) 2008; 89 Li, Wang, Zheng, Guo (b0115) 2020; 65 Hardy, Scheibel (b0005) 2010; 35 Neubauer, Döbl, Scheibel (b0030) 2021; 14 Wu, Shen, Hong, Chang, Winet (b0195) 2003; 24 Jiang, Liu, Zhao, Tao, Hu, Lu (b0310) 2020; 3 Wang, Wolf, Rocks, Vuong, Hu (b0165) 2015; 122 Yuan, Yao, Huang, Chen, Shao (b0245) 2010; 51 G. Carissimi A.A. Lozano-Pérez M.G. Montalbán S.D. Aznar-Cervantes J.L. Cenis G. Víllora Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles J. Polymers 11 12 (2019) 2045. 2045 10.3390/polym11122045. He, Bian, Piao (b0130) 2020; 249 Rayleigh, VIII. (b0155) 1917; 34 Zhang, Xiao, Ding, Lu, Kaplan (b0060) 2021; 7 Mohamadi Saani, Abdolalizadeh, Zeinali Heris (b0100) 2019; 55 Dong, Sun, Wang (b0300) 2004; 25 Zhang, Pan (b0180) 2019; 11 Liu, Wang, Gu, Ma, Hu (b0040) 2018; 19 Mi, Lin, Wu, Shyu, Tsai (b0270) 2002; 23 Kadakia, Jain, Hixon, Eberlin, Sell (b0220) 2016; 3 Vu, Xue, Vuong, Erbe, Bennet, Palazzo, Popielski, Rodriguez, Hu (b0225) 2016; 17 Zhang, Zheng, Liang, Gao (b0305) 2016; 37 Cebe, Partlow, Kaplan, Wurm, Zhuravlev, Schick (b0035) 2017; 55 Barth, Zscherp (b0170) 2002; 35 Wong, Chan, Jeevanandam, Pal, Bechelany, Abd Elkodous, El-Sayyad (b0085) 2020; 31 Baran, Tuzlakoğlu, Mano, Reis (b0275) 2012; 32 Samal, Kaplan, Chiellini (b0215) 2013; 298 Rokita, Rosiak, Ulanski (b0075) 2009; 42 Zhang, Rajkhowa, Li, Liu, Wang (b0175) 2013; 49 Akpomie, Conradie (b0105) 2020; 10 Pritchard, Dennis, Omenetto, Naik, Kaplan (b0045) 2012; 97 Hu, Shmelev, Sun, Gil, Park, Cebe, Kaplan (b0055) 2011; 12 Yin, Chen, Porter, Shao (b0250) 2010; 11 Xue, Wang, Torculas, Lofland, Hu (b0020) 2019; 5 Liu, Carlisle, Sparks, Guthold (b0255) 2010; 8 Silva, Ferreira, Azoia, Shimanovich, Freddi, Gedanken, Cavaco-Paulo (b0125) 2012; 9 Leong, Martin, Ashokkumar (b0150) 2017; 35 Wang, Cheng, Liu, Zhao, Li (b0210) 2011; 175–176 Zhu, Zhu, Jia, Parvinian, Li, Vaaland, Hu, Li (b0240) 2015; 112 Wang, Rather, Gong, Zhou, Zhang, Li (b0265) 2019; 304 Altman, Diaz, Jakuba, Calabro, Horan, Chen, Lu, Richmond, Kaplan (b0025) 2003; 24 Pestman, Engberts, Jong (b0145) 1994; 113 Liu, Yang, Ma (b0230) 2020; 139 Hu, Kaplan, Cebe (b0135) 2006; 39 Zheng, Zuo (b0200) 2021; 9 Song, Chen, Zhu, Zhu, Dai, Ray, Li, Kuang, Li, Quispe, Yao, Gong, Leiste, Bruck, Zhu, Vellore, Li, Minus, Jia, Martini, Li, Hu (b0235) 2018; 554 Wang, Liu, Li, Li, Ma, Zhang, Hu (b0280) 2020; 3 Susanin, Sashina, Zakharov, Zaborski, Kashirskii (b0110) 2018; 91 Barth (10.1016/j.ultsonch.2021.105800_b0170) 2002; 35 Wang (10.1016/j.ultsonch.2021.105800_b0160) 2017; 130 Liu (10.1016/j.ultsonch.2021.105800_b0255) 2010; 8 Koh (10.1016/j.ultsonch.2021.105800_b0050) 2015; 46 Wang (10.1016/j.ultsonch.2021.105800_b0280) 2020; 3 Neubauer (10.1016/j.ultsonch.2021.105800_b0030) 2021; 14 Zhang (10.1016/j.ultsonch.2021.105800_b0180) 2019; 11 Wang (10.1016/j.ultsonch.2021.105800_b0165) 2015; 122 Wang (10.1016/j.ultsonch.2021.105800_b0285) 2017; 33 Susanin (10.1016/j.ultsonch.2021.105800_b0110) 2018; 91 Sivashankari (10.1016/j.ultsonch.2021.105800_b0290) 2020; 146 Li (10.1016/j.ultsonch.2021.105800_b0070) 2008; 89 Hu (10.1016/j.ultsonch.2021.105800_b0055) 2011; 12 Su (10.1016/j.ultsonch.2021.105800_b0120) 2021; 76 Wang (10.1016/j.ultsonch.2021.105800_b0015) 2014; 10 Song (10.1016/j.ultsonch.2021.105800_b0235) 2018; 554 Zhang (10.1016/j.ultsonch.2021.105800_b0060) 2021; 7 Li (10.1016/j.ultsonch.2021.105800_b0115) 2020; 65 Zhang (10.1016/j.ultsonch.2021.105800_b0065) 2015; 7 He (10.1016/j.ultsonch.2021.105800_b0130) 2020; 249 Wong (10.1016/j.ultsonch.2021.105800_b0085) 2020; 31 Yuan (10.1016/j.ultsonch.2021.105800_b0245) 2010; 51 Silva (10.1016/j.ultsonch.2021.105800_b0125) 2012; 9 Mokhothu (10.1016/j.ultsonch.2021.105800_b0010) 2015; 131 Zhu (10.1016/j.ultsonch.2021.105800_b0240) 2015; 112 Rayleigh (10.1016/j.ultsonch.2021.105800_b0155) 1917; 34 Pan (10.1016/j.ultsonch.2021.105800_b0090) 2018; 41 Liu (10.1016/j.ultsonch.2021.105800_b0230) 2020; 139 Rokita (10.1016/j.ultsonch.2021.105800_b0075) 2009; 42 Cebe (10.1016/j.ultsonch.2021.105800_b0035) 2017; 55 Zhang (10.1016/j.ultsonch.2021.105800_b0305) 2016; 37 Wang (10.1016/j.ultsonch.2021.105800_b0260) 2008; 29 Zhang (10.1016/j.ultsonch.2021.105800_b0175) 2013; 49 Akpomie (10.1016/j.ultsonch.2021.105800_b0105) 2020; 10 Samal (10.1016/j.ultsonch.2021.105800_b0215) 2013; 298 Wu (10.1016/j.ultsonch.2021.105800_b0195) 2003; 24 Li (10.1016/j.ultsonch.2021.105800_b0140) 2019; 129 Zheng (10.1016/j.ultsonch.2021.105800_b0200) 2021; 9 Dong (10.1016/j.ultsonch.2021.105800_b0300) 2004; 25 Jiang (10.1016/j.ultsonch.2021.105800_b0310) 2020; 3 10.1016/j.ultsonch.2021.105800_b0080 Wang (10.1016/j.ultsonch.2021.105800_b0205) 2015; 48 Yin (10.1016/j.ultsonch.2021.105800_b0250) 2010; 11 Cass (10.1016/j.ultsonch.2021.105800_b0095) 2010; 17 Hardy (10.1016/j.ultsonch.2021.105800_b0005) 2010; 35 Leong (10.1016/j.ultsonch.2021.105800_b0150) 2017; 35 Pritchard (10.1016/j.ultsonch.2021.105800_b0045) 2012; 97 Wang (10.1016/j.ultsonch.2021.105800_b0265) 2019; 304 Wang (10.1016/j.ultsonch.2021.105800_b0295) 2019; 104 Lu (10.1016/j.ultsonch.2021.105800_b0185) 2015; 3 Kadakia (10.1016/j.ultsonch.2021.105800_b0220) 2016; 3 Mi (10.1016/j.ultsonch.2021.105800_b0270) 2002; 23 Pestman (10.1016/j.ultsonch.2021.105800_b0145) 1994; 113 Wang (10.1016/j.ultsonch.2021.105800_b0210) 2011; 175–176 Altman (10.1016/j.ultsonch.2021.105800_b0025) 2003; 24 Mohamadi Saani (10.1016/j.ultsonch.2021.105800_b0100) 2019; 55 Liu (10.1016/j.ultsonch.2021.105800_b0040) 2018; 19 10.1016/j.ultsonch.2021.105800_b0190 Xue (10.1016/j.ultsonch.2021.105800_b0020) 2019; 5 Hu (10.1016/j.ultsonch.2021.105800_b0135) 2006; 39 Vu (10.1016/j.ultsonch.2021.105800_b0225) 2016; 17 Baran (10.1016/j.ultsonch.2021.105800_b0275) 2012; 32 |
References_xml | – volume: 9 start-page: 1238 year: 2021 end-page: 1258 ident: b0200 article-title: Functional silk fibroin hydrogels: preparation, properties and applications publication-title: J. Mater. Chem. B – volume: 139 start-page: 589 year: 2020 end-page: 595 ident: b0230 article-title: Thermal analysis and kinetic study of native silks publication-title: J. Therm. Anal. Calorim. – volume: 9 start-page: 3079 year: 2012 end-page: 3088 ident: b0125 article-title: Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System publication-title: Mol. Pharmaceutics – volume: 32 start-page: 1314 year: 2012 end-page: 1322 ident: b0275 article-title: Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes publication-title: Mater. Sci. Eng. C – volume: 33 start-page: 344 year: 2017 end-page: 355 ident: b0285 article-title: Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films publication-title: Acta Phys.-Chim. Sin. – volume: 34 start-page: 94 year: 1917 end-page: 98 ident: b0155 article-title: On the pressure developed in a liquid during the collapse of a spherical cavity publication-title: Philos. Mag. – volume: 146 start-page: 222 year: 2020 end-page: 231 ident: b0290 article-title: Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 19 start-page: 3309 year: 2018 ident: b0040 article-title: Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films publication-title: Int. J. Mol. Sci. – reference: G. Carissimi A.A. Lozano-Pérez M.G. Montalbán S.D. Aznar-Cervantes J.L. Cenis G. Víllora Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles J. Polymers 11 12 (2019) 2045. 2045 10.3390/polym11122045. – volume: 35 start-page: 605 year: 2017 end-page: 614 ident: b0150 article-title: Ultrasonic encapsulation – A review publication-title: Ultrason. Sonochem. – volume: 249 year: 2020 ident: b0130 article-title: Self-assembly properties of carboxylated tunicate cellulose nanocrystals prepared by ammonium persulfate oxidation and subsequent ultrasonication publication-title: Carbohydr. Polym. – volume: 35 start-page: 1093 year: 2010 end-page: 1115 ident: b0005 article-title: Composite materials based on silk proteins publication-title: Prog. Polym. Sci. – volume: 7 start-page: 3352 year: 2015 end-page: 3361 ident: b0065 article-title: Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 444 year: 2015 end-page: 452 ident: b0205 article-title: Processing and characterization of powdered silk micro- and nanofibers by ultrasonication publication-title: Mater. Sci. Eng. C – volume: 5 start-page: 6361 year: 2019 end-page: 6373 ident: b0020 article-title: Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly publication-title: ACS Biomater. Sci. Eng. – volume: 65 year: 2020 ident: b0115 article-title: Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates publication-title: Ultrason. Sonochem. – volume: 24 start-page: 3871 year: 2003 end-page: 3876 ident: b0195 article-title: Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique publication-title: Biomaterials – volume: 3 start-page: 2599 year: 2015 end-page: 2606 ident: b0185 article-title: The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein publication-title: J. Mater. Chem. B – volume: 14 start-page: 674 year: 2021 ident: b0030 article-title: Silk-Based Materials for Hard Tissue Engineering publication-title: Materials – volume: 8 start-page: 1030 year: 2010 end-page: 1036 ident: b0255 article-title: The mechanical properties of single fibrin fibers publication-title: J. Thromb. Haemostasis – reference: F. Zhang, J.N. Wang, B.Q. Zuo, Effect of Aqueous Ethanol Treatment on the Electrospun SF Nanofiber Mats, C. Bioinformatics and Biomedical Engineering (iCBBE) 2010 4th International Conference on 2010 1-4. – volume: 11 start-page: 1622 year: 2019 ident: b0180 article-title: Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt publication-title: Polymers – volume: 104 year: 2019 ident: b0295 article-title: Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses publication-title: Mater. Sci. Eng. C – volume: 10 start-page: 17094 year: 2020 ident: b0105 article-title: Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye publication-title: Sci. Rep. – volume: 3 start-page: 3248 year: 2020 end-page: 3259 ident: b0310 article-title: Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism publication-title: ACS Appl. Bio Mater. – volume: 10 start-page: 6321 year: 2014 end-page: 6331 ident: b0015 article-title: Understanding the variability of properties in Antheraea pernyi silk fibres publication-title: Soft Matter – volume: 97 start-page: 479 year: 2012 end-page: 498 ident: b0045 article-title: Physical and chemical aspects of stabilization of compounds in silk publication-title: Biopolymers – volume: 29 start-page: 1054 year: 2008 end-page: 1064 ident: b0260 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials – volume: 17 start-page: 326 year: 2010 end-page: 332 ident: b0095 article-title: Preparation of hydrogels via ultrasonic polymerization publication-title: Ultrason. Sonochem. – volume: 113 start-page: 533 year: 1994 end-page: 542 ident: b0145 article-title: Sonochemistry: Theory and applications publication-title: Recl. Trav. Chim. Pays-Bas – volume: 76 start-page: 105653 year: 2021 ident: b0120 article-title: Effect of ultrasound on protein functionality publication-title: Ultrason. Sonochem. – volume: 112 start-page: 8971 year: 2015 end-page: 8976 ident: b0240 article-title: Anomalous scaling law of strength and toughness of cellulose nanopaper publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 367 year: 2020 end-page: 389 ident: b0085 article-title: Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities publication-title: J. Cluster Sci. – volume: 130 start-page: 851 year: 2017 end-page: 859 ident: b0160 article-title: Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films publication-title: J. Therm. Anal. Calorim. – volume: 175–176 start-page: 143 year: 2011 end-page: 148 ident: b0210 article-title: The Effect of Ultrasonication on the Gelation Velocity and Structure of Silk Fibroin publication-title: Adv. Mater. Res. – volume: 17 start-page: 1497 year: 2016 ident: b0225 article-title: Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials publication-title: Int. J. Mol. Sci. – volume: 37 start-page: 131 year: 2016 end-page: 142 ident: b0305 article-title: Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth publication-title: Acta Biomater. – volume: 12 start-page: 1686 year: 2011 end-page: 1696 ident: b0055 article-title: Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing publication-title: Biomacromolecules – volume: 39 start-page: 6161 year: 2006 end-page: 6170 ident: b0135 article-title: Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy publication-title: Macromolecules – volume: 91 start-page: 1193 year: 2018 end-page: 1197 ident: b0110 article-title: Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound publication-title: Russ. J. Appl. Chem. – volume: 3 start-page: 8795 year: 2020 end-page: 8807 ident: b0280 article-title: Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology publication-title: ACS Appl. Bio Mater. – volume: 89 start-page: 497 year: 2008 end-page: 505 ident: b0070 article-title: Conformational transition and liquid crystalline state of regenerated silk fibroin in water publication-title: Biopolymers – volume: 3 start-page: 055401 year: 2016 ident: b0220 article-title: Sonication induced silk fibroin cryogels for tissue engineering applications publication-title: Mater. Res. Express – volume: 51 start-page: 6278 year: 2010 end-page: 6283 ident: b0245 article-title: Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin publication-title: Polymer – volume: 298 start-page: 1201 year: 2013 end-page: 1208 ident: b0215 article-title: Ultrasound Sonication Effects on Silk Fibroin Protein publication-title: Macromol. Mater. Eng. – volume: 41 start-page: 227 year: 2018 end-page: 233 ident: b0090 article-title: Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres publication-title: Ultrason. Sonochem. – volume: 304 start-page: 1900364 year: 2019 ident: b0265 article-title: Effects of Ultrasonic Treatment on Hydrophilicity and Thermal Stability of Silk publication-title: Macromol. Mater. Eng. – volume: 55 start-page: 323 year: 2017 end-page: 332 ident: b0035 article-title: Silk I and Silk II studied by fast scanning calorimetry publication-title: Acta Biomater. – volume: 42 start-page: 3269 year: 2009 end-page: 3274 ident: b0075 article-title: Ultrasound-Induced Cross-Linking and Formation of Macroscopic Covalent Hydrogels in Aqueous Polymer and Monomer Solutions publication-title: Macromolecules – volume: 55 start-page: 86 year: 2019 end-page: 95 ident: b0100 article-title: Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs publication-title: Ultrason. Sonochem. – volume: 46 start-page: 86 year: 2015 end-page: 110 ident: b0050 article-title: Structures, mechanical properties and applications of silk fibroin materials publication-title: Prog. Polym. Sci. – volume: 122 start-page: 1069 year: 2015 end-page: 1076 ident: b0165 article-title: Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films publication-title: J. Therm. Anal. Calorim. – volume: 11 start-page: 2890 year: 2010 end-page: 2895 ident: b0250 article-title: Enhancing the Toughness of Regenerated Silk Fibroin Film through Uniaxial Extension publication-title: Biomacromolecules – volume: 25 start-page: 4691 year: 2004 end-page: 4697 ident: b0300 article-title: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility publication-title: Biomaterials – volume: 7 start-page: 2337 year: 2021 end-page: 2345 ident: b0060 article-title: Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly publication-title: ACS Biomater. Sci. Eng. – volume: 23 start-page: 3257 year: 2002 end-page: 3267 ident: b0270 article-title: Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior publication-title: Biomaterials – volume: 35 start-page: 369 year: 2002 end-page: 430 ident: b0170 article-title: What Vibrations Tell About Proteins publication-title: Q. Rev. Biophys. – volume: 554 start-page: 224 year: 2018 end-page: 228 ident: b0235 article-title: Processing bulk natural wood into a high-performance structural material publication-title: Nature – volume: 24 start-page: 401 year: 2003 end-page: 416 ident: b0025 article-title: Silk-based biomaterials publication-title: Biomaterials – volume: 131 start-page: 337 year: 2015 end-page: 354 ident: b0010 article-title: Review on hygroscopic aging of cellulose fibres and their biocomposites publication-title: Carbohydr. Polym. – volume: 49 start-page: 842 year: 2013 end-page: 849 ident: b0175 article-title: Silkworm cocoon as natural material and structure for thermal insulation publication-title: Mater. Des. – volume: 129 start-page: 278 year: 2019 end-page: 286 ident: b0140 article-title: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids publication-title: Int. J. Heat Mass Transfer – volume: 41 start-page: 227 year: 2018 ident: 10.1016/j.ultsonch.2021.105800_b0090 article-title: Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.09.045 – volume: 17 start-page: 326 issue: 2 year: 2010 ident: 10.1016/j.ultsonch.2021.105800_b0095 article-title: Preparation of hydrogels via ultrasonic polymerization publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.08.008 – volume: 11 start-page: 2890 issue: 11 year: 2010 ident: 10.1016/j.ultsonch.2021.105800_b0250 article-title: Enhancing the Toughness of Regenerated Silk Fibroin Film through Uniaxial Extension publication-title: Biomacromolecules doi: 10.1021/bm100643q – volume: 7 start-page: 2337 issue: 6 year: 2021 ident: 10.1016/j.ultsonch.2021.105800_b0060 article-title: Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00181 – volume: 104 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0295 article-title: Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.109890 – volume: 35 start-page: 1093 issue: 9 year: 2010 ident: 10.1016/j.ultsonch.2021.105800_b0005 article-title: Composite materials based on silk proteins publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.04.005 – volume: 131 start-page: 337 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0010 article-title: Review on hygroscopic aging of cellulose fibres and their biocomposites publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.06.027 – volume: 51 start-page: 6278 issue: 26 year: 2010 ident: 10.1016/j.ultsonch.2021.105800_b0245 article-title: Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin publication-title: Polymer doi: 10.1016/j.polymer.2010.10.046 – volume: 91 start-page: 1193 issue: 7 year: 2018 ident: 10.1016/j.ultsonch.2021.105800_b0110 article-title: Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound publication-title: Russ. J. Appl. Chem. doi: 10.1134/S1070427218070194 – volume: 34 start-page: 94 issue: 200 year: 1917 ident: 10.1016/j.ultsonch.2021.105800_b0155 article-title: On the pressure developed in a liquid during the collapse of a spherical cavity publication-title: Philos. Mag. doi: 10.1080/14786440808635681 – volume: 130 start-page: 851 issue: 2 year: 2017 ident: 10.1016/j.ultsonch.2021.105800_b0160 article-title: Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-017-6388-z – volume: 113 start-page: 533 issue: 12 year: 1994 ident: 10.1016/j.ultsonch.2021.105800_b0145 article-title: Sonochemistry: Theory and applications publication-title: Recl. Trav. Chim. Pays-Bas doi: 10.1002/recl.19941131202 – volume: 33 start-page: 344 issue: 2 year: 2017 ident: 10.1016/j.ultsonch.2021.105800_b0285 article-title: Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films publication-title: Acta Phys.-Chim. Sin. doi: 10.3866/PKU.WHXB201611023 – volume: 29 start-page: 1054 issue: 8 year: 2008 ident: 10.1016/j.ultsonch.2021.105800_b0260 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.11.003 – volume: 48 start-page: 444 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0205 article-title: Processing and characterization of powdered silk micro- and nanofibers by ultrasonication publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.12.028 – volume: 31 start-page: 367 issue: 2 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0085 article-title: Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities publication-title: J. Cluster Sci. doi: 10.1007/s10876-019-01651-3 – volume: 9 start-page: 3079 issue: 11 year: 2012 ident: 10.1016/j.ultsonch.2021.105800_b0125 article-title: Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System publication-title: Mol. Pharmaceutics doi: 10.1021/mp3001827 – ident: 10.1016/j.ultsonch.2021.105800_b0080 doi: 10.3390/polym11122045 – volume: 298 start-page: 1201 issue: 11 year: 2013 ident: 10.1016/j.ultsonch.2021.105800_b0215 article-title: Ultrasound Sonication Effects on Silk Fibroin Protein publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200377 – volume: 304 start-page: 1900364 issue: 12 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0265 article-title: Effects of Ultrasonic Treatment on Hydrophilicity and Thermal Stability of Silk publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201900364 – volume: 55 start-page: 86 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0100 article-title: Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.03.018 – volume: 42 start-page: 3269 issue: 9 year: 2009 ident: 10.1016/j.ultsonch.2021.105800_b0075 article-title: Ultrasound-Induced Cross-Linking and Formation of Macroscopic Covalent Hydrogels in Aqueous Polymer and Monomer Solutions publication-title: Macromolecules doi: 10.1021/ma802565p – volume: 3 start-page: 3248 issue: 5 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0310 article-title: Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00231 – volume: 14 start-page: 674 issue: 3 year: 2021 ident: 10.1016/j.ultsonch.2021.105800_b0030 article-title: Silk-Based Materials for Hard Tissue Engineering publication-title: Materials doi: 10.3390/ma14030674 – volume: 46 start-page: 86 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0050 article-title: Structures, mechanical properties and applications of silk fibroin materials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.02.001 – volume: 19 start-page: 3309 issue: 11 year: 2018 ident: 10.1016/j.ultsonch.2021.105800_b0040 article-title: Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113309 – volume: 65 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0115 article-title: Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2020.105063 – volume: 17 start-page: 1497 issue: 9 year: 2016 ident: 10.1016/j.ultsonch.2021.105800_b0225 article-title: Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17091497 – volume: 554 start-page: 224 year: 2018 ident: 10.1016/j.ultsonch.2021.105800_b0235 article-title: Processing bulk natural wood into a high-performance structural material publication-title: Nature doi: 10.1038/nature25476 – volume: 35 start-page: 369 issue: 4 year: 2002 ident: 10.1016/j.ultsonch.2021.105800_b0170 article-title: What Vibrations Tell About Proteins publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583502003815 – volume: 3 start-page: 055401 issue: 5 year: 2016 ident: 10.1016/j.ultsonch.2021.105800_b0220 article-title: Sonication induced silk fibroin cryogels for tissue engineering applications publication-title: Mater. Res. Express doi: 10.1088/2053-1591/3/5/055401 – volume: 122 start-page: 1069 issue: 3 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0165 article-title: Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-015-4736-4 – volume: 12 start-page: 1686 issue: 5 year: 2011 ident: 10.1016/j.ultsonch.2021.105800_b0055 article-title: Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing publication-title: Biomacromolecules doi: 10.1021/bm200062a – volume: 10 start-page: 17094 issue: 1 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0105 article-title: Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye publication-title: Sci. Rep. doi: 10.1038/s41598-020-74254-y – volume: 76 start-page: 105653 year: 2021 ident: 10.1016/j.ultsonch.2021.105800_b0120 article-title: Effect of ultrasound on protein functionality publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2021.105653 – volume: 25 start-page: 4691 issue: 19 year: 2004 ident: 10.1016/j.ultsonch.2021.105800_b0300 article-title: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.084 – volume: 35 start-page: 605 year: 2017 ident: 10.1016/j.ultsonch.2021.105800_b0150 article-title: Ultrasonic encapsulation – A review publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.03.017 – volume: 23 start-page: 3257 issue: 15 year: 2002 ident: 10.1016/j.ultsonch.2021.105800_b0270 article-title: Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00084-4 – volume: 9 start-page: 1238 issue: 5 year: 2021 ident: 10.1016/j.ultsonch.2021.105800_b0200 article-title: Functional silk fibroin hydrogels: preparation, properties and applications publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02099K – volume: 11 start-page: 1622 issue: 10 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0180 article-title: Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt publication-title: Polymers doi: 10.3390/polym11101622 – volume: 97 start-page: 479 issue: 6 year: 2012 ident: 10.1016/j.ultsonch.2021.105800_b0045 article-title: Physical and chemical aspects of stabilization of compounds in silk publication-title: Biopolymers doi: 10.1002/bip.22026 – volume: 89 start-page: 497 issue: 6 year: 2008 ident: 10.1016/j.ultsonch.2021.105800_b0070 article-title: Conformational transition and liquid crystalline state of regenerated silk fibroin in water publication-title: Biopolymers doi: 10.1002/bip.20905 – volume: 24 start-page: 3871 issue: 22 year: 2003 ident: 10.1016/j.ultsonch.2021.105800_b0195 article-title: Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00135-2 – volume: 112 start-page: 8971 issue: 29 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0240 article-title: Anomalous scaling law of strength and toughness of cellulose nanopaper publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1502870112 – volume: 175–176 start-page: 143 year: 2011 ident: 10.1016/j.ultsonch.2021.105800_b0210 article-title: The Effect of Ultrasonication on the Gelation Velocity and Structure of Silk Fibroin publication-title: Adv. Mater. Res. – volume: 55 start-page: 323 year: 2017 ident: 10.1016/j.ultsonch.2021.105800_b0035 article-title: Silk I and Silk II studied by fast scanning calorimetry publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.04.001 – ident: 10.1016/j.ultsonch.2021.105800_b0190 doi: 10.1109/ICBBE.2010.5515644 – volume: 8 start-page: 1030 year: 2010 ident: 10.1016/j.ultsonch.2021.105800_b0255 article-title: The mechanical properties of single fibrin fibers publication-title: J. Thromb. Haemostasis doi: 10.1111/j.1538-7836.2010.03745.x – volume: 3 start-page: 2599 issue: 13 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0185 article-title: The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01873G – volume: 39 start-page: 6161 issue: 18 year: 2006 ident: 10.1016/j.ultsonch.2021.105800_b0135 article-title: Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy publication-title: Macromolecules doi: 10.1021/ma0610109 – volume: 24 start-page: 401 issue: 3 year: 2003 ident: 10.1016/j.ultsonch.2021.105800_b0025 article-title: Silk-based biomaterials publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00353-8 – volume: 249 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0130 article-title: Self-assembly properties of carboxylated tunicate cellulose nanocrystals prepared by ammonium persulfate oxidation and subsequent ultrasonication publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116835 – volume: 139 start-page: 589 issue: 1 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0230 article-title: Thermal analysis and kinetic study of native silks publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08420-4 – volume: 5 start-page: 6361 issue: 12 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0020 article-title: Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00577 – volume: 7 start-page: 3352 issue: 5 year: 2015 ident: 10.1016/j.ultsonch.2021.105800_b0065 article-title: Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508319h – volume: 146 start-page: 222 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0290 article-title: Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.219 – volume: 10 start-page: 6321 issue: 33 year: 2014 ident: 10.1016/j.ultsonch.2021.105800_b0015 article-title: Understanding the variability of properties in Antheraea pernyi silk fibres publication-title: Soft Matter doi: 10.1039/C4SM01172D – volume: 129 start-page: 278 year: 2019 ident: 10.1016/j.ultsonch.2021.105800_b0140 article-title: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.104 – volume: 32 start-page: 1314 issue: 6 year: 2012 ident: 10.1016/j.ultsonch.2021.105800_b0275 article-title: Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.02.015 – volume: 49 start-page: 842 year: 2013 ident: 10.1016/j.ultsonch.2021.105800_b0175 article-title: Silkworm cocoon as natural material and structure for thermal insulation publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.02.006 – volume: 3 start-page: 8795 issue: 12 year: 2020 ident: 10.1016/j.ultsonch.2021.105800_b0280 article-title: Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01157 – volume: 37 start-page: 131 year: 2016 ident: 10.1016/j.ultsonch.2021.105800_b0305 article-title: Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.04.008 |
SSID | ssj0003920 |
Score | 2.4495173 |
Snippet | [Display omitted]
•A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound... Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In... • A novel ultrasound technique to fabricate flexible protein materials. • Protein structure and properties can be tuned by varying ultrasound power and time. •... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105800 |
SubjectTerms | Animals Beta sheet Biocompatible Materials Biological property Biophysical Phenomena Bombyx Calorimetry, Differential Scanning Fibroins Insolubility Original Silk Spectroscopy, Fourier Transform Infrared Structural transformation Ultrasonic treatment Ultrasonics Water |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLaNOX-wgK5Fg3K0taSb21oUsIpKcs5Cb0pLsszrKP_98Zy15228NecjO2JVueT5pP1ugbQi6FN1yOhK-9H-VaRC1qraG7iySjjONR0t2K7t3v8c1U3D7Ih71UXxgTVuSBy4e7So0DRh4lMMEssmQajjn4qWRYYKEogYLPGyZT_RgMXr_sD5bwWKbU3t7g-bftYgNctluKaBgmutW4v23PLXXq_Qfe6X_2-W8Q5Z5Xmrwipz2dpD9KM16TZ6k9Iy-uhyxuZ-R5F-IZ1m_IfLqAGtaYRomuSgb6FGlGQUy_SLQTbJi1FBhsAeV3OnF-1f_S-0qL0Ox2laiDCpa9eesi4oSHWMMSo7TT-i2ZTn7dX9_UfaaFOkiuNnVwRqUsYpMYmIwFg0pqOgSpYnZShYgdPXDfQG9lUXnpGarO6MiCc5Ep_o6ctI9t-kAoGMVEmXyWKQgTYAzLLBsvGsWckdJVRA4f2oZehhyzYSzsEG82t4OBLBrIFgNV5GpXblmEOI6W-Il23N2NQtrdCYCX7eFlj8GrImZAge05SeEaUNXs6AtcDLCxYHVciXFtetyubQO0T3CYGeuKvC8w2r0mB9fFOVcVUQcAO2jH4ZV29qcTBtdAX8eN-fgUDf9EXmJTyrbLz-QEQJa-AP_a-POuq_0FuFQvHQ priority: 102 providerName: Directory of Open Access Journals |
Title | Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties |
URI | https://dx.doi.org/10.1016/j.ultsonch.2021.105800 https://www.ncbi.nlm.nih.gov/pubmed/34673337 https://www.proquest.com/docview/2584434488 https://pubmed.ncbi.nlm.nih.gov/PMC8560629 https://doaj.org/article/e2a966d5882f4f5186d53215e91c1c04 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWixBcECyv8KiCxJFs69iuHW5LRVVA7AUq7c3yK5CqSqs-rvx2ZuyktHDYA7c0jZ1JZuz5HM98Q8hbbismRtwW1o7qgnvFC6VguPMgvPDjUVBxR_fr9Xg2559vxM0ZmfS5MBhW2c39aU6Ps3V3Zti9zeG6aYbfKN6EAjqkkccOOUE5l2jll7_-hHmA_0-ZwgIEgKuPsoQXl_vlDlBt3JQoKZa8VZjpduSgIo__iZ_6F4f-HU555J-mD8mDDljmV0n2R-QstBfk3qSv53ZB7sZgT7d9TBbzJfSwxYJK-SbVog8-r5Ea0y5DHqkbmjYHLJvM830-NXbTfdx7lyfK2f0m5AY6WHeKLhKdEx5iD2uM1w7bJ2Q-_fh9Miu6mguFE0zuCmcqGWruy0BBedRVyKmmnBPS10ZI53HIO2ZLGLfUSyssRf4Z5akzxlPJnpLzdtWG5yR30NqLYGsRHK8czGY1rSvLS0lNJYTJiOhftHYdITnWxVjqPvJsoXsFaVSQTgrKyPDQbp0oOW5t8QH1eLgaKbXjidXmh-5sSofSwNLPC1hy1LwWVMExA0AUKgpPMuIZqXor0CcWCl01twrwpjcbDVrHPRnThtV-q0sAgJzBGlll5Fkyo4OYDJwYY0xmRJ4Y2MlznP7TNj8jRbgCIDsuqxf_IfNLch9_pbzLV-QcbCu8BgC2s4M4wgbkztWnL7PrQfyM8Rv34DSB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuFRQo4WkkuJHuOrY3DhIHKKy29HGhK_Vm4kdKVqvsarOrigt_ij_IOI9lA4ceUG9REk_Gnhl7HM98A_Ca64SJPteh1v0s5FbyUEo0d-6EFXbQd7I60T09G4zG_MuFuNiCX20ujA-rbOb-ek6vZuvmTq8Zzd48z3tfqf8IRe-QVjh2vImsPHY_rnDfVr4_-oRCfhNFw8_nh6OwKS0QGsHiZWjSJHYZt5GjyCM1iYcOk8aI2GapiI31mm2YjlA9qY210NTDrEhLTZpaGjOkewtuc5wufNmEg59_4krQ4ahTkwX2GNnbSEueHKymS3Sjq1OQiPoau9Kn1m2siFXhgM7C-K_j-3f85saCOLwHu40nSz7Ug3UftlyxBzuHbQG5PbhTRZea8gFMxlOkUPoKTmThLn3FMGdJ5rE49dSRCisiLwg6z7U9vCPDVC-av4lvSY1xu1o4kiKBeaNZYY0f5S89hbkPEHflQxjfiCQewXYxK9xjIAZbW-F0JpzhicHpM6NZonkU0zQRIg1AtAOtTIOA7gtxTFUb6jZRrYCUF5CqBRRAb91uXmOAXNvio5fj-m2P4V3dmC0uVaPEykUp7jWtwD1OxjNBJV4z9MBcQrEnfR5A0mqB6pgEksqvZeBVqzYKpe4PgdLCzValitDj5Aw35TKA_VqN1mwyXDUZY3EAcUfBOv3oPiny7xUmuUTPeRAlT_6D55ewMzo_PVEnR2fHT-Guf1InfT6DbdQz9xy9v6V-UVkbgW83bd6_ARkyb4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound+regulated+flexible+protein+materials%3A+Fabrication%2C+structure+and+physical-biological+properties&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Cai%2C+Bowen&rft.au=Gu%2C+Hanling&rft.au=Wang%2C+Fang&rft.au=Printon%2C+Kyle&rft.date=2021-11-01&rft.issn=1350-4177&rft.volume=79&rft.spage=105800&rft_id=info:doi/10.1016%2Fj.ultsonch.2021.105800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultsonch_2021_105800 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon |