Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties

[Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics sonochemistry Vol. 79; p. 105800
Main Authors Cai, Bowen, Gu, Hanling, Wang, Fang, Printon, Kyle, Gu, Zhenggui, Hu, Xiao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and easy to operate without any chemical procedures.•Mechanism of ultrasonic effects on protein differents properties are revealed. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
AbstractList • A novel ultrasound technique to fabricate flexible protein materials. • Protein structure and properties can be tuned by varying ultrasound power and time. • Biological responses can be controlled by ultrasound-generated protein materials. • Ultrasound technique is a high efficient and easy to operate without any chemical procedures. • Mechanism of ultrasonic effects on protein differents properties are revealed. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl 2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β -sheets and α -helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
[Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound power and time.•Biological responses can be controlled by ultrasound-generated protein materials.•Ultrasound technique is a high efficient and easy to operate without any chemical procedures.•Mechanism of ultrasonic effects on protein differents properties are revealed. Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
ArticleNumber 105800
Author Printon, Kyle
Cai, Bowen
Wang, Fang
Gu, Zhenggui
Gu, Hanling
Hu, Xiao
Author_xml – sequence: 1
  givenname: Bowen
  surname: Cai
  fullname: Cai, Bowen
  organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
– sequence: 2
  givenname: Hanling
  surname: Gu
  fullname: Gu, Hanling
  organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
– sequence: 3
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: wangfang@njnu.edu.cn
  organization: Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
– sequence: 4
  givenname: Kyle
  surname: Printon
  fullname: Printon, Kyle
  organization: Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
– sequence: 5
  givenname: Zhenggui
  surname: Gu
  fullname: Gu, Zhenggui
  organization: School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
– sequence: 6
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
  email: hu@rowan.edu
  organization: Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34673337$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URD_gL1Q5ciCLP-LYQQiBqrZUqsSFni3Hnuw68saL7VT03-Ntuohy6cnjmXeesWfmFB1NYQKEzgleEUzaj-Nq9jmFyWxWFFNSnFxi_AqdEClYTSWVR8VmHNcNEeIYnaY0YoxZR_EbdMyaVjDGxAka73yOOoV5slWE9ex1BlsNHn673kO1iyGDm6ptcUenffpUXek-OqOzC9OHKuU4mzxHqHQB7DYPqYR83bvgw3pv7gk7iNlBeoteD4UA757OM3R3dfnz4nt9--P65uLbbW04E7k2uhMwNJYC6fFATFe-10hjuLCD5sJYjMuV9bRlkljR855IXBSWGK0tEewM3SxcG_SodtFtdXxQQTv16AhxrXR5kPGggOqubS2Xkg7NwIksNqOEQ0cMMbgprC8Lazf3W7AGptIt_wz6PDK5jVqHeyV5i1vaFcD7J0AMv2ZIWW1dMuC9niDMSVEum4Y1jZRFev5vrb9FDsMqgs-LwMSQUoRBGZcfB1FKO68IVvvdUKM67Iba74ZadqOkt_-lHyq8mPh1SYQytXsHUSXjYDJgXQSTS1vdS4g_NBja3g
CitedBy_id crossref_primary_10_1016_j_envres_2024_119856
crossref_primary_10_1016_j_ijbiomac_2022_04_055
crossref_primary_10_1088_1758_5090_ad9409
crossref_primary_10_1007_s10924_024_03221_9
crossref_primary_10_1007_s10311_024_01743_1
crossref_primary_10_1016_j_ultsonch_2024_107018
crossref_primary_10_1021_acs_biomac_2c01124
crossref_primary_10_1016_j_bcab_2024_103241
crossref_primary_10_1016_j_foodhyd_2022_108190
crossref_primary_10_1016_j_ijbiomac_2024_135686
crossref_primary_10_1021_acs_jafc_3c05645
crossref_primary_10_1016_j_ijbiomac_2025_139554
crossref_primary_10_1002_SMMD_20220011
crossref_primary_10_1016_j_procbio_2023_04_001
crossref_primary_10_1186_s44316_024_00023_w
crossref_primary_10_1016_j_crfs_2023_100556
crossref_primary_10_1360_SSC_2021_0234
crossref_primary_10_1016_j_ultsonch_2023_106341
crossref_primary_10_1016_j_matdes_2022_111053
crossref_primary_10_1016_j_actbio_2022_09_069
crossref_primary_10_1016_j_molstruc_2023_135255
crossref_primary_10_1016_j_cis_2023_102950
crossref_primary_10_1016_j_jcis_2022_11_003
crossref_primary_10_1016_j_ijbiomac_2025_142364
Cites_doi 10.1016/j.ultsonch.2017.09.045
10.1016/j.ultsonch.2009.08.008
10.1021/bm100643q
10.1021/acsbiomaterials.1c00181
10.1016/j.msec.2019.109890
10.1016/j.progpolymsci.2010.04.005
10.1016/j.carbpol.2015.06.027
10.1016/j.polymer.2010.10.046
10.1134/S1070427218070194
10.1080/14786440808635681
10.1007/s10973-017-6388-z
10.1002/recl.19941131202
10.3866/PKU.WHXB201611023
10.1016/j.biomaterials.2007.11.003
10.1016/j.msec.2014.12.028
10.1007/s10876-019-01651-3
10.1021/mp3001827
10.3390/polym11122045
10.1002/mame.201200377
10.1002/mame.201900364
10.1016/j.ultsonch.2019.03.018
10.1021/ma802565p
10.1021/acsabm.0c00231
10.3390/ma14030674
10.1016/j.progpolymsci.2015.02.001
10.3390/ijms19113309
10.1016/j.ultsonch.2020.105063
10.3390/ijms17091497
10.1038/nature25476
10.1017/S0033583502003815
10.1088/2053-1591/3/5/055401
10.1007/s10973-015-4736-4
10.1021/bm200062a
10.1038/s41598-020-74254-y
10.1016/j.ultsonch.2021.105653
10.1016/j.biomaterials.2003.10.084
10.1016/j.ultsonch.2016.03.017
10.1016/S0142-9612(02)00084-4
10.1039/D0TB02099K
10.3390/polym11101622
10.1002/bip.22026
10.1002/bip.20905
10.1016/S0142-9612(03)00135-2
10.1073/pnas.1502870112
10.1016/j.actbio.2017.04.001
10.1109/ICBBE.2010.5515644
10.1111/j.1538-7836.2010.03745.x
10.1039/C4TB01873G
10.1021/ma0610109
10.1016/S0142-9612(02)00353-8
10.1016/j.carbpol.2020.116835
10.1007/s10973-019-08420-4
10.1021/acsbiomaterials.9b00577
10.1021/am508319h
10.1016/j.ijbiomac.2019.12.219
10.1039/C4SM01172D
10.1016/j.ijheatmasstransfer.2018.09.104
10.1016/j.msec.2012.02.015
10.1016/j.matdes.2013.02.006
10.1021/acsabm.0c01157
10.1016/j.actbio.2016.04.008
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ultsonch.2021.105800
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID oai_doaj_org_article_e2a966d5882f4f5186d53215e91c1c04
PMC8560629
34673337
10_1016_j_ultsonch_2021_105800
S1350417721003424
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c537t-ca97ef4d2e1b0f1c902148cc57dfa57cd0048c3b26381d7b5b180148d1caad173
IEDL.DBID .~1
ISSN 1350-4177
1873-2828
IngestDate Wed Aug 27 01:27:02 EDT 2025
Thu Aug 21 18:01:15 EDT 2025
Fri Jul 11 14:59:29 EDT 2025
Mon Jul 21 06:05:34 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Tue Jul 01 03:33:10 EDT 2025
Fri Feb 23 02:41:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structural transformation
Silk
Beta sheet
Biological property
Ultrasonic treatment
Insolubility
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-ca97ef4d2e1b0f1c902148cc57dfa57cd0048c3b26381d7b5b180148d1caad173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350417721003424
PMID 34673337
PQID 2584434488
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e2a966d5882f4f5186d53215e91c1c04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560629
proquest_miscellaneous_2584434488
pubmed_primary_34673337
crossref_citationtrail_10_1016_j_ultsonch_2021_105800
crossref_primary_10_1016_j_ultsonch_2021_105800
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2021_105800
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Su, Cavaco-Paulo (b0120) 2021; 76
Wang, Wu, Venkataraman, Hu (b0295) 2019; 104
Koh, Cheng, Teng, Khin, Loh, Tee, Low, Ye, Yu, Zhang, Han (b0050) 2015; 46
Wang, Yu, Liu, Ma, Gu (b0285) 2017; 33
Mokhothu, John (b0010) 2015; 131
Li, Li, Zhong, Zhai, Li (b0140) 2019; 129
Zhang, You, Dou, Liu, Zuo, Zhang (b0065) 2015; 7
Sivashankari, Prabaharan (b0290) 2020; 146
Wang, Yu, Gu, Si, Liu, Hu (b0160) 2017; 130
Pan, Hurren, Li (b0090) 2018; 41
Wang, Kluge, Leisk, Kaplan (b0260) 2008; 29
Lu, Li, Zhang, Yin, Xing, Kaplan (b0185) 2015; 3
Wang, Chen, Zhang (b0205) 2015; 48
Wang, Guan, Hawkins, Porter, Shao (b0015) 2014; 10
F. Zhang, J.N. Wang, B.Q. Zuo, Effect of Aqueous Ethanol Treatment on the Electrospun SF Nanofiber Mats, C. Bioinformatics and Biomedical Engineering (iCBBE) 2010 4th International Conference on 2010 1-4.
Cass, Knower, Pereeia, Holmes, Hughes (b0095) 2010; 17
Li, Wu, Huang, Shao, Hu (b0070) 2008; 89
Li, Wang, Zheng, Guo (b0115) 2020; 65
Hardy, Scheibel (b0005) 2010; 35
Neubauer, Döbl, Scheibel (b0030) 2021; 14
Wu, Shen, Hong, Chang, Winet (b0195) 2003; 24
Jiang, Liu, Zhao, Tao, Hu, Lu (b0310) 2020; 3
Wang, Wolf, Rocks, Vuong, Hu (b0165) 2015; 122
Yuan, Yao, Huang, Chen, Shao (b0245) 2010; 51
G. Carissimi A.A. Lozano-Pérez M.G. Montalbán S.D. Aznar-Cervantes J.L. Cenis G. Víllora Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles J. Polymers 11 12 (2019) 2045. 2045 10.3390/polym11122045.
He, Bian, Piao (b0130) 2020; 249
Rayleigh, VIII. (b0155) 1917; 34
Zhang, Xiao, Ding, Lu, Kaplan (b0060) 2021; 7
Mohamadi Saani, Abdolalizadeh, Zeinali Heris (b0100) 2019; 55
Dong, Sun, Wang (b0300) 2004; 25
Zhang, Pan (b0180) 2019; 11
Liu, Wang, Gu, Ma, Hu (b0040) 2018; 19
Mi, Lin, Wu, Shyu, Tsai (b0270) 2002; 23
Kadakia, Jain, Hixon, Eberlin, Sell (b0220) 2016; 3
Vu, Xue, Vuong, Erbe, Bennet, Palazzo, Popielski, Rodriguez, Hu (b0225) 2016; 17
Zhang, Zheng, Liang, Gao (b0305) 2016; 37
Cebe, Partlow, Kaplan, Wurm, Zhuravlev, Schick (b0035) 2017; 55
Barth, Zscherp (b0170) 2002; 35
Wong, Chan, Jeevanandam, Pal, Bechelany, Abd Elkodous, El-Sayyad (b0085) 2020; 31
Baran, Tuzlakoğlu, Mano, Reis (b0275) 2012; 32
Samal, Kaplan, Chiellini (b0215) 2013; 298
Rokita, Rosiak, Ulanski (b0075) 2009; 42
Zhang, Rajkhowa, Li, Liu, Wang (b0175) 2013; 49
Akpomie, Conradie (b0105) 2020; 10
Pritchard, Dennis, Omenetto, Naik, Kaplan (b0045) 2012; 97
Hu, Shmelev, Sun, Gil, Park, Cebe, Kaplan (b0055) 2011; 12
Yin, Chen, Porter, Shao (b0250) 2010; 11
Xue, Wang, Torculas, Lofland, Hu (b0020) 2019; 5
Liu, Carlisle, Sparks, Guthold (b0255) 2010; 8
Silva, Ferreira, Azoia, Shimanovich, Freddi, Gedanken, Cavaco-Paulo (b0125) 2012; 9
Leong, Martin, Ashokkumar (b0150) 2017; 35
Wang, Cheng, Liu, Zhao, Li (b0210) 2011; 175–176
Zhu, Zhu, Jia, Parvinian, Li, Vaaland, Hu, Li (b0240) 2015; 112
Wang, Rather, Gong, Zhou, Zhang, Li (b0265) 2019; 304
Altman, Diaz, Jakuba, Calabro, Horan, Chen, Lu, Richmond, Kaplan (b0025) 2003; 24
Pestman, Engberts, Jong (b0145) 1994; 113
Liu, Yang, Ma (b0230) 2020; 139
Hu, Kaplan, Cebe (b0135) 2006; 39
Zheng, Zuo (b0200) 2021; 9
Song, Chen, Zhu, Zhu, Dai, Ray, Li, Kuang, Li, Quispe, Yao, Gong, Leiste, Bruck, Zhu, Vellore, Li, Minus, Jia, Martini, Li, Hu (b0235) 2018; 554
Wang, Liu, Li, Li, Ma, Zhang, Hu (b0280) 2020; 3
Susanin, Sashina, Zakharov, Zaborski, Kashirskii (b0110) 2018; 91
Barth (10.1016/j.ultsonch.2021.105800_b0170) 2002; 35
Wang (10.1016/j.ultsonch.2021.105800_b0160) 2017; 130
Liu (10.1016/j.ultsonch.2021.105800_b0255) 2010; 8
Koh (10.1016/j.ultsonch.2021.105800_b0050) 2015; 46
Wang (10.1016/j.ultsonch.2021.105800_b0280) 2020; 3
Neubauer (10.1016/j.ultsonch.2021.105800_b0030) 2021; 14
Zhang (10.1016/j.ultsonch.2021.105800_b0180) 2019; 11
Wang (10.1016/j.ultsonch.2021.105800_b0165) 2015; 122
Wang (10.1016/j.ultsonch.2021.105800_b0285) 2017; 33
Susanin (10.1016/j.ultsonch.2021.105800_b0110) 2018; 91
Sivashankari (10.1016/j.ultsonch.2021.105800_b0290) 2020; 146
Li (10.1016/j.ultsonch.2021.105800_b0070) 2008; 89
Hu (10.1016/j.ultsonch.2021.105800_b0055) 2011; 12
Su (10.1016/j.ultsonch.2021.105800_b0120) 2021; 76
Wang (10.1016/j.ultsonch.2021.105800_b0015) 2014; 10
Song (10.1016/j.ultsonch.2021.105800_b0235) 2018; 554
Zhang (10.1016/j.ultsonch.2021.105800_b0060) 2021; 7
Li (10.1016/j.ultsonch.2021.105800_b0115) 2020; 65
Zhang (10.1016/j.ultsonch.2021.105800_b0065) 2015; 7
He (10.1016/j.ultsonch.2021.105800_b0130) 2020; 249
Wong (10.1016/j.ultsonch.2021.105800_b0085) 2020; 31
Yuan (10.1016/j.ultsonch.2021.105800_b0245) 2010; 51
Silva (10.1016/j.ultsonch.2021.105800_b0125) 2012; 9
Mokhothu (10.1016/j.ultsonch.2021.105800_b0010) 2015; 131
Zhu (10.1016/j.ultsonch.2021.105800_b0240) 2015; 112
Rayleigh (10.1016/j.ultsonch.2021.105800_b0155) 1917; 34
Pan (10.1016/j.ultsonch.2021.105800_b0090) 2018; 41
Liu (10.1016/j.ultsonch.2021.105800_b0230) 2020; 139
Rokita (10.1016/j.ultsonch.2021.105800_b0075) 2009; 42
Cebe (10.1016/j.ultsonch.2021.105800_b0035) 2017; 55
Zhang (10.1016/j.ultsonch.2021.105800_b0305) 2016; 37
Wang (10.1016/j.ultsonch.2021.105800_b0260) 2008; 29
Zhang (10.1016/j.ultsonch.2021.105800_b0175) 2013; 49
Akpomie (10.1016/j.ultsonch.2021.105800_b0105) 2020; 10
Samal (10.1016/j.ultsonch.2021.105800_b0215) 2013; 298
Wu (10.1016/j.ultsonch.2021.105800_b0195) 2003; 24
Li (10.1016/j.ultsonch.2021.105800_b0140) 2019; 129
Zheng (10.1016/j.ultsonch.2021.105800_b0200) 2021; 9
Dong (10.1016/j.ultsonch.2021.105800_b0300) 2004; 25
Jiang (10.1016/j.ultsonch.2021.105800_b0310) 2020; 3
10.1016/j.ultsonch.2021.105800_b0080
Wang (10.1016/j.ultsonch.2021.105800_b0205) 2015; 48
Yin (10.1016/j.ultsonch.2021.105800_b0250) 2010; 11
Cass (10.1016/j.ultsonch.2021.105800_b0095) 2010; 17
Hardy (10.1016/j.ultsonch.2021.105800_b0005) 2010; 35
Leong (10.1016/j.ultsonch.2021.105800_b0150) 2017; 35
Pritchard (10.1016/j.ultsonch.2021.105800_b0045) 2012; 97
Wang (10.1016/j.ultsonch.2021.105800_b0265) 2019; 304
Wang (10.1016/j.ultsonch.2021.105800_b0295) 2019; 104
Lu (10.1016/j.ultsonch.2021.105800_b0185) 2015; 3
Kadakia (10.1016/j.ultsonch.2021.105800_b0220) 2016; 3
Mi (10.1016/j.ultsonch.2021.105800_b0270) 2002; 23
Pestman (10.1016/j.ultsonch.2021.105800_b0145) 1994; 113
Wang (10.1016/j.ultsonch.2021.105800_b0210) 2011; 175–176
Altman (10.1016/j.ultsonch.2021.105800_b0025) 2003; 24
Mohamadi Saani (10.1016/j.ultsonch.2021.105800_b0100) 2019; 55
Liu (10.1016/j.ultsonch.2021.105800_b0040) 2018; 19
10.1016/j.ultsonch.2021.105800_b0190
Xue (10.1016/j.ultsonch.2021.105800_b0020) 2019; 5
Hu (10.1016/j.ultsonch.2021.105800_b0135) 2006; 39
Vu (10.1016/j.ultsonch.2021.105800_b0225) 2016; 17
Baran (10.1016/j.ultsonch.2021.105800_b0275) 2012; 32
References_xml – volume: 9
  start-page: 1238
  year: 2021
  end-page: 1258
  ident: b0200
  article-title: Functional silk fibroin hydrogels: preparation, properties and applications
  publication-title: J. Mater. Chem. B
– volume: 139
  start-page: 589
  year: 2020
  end-page: 595
  ident: b0230
  article-title: Thermal analysis and kinetic study of native silks
  publication-title: J. Therm. Anal. Calorim.
– volume: 9
  start-page: 3079
  year: 2012
  end-page: 3088
  ident: b0125
  article-title: Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System
  publication-title: Mol. Pharmaceutics
– volume: 32
  start-page: 1314
  year: 2012
  end-page: 1322
  ident: b0275
  article-title: Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes
  publication-title: Mater. Sci. Eng. C
– volume: 33
  start-page: 344
  year: 2017
  end-page: 355
  ident: b0285
  article-title: Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films
  publication-title: Acta Phys.-Chim. Sin.
– volume: 34
  start-page: 94
  year: 1917
  end-page: 98
  ident: b0155
  article-title: On the pressure developed in a liquid during the collapse of a spherical cavity
  publication-title: Philos. Mag.
– volume: 146
  start-page: 222
  year: 2020
  end-page: 231
  ident: b0290
  article-title: Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 19
  start-page: 3309
  year: 2018
  ident: b0040
  article-title: Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films
  publication-title: Int. J. Mol. Sci.
– reference: G. Carissimi A.A. Lozano-Pérez M.G. Montalbán S.D. Aznar-Cervantes J.L. Cenis G. Víllora Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles J. Polymers 11 12 (2019) 2045. 2045 10.3390/polym11122045.
– volume: 35
  start-page: 605
  year: 2017
  end-page: 614
  ident: b0150
  article-title: Ultrasonic encapsulation – A review
  publication-title: Ultrason. Sonochem.
– volume: 249
  year: 2020
  ident: b0130
  article-title: Self-assembly properties of carboxylated tunicate cellulose nanocrystals prepared by ammonium persulfate oxidation and subsequent ultrasonication
  publication-title: Carbohydr. Polym.
– volume: 35
  start-page: 1093
  year: 2010
  end-page: 1115
  ident: b0005
  article-title: Composite materials based on silk proteins
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 3352
  year: 2015
  end-page: 3361
  ident: b0065
  article-title: Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 444
  year: 2015
  end-page: 452
  ident: b0205
  article-title: Processing and characterization of powdered silk micro- and nanofibers by ultrasonication
  publication-title: Mater. Sci. Eng. C
– volume: 5
  start-page: 6361
  year: 2019
  end-page: 6373
  ident: b0020
  article-title: Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly
  publication-title: ACS Biomater. Sci. Eng.
– volume: 65
  year: 2020
  ident: b0115
  article-title: Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates
  publication-title: Ultrason. Sonochem.
– volume: 24
  start-page: 3871
  year: 2003
  end-page: 3876
  ident: b0195
  article-title: Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique
  publication-title: Biomaterials
– volume: 3
  start-page: 2599
  year: 2015
  end-page: 2606
  ident: b0185
  article-title: The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein
  publication-title: J. Mater. Chem. B
– volume: 14
  start-page: 674
  year: 2021
  ident: b0030
  article-title: Silk-Based Materials for Hard Tissue Engineering
  publication-title: Materials
– volume: 8
  start-page: 1030
  year: 2010
  end-page: 1036
  ident: b0255
  article-title: The mechanical properties of single fibrin fibers
  publication-title: J. Thromb. Haemostasis
– reference: F. Zhang, J.N. Wang, B.Q. Zuo, Effect of Aqueous Ethanol Treatment on the Electrospun SF Nanofiber Mats, C. Bioinformatics and Biomedical Engineering (iCBBE) 2010 4th International Conference on 2010 1-4.
– volume: 11
  start-page: 1622
  year: 2019
  ident: b0180
  article-title: Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt
  publication-title: Polymers
– volume: 104
  year: 2019
  ident: b0295
  article-title: Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses
  publication-title: Mater. Sci. Eng. C
– volume: 10
  start-page: 17094
  year: 2020
  ident: b0105
  article-title: Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye
  publication-title: Sci. Rep.
– volume: 3
  start-page: 3248
  year: 2020
  end-page: 3259
  ident: b0310
  article-title: Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism
  publication-title: ACS Appl. Bio Mater.
– volume: 10
  start-page: 6321
  year: 2014
  end-page: 6331
  ident: b0015
  article-title: Understanding the variability of properties in Antheraea pernyi silk fibres
  publication-title: Soft Matter
– volume: 97
  start-page: 479
  year: 2012
  end-page: 498
  ident: b0045
  article-title: Physical and chemical aspects of stabilization of compounds in silk
  publication-title: Biopolymers
– volume: 29
  start-page: 1054
  year: 2008
  end-page: 1064
  ident: b0260
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
– volume: 17
  start-page: 326
  year: 2010
  end-page: 332
  ident: b0095
  article-title: Preparation of hydrogels via ultrasonic polymerization
  publication-title: Ultrason. Sonochem.
– volume: 113
  start-page: 533
  year: 1994
  end-page: 542
  ident: b0145
  article-title: Sonochemistry: Theory and applications
  publication-title: Recl. Trav. Chim. Pays-Bas
– volume: 76
  start-page: 105653
  year: 2021
  ident: b0120
  article-title: Effect of ultrasound on protein functionality
  publication-title: Ultrason. Sonochem.
– volume: 112
  start-page: 8971
  year: 2015
  end-page: 8976
  ident: b0240
  article-title: Anomalous scaling law of strength and toughness of cellulose nanopaper
  publication-title: Proc. Natl. Acad. Sci.
– volume: 31
  start-page: 367
  year: 2020
  end-page: 389
  ident: b0085
  article-title: Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities
  publication-title: J. Cluster Sci.
– volume: 130
  start-page: 851
  year: 2017
  end-page: 859
  ident: b0160
  article-title: Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films
  publication-title: J. Therm. Anal. Calorim.
– volume: 175–176
  start-page: 143
  year: 2011
  end-page: 148
  ident: b0210
  article-title: The Effect of Ultrasonication on the Gelation Velocity and Structure of Silk Fibroin
  publication-title: Adv. Mater. Res.
– volume: 17
  start-page: 1497
  year: 2016
  ident: b0225
  article-title: Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials
  publication-title: Int. J. Mol. Sci.
– volume: 37
  start-page: 131
  year: 2016
  end-page: 142
  ident: b0305
  article-title: Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth
  publication-title: Acta Biomater.
– volume: 12
  start-page: 1686
  year: 2011
  end-page: 1696
  ident: b0055
  article-title: Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing
  publication-title: Biomacromolecules
– volume: 39
  start-page: 6161
  year: 2006
  end-page: 6170
  ident: b0135
  article-title: Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy
  publication-title: Macromolecules
– volume: 91
  start-page: 1193
  year: 2018
  end-page: 1197
  ident: b0110
  article-title: Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound
  publication-title: Russ. J. Appl. Chem.
– volume: 3
  start-page: 8795
  year: 2020
  end-page: 8807
  ident: b0280
  article-title: Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology
  publication-title: ACS Appl. Bio Mater.
– volume: 89
  start-page: 497
  year: 2008
  end-page: 505
  ident: b0070
  article-title: Conformational transition and liquid crystalline state of regenerated silk fibroin in water
  publication-title: Biopolymers
– volume: 3
  start-page: 055401
  year: 2016
  ident: b0220
  article-title: Sonication induced silk fibroin cryogels for tissue engineering applications
  publication-title: Mater. Res. Express
– volume: 51
  start-page: 6278
  year: 2010
  end-page: 6283
  ident: b0245
  article-title: Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin
  publication-title: Polymer
– volume: 298
  start-page: 1201
  year: 2013
  end-page: 1208
  ident: b0215
  article-title: Ultrasound Sonication Effects on Silk Fibroin Protein
  publication-title: Macromol. Mater. Eng.
– volume: 41
  start-page: 227
  year: 2018
  end-page: 233
  ident: b0090
  article-title: Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres
  publication-title: Ultrason. Sonochem.
– volume: 304
  start-page: 1900364
  year: 2019
  ident: b0265
  article-title: Effects of Ultrasonic Treatment on Hydrophilicity and Thermal Stability of Silk
  publication-title: Macromol. Mater. Eng.
– volume: 55
  start-page: 323
  year: 2017
  end-page: 332
  ident: b0035
  article-title: Silk I and Silk II studied by fast scanning calorimetry
  publication-title: Acta Biomater.
– volume: 42
  start-page: 3269
  year: 2009
  end-page: 3274
  ident: b0075
  article-title: Ultrasound-Induced Cross-Linking and Formation of Macroscopic Covalent Hydrogels in Aqueous Polymer and Monomer Solutions
  publication-title: Macromolecules
– volume: 55
  start-page: 86
  year: 2019
  end-page: 95
  ident: b0100
  article-title: Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs
  publication-title: Ultrason. Sonochem.
– volume: 46
  start-page: 86
  year: 2015
  end-page: 110
  ident: b0050
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
– volume: 122
  start-page: 1069
  year: 2015
  end-page: 1076
  ident: b0165
  article-title: Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films
  publication-title: J. Therm. Anal. Calorim.
– volume: 11
  start-page: 2890
  year: 2010
  end-page: 2895
  ident: b0250
  article-title: Enhancing the Toughness of Regenerated Silk Fibroin Film through Uniaxial Extension
  publication-title: Biomacromolecules
– volume: 25
  start-page: 4691
  year: 2004
  end-page: 4697
  ident: b0300
  article-title: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility
  publication-title: Biomaterials
– volume: 7
  start-page: 2337
  year: 2021
  end-page: 2345
  ident: b0060
  article-title: Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly
  publication-title: ACS Biomater. Sci. Eng.
– volume: 23
  start-page: 3257
  year: 2002
  end-page: 3267
  ident: b0270
  article-title: Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior
  publication-title: Biomaterials
– volume: 35
  start-page: 369
  year: 2002
  end-page: 430
  ident: b0170
  article-title: What Vibrations Tell About Proteins
  publication-title: Q. Rev. Biophys.
– volume: 554
  start-page: 224
  year: 2018
  end-page: 228
  ident: b0235
  article-title: Processing bulk natural wood into a high-performance structural material
  publication-title: Nature
– volume: 24
  start-page: 401
  year: 2003
  end-page: 416
  ident: b0025
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
– volume: 131
  start-page: 337
  year: 2015
  end-page: 354
  ident: b0010
  article-title: Review on hygroscopic aging of cellulose fibres and their biocomposites
  publication-title: Carbohydr. Polym.
– volume: 49
  start-page: 842
  year: 2013
  end-page: 849
  ident: b0175
  article-title: Silkworm cocoon as natural material and structure for thermal insulation
  publication-title: Mater. Des.
– volume: 129
  start-page: 278
  year: 2019
  end-page: 286
  ident: b0140
  article-title: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids
  publication-title: Int. J. Heat Mass Transfer
– volume: 41
  start-page: 227
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105800_b0090
  article-title: Effect of sonochemical scouring on the surface morphologies, mechanical properties, and dyeing abilities of wool fibres
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.09.045
– volume: 17
  start-page: 326
  issue: 2
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105800_b0095
  article-title: Preparation of hydrogels via ultrasonic polymerization
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.08.008
– volume: 11
  start-page: 2890
  issue: 11
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105800_b0250
  article-title: Enhancing the Toughness of Regenerated Silk Fibroin Film through Uniaxial Extension
  publication-title: Biomacromolecules
  doi: 10.1021/bm100643q
– volume: 7
  start-page: 2337
  issue: 6
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105800_b0060
  article-title: Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00181
– volume: 104
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0295
  article-title: Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.109890
– volume: 35
  start-page: 1093
  issue: 9
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105800_b0005
  article-title: Composite materials based on silk proteins
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2010.04.005
– volume: 131
  start-page: 337
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0010
  article-title: Review on hygroscopic aging of cellulose fibres and their biocomposites
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.06.027
– volume: 51
  start-page: 6278
  issue: 26
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105800_b0245
  article-title: Correlation between structural and dynamic mechanical transitions of regenerated silk fibroin
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.10.046
– volume: 91
  start-page: 1193
  issue: 7
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105800_b0110
  article-title: Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S1070427218070194
– volume: 34
  start-page: 94
  issue: 200
  year: 1917
  ident: 10.1016/j.ultsonch.2021.105800_b0155
  article-title: On the pressure developed in a liquid during the collapse of a spherical cavity
  publication-title: Philos. Mag.
  doi: 10.1080/14786440808635681
– volume: 130
  start-page: 851
  issue: 2
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105800_b0160
  article-title: Impact of calcium chloride concentration on structure and thermal property of Thai silk fibroin films
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-017-6388-z
– volume: 113
  start-page: 533
  issue: 12
  year: 1994
  ident: 10.1016/j.ultsonch.2021.105800_b0145
  article-title: Sonochemistry: Theory and applications
  publication-title: Recl. Trav. Chim. Pays-Bas
  doi: 10.1002/recl.19941131202
– volume: 33
  start-page: 344
  issue: 2
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105800_b0285
  article-title: Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films
  publication-title: Acta Phys.-Chim. Sin.
  doi: 10.3866/PKU.WHXB201611023
– volume: 29
  start-page: 1054
  issue: 8
  year: 2008
  ident: 10.1016/j.ultsonch.2021.105800_b0260
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.003
– volume: 48
  start-page: 444
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0205
  article-title: Processing and characterization of powdered silk micro- and nanofibers by ultrasonication
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.12.028
– volume: 31
  start-page: 367
  issue: 2
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0085
  article-title: Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-019-01651-3
– volume: 9
  start-page: 3079
  issue: 11
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105800_b0125
  article-title: Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp3001827
– ident: 10.1016/j.ultsonch.2021.105800_b0080
  doi: 10.3390/polym11122045
– volume: 298
  start-page: 1201
  issue: 11
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105800_b0215
  article-title: Ultrasound Sonication Effects on Silk Fibroin Protein
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200377
– volume: 304
  start-page: 1900364
  issue: 12
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0265
  article-title: Effects of Ultrasonic Treatment on Hydrophilicity and Thermal Stability of Silk
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201900364
– volume: 55
  start-page: 86
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0100
  article-title: Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.03.018
– volume: 42
  start-page: 3269
  issue: 9
  year: 2009
  ident: 10.1016/j.ultsonch.2021.105800_b0075
  article-title: Ultrasound-Induced Cross-Linking and Formation of Macroscopic Covalent Hydrogels in Aqueous Polymer and Monomer Solutions
  publication-title: Macromolecules
  doi: 10.1021/ma802565p
– volume: 3
  start-page: 3248
  issue: 5
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0310
  article-title: Tunable High-Molecular-Weight Silk Fibroin Polypeptide Materials: Fabrication and Self-Assembly Mechanism
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00231
– volume: 14
  start-page: 674
  issue: 3
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105800_b0030
  article-title: Silk-Based Materials for Hard Tissue Engineering
  publication-title: Materials
  doi: 10.3390/ma14030674
– volume: 46
  start-page: 86
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0050
  article-title: Structures, mechanical properties and applications of silk fibroin materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.02.001
– volume: 19
  start-page: 3309
  issue: 11
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105800_b0040
  article-title: Exploring the Structural Transformation Mechanism of Chinese and Thailand Silk Fibroin Fibers and Formic-Acid Fabricated Silk Films
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113309
– volume: 65
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0115
  article-title: Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105063
– volume: 17
  start-page: 1497
  issue: 9
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105800_b0225
  article-title: Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17091497
– volume: 554
  start-page: 224
  year: 2018
  ident: 10.1016/j.ultsonch.2021.105800_b0235
  article-title: Processing bulk natural wood into a high-performance structural material
  publication-title: Nature
  doi: 10.1038/nature25476
– volume: 35
  start-page: 369
  issue: 4
  year: 2002
  ident: 10.1016/j.ultsonch.2021.105800_b0170
  article-title: What Vibrations Tell About Proteins
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583502003815
– volume: 3
  start-page: 055401
  issue: 5
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105800_b0220
  article-title: Sonication induced silk fibroin cryogels for tissue engineering applications
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/3/5/055401
– volume: 122
  start-page: 1069
  issue: 3
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0165
  article-title: Comparative studies of regenerated water-based Mori, Thai, Eri, Muga and Tussah silk fibroin films
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-015-4736-4
– volume: 12
  start-page: 1686
  issue: 5
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105800_b0055
  article-title: Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing
  publication-title: Biomacromolecules
  doi: 10.1021/bm200062a
– volume: 10
  start-page: 17094
  issue: 1
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0105
  article-title: Biogenic and chemically synthesized Solanum tuberosum peel–silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74254-y
– volume: 76
  start-page: 105653
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105800_b0120
  article-title: Effect of ultrasound on protein functionality
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2021.105653
– volume: 25
  start-page: 4691
  issue: 19
  year: 2004
  ident: 10.1016/j.ultsonch.2021.105800_b0300
  article-title: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.084
– volume: 35
  start-page: 605
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105800_b0150
  article-title: Ultrasonic encapsulation – A review
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.03.017
– volume: 23
  start-page: 3257
  issue: 15
  year: 2002
  ident: 10.1016/j.ultsonch.2021.105800_b0270
  article-title: Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00084-4
– volume: 9
  start-page: 1238
  issue: 5
  year: 2021
  ident: 10.1016/j.ultsonch.2021.105800_b0200
  article-title: Functional silk fibroin hydrogels: preparation, properties and applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02099K
– volume: 11
  start-page: 1622
  issue: 10
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0180
  article-title: Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt
  publication-title: Polymers
  doi: 10.3390/polym11101622
– volume: 97
  start-page: 479
  issue: 6
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105800_b0045
  article-title: Physical and chemical aspects of stabilization of compounds in silk
  publication-title: Biopolymers
  doi: 10.1002/bip.22026
– volume: 89
  start-page: 497
  issue: 6
  year: 2008
  ident: 10.1016/j.ultsonch.2021.105800_b0070
  article-title: Conformational transition and liquid crystalline state of regenerated silk fibroin in water
  publication-title: Biopolymers
  doi: 10.1002/bip.20905
– volume: 24
  start-page: 3871
  issue: 22
  year: 2003
  ident: 10.1016/j.ultsonch.2021.105800_b0195
  article-title: Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00135-2
– volume: 112
  start-page: 8971
  issue: 29
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0240
  article-title: Anomalous scaling law of strength and toughness of cellulose nanopaper
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1502870112
– volume: 175–176
  start-page: 143
  year: 2011
  ident: 10.1016/j.ultsonch.2021.105800_b0210
  article-title: The Effect of Ultrasonication on the Gelation Velocity and Structure of Silk Fibroin
  publication-title: Adv. Mater. Res.
– volume: 55
  start-page: 323
  year: 2017
  ident: 10.1016/j.ultsonch.2021.105800_b0035
  article-title: Silk I and Silk II studied by fast scanning calorimetry
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.04.001
– ident: 10.1016/j.ultsonch.2021.105800_b0190
  doi: 10.1109/ICBBE.2010.5515644
– volume: 8
  start-page: 1030
  year: 2010
  ident: 10.1016/j.ultsonch.2021.105800_b0255
  article-title: The mechanical properties of single fibrin fibers
  publication-title: J. Thromb. Haemostasis
  doi: 10.1111/j.1538-7836.2010.03745.x
– volume: 3
  start-page: 2599
  issue: 13
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0185
  article-title: The influence of the hydrophilic–lipophilic environment on the structure of silk fibroin protein
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01873G
– volume: 39
  start-page: 6161
  issue: 18
  year: 2006
  ident: 10.1016/j.ultsonch.2021.105800_b0135
  article-title: Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy
  publication-title: Macromolecules
  doi: 10.1021/ma0610109
– volume: 24
  start-page: 401
  issue: 3
  year: 2003
  ident: 10.1016/j.ultsonch.2021.105800_b0025
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00353-8
– volume: 249
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0130
  article-title: Self-assembly properties of carboxylated tunicate cellulose nanocrystals prepared by ammonium persulfate oxidation and subsequent ultrasonication
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116835
– volume: 139
  start-page: 589
  issue: 1
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0230
  article-title: Thermal analysis and kinetic study of native silks
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08420-4
– volume: 5
  start-page: 6361
  issue: 12
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0020
  article-title: Formic Acid Regenerated Mori, Tussah, Eri, Thai, and Muga Silk Materials: Mechanism of Self-Assembly
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00577
– volume: 7
  start-page: 3352
  issue: 5
  year: 2015
  ident: 10.1016/j.ultsonch.2021.105800_b0065
  article-title: Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508319h
– volume: 146
  start-page: 222
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0290
  article-title: Three-dimensional porous scaffolds based on agarose/chitosan/graphene oxide composite for tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.219
– volume: 10
  start-page: 6321
  issue: 33
  year: 2014
  ident: 10.1016/j.ultsonch.2021.105800_b0015
  article-title: Understanding the variability of properties in Antheraea pernyi silk fibres
  publication-title: Soft Matter
  doi: 10.1039/C4SM01172D
– volume: 129
  start-page: 278
  year: 2019
  ident: 10.1016/j.ultsonch.2021.105800_b0140
  article-title: Effects of ultrasonic time, size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.104
– volume: 32
  start-page: 1314
  issue: 6
  year: 2012
  ident: 10.1016/j.ultsonch.2021.105800_b0275
  article-title: Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.02.015
– volume: 49
  start-page: 842
  year: 2013
  ident: 10.1016/j.ultsonch.2021.105800_b0175
  article-title: Silkworm cocoon as natural material and structure for thermal insulation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.02.006
– volume: 3
  start-page: 8795
  issue: 12
  year: 2020
  ident: 10.1016/j.ultsonch.2021.105800_b0280
  article-title: Tunable Biodegradable Polylactide-Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01157
– volume: 37
  start-page: 131
  year: 2016
  ident: 10.1016/j.ultsonch.2021.105800_b0305
  article-title: Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.04.008
SSID ssj0003920
Score 2.4495173
Snippet [Display omitted] •A novel ultrasound technique to fabricate flexible protein materials.•Protein structure and properties can be tuned by varying ultrasound...
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In...
• A novel ultrasound technique to fabricate flexible protein materials. • Protein structure and properties can be tuned by varying ultrasound power and time. •...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105800
SubjectTerms Animals
Beta sheet
Biocompatible Materials
Biological property
Biophysical Phenomena
Bombyx
Calorimetry, Differential Scanning
Fibroins
Insolubility
Original
Silk
Spectroscopy, Fourier Transform Infrared
Structural transformation
Ultrasonic treatment
Ultrasonics
Water
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNpLaNOX-wgK5Fg3K0taSb21oUsIpKcs5Cb0pLsszrKP_98Zy15228NecjO2JVueT5pP1ugbQi6FN1yOhK-9H-VaRC1qraG7iySjjONR0t2K7t3v8c1U3D7Ih71UXxgTVuSBy4e7So0DRh4lMMEssmQajjn4qWRYYKEogYLPGyZT_RgMXr_sD5bwWKbU3t7g-bftYgNctluKaBgmutW4v23PLXXq_Qfe6X_2-W8Q5Z5Xmrwipz2dpD9KM16TZ6k9Iy-uhyxuZ-R5F-IZ1m_IfLqAGtaYRomuSgb6FGlGQUy_SLQTbJi1FBhsAeV3OnF-1f_S-0qL0Ox2laiDCpa9eesi4oSHWMMSo7TT-i2ZTn7dX9_UfaaFOkiuNnVwRqUsYpMYmIwFg0pqOgSpYnZShYgdPXDfQG9lUXnpGarO6MiCc5Ep_o6ctI9t-kAoGMVEmXyWKQgTYAzLLBsvGsWckdJVRA4f2oZehhyzYSzsEG82t4OBLBrIFgNV5GpXblmEOI6W-Il23N2NQtrdCYCX7eFlj8GrImZAge05SeEaUNXs6AtcDLCxYHVciXFtetyubQO0T3CYGeuKvC8w2r0mB9fFOVcVUQcAO2jH4ZV29qcTBtdAX8eN-fgUDf9EXmJTyrbLz-QEQJa-AP_a-POuq_0FuFQvHQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties
URI https://dx.doi.org/10.1016/j.ultsonch.2021.105800
https://www.ncbi.nlm.nih.gov/pubmed/34673337
https://www.proquest.com/docview/2584434488
https://pubmed.ncbi.nlm.nih.gov/PMC8560629
https://doaj.org/article/e2a966d5882f4f5186d53215e91c1c04
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWixBcECyv8KiCxJFs69iuHW5LRVVA7AUq7c3yK5CqSqs-rvx2ZuyktHDYA7c0jZ1JZuz5HM98Q8hbbismRtwW1o7qgnvFC6VguPMgvPDjUVBxR_fr9Xg2559vxM0ZmfS5MBhW2c39aU6Ps3V3Zti9zeG6aYbfKN6EAjqkkccOOUE5l2jll7_-hHmA_0-ZwgIEgKuPsoQXl_vlDlBt3JQoKZa8VZjpduSgIo__iZ_6F4f-HU555J-mD8mDDljmV0n2R-QstBfk3qSv53ZB7sZgT7d9TBbzJfSwxYJK-SbVog8-r5Ea0y5DHqkbmjYHLJvM830-NXbTfdx7lyfK2f0m5AY6WHeKLhKdEx5iD2uM1w7bJ2Q-_fh9Miu6mguFE0zuCmcqGWruy0BBedRVyKmmnBPS10ZI53HIO2ZLGLfUSyssRf4Z5akzxlPJnpLzdtWG5yR30NqLYGsRHK8czGY1rSvLS0lNJYTJiOhftHYdITnWxVjqPvJsoXsFaVSQTgrKyPDQbp0oOW5t8QH1eLgaKbXjidXmh-5sSofSwNLPC1hy1LwWVMExA0AUKgpPMuIZqXor0CcWCl01twrwpjcbDVrHPRnThtV-q0sAgJzBGlll5Fkyo4OYDJwYY0xmRJ4Y2MlznP7TNj8jRbgCIDsuqxf_IfNLch9_pbzLV-QcbCu8BgC2s4M4wgbkztWnL7PrQfyM8Rv34DSB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuFRQo4WkkuJHuOrY3DhIHKKy29HGhK_Vm4kdKVqvsarOrigt_ij_IOI9lA4ceUG9REk_Gnhl7HM98A_Ca64SJPteh1v0s5FbyUEo0d-6EFXbQd7I60T09G4zG_MuFuNiCX20ujA-rbOb-ek6vZuvmTq8Zzd48z3tfqf8IRe-QVjh2vImsPHY_rnDfVr4_-oRCfhNFw8_nh6OwKS0QGsHiZWjSJHYZt5GjyCM1iYcOk8aI2GapiI31mm2YjlA9qY210NTDrEhLTZpaGjOkewtuc5wufNmEg59_4krQ4ahTkwX2GNnbSEueHKymS3Sjq1OQiPoau9Kn1m2siFXhgM7C-K_j-3f85saCOLwHu40nSz7Ug3UftlyxBzuHbQG5PbhTRZea8gFMxlOkUPoKTmThLn3FMGdJ5rE49dSRCisiLwg6z7U9vCPDVC-av4lvSY1xu1o4kiKBeaNZYY0f5S89hbkPEHflQxjfiCQewXYxK9xjIAZbW-F0JpzhicHpM6NZonkU0zQRIg1AtAOtTIOA7gtxTFUb6jZRrYCUF5CqBRRAb91uXmOAXNvio5fj-m2P4V3dmC0uVaPEykUp7jWtwD1OxjNBJV4z9MBcQrEnfR5A0mqB6pgEksqvZeBVqzYKpe4PgdLCzValitDj5Aw35TKA_VqN1mwyXDUZY3EAcUfBOv3oPiny7xUmuUTPeRAlT_6D55ewMzo_PVEnR2fHT-Guf1InfT6DbdQz9xy9v6V-UVkbgW83bd6_ARkyb4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound+regulated+flexible+protein+materials%3A+Fabrication%2C+structure+and+physical-biological+properties&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Cai%2C+Bowen&rft.au=Gu%2C+Hanling&rft.au=Wang%2C+Fang&rft.au=Printon%2C+Kyle&rft.date=2021-11-01&rft.issn=1350-4177&rft.volume=79&rft.spage=105800&rft_id=info:doi/10.1016%2Fj.ultsonch.2021.105800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultsonch_2021_105800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon