Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles

The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 20; p. 6737
Main Authors Kumar, Sourav, Poyyamozhi, Mukilan, Murugesan, Balasubramanian, Rajamanickam, Narayanamoorthi, Alroobaea, Roobaea, Nureldeen, Waleed
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system’s high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.
AbstractList The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system’s high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.
The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.
Audience Academic
Author Nureldeen, Waleed
Poyyamozhi, Mukilan
Rajamanickam, Narayanamoorthi
Murugesan, Balasubramanian
Kumar, Sourav
Alroobaea, Roobaea
AuthorAffiliation 3 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; r.robai@tu.edu.sa
4 General Subject Department, University of Business and Technology, Jeddah 23435, Saudi Arabia
2 Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; narayanr@srmist.edu.in
1 Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; sourav.kumar390@gmail.com (S.K.); mp6481@srmist.edu.in (M.P.)
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; narayanr@srmist.edu.in
– name: 4 General Subject Department, University of Business and Technology, Jeddah 23435, Saudi Arabia
– name: 1 Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; sourav.kumar390@gmail.com (S.K.); mp6481@srmist.edu.in (M.P.)
– name: 3 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; r.robai@tu.edu.sa
Author_xml – sequence: 1
  givenname: Sourav
  surname: Kumar
  fullname: Kumar, Sourav
– sequence: 2
  givenname: Mukilan
  surname: Poyyamozhi
  fullname: Poyyamozhi, Mukilan
– sequence: 3
  givenname: Balasubramanian
  orcidid: 0000-0003-3596-1955
  surname: Murugesan
  fullname: Murugesan, Balasubramanian
– sequence: 4
  givenname: Narayanamoorthi
  orcidid: 0000-0003-4842-3275
  surname: Rajamanickam
  fullname: Rajamanickam, Narayanamoorthi
– sequence: 5
  givenname: Roobaea
  orcidid: 0000-0003-1585-2962
  surname: Alroobaea
  fullname: Alroobaea, Roobaea
– sequence: 6
  givenname: Waleed
  surname: Nureldeen
  fullname: Nureldeen, Waleed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460217$$D View this record in MEDLINE/PubMed
BookMark eNptkkuP0zAURiM0iHnAgj-AIrGBRWd8befhFarKq1IlFlC2luNcp64Su9jpSPx7nM50mA4oi8TX5x7nWt9ldua8wyx7DeSaMUFuIuWUlBWrnmUXwCmf1ZSSs0ff59lljFtCKGOsfpGdM8FLQqG6yMLS3WIcbadG613uTb52URnMF97FMez1ofzdjodKa6dlzNfRui7_iLjLV6iCm1bzvvPBjpvhuL12g3IO23yOwao-_4kbq3uML7PnRvURX92_r7L1508_Fl9nq29flov5aqYLVo0zTWhJFBKjiTElFUAbFJwaooqWIxJaUG6YNg1VqCk1JRdtWSmoAeqCtciusuWdt_VqK3fBDir8ll5ZeSj40EkVxumXZF2zEhoAQaDlAtpGC2yIaqloeKNEk1wf7ly7fTNgq9GNQfUn0tMdZzey87cSoADgBUuGd_eG4H_t05XLwUaNfa8c-n2UDCiQkhdQJ_TtE3Tr98Glu5ooUvFKEPaX6lSawDrj08F6ksp5DZxDzYsiUdf_odLT4mB1ipGxqX7S8ObxpA8jHiOTgJs7QAcfY0AjtR0P6Ulm20sgcgqlfAhl6nj_pOMo_Zf9AyBY4AU
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106005
crossref_primary_10_3390_app15031488
Cites_doi 10.3390/ijerph15040773
10.1016/j.neucom.2022.01.022
10.1155/2020/9703560
10.1109/ASET56582.2023.10180841
10.1016/j.autcon.2024.105443
10.1109/LRA.2021.3070828
10.1016/j.oceaneng.2024.117711
10.1061/(ASCE)CF.1943-5509.0001748
10.1109/I2CT51068.2021.9418175
10.1109/TMC.2023.3259394
10.1109/TVT.2024.3356587
10.1109/JSTARS.2024.3419786
10.1061/JPSEA2.PSENG-1453
10.1109/JIOT.2023.3256008
10.3390/s23020944
10.1109/ICCMC48092.2020.ICCMC-000175
10.1016/j.asej.2021.04.001
10.1109/ICCV.2015.169
10.1007/s11370-021-00386-3
10.1088/1757-899X/376/1/012114
10.3390/s22228797
10.1080/08839514.2021.1988441
10.1109/ACCESS.2019.2916035
10.1109/TII.2023.3297613
10.1016/j.autcon.2017.09.018
10.1061/(ASCE)CP.1943-5487.0000279
10.1007/s12065-023-00821-7
10.1109/PSGEC51302.2021.9541872
10.1109/JIOT.2023.3244655
10.1109/ITAIC49862.2020.9339038
10.1080/00207721.2023.2241961
10.1016/j.autcon.2024.105563
10.1016/j.ssci.2017.06.008
10.1038/s41598-024-57433-z
10.1109/JIOT.2021.3111024
10.3390/drones7030202
10.1007/s10489-023-04646-w
10.1109/TMM.2024.3394681
10.3390/systems12060188
10.1109/TIFS.2023.3318956
10.3390/drones6080215
10.1016/j.compind.2019.03.004
10.1016/j.ssci.2021.105473
10.1109/TCYB.2022.3225106
10.1016/j.ast.2023.108241
10.1016/j.matpr.2021.02.533
10.1109/TNSE.2021.3057915
10.3390/rs15143546
10.1007/s11042-023-17949-4
10.1109/CVPR.2014.81
10.1109/ISMSIT.2019.8932833
10.1109/CVPR.2016.95
10.1016/j.ssci.2015.11.020
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24206737
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_88361b11901d491dbc9eb0ad29b4ba9b
PMC11511453
A814418455
39460217
10_3390_s24206737
Genre Journal Article
GrantInformation_xml – fundername: Taif University
  grantid: TU-DSPP-2024-17
– fundername: Taif University, Taif, Saudi Arabia
  grantid: TU-DSPP-2024-17
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c537t-c0260ae0fc0ff62912be942f0a5d4ee02524f3cfb2aec22f649d67a1811853de3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:05 EDT 2025
Thu Aug 21 18:43:40 EDT 2025
Tue Aug 05 09:22:38 EDT 2025
Sat Jul 26 00:43:51 EDT 2025
Tue Jun 17 22:03:42 EDT 2025
Tue Jun 10 21:04:45 EDT 2025
Thu Apr 03 07:07:01 EDT 2025
Tue Jul 01 03:51:17 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords object detection
automatic detection
unsafe site conditions
tensor flow
image recognition
Unmanned Aerial Vehicle
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-c0260ae0fc0ff62912be942f0a5d4ee02524f3cfb2aec22f649d67a1811853de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4842-3275
0000-0003-1585-2962
0000-0003-3596-1955
OpenAccessLink https://doaj.org/article/88361b11901d491dbc9eb0ad29b4ba9b
PMID 39460217
PQID 3120747903
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_88361b11901d491dbc9eb0ad29b4ba9b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511453
proquest_miscellaneous_3121064518
proquest_journals_3120747903
gale_infotracmisc_A814418455
gale_infotracacademiconefile_A814418455
pubmed_primary_39460217
crossref_citationtrail_10_3390_s24206737
crossref_primary_10_3390_s24206737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gu (ref_32) 2024; 303
ref_50
Cai (ref_57) 2023; 124
Ammad (ref_25) 2021; 12
Dai (ref_4) 2024; 23
Xu (ref_26) 2022; 36
ref_53
Chen (ref_58) 2024; 83
Rabbi (ref_23) 2024; 164
ref_15
Fang (ref_51) 2018; 85
Liu (ref_46) 2023; 53
ref_60
Cao (ref_2) 2021; 8
ref_22
Wu (ref_18) 2019; 7
ref_21
Yin (ref_48) 2024; 140
ref_29
Zhou (ref_44) 2021; 6
Jayaraj (ref_1) 2018; 376
ref_27
Hu (ref_40) 2024; 15
Jeelani (ref_9) 2021; 144
Pu (ref_56) 2024; 17
Zhao (ref_10) 2024; 73
Zhang (ref_38) 2024; 26
Sun (ref_6) 2023; 10
ref_36
ref_35
Bu (ref_11) 2022; 36
Wu (ref_16) 2023; 53
Zhang (ref_20) 2023; 136
ref_31
Fan (ref_28) 2024; 17
He (ref_8) 2024; 19
Han (ref_17) 2014; 27
Salari (ref_37) 2022; 495
Huang (ref_12) 2023; 10
Chen (ref_24) 2024; 20
Li (ref_39) 2020; 2020
Qin (ref_54) 2024; 165
Choi (ref_55) 2021; 14
Yin (ref_52) 2024; 141
Tian (ref_42) 2022; 9
ref_47
Kishor (ref_33) 2017; 7
Liu (ref_7) 2019; 108
ref_45
(ref_19) 2019; 14
ref_43
Costa (ref_3) 2017; 98
ref_41
Sun (ref_34) 2024; 62
Peng (ref_14) 2023; 54
Guo (ref_13) 2016; 84
ref_49
ref_5
Prakash (ref_59) 2020; 46
Zhou (ref_30) 2024; 73
References_xml – ident: ref_5
  doi: 10.3390/ijerph15040773
– volume: 495
  start-page: 129
  year: 2022
  ident: ref_37
  article-title: Object recognition datasets and challenges: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.022
– volume: 2020
  start-page: 9703560
  year: 2020
  ident: ref_39
  article-title: Deep Learning-Based Safety Helmet Detection in Engineering Management Based on Convolutional Neural Networks
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/9703560
– ident: ref_45
  doi: 10.1109/ASET56582.2023.10180841
– volume: 164
  start-page: 105443
  year: 2024
  ident: ref_23
  article-title: AI integration in construction safety: Current state, challenges, and future opportunities in text, vision, and audio based applications
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105443
– volume: 7
  start-page: 14
  year: 2017
  ident: ref_33
  article-title: Design and Development of Arduino Uno based Quadcopter
  publication-title: Int. J. Eng. Manuf. Sci.
– volume: 73
  start-page: 8502211
  year: 2024
  ident: ref_30
  article-title: LiDAR-Based 3-D Glass Detection and Reconstruction in Indoor Environment
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 6
  start-page: 5002
  year: 2021
  ident: ref_44
  article-title: Path Planning With Automatic Seam Extraction Over Point Cloud Models for Robotic Arc Welding
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3070828
– volume: 303
  start-page: 117711
  year: 2024
  ident: ref_32
  article-title: MFGTN: A multi-modal fast gated transformer for identifying single trawl marine fishing vessel
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117711
– volume: 36
  start-page: 04022035
  year: 2022
  ident: ref_11
  article-title: A UAV Photography–Based Detection Method for Defective Road Marking
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001748
– ident: ref_47
  doi: 10.1109/I2CT51068.2021.9418175
– volume: 23
  start-page: 2520
  year: 2024
  ident: ref_4
  article-title: UAV-Assisted Task Offloading in Vehicular Edge Computing Networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2023.3259394
– volume: 73
  start-page: 8367
  year: 2024
  ident: ref_10
  article-title: Joint Trajectory and Communication Design for UAV-Assisted Symbiotic Radio Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2024.3356587
– volume: 17
  start-page: 11886
  year: 2024
  ident: ref_28
  article-title: A Small Ship Object Detection Method for Satellite Remote Sensing Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3419786
– volume: 15
  start-page: 04023061
  year: 2024
  ident: ref_40
  article-title: Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/JPSEA2.PSENG-1453
– volume: 10
  start-page: 12777
  year: 2023
  ident: ref_6
  article-title: An Adaptive Weighting Strategy for Multisensor Integrated Navigation in Urban Areas
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3256008
– ident: ref_29
  doi: 10.3390/s23020944
– volume: 140
  start-page: 2315
  year: 2024
  ident: ref_48
  article-title: AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms
  publication-title: CMES-Comput. Model. Eng. Sci.
– ident: ref_31
  doi: 10.1109/ICCMC48092.2020.ICCMC-000175
– volume: 12
  start-page: 3495
  year: 2021
  ident: ref_25
  article-title: Personal Protective Equipment (PPE) usage in Construction Projects: A Systematic Review and Smart PLS Approach
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2021.04.001
– ident: ref_21
  doi: 10.1109/ICCV.2015.169
– volume: 14
  start-page: 679
  year: 2021
  ident: ref_55
  article-title: UAV path planning method for avoiding restricted areas
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-021-00386-3
– volume: 376
  start-page: 012114
  year: 2018
  ident: ref_1
  article-title: Robotics in Construction Industry
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/376/1/012114
– ident: ref_15
  doi: 10.3390/s22228797
– volume: 36
  start-page: 1988441
  year: 2022
  ident: ref_26
  article-title: Highlight Removal from A Single Grayscale Image Using Attentive GAN
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2021.1988441
– volume: 7
  start-page: 61960
  year: 2019
  ident: ref_18
  article-title: Stereo Matching with Fusing Adaptive Support Weights
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916035
– volume: 20
  start-page: 3144
  year: 2024
  ident: ref_24
  article-title: Specular Removal of Industrial Metal Objects Without Changing Lighting Configuration
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3297613
– volume: 85
  start-page: 1
  year: 2018
  ident: ref_51
  article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.09.018
– volume: 27
  start-page: 635
  year: 2014
  ident: ref_17
  article-title: Vision-Based Detection of Unsafe Actions of a Construction Worker: Case Study of Ladder Climbing
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000279
– volume: 17
  start-page: 1313
  year: 2024
  ident: ref_56
  article-title: Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-023-00821-7
– ident: ref_49
  doi: 10.1109/PSGEC51302.2021.9541872
– volume: 10
  start-page: 18821
  year: 2023
  ident: ref_12
  article-title: STIF: A Spatial–Temporal Integrated Framework for End-to-End Micro-UAV Trajectory Tracking and Prediction With 4-D MIMO Radar
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3244655
– volume: 124
  start-page: 103516
  year: 2023
  ident: ref_57
  article-title: Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_60
  doi: 10.1109/ITAIC49862.2020.9339038
– volume: 54
  start-page: 2663
  year: 2023
  ident: ref_14
  article-title: Picture fuzzy decision-making theories and methodologies: A systematic review
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2023.2241961
– volume: 165
  start-page: 105563
  year: 2024
  ident: ref_54
  article-title: Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105563
– volume: 98
  start-page: 174
  year: 2017
  ident: ref_3
  article-title: Applicability of unmanned aerial system (UAS) for safety inspection on construction sites
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2017.06.008
– ident: ref_27
  doi: 10.1038/s41598-024-57433-z
– volume: 9
  start-page: 22399
  year: 2022
  ident: ref_42
  article-title: Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3111024
– ident: ref_35
  doi: 10.3390/drones7030202
– volume: 53
  start-page: 24253
  year: 2023
  ident: ref_16
  article-title: Real-time stereo matching with high accuracy via Spatial Attention-Guided Upsampling
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04646-w
– volume: 141
  start-page: 87
  year: 2024
  ident: ref_52
  article-title: Convolution-Transformer for Image Feature Extraction
  publication-title: CMES-Comput. Model. Eng. Sci.
– volume: 26
  start-page: 9527
  year: 2024
  ident: ref_38
  article-title: Part-Aware Correlation Networks for Few-shot Learning
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2024.3394681
– volume: 14
  start-page: 27
  year: 2019
  ident: ref_19
  article-title: Utilizing drone technology in the civil engineering
  publication-title: Sel. Sci. Pap.-J. Civ. Eng.
– ident: ref_50
  doi: 10.3390/systems12060188
– volume: 19
  start-page: 120
  year: 2024
  ident: ref_8
  article-title: Region Generation and Assessment Network for Occluded Person Re-Identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2023.3318956
– ident: ref_22
  doi: 10.3390/drones6080215
– volume: 108
  start-page: 163
  year: 2019
  ident: ref_7
  article-title: Dynamic BIM-augmented UAV safety inspection for water diversion project
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.03.004
– volume: 144
  start-page: 105473
  year: 2021
  ident: ref_9
  article-title: Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2021.105473
– volume: 62
  start-page: 1
  year: 2024
  ident: ref_34
  article-title: Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 53
  start-page: 4015
  year: 2023
  ident: ref_46
  article-title: Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3225106
– volume: 136
  start-page: 108241
  year: 2023
  ident: ref_20
  article-title: Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108241
– volume: 46
  start-page: 3997
  year: 2020
  ident: ref_59
  article-title: Object detection through region proposal based techniques
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.02.533
– volume: 8
  start-page: 2756
  year: 2021
  ident: ref_2
  article-title: Many-Objective Deployment Optimization for a Drone-Assisted Camera Network
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2021.3057915
– ident: ref_36
  doi: 10.3390/rs15143546
– volume: 83
  start-page: 65603
  year: 2024
  ident: ref_58
  article-title: A review of object detection: Datasets, performance evaluation, architecture, applications and current trends
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17949-4
– ident: ref_53
  doi: 10.1109/CVPR.2014.81
– ident: ref_43
  doi: 10.1109/ISMSIT.2019.8932833
– ident: ref_41
  doi: 10.1109/CVPR.2016.95
– volume: 84
  start-page: 1
  year: 2016
  ident: ref_13
  article-title: Predicting safety behavior in the construction industry: Development and test of an integrative model
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2015.11.020
SSID ssj0023338
Score 2.4461
Snippet The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6737
SubjectTerms Accidents
Algorithms
automatic detection
Automation
Building
Compliance
Construction accidents & safety
Construction industry
Construction workers
Data mining
Data processing
Drone aircraft
Drones
Efficiency
image recognition
object detection
Occupational health and safety
Occupational safety
Personal protective equipment
Privacy
Quality control
Quality management
Safety equipment
Safety management
Safety standards
Strikes
Surveillance
tensor flow
Trends
Unmanned Aerial Vehicle
Unmanned aerial vehicles
unsafe site conditions
Weather
Workers' compensation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-q7TtKil0F5MbD280nH7CKHQXtotuQlJHmUDiR2ym_-fGb-waaGX3ow0Bkkzo28GRt8w9l5YHUyqZB5rW-WIECo3RoscVgWEqKNQQO-dv_-oTjfq25k-m7X6opqwnh64P7hjY2RVhpJwq1a2rEO0EApfCxtU8DbQ7YuYNyZTQ6olMfPqeYQkJvXHOwSiriPLAn06kv4_r-IZFi3rJGfAc_KIPRwiRr7uV_qY3YPmCXsw4xF8ym5mbBltw9vEN83OJ-DUjnMkiOU_Mbqkkbqv0uJdtQD_AnDNB5bVc76-PG9vLvbbq3F601x5uor5ujNV_hu2XSHdM7Y5-frr82k-NFPIo5arfR6JPMxDkWKRUiVsKQJYJVLhda0AMPQRKsmYgvAQhUiVsnW18hgAEKLXIJ-zg6Zt4CXjEj01VuBVhQBfC1RCKUTALxOS9sJn7ON4yC4OTOPU8OLSYcZB-nCTPjL2bhK97uk1_ib0iTQ1CRAjdjeAduIGO3H_spOMfSA9O_JbXEz0w_MD3BIxYLm1odTSKK0zdrSQRH-Ly-nRUtzg7zsnS0GdCGwhM_Z2mqY_qYatgfa2kymJHbA0GXvRG9a0JWnpMEvcqlmY3GLPy5nmYtuxgWNIjzmtlof_45ResfsCldpXKx6xAzRReI1R1z686RzsDnr2K_c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gucAB8aawoICQ4FJtm0cnOaHhsVohwQUGza3Kc2al3XbYGf4_dprpTgXiVjWuFMd2bKfOZ0LeMC2tig0vnddNCR5ClEpJVoZZFayTjomA952_fmvOFuLLUi7zgds2l1Xu98S0Ufve4Rn5Ca8ZYr3rir_f_CqxaxT-Xc0tNG6SWwhdhiVds-V1wsUh_xrQhDik9idbcEepL8vEByWo_r835AOPNK2WPHA_p_fI3Rw30vkg6PvkRugekDsHaIIPydUBZkbf0T7SRbc1MVBsyrmHiaXfgR9844daLZpqBuinEDY0Y62u6PxiBazv1pf74UV3aXBDpvOksPRnWKdyukdkcfr5x8ezMrdUKJ3ks13pEELMhCq6KsaG6ZrZoAWLlZFehAABEBORu2iZCY6x2Ajtm5mBMAD9ug_8MTnq-i48JZSDvbomGNGAm_fMaFszZuFJ2SgNMwV5t1_k1mW8cWx7cdFC3oHyaEd5FOT1SLoZQDb-RfQBJTUSIC52etFfrdpsZq1SvKltjVGOF7r21ulgK-OZtsLCFAvyFuXcovXCZJzJlxCAJcTBaucKE0wlpCzI8YQSrM5Nh_ea0mar37bXOlqQV-MwfomVbF3ofyeaGjECa1WQJ4NijSxxjYtZA6tqonITnqcj3fk6YYJDYA-ZreTP_j-v5-Q2A3EN1YjH5AiUL7yAqGpnXybT-QNQcCMM
  priority: 102
  providerName: ProQuest
Title Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles
URI https://www.ncbi.nlm.nih.gov/pubmed/39460217
https://www.proquest.com/docview/3120747903
https://www.proquest.com/docview/3121064518
https://pubmed.ncbi.nlm.nih.gov/PMC11511453
https://doaj.org/article/88361b11901d491dbc9eb0ad29b4ba9b
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED_tQ0LjYeKbjFEZhAQvYYntJPYDQh2sTEibEFDUt8h27HZSl4y2SPDf48uXGjFeosi-RLbvzneXnH8H8IrKRAuXstAUMg29heChEAkNbRZZbRJDucXzzheX6fmUf54lsx3oamy2C7i-NbTDelLT1fLt759_3nuFf4cRpw_ZT9bezNT1VnZh3xukDPXzgvc_EyjzYVgDKjQkP4A7TPIUvfKBVarB-__dords1DB_cssgTe7BYetJknHD-vuwY8sHcHcLX_AhrLZQNKqSVI5My7VylmCZzg44lnzzXie2FE32FqmzCMhHa29Ii746J-PlvFpdbRbXXfe0vFa4RZNxLcLkh13UCXaPYDo5-_7hPGyLLIQmYdkmNAgqpmzkTORcSmVMtZWcukglBbfWu0SUO2acpsoaSl3KZZFmyjsGaOkLyx7DXlmV9ikQ5jXYpFbhkvKCKqljSrW_E9oliqoA3nSLnJsWgRwLYSxzH4kga_KeNQG87ElvGtiN24hOkVM9ASJl1w3Vap63ipcLwdJYx-j3FFzGhTbS6kgVVGqu_RADeI18zlHC_GCMao8l-CkhMlY-FhhyCp4kARwPKL0emmF3Jyl5J8Y5iylWKJARC-BF341PYm5baatfNU2MqIGxCOBJI1j9lDr5DEAMRG4w52FPebWoUcK9q-9j3YQd_felz-CAek41qYnHsOflzj73LtZGj2A3m2X-KiafRrB_enb55euo_lwxqlXrL5I2KK8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBRYEgotVe3fteA8IBUqV0seFBuVmdte7SaXWDk0Q4k_xG5nxI40F4tZb5J1Eu_MeZ_YbgFdcJSbzqQhtodIQI4QMsyzhoRtEztjEcunovvPRcToay8-TZLIBv7u7MNRW2fnE2lEXlaV35Dsi5oT1riLxfv49pKlR9O9qN0KjUYsD9-snlmyLd_u7KN_XnO99Ovk4CtupAqFNxGAZWkLR0i7yNvI-5SrmxinJfaSTQjqHOQCXXlhvuHaWc59KVaQDjZGQQlvhBP7uNbiOgTciixpMLgs8gfVeg14khIp2Fhj-6jkwvZhXjwb4OwCsRcB-d-ZauNu7A7fbPJUNG8W6CxuuvAe31tAL78PFGkZHVbLKs3G50N4xGgLawdKyL8g_elI0vWGs7lFgu87NWYvtOmXDsymyejk775bH5bmmAMCGtYGwr25Wt-89gPGVMPshbJZV6R4DE-gfbOq0TDGtKLhWJubc4KfM-ERzHcDbjsm5bfHNaczGWY51DskjX8kjgJcr0nkD6vEvog8kqRUB4XDXD6qLad6adZ5lIo1NTFlVIVVcGKuciXTBlZEGtxjAG5JzTt4CN2N1e-kBj0S4W_kwo4I2k0kSwHaPEq3c9pc7TclbL7PIL20igBerZfomdc6VrvpR08SESRhnATxqFGt1JKGImTEeNeupXO_M_ZXydFZjkGMhgZV0Irb-v6_ncGN0cnSYH-4fHzyBmxxF13RCbsMmKqJ7ihnd0jyrzYjBt6u22z9nSGBB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQCC5REz-S-IBQoVS7LKyQoKi3YDt2i7SblG0R4q_x65jJaxuBuO2tiqeVPe9Jx98Q8pQpaTKf8NAWKgkhQogwyyQLXRo5Y6VlwuF95w9Hyf5MvJvL-Q753d2FwbbKzifWjrqoLL4jH_GYIda7ivjIt20RHyfTV6vvIU6Qwn9au3EajYocul8_oXxbvzyYgKyfMTZ9-_nNfthOGAit5OkmtIiopV3kbeR9wlTMjFOC-UjLQjgH-QATnltvmHaWMZ8IVSSphqiIYa5wHH73ArmYchmjjaXzs2KPQ-3XIBlxrqLRGkJhPRNmEP_qMQF_B4OtaDjs1NwKfdNr5Gqbs9Jxo2TXyY4rb5ArW0iGN8npFl5HVdLK01m51t5RHAjaQdTST8A_fFI0fWK07legE-dWtMV5XdDx8QJYvVmedMuz8kRjMKDj2ljoF7esW_lukdm5MPs22S2r0t0llIOvsInTIoEUo2BamZgxA58y46VmOiAvOibntsU6x5EbxznUPCiPvJdHQJ70pKsG4ONfRK9RUj0BYnLXD6rTRd6aeJ5lPIlNjBlWIVRcGKuciXTBlBEGthiQ5yjnHD0HbMbq9gIEHAkxuPJxhsVtJqQMyN6AEizeDpc7Tclbj7POz-wjII_7ZfwmdtGVrvpR08SITxhnAbnTKFZ_JK6QmTEcNRuo3ODMw5Xy27LGI4eiAqpqye_9f1-PyCWw2Pz9wdHhfXKZgeSapsg9sgt66B5AcrcxD2srouTreZvtH7PRZHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+Unsafe+Construction+Site+Conditions+Using+Deep+Learning+Algorithms+Using+Unmanned+Aerial+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kumar%2C+Sourav&rft.au=Poyyamozhi%2C+Mukilan&rft.au=Murugesan%2C+Balasubramanian&rft.au=Rajamanickam%2C+Narayanamoorthi&rft.date=2024-10-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206737&rft_id=info%3Apmid%2F39460217&rft.externalDocID=39460217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon