Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles
The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 20; p. 6737 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.10.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system’s high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry. |
---|---|
AbstractList | The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system’s high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry. The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry. |
Audience | Academic |
Author | Nureldeen, Waleed Poyyamozhi, Mukilan Rajamanickam, Narayanamoorthi Murugesan, Balasubramanian Kumar, Sourav Alroobaea, Roobaea |
AuthorAffiliation | 3 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; r.robai@tu.edu.sa 4 General Subject Department, University of Business and Technology, Jeddah 23435, Saudi Arabia 2 Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; narayanr@srmist.edu.in 1 Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; sourav.kumar390@gmail.com (S.K.); mp6481@srmist.edu.in (M.P.) |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; narayanr@srmist.edu.in – name: 4 General Subject Department, University of Business and Technology, Jeddah 23435, Saudi Arabia – name: 1 Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India; sourav.kumar390@gmail.com (S.K.); mp6481@srmist.edu.in (M.P.) – name: 3 Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; r.robai@tu.edu.sa |
Author_xml | – sequence: 1 givenname: Sourav surname: Kumar fullname: Kumar, Sourav – sequence: 2 givenname: Mukilan surname: Poyyamozhi fullname: Poyyamozhi, Mukilan – sequence: 3 givenname: Balasubramanian orcidid: 0000-0003-3596-1955 surname: Murugesan fullname: Murugesan, Balasubramanian – sequence: 4 givenname: Narayanamoorthi orcidid: 0000-0003-4842-3275 surname: Rajamanickam fullname: Rajamanickam, Narayanamoorthi – sequence: 5 givenname: Roobaea orcidid: 0000-0003-1585-2962 surname: Alroobaea fullname: Alroobaea, Roobaea – sequence: 6 givenname: Waleed surname: Nureldeen fullname: Nureldeen, Waleed |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460217$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkuP0zAURiM0iHnAgj-AIrGBRWd8befhFarKq1IlFlC2luNcp64Su9jpSPx7nM50mA4oi8TX5x7nWt9ldua8wyx7DeSaMUFuIuWUlBWrnmUXwCmf1ZSSs0ff59lljFtCKGOsfpGdM8FLQqG6yMLS3WIcbadG613uTb52URnMF97FMez1ofzdjodKa6dlzNfRui7_iLjLV6iCm1bzvvPBjpvhuL12g3IO23yOwao-_4kbq3uML7PnRvURX92_r7L1508_Fl9nq29flov5aqYLVo0zTWhJFBKjiTElFUAbFJwaooqWIxJaUG6YNg1VqCk1JRdtWSmoAeqCtciusuWdt_VqK3fBDir8ll5ZeSj40EkVxumXZF2zEhoAQaDlAtpGC2yIaqloeKNEk1wf7ly7fTNgq9GNQfUn0tMdZzey87cSoADgBUuGd_eG4H_t05XLwUaNfa8c-n2UDCiQkhdQJ_TtE3Tr98Glu5ooUvFKEPaX6lSawDrj08F6ksp5DZxDzYsiUdf_odLT4mB1ipGxqX7S8ObxpA8jHiOTgJs7QAcfY0AjtR0P6Ulm20sgcgqlfAhl6nj_pOMo_Zf9AyBY4AU |
CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106005 crossref_primary_10_3390_app15031488 |
Cites_doi | 10.3390/ijerph15040773 10.1016/j.neucom.2022.01.022 10.1155/2020/9703560 10.1109/ASET56582.2023.10180841 10.1016/j.autcon.2024.105443 10.1109/LRA.2021.3070828 10.1016/j.oceaneng.2024.117711 10.1061/(ASCE)CF.1943-5509.0001748 10.1109/I2CT51068.2021.9418175 10.1109/TMC.2023.3259394 10.1109/TVT.2024.3356587 10.1109/JSTARS.2024.3419786 10.1061/JPSEA2.PSENG-1453 10.1109/JIOT.2023.3256008 10.3390/s23020944 10.1109/ICCMC48092.2020.ICCMC-000175 10.1016/j.asej.2021.04.001 10.1109/ICCV.2015.169 10.1007/s11370-021-00386-3 10.1088/1757-899X/376/1/012114 10.3390/s22228797 10.1080/08839514.2021.1988441 10.1109/ACCESS.2019.2916035 10.1109/TII.2023.3297613 10.1016/j.autcon.2017.09.018 10.1061/(ASCE)CP.1943-5487.0000279 10.1007/s12065-023-00821-7 10.1109/PSGEC51302.2021.9541872 10.1109/JIOT.2023.3244655 10.1109/ITAIC49862.2020.9339038 10.1080/00207721.2023.2241961 10.1016/j.autcon.2024.105563 10.1016/j.ssci.2017.06.008 10.1038/s41598-024-57433-z 10.1109/JIOT.2021.3111024 10.3390/drones7030202 10.1007/s10489-023-04646-w 10.1109/TMM.2024.3394681 10.3390/systems12060188 10.1109/TIFS.2023.3318956 10.3390/drones6080215 10.1016/j.compind.2019.03.004 10.1016/j.ssci.2021.105473 10.1109/TCYB.2022.3225106 10.1016/j.ast.2023.108241 10.1016/j.matpr.2021.02.533 10.1109/TNSE.2021.3057915 10.3390/rs15143546 10.1007/s11042-023-17949-4 10.1109/CVPR.2014.81 10.1109/ISMSIT.2019.8932833 10.1109/CVPR.2016.95 10.1016/j.ssci.2015.11.020 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24206737 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_88361b11901d491dbc9eb0ad29b4ba9b PMC11511453 A814418455 39460217 10_3390_s24206737 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Taif University grantid: TU-DSPP-2024-17 – fundername: Taif University, Taif, Saudi Arabia grantid: TU-DSPP-2024-17 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c537t-c0260ae0fc0ff62912be942f0a5d4ee02524f3cfb2aec22f649d67a1811853de3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:05 EDT 2025 Thu Aug 21 18:43:40 EDT 2025 Tue Aug 05 09:22:38 EDT 2025 Sat Jul 26 00:43:51 EDT 2025 Tue Jun 17 22:03:42 EDT 2025 Tue Jun 10 21:04:45 EDT 2025 Thu Apr 03 07:07:01 EDT 2025 Tue Jul 01 03:51:17 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | object detection automatic detection unsafe site conditions tensor flow image recognition Unmanned Aerial Vehicle |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-c0260ae0fc0ff62912be942f0a5d4ee02524f3cfb2aec22f649d67a1811853de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4842-3275 0000-0003-1585-2962 0000-0003-3596-1955 |
OpenAccessLink | https://doaj.org/article/88361b11901d491dbc9eb0ad29b4ba9b |
PMID | 39460217 |
PQID | 3120747903 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_88361b11901d491dbc9eb0ad29b4ba9b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511453 proquest_miscellaneous_3121064518 proquest_journals_3120747903 gale_infotracmisc_A814418455 gale_infotracacademiconefile_A814418455 pubmed_primary_39460217 crossref_citationtrail_10_3390_s24206737 crossref_primary_10_3390_s24206737 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gu (ref_32) 2024; 303 ref_50 Cai (ref_57) 2023; 124 Ammad (ref_25) 2021; 12 Dai (ref_4) 2024; 23 Xu (ref_26) 2022; 36 ref_53 Chen (ref_58) 2024; 83 Rabbi (ref_23) 2024; 164 ref_15 Fang (ref_51) 2018; 85 Liu (ref_46) 2023; 53 ref_60 Cao (ref_2) 2021; 8 ref_22 Wu (ref_18) 2019; 7 ref_21 Yin (ref_48) 2024; 140 ref_29 Zhou (ref_44) 2021; 6 Jayaraj (ref_1) 2018; 376 ref_27 Hu (ref_40) 2024; 15 Jeelani (ref_9) 2021; 144 Pu (ref_56) 2024; 17 Zhao (ref_10) 2024; 73 Zhang (ref_38) 2024; 26 Sun (ref_6) 2023; 10 ref_36 ref_35 Bu (ref_11) 2022; 36 Wu (ref_16) 2023; 53 Zhang (ref_20) 2023; 136 ref_31 Fan (ref_28) 2024; 17 He (ref_8) 2024; 19 Han (ref_17) 2014; 27 Salari (ref_37) 2022; 495 Huang (ref_12) 2023; 10 Chen (ref_24) 2024; 20 Li (ref_39) 2020; 2020 Qin (ref_54) 2024; 165 Choi (ref_55) 2021; 14 Yin (ref_52) 2024; 141 Tian (ref_42) 2022; 9 ref_47 Kishor (ref_33) 2017; 7 Liu (ref_7) 2019; 108 ref_45 (ref_19) 2019; 14 ref_43 Costa (ref_3) 2017; 98 ref_41 Sun (ref_34) 2024; 62 Peng (ref_14) 2023; 54 Guo (ref_13) 2016; 84 ref_49 ref_5 Prakash (ref_59) 2020; 46 Zhou (ref_30) 2024; 73 |
References_xml | – ident: ref_5 doi: 10.3390/ijerph15040773 – volume: 495 start-page: 129 year: 2022 ident: ref_37 article-title: Object recognition datasets and challenges: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.022 – volume: 2020 start-page: 9703560 year: 2020 ident: ref_39 article-title: Deep Learning-Based Safety Helmet Detection in Engineering Management Based on Convolutional Neural Networks publication-title: Adv. Civ. Eng. doi: 10.1155/2020/9703560 – ident: ref_45 doi: 10.1109/ASET56582.2023.10180841 – volume: 164 start-page: 105443 year: 2024 ident: ref_23 article-title: AI integration in construction safety: Current state, challenges, and future opportunities in text, vision, and audio based applications publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105443 – volume: 7 start-page: 14 year: 2017 ident: ref_33 article-title: Design and Development of Arduino Uno based Quadcopter publication-title: Int. J. Eng. Manuf. Sci. – volume: 73 start-page: 8502211 year: 2024 ident: ref_30 article-title: LiDAR-Based 3-D Glass Detection and Reconstruction in Indoor Environment publication-title: IEEE Trans. Instrum. Meas. – volume: 6 start-page: 5002 year: 2021 ident: ref_44 article-title: Path Planning With Automatic Seam Extraction Over Point Cloud Models for Robotic Arc Welding publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3070828 – volume: 303 start-page: 117711 year: 2024 ident: ref_32 article-title: MFGTN: A multi-modal fast gated transformer for identifying single trawl marine fishing vessel publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117711 – volume: 36 start-page: 04022035 year: 2022 ident: ref_11 article-title: A UAV Photography–Based Detection Method for Defective Road Marking publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001748 – ident: ref_47 doi: 10.1109/I2CT51068.2021.9418175 – volume: 23 start-page: 2520 year: 2024 ident: ref_4 article-title: UAV-Assisted Task Offloading in Vehicular Edge Computing Networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2023.3259394 – volume: 73 start-page: 8367 year: 2024 ident: ref_10 article-title: Joint Trajectory and Communication Design for UAV-Assisted Symbiotic Radio Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2024.3356587 – volume: 17 start-page: 11886 year: 2024 ident: ref_28 article-title: A Small Ship Object Detection Method for Satellite Remote Sensing Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3419786 – volume: 15 start-page: 04023061 year: 2024 ident: ref_40 article-title: Surface Settlement Prediction of Rectangular Pipe-Jacking Tunnel Based on the Machine-Learning Algorithm publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/JPSEA2.PSENG-1453 – volume: 10 start-page: 12777 year: 2023 ident: ref_6 article-title: An Adaptive Weighting Strategy for Multisensor Integrated Navigation in Urban Areas publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3256008 – ident: ref_29 doi: 10.3390/s23020944 – volume: 140 start-page: 2315 year: 2024 ident: ref_48 article-title: AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms publication-title: CMES-Comput. Model. Eng. Sci. – ident: ref_31 doi: 10.1109/ICCMC48092.2020.ICCMC-000175 – volume: 12 start-page: 3495 year: 2021 ident: ref_25 article-title: Personal Protective Equipment (PPE) usage in Construction Projects: A Systematic Review and Smart PLS Approach publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2021.04.001 – ident: ref_21 doi: 10.1109/ICCV.2015.169 – volume: 14 start-page: 679 year: 2021 ident: ref_55 article-title: UAV path planning method for avoiding restricted areas publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-021-00386-3 – volume: 376 start-page: 012114 year: 2018 ident: ref_1 article-title: Robotics in Construction Industry publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/376/1/012114 – ident: ref_15 doi: 10.3390/s22228797 – volume: 36 start-page: 1988441 year: 2022 ident: ref_26 article-title: Highlight Removal from A Single Grayscale Image Using Attentive GAN publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2021.1988441 – volume: 7 start-page: 61960 year: 2019 ident: ref_18 article-title: Stereo Matching with Fusing Adaptive Support Weights publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916035 – volume: 20 start-page: 3144 year: 2024 ident: ref_24 article-title: Specular Removal of Industrial Metal Objects Without Changing Lighting Configuration publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3297613 – volume: 85 start-page: 1 year: 2018 ident: ref_51 article-title: Detecting non-hardhat-use by a deep learning method from far-field surveillance videos publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.09.018 – volume: 27 start-page: 635 year: 2014 ident: ref_17 article-title: Vision-Based Detection of Unsafe Actions of a Construction Worker: Case Study of Ladder Climbing publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000279 – volume: 17 start-page: 1313 year: 2024 ident: ref_56 article-title: Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective publication-title: Evol. Intell. doi: 10.1007/s12065-023-00821-7 – ident: ref_49 doi: 10.1109/PSGEC51302.2021.9541872 – volume: 10 start-page: 18821 year: 2023 ident: ref_12 article-title: STIF: A Spatial–Temporal Integrated Framework for End-to-End Micro-UAV Trajectory Tracking and Prediction With 4-D MIMO Radar publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3244655 – volume: 124 start-page: 103516 year: 2023 ident: ref_57 article-title: Automatic identification of active landslides over wide areas from time-series InSAR measurements using Faster RCNN publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_60 doi: 10.1109/ITAIC49862.2020.9339038 – volume: 54 start-page: 2663 year: 2023 ident: ref_14 article-title: Picture fuzzy decision-making theories and methodologies: A systematic review publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2023.2241961 – volume: 165 start-page: 105563 year: 2024 ident: ref_54 article-title: Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105563 – volume: 98 start-page: 174 year: 2017 ident: ref_3 article-title: Applicability of unmanned aerial system (UAS) for safety inspection on construction sites publication-title: Saf. Sci. doi: 10.1016/j.ssci.2017.06.008 – ident: ref_27 doi: 10.1038/s41598-024-57433-z – volume: 9 start-page: 22399 year: 2022 ident: ref_42 article-title: Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3111024 – ident: ref_35 doi: 10.3390/drones7030202 – volume: 53 start-page: 24253 year: 2023 ident: ref_16 article-title: Real-time stereo matching with high accuracy via Spatial Attention-Guided Upsampling publication-title: Appl. Intell. doi: 10.1007/s10489-023-04646-w – volume: 141 start-page: 87 year: 2024 ident: ref_52 article-title: Convolution-Transformer for Image Feature Extraction publication-title: CMES-Comput. Model. Eng. Sci. – volume: 26 start-page: 9527 year: 2024 ident: ref_38 article-title: Part-Aware Correlation Networks for Few-shot Learning publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2024.3394681 – volume: 14 start-page: 27 year: 2019 ident: ref_19 article-title: Utilizing drone technology in the civil engineering publication-title: Sel. Sci. Pap.-J. Civ. Eng. – ident: ref_50 doi: 10.3390/systems12060188 – volume: 19 start-page: 120 year: 2024 ident: ref_8 article-title: Region Generation and Assessment Network for Occluded Person Re-Identification publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2023.3318956 – ident: ref_22 doi: 10.3390/drones6080215 – volume: 108 start-page: 163 year: 2019 ident: ref_7 article-title: Dynamic BIM-augmented UAV safety inspection for water diversion project publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.03.004 – volume: 144 start-page: 105473 year: 2021 ident: ref_9 article-title: Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105473 – volume: 62 start-page: 1 year: 2024 ident: ref_34 article-title: Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 53 start-page: 4015 year: 2023 ident: ref_46 article-title: Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3225106 – volume: 136 start-page: 108241 year: 2023 ident: ref_20 article-title: Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108241 – volume: 46 start-page: 3997 year: 2020 ident: ref_59 article-title: Object detection through region proposal based techniques publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.02.533 – volume: 8 start-page: 2756 year: 2021 ident: ref_2 article-title: Many-Objective Deployment Optimization for a Drone-Assisted Camera Network publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3057915 – ident: ref_36 doi: 10.3390/rs15143546 – volume: 83 start-page: 65603 year: 2024 ident: ref_58 article-title: A review of object detection: Datasets, performance evaluation, architecture, applications and current trends publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17949-4 – ident: ref_53 doi: 10.1109/CVPR.2014.81 – ident: ref_43 doi: 10.1109/ISMSIT.2019.8932833 – ident: ref_41 doi: 10.1109/CVPR.2016.95 – volume: 84 start-page: 1 year: 2016 ident: ref_13 article-title: Predicting safety behavior in the construction industry: Development and test of an integrative model publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.11.020 |
SSID | ssj0023338 |
Score | 2.4461 |
Snippet | The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6737 |
SubjectTerms | Accidents Algorithms automatic detection Automation Building Compliance Construction accidents & safety Construction industry Construction workers Data mining Data processing Drone aircraft Drones Efficiency image recognition object detection Occupational health and safety Occupational safety Personal protective equipment Privacy Quality control Quality management Safety equipment Safety management Safety standards Strikes Surveillance tensor flow Trends Unmanned Aerial Vehicle Unmanned aerial vehicles unsafe site conditions Weather Workers' compensation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-q7TtKil0F5MbD280nH7CKHQXtotuQlJHmUDiR2ym_-fGb-waaGX3ow0Bkkzo28GRt8w9l5YHUyqZB5rW-WIECo3RoscVgWEqKNQQO-dv_-oTjfq25k-m7X6opqwnh64P7hjY2RVhpJwq1a2rEO0EApfCxtU8DbQ7YuYNyZTQ6olMfPqeYQkJvXHOwSiriPLAn06kv4_r-IZFi3rJGfAc_KIPRwiRr7uV_qY3YPmCXsw4xF8ym5mbBltw9vEN83OJ-DUjnMkiOU_Mbqkkbqv0uJdtQD_AnDNB5bVc76-PG9vLvbbq3F601x5uor5ujNV_hu2XSHdM7Y5-frr82k-NFPIo5arfR6JPMxDkWKRUiVsKQJYJVLhda0AMPQRKsmYgvAQhUiVsnW18hgAEKLXIJ-zg6Zt4CXjEj01VuBVhQBfC1RCKUTALxOS9sJn7ON4yC4OTOPU8OLSYcZB-nCTPjL2bhK97uk1_ib0iTQ1CRAjdjeAduIGO3H_spOMfSA9O_JbXEz0w_MD3BIxYLm1odTSKK0zdrSQRH-Ly-nRUtzg7zsnS0GdCGwhM_Z2mqY_qYatgfa2kymJHbA0GXvRG9a0JWnpMEvcqlmY3GLPy5nmYtuxgWNIjzmtlof_45ResfsCldpXKx6xAzRReI1R1z686RzsDnr2K_c priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gucAB8aawoICQ4FJtm0cnOaHhsVohwQUGza3Kc2al3XbYGf4_dprpTgXiVjWuFMd2bKfOZ0LeMC2tig0vnddNCR5ClEpJVoZZFayTjomA952_fmvOFuLLUi7zgds2l1Xu98S0Ufve4Rn5Ca8ZYr3rir_f_CqxaxT-Xc0tNG6SWwhdhiVds-V1wsUh_xrQhDik9idbcEepL8vEByWo_r835AOPNK2WPHA_p_fI3Rw30vkg6PvkRugekDsHaIIPydUBZkbf0T7SRbc1MVBsyrmHiaXfgR9844daLZpqBuinEDY0Y62u6PxiBazv1pf74UV3aXBDpvOksPRnWKdyukdkcfr5x8ezMrdUKJ3ks13pEELMhCq6KsaG6ZrZoAWLlZFehAABEBORu2iZCY6x2Ajtm5mBMAD9ug_8MTnq-i48JZSDvbomGNGAm_fMaFszZuFJ2SgNMwV5t1_k1mW8cWx7cdFC3oHyaEd5FOT1SLoZQDb-RfQBJTUSIC52etFfrdpsZq1SvKltjVGOF7r21ulgK-OZtsLCFAvyFuXcovXCZJzJlxCAJcTBaucKE0wlpCzI8YQSrM5Nh_ea0mar37bXOlqQV-MwfomVbF3ofyeaGjECa1WQJ4NijSxxjYtZA6tqonITnqcj3fk6YYJDYA-ZreTP_j-v5-Q2A3EN1YjH5AiUL7yAqGpnXybT-QNQcCMM priority: 102 providerName: ProQuest |
Title | Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39460217 https://www.proquest.com/docview/3120747903 https://www.proquest.com/docview/3121064518 https://pubmed.ncbi.nlm.nih.gov/PMC11511453 https://doaj.org/article/88361b11901d491dbc9eb0ad29b4ba9b |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED_tQ0LjYeKbjFEZhAQvYYntJPYDQh2sTEibEFDUt8h27HZSl4y2SPDf48uXGjFeosi-RLbvzneXnH8H8IrKRAuXstAUMg29heChEAkNbRZZbRJDucXzzheX6fmUf54lsx3oamy2C7i-NbTDelLT1fLt759_3nuFf4cRpw_ZT9bezNT1VnZh3xukDPXzgvc_EyjzYVgDKjQkP4A7TPIUvfKBVarB-__dords1DB_cssgTe7BYetJknHD-vuwY8sHcHcLX_AhrLZQNKqSVI5My7VylmCZzg44lnzzXie2FE32FqmzCMhHa29Ii746J-PlvFpdbRbXXfe0vFa4RZNxLcLkh13UCXaPYDo5-_7hPGyLLIQmYdkmNAgqpmzkTORcSmVMtZWcukglBbfWu0SUO2acpsoaSl3KZZFmyjsGaOkLyx7DXlmV9ikQ5jXYpFbhkvKCKqljSrW_E9oliqoA3nSLnJsWgRwLYSxzH4kga_KeNQG87ElvGtiN24hOkVM9ASJl1w3Vap63ipcLwdJYx-j3FFzGhTbS6kgVVGqu_RADeI18zlHC_GCMao8l-CkhMlY-FhhyCp4kARwPKL0emmF3Jyl5J8Y5iylWKJARC-BF341PYm5baatfNU2MqIGxCOBJI1j9lDr5DEAMRG4w52FPebWoUcK9q-9j3YQd_felz-CAek41qYnHsOflzj73LtZGj2A3m2X-KiafRrB_enb55euo_lwxqlXrL5I2KK8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBRYEgotVe3fteA8IBUqV0seFBuVmdte7SaXWDk0Q4k_xG5nxI40F4tZb5J1Eu_MeZ_YbgFdcJSbzqQhtodIQI4QMsyzhoRtEztjEcunovvPRcToay8-TZLIBv7u7MNRW2fnE2lEXlaV35Dsi5oT1riLxfv49pKlR9O9qN0KjUYsD9-snlmyLd_u7KN_XnO99Ovk4CtupAqFNxGAZWkLR0i7yNvI-5SrmxinJfaSTQjqHOQCXXlhvuHaWc59KVaQDjZGQQlvhBP7uNbiOgTciixpMLgs8gfVeg14khIp2Fhj-6jkwvZhXjwb4OwCsRcB-d-ZauNu7A7fbPJUNG8W6CxuuvAe31tAL78PFGkZHVbLKs3G50N4xGgLawdKyL8g_elI0vWGs7lFgu87NWYvtOmXDsymyejk775bH5bmmAMCGtYGwr25Wt-89gPGVMPshbJZV6R4DE-gfbOq0TDGtKLhWJubc4KfM-ERzHcDbjsm5bfHNaczGWY51DskjX8kjgJcr0nkD6vEvog8kqRUB4XDXD6qLad6adZ5lIo1NTFlVIVVcGKuciXTBlZEGtxjAG5JzTt4CN2N1e-kBj0S4W_kwo4I2k0kSwHaPEq3c9pc7TclbL7PIL20igBerZfomdc6VrvpR08SESRhnATxqFGt1JKGImTEeNeupXO_M_ZXydFZjkGMhgZV0Irb-v6_ncGN0cnSYH-4fHzyBmxxF13RCbsMmKqJ7ihnd0jyrzYjBt6u22z9nSGBB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQCC5REz-S-IBQoVS7LKyQoKi3YDt2i7SblG0R4q_x65jJaxuBuO2tiqeVPe9Jx98Q8pQpaTKf8NAWKgkhQogwyyQLXRo5Y6VlwuF95w9Hyf5MvJvL-Q753d2FwbbKzifWjrqoLL4jH_GYIda7ivjIt20RHyfTV6vvIU6Qwn9au3EajYocul8_oXxbvzyYgKyfMTZ9-_nNfthOGAit5OkmtIiopV3kbeR9wlTMjFOC-UjLQjgH-QATnltvmHaWMZ8IVSSphqiIYa5wHH73ArmYchmjjaXzs2KPQ-3XIBlxrqLRGkJhPRNmEP_qMQF_B4OtaDjs1NwKfdNr5Gqbs9Jxo2TXyY4rb5ArW0iGN8npFl5HVdLK01m51t5RHAjaQdTST8A_fFI0fWK07legE-dWtMV5XdDx8QJYvVmedMuz8kRjMKDj2ljoF7esW_lukdm5MPs22S2r0t0llIOvsInTIoEUo2BamZgxA58y46VmOiAvOibntsU6x5EbxznUPCiPvJdHQJ70pKsG4ONfRK9RUj0BYnLXD6rTRd6aeJ5lPIlNjBlWIVRcGKuciXTBlBEGthiQ5yjnHD0HbMbq9gIEHAkxuPJxhsVtJqQMyN6AEizeDpc7Tclbj7POz-wjII_7ZfwmdtGVrvpR08SITxhnAbnTKFZ_JK6QmTEcNRuo3ODMw5Xy27LGI4eiAqpqye_9f1-PyCWw2Pz9wdHhfXKZgeSapsg9sgt66B5AcrcxD2srouTreZvtH7PRZHc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+Unsafe+Construction+Site+Conditions+Using+Deep+Learning+Algorithms+Using+Unmanned+Aerial+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kumar%2C+Sourav&rft.au=Poyyamozhi%2C+Mukilan&rft.au=Murugesan%2C+Balasubramanian&rft.au=Rajamanickam%2C+Narayanamoorthi&rft.date=2024-10-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206737&rft_id=info%3Apmid%2F39460217&rft.externalDocID=39460217 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |