World Spread of Tropical Soda Apple (Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution
Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distri...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 12; no. 9; p. 1179 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
29.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. |
---|---|
AbstractList | Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km²; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. Solanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. The invasion history of S. viarum consisted of three phases: lagging (before 1980), dispersal (1980–2010), and equilibrium (2010–present). Ecological niches remained conservative. The potential geographic distribution of S. viarum will reach a maximum in the 2050s, SSP5–8.5, and in the future, it will migrate to higher latitudes. Global factors continue to increase this threat. The relevant quarantine authorities should take prevention and control measures. Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km[sup.2]; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. Simple SummarySolanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. The invasion history of S. viarum consisted of three phases: lagging (before 1980), dispersal (1980–2010), and equilibrium (2010–present). Ecological niches remained conservative. The potential geographic distribution of S. viarum will reach a maximum in the 2050s, SSP5–8.5, and in the future, it will migrate to higher latitudes. Global factors continue to increase this threat. The relevant quarantine authorities should take prevention and control measures.AbstractSolanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum. |
Audience | Academic |
Author | Yu, Wentao Qi, Yuhan Zhao, Haoxiang Zhang, Yu Liu, Wanxue Xian, Xiaoqing Yang, Ming |
AuthorAffiliation | 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; qyh_nwnu@163.com (Y.Q.); xianxiaoqing@caas.cn (X.X.); hx_zhao@bjfu.edu.cn (H.Z.); y1750165592@163.com (M.Y.); zhangyuu960606@163.com (Y.Z.) 2 Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China |
AuthorAffiliation_xml | – name: 2 Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China – name: 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; qyh_nwnu@163.com (Y.Q.); xianxiaoqing@caas.cn (X.X.); hx_zhao@bjfu.edu.cn (H.Z.); y1750165592@163.com (M.Y.); zhangyuu960606@163.com (Y.Z.) |
Author_xml | – sequence: 1 givenname: Yuhan surname: Qi fullname: Qi, Yuhan – sequence: 2 givenname: Xiaoqing surname: Xian fullname: Xian, Xiaoqing – sequence: 3 givenname: Haoxiang surname: Zhao fullname: Zhao, Haoxiang – sequence: 4 givenname: Ming surname: Yang fullname: Yang, Ming – sequence: 5 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 6 givenname: Wentao surname: Yu fullname: Yu, Wentao – sequence: 7 givenname: Wanxue surname: Liu fullname: Liu, Wanxue |
BookMark | eNqFkk1v1DAQhiNUJErpmaslLkXqtv6I7YQLWi2wrVQBYos4Ro7jZL1KPMFJKvWX8HeZdCtEV0J4Drbs533tGc_L5ChAcEnymtELIXJ6WXpooblnnOaM6fxZcsypzhdaC3301_pFcjoMO4pDU66EOk5-_YDYVmTTR2cqAjW5jdB7a1qygcqQZd-3jpxtoDVh6sidN3Hq3pIpVC6SdQslgqutCY17R678MEJ80H5zFsIwxsmOHsI5-ezt1pHN1tfjOTGhIl9hdGH0iK4dNNH0W2_JBzSIvpxmzavkeW3awZ0-zifJ908fb1dXi5sv6-vV8mZhpdDjonSsTJWQmchUqStZcl3T0sqaGs1dbnhttMxTVQlBEcg44twqQTNhhUpTcZJc730rMLuij74z8b4A44uHDYhNYeLobesKqrXkFu2kTVOqWG4rLspSaq4YzVOBXu_3Xv1Udq6ymGE07RPTpyfBb4sG7gpGJZcpY-hw9ugQ4efkhrHo_GBdi9V3MA2FoClGRqX8L8ozTVkqmFSIvjlAdzDFgGVFSuXYCILNlbjYU43BZH2oAd9oMSrXefxOV3vcX2o1KzSd073cC2yEYYiu_pMpo8XclcVBV6JCHiisH8383XiVb_-p-w1omel0 |
CitedBy_id | crossref_primary_10_3390_f15020321 |
Cites_doi | 10.1111/j.1558-5646.2008.00482.x 10.1111/ele.13751 10.5194/gmd-13-5425-2020 10.1111/j.1466-8238.2011.00698.x 10.1088/1748-9326/9/11/114002 10.1111/ele.12748 10.1038/sdata.2018.254 10.1007/s10980-022-01446-4 10.1371/journal.pone.0090121 10.1002/eap.2811 10.4102/abc.v33i1.429 10.1111/j.1600-0706.2009.17963.x 10.5958/2229-4473.2016.00038.0 10.1038/s41396-018-0219-5 10.1653/024.093.0121 10.1017/S0890037X00044638 10.1111/gcb.12244 10.1111/geb.12555 10.1614/IPSM-D-11-00062.1 10.1038/s41559-022-01737-8 10.1080/09583151003782551 10.1016/j.agsy.2022.103410 10.1111/j.1600-0587.2009.06142.x 10.1111/geb.12578 10.1016/j.ecolecon.2014.05.008 10.1111/j.1365-2486.2011.02621.x 10.1111/ele.13863 10.1016/j.oneear.2021.04.015 10.1002/joc.5086 10.1038/s41558-021-01201-8 10.1016/S0006-3207(01)00047-7 10.1017/S0890037X00037714 10.1016/j.revpalbo.2015.09.003 10.1038/s41598-021-85862-7 10.5194/gmd-10-4321-2017 10.1038/s41598-020-64568-2 10.1038/s41598-020-80157-9 10.1073/pnas.1525200113 10.7717/peerj.6281 10.1007/s10530-013-0559-z 10.1038/s41598-018-26493-3 10.1016/j.tree.2007.11.005 10.1046/j.1523-1739.1992.610091.x 10.1038/s41467-021-24826-x 10.1038/nature01286 10.1126/science.aaa8913 10.1016/j.tree.2014.02.009 10.1111/brv.12402 10.1038/s41598-020-66477-w 10.1111/j.0906-7590.2008.5203.x 10.1073/pnas.1606036114 10.1111/jbi.14395 10.1111/j.1365-2486.2010.02393.x 10.2307/3495757 10.1111/gcb.15486 10.1126/science.aai9214 10.1111/ecog.02671 10.1016/j.ecolind.2021.108204 10.3390/insects13010079 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/biology12091179 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Geography |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_07752c7595c440619cd23bb572610943 PMC10525411 A766926703 10_3390_biology12091179 |
GeographicLocations | South America Brazil Australia North America China Western Europe Mexico |
GeographicLocations_xml | – name: China – name: South America – name: North America – name: Western Europe – name: Australia – name: Brazil – name: Mexico |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2021YFC2600400 – fundername: Technology Innovation Program of Chinese Academy of Agricultural Sciences grantid: caascx–2022–2025–IAS |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM PMFND 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c537t-be1b46358386b7d5b27f0bc5f0a72e9a2fa75946d3306b7821b42c63083c36443 |
IEDL.DBID | DOA |
ISSN | 2079-7737 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Thu Aug 21 18:36:24 EDT 2025 Fri Jul 11 00:18:54 EDT 2025 Fri Jul 11 00:19:25 EDT 2025 Fri Jul 25 10:43:07 EDT 2025 Tue Jun 10 21:18:59 EDT 2025 Thu Apr 24 22:54:52 EDT 2025 Tue Jul 01 01:29:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-be1b46358386b7d5b27f0bc5f0a72e9a2fa75946d3306b7821b42c63083c36443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/07752c7595c440619cd23bb572610943 |
PQID | 2869263314 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07752c7595c440619cd23bb572610943 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10525411 proquest_miscellaneous_3040408055 proquest_miscellaneous_2870143156 proquest_journals_2869263314 gale_infotracacademiconefile_A766926703 crossref_primary_10_3390_biology12091179 crossref_citationtrail_10_3390_biology12091179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230829 |
PublicationDateYYYYMMDD | 2023-08-29 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230829 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Warren (ref_42) 2011; 62 Broennimann (ref_43) 2017; 40 Brown (ref_31) 2018; 5 Sitzia (ref_1) 2018; 8 ref_13 ref_12 ref_11 Hill (ref_41) 2017; 26 Medal (ref_18) 1996; 79 Broennimann (ref_39) 2012; 21 Dalmazzone (ref_10) 2014; 105 ref_19 Aikio (ref_21) 2010; 119 Hurtt (ref_34) 2020; 13 Parmesan (ref_60) 2003; 421 Thebo (ref_62) 2014; 9 Bonnamour (ref_64) 2021; 24 Greenwood (ref_58) 2017; 20 Carlson (ref_8) 2021; 12 Waheed (ref_45) 2023; 12 Fick (ref_32) 2017; 37 Pili (ref_24) 2020; 10 Capinha (ref_4) 2015; 348 ref_20 Mullahey (ref_52) 1998; 12 Frieler (ref_33) 2017; 10 Dong (ref_49) 2023; 11 Urvois (ref_25) 2021; 11 Puchalka (ref_27) 2021; 27 Essl (ref_48) 2018; 93 Corson (ref_65) 2022; 199 Zhu (ref_50) 2014; 16 Javidan (ref_35) 2021; 11 West (ref_66) 1990; 155 Phillips (ref_22) 2008; 31 Mislevy (ref_67) 1999; 58 Marchioro (ref_44) 2023; 1 Lu (ref_6) 2013; 19 Murray (ref_28) 2012; 18 Fiacconi (ref_47) 2015; 223 Welman (ref_16) 2003; 33 Warren (ref_30) 2010; 33 Mullahey (ref_55) 1993; 7 Cobos (ref_37) 2019; 7 Overholt (ref_54) 2010; 20 Sirami (ref_61) 2017; 26 Guisan (ref_23) 2014; 29 Betts (ref_36) 2022; 6 ref_38 Pearman (ref_56) 2008; 23 Pujadas (ref_3) 2001; 100 Dyderski (ref_29) 2022; 37 Lu (ref_51) 2018; 12 Bryson (ref_17) 2012; 5 Pecl (ref_57) 2017; 355 Skubel (ref_2) 2020; 10 Reitsma (ref_63) 2017; 114 ref_40 Brothers (ref_7) 1992; 6 Cao (ref_26) 2021; 131 Singha (ref_15) 2016; 29 Janssens (ref_9) 2021; 11 Medal (ref_14) 2010; 93 Hulme (ref_5) 2021; 4 Boivin (ref_46) 2016; 113 Lustenhouwer (ref_53) 2022; 49 Engler (ref_59) 2011; 17 Duncan (ref_68) 2021; 24 |
References_xml | – volume: 62 start-page: 2868 year: 2011 ident: ref_42 article-title: Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution publication-title: Evolution doi: 10.1111/j.1558-5646.2008.00482.x – volume: 24 start-page: 1363 year: 2021 ident: ref_68 article-title: Time lags and the invasion debt in plant naturalisations publication-title: Ecol. Lett. doi: 10.1111/ele.13751 – volume: 13 start-page: 5425 year: 2020 ident: ref_34 article-title: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-5425-2020 – volume: 21 start-page: 481 year: 2012 ident: ref_39 article-title: Measuring ecological niche overlap from occurrence and spatial environmental data publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2011.00698.x – volume: 9 start-page: 9 year: 2014 ident: ref_62 article-title: Global assessment of urban and peri–urban agriculture: Irrigated and rainfed croplands publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/11/114002 – volume: 20 start-page: 539 year: 2017 ident: ref_58 article-title: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area publication-title: Ecol. Lett. doi: 10.1111/ele.12748 – volume: 5 start-page: 180254 year: 2018 ident: ref_31 article-title: PaleoClim, high spatial resolution paleoclimate surfaces for global land areas publication-title: Sci. Data doi: 10.1038/sdata.2018.254 – volume: 37 start-page: 1871 year: 2022 ident: ref_29 article-title: Propagule pressure and land–use are more important than climate for invasive bryophytes regional distributions publication-title: Landsc. Ecol. doi: 10.1007/s10980-022-01446-4 – ident: ref_40 doi: 10.1371/journal.pone.0090121 – volume: 11 start-page: e2811 year: 2023 ident: ref_49 article-title: Cultivated alien plants with high invasion potential are more likely to be traded online in China publication-title: Ecol. Appl. doi: 10.1002/eap.2811 – volume: 33 start-page: 1 year: 2003 ident: ref_16 article-title: The genus Solanum (Solanaceae) in southern Africa: Subgenus Leptostemonum, the introduced sections Acanthophora and Torva publication-title: Bothalia doi: 10.4102/abc.v33i1.429 – volume: 119 start-page: 370 year: 2010 ident: ref_21 article-title: Lag–phases in alien plant invasions: Separating the facts from the artefacts publication-title: Oikos doi: 10.1111/j.1600-0706.2009.17963.x – volume: 29 start-page: 65 year: 2016 ident: ref_15 article-title: Karyomorphology of Solanum viarum Dunal–an ethnomedicinal species of Tripura publication-title: Vegetos doi: 10.5958/2229-4473.2016.00038.0 – volume: 12 start-page: 2811 year: 2018 ident: ref_51 article-title: Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener publication-title: ISME J. doi: 10.1038/s41396-018-0219-5 – volume: 93 start-page: 130 year: 2010 ident: ref_14 article-title: Biological control of Tropical soda apple (Solanaceae) in Florida: Post–release evaluation publication-title: Fla Entomol. doi: 10.1653/024.093.0121 – volume: 12 start-page: 733 year: 1998 ident: ref_52 article-title: Invasion of tropical soda apple (Solanum viarum) into the U.S.: Lessons learned publication-title: Weed Technol. doi: 10.1017/S0890037X00044638 – volume: 19 start-page: 2339 year: 2013 ident: ref_6 article-title: Climate warming affects biological invasions by shifting interactions of plants and herbivores publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12244 – volume: 26 start-page: 385 year: 2017 ident: ref_61 article-title: Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12555 – volume: 5 start-page: 341 year: 2012 ident: ref_17 article-title: Growth, development, and morphological differences among native and nonnative prickly nightshades (Solanum spp.) of the southeastern United States publication-title: Invasive Plant Sci. Manag. doi: 10.1614/IPSM-D-11-00062.1 – volume: 6 start-page: 709 year: 2022 ident: ref_36 article-title: Forest degradation drives widespread avian habitat and population declines publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-022-01737-8 – volume: 20 start-page: 791 year: 2010 ident: ref_54 article-title: The effect of Gratiana boliviana (Coleoptera: Chrysomelidae) herbivory on growth and population density of tropical soda apple (Solanum viarum) in Florida publication-title: Biocontrol Sci. Technol. doi: 10.1080/09583151003782551 – volume: 199 start-page: 103410 year: 2022 ident: ref_65 article-title: Beyond agroecology: Agricultural rewilding, a prospect for livestock systems publication-title: Agric. Syst. doi: 10.1016/j.agsy.2022.103410 – volume: 12 start-page: 1 year: 2023 ident: ref_45 article-title: Potential distribution of a noxious weed (Solanum viarum Du–nal), current status, and future invasion risk based on MaxEnt modeling publication-title: Geol. Eco. Landsc. – volume: 33 start-page: 607 year: 2010 ident: ref_30 article-title: ENMTools: A toolbox for comparative studies of environmental niche models publication-title: Ecography doi: 10.1111/j.1600-0587.2009.06142.x – volume: 26 start-page: 679 year: 2017 ident: ref_41 article-title: A global assessment of climatic niche shifts and human influence in insect invasions publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12578 – volume: 1 start-page: 1 year: 2023 ident: ref_44 article-title: Reconstructing the biological invasion of Tuta absoluta: Evidence of niche shift and its consequences for invasion risk assessment publication-title: J. Pest Sci. – volume: 105 start-page: 154 year: 2014 ident: ref_10 article-title: Economic drivers of biological invasions: A worldwide, bio–geographic analysis publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2014.05.008 – volume: 18 start-page: 1738 year: 2012 ident: ref_28 article-title: Predicting the potential distribution of a riparian invasive plant: The effects of changing climate, flood regimes and land–use patterns publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02621.x – ident: ref_13 – volume: 24 start-page: 2418 year: 2021 ident: ref_64 article-title: Insect and plant invasions follow two waves of globalisation publication-title: Ecol. Lett. doi: 10.1111/ele.13863 – volume: 4 start-page: 666 year: 2021 ident: ref_5 article-title: Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide publication-title: One Earth doi: 10.1016/j.oneear.2021.04.015 – volume: 37 start-page: 4302 year: 2017 ident: ref_32 article-title: WorldClim 2: New 1–km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 11 start-page: 915 year: 2021 ident: ref_9 article-title: International trade is a key component of climate change adaptation publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-021-01201-8 – volume: 100 start-page: 397 year: 2001 ident: ref_3 article-title: Land–use and socio–economic correlates of plant invasions in European and North African countries publication-title: Biol. Conserv. doi: 10.1016/S0006-3207(01)00047-7 – ident: ref_20 – volume: 7 start-page: 783 year: 1993 ident: ref_55 article-title: Tropical soda apple (Solanum viarum): A new weed threat in subtropical regions publication-title: Weed Technol. doi: 10.1017/S0890037X00037714 – volume: 223 start-page: 87 year: 2015 ident: ref_47 article-title: Pollen taphonomy at Shanidar Cave (Kurdish Iraq): An initial evaluation publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/j.revpalbo.2015.09.003 – volume: 11 start-page: 6496 year: 2021 ident: ref_35 article-title: Evaluation of multi–hazard map produced using MaxEnt machine learning technique publication-title: Sci. Rep. doi: 10.1038/s41598-021-85862-7 – volume: 10 start-page: 4321 year: 2017 ident: ref_33 article-title: Assessing the impacts of 1.5 °C global warming—Simulation protocol of the Inter–Sectoral Impact Model Intercomparison Project (ISIMIP2b) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-4321-2017 – ident: ref_11 – volume: 10 start-page: 7972 year: 2020 ident: ref_24 article-title: Niche shifts and environmental non–equilibrium undermine the usefulness of ecological niche models for invasion risk assessments publication-title: Sci. Rep. doi: 10.1038/s41598-020-64568-2 – volume: 11 start-page: 1339 year: 2021 ident: ref_25 article-title: Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles publication-title: Sci. Rep. doi: 10.1038/s41598-020-80157-9 – volume: 113 start-page: 6388 year: 2016 ident: ref_46 article-title: Ecological consequences of human niche construction: Examining long–term anthropogenic shaping of global species distributions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1525200113 – volume: 155 start-page: 128 year: 1990 ident: ref_66 article-title: The Use of Livestock to Control Weeds in New Zealand Forests publication-title: FRI Bull. – volume: 7 start-page: 15 year: 2019 ident: ref_37 article-title: kuenm: An R package for detailed development of ecological niche models using Maxent publication-title: PeerJ doi: 10.7717/peerj.6281 – volume: 16 start-page: 1069 year: 2014 ident: ref_50 article-title: Effect of geographic background and equilibrium state on niche model transferability: Predicting areas of invasion of Leptoglossus occidentalis publication-title: Biol. Invas. doi: 10.1007/s10530-013-0559-z – volume: 8 start-page: 8410 year: 2018 ident: ref_1 article-title: The invasion of abandoned fields by a major alien tree filters understory plant traits in novel forest ecosystems publication-title: Sci. Rep. doi: 10.1038/s41598-018-26493-3 – volume: 23 start-page: 149 year: 2008 ident: ref_56 article-title: Niche dynamics in space and time publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.11.005 – volume: 6 start-page: 91 year: 1992 ident: ref_7 article-title: Forest fragmentation and alien plant invasion of central Indiana old–growth forests publication-title: Conserv. Biol. doi: 10.1046/j.1523-1739.1992.610091.x – volume: 12 start-page: 4572 year: 2021 ident: ref_8 article-title: Individual environmental niches in mobile organisms publication-title: Nat. Commun. doi: 10.1038/s41467-021-24826-x – volume: 421 start-page: 37 year: 2003 ident: ref_60 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature doi: 10.1038/nature01286 – volume: 348 start-page: 1248 year: 2015 ident: ref_4 article-title: The dispersal of alien species redefines biogeography in the Anthropocene publication-title: Science doi: 10.1126/science.aaa8913 – volume: 29 start-page: 260 year: 2014 ident: ref_23 article-title: Unifying niche shift studies: Insights from biological invasions publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.02.009 – volume: 93 start-page: 1421 year: 2018 ident: ref_48 article-title: The changing role of ornamental horticulture in alien plant invasions publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/brv.12402 – volume: 10 start-page: 9749 year: 2020 ident: ref_2 article-title: Metabolomic differences between invasive alien plants from native and invaded habitats publication-title: Sci. Rep. doi: 10.1038/s41598-020-66477-w – volume: 58 start-page: 107 year: 1999 ident: ref_67 article-title: Tropical soda apple control as influenced by frost and herbicides publication-title: Soil Crop Sci. Soc. Fla Proc. – volume: 31 start-page: 161 year: 2008 ident: ref_22 article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation publication-title: Ecography doi: 10.1111/j.0906-7590.2008.5203.x – volume: 114 start-page: 8939 year: 2017 ident: ref_63 article-title: Future urban land expansion and implications for global croplands publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1606036114 – ident: ref_12 – volume: 49 start-page: 1481 year: 2022 ident: ref_53 article-title: Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions publication-title: J. Biogeogr. doi: 10.1111/jbi.14395 – volume: 17 start-page: 2330 year: 2011 ident: ref_59 article-title: 21st century climate change threatens mountain flora unequally across Europe publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02393.x – volume: 79 start-page: 70 year: 1996 ident: ref_18 article-title: An exploratory insect survey of tropical soda apple in Brazil and Paraguay publication-title: Fla Entomol. doi: 10.2307/3495757 – volume: 27 start-page: 1587 year: 2021 ident: ref_27 article-title: Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15486 – volume: 355 start-page: 9 year: 2017 ident: ref_57 article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well–being publication-title: Science doi: 10.1126/science.aai9214 – volume: 40 start-page: 774 year: 2017 ident: ref_43 article-title: ecospat: An R package to support spatial analyses and modeling of species niches and distributions publication-title: Ecography doi: 10.1111/ecog.02671 – ident: ref_19 – volume: 131 start-page: 108204 year: 2021 ident: ref_26 article-title: Potential impact of climate change on the global geographical distribution of the invasive species, Cenchrus spinifex (Field sandbur, Gramineae) publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108204 – ident: ref_38 doi: 10.3390/insects13010079 |
SSID | ssj0000702636 |
Score | 2.307992 |
Snippet | Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by... Solanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution... Simple SummarySolanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and... Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1179 |
SubjectTerms | Biological Sciences climate Climate change cropland Datasets Dispersal ecological niche ecosystem Ecosystems forests Fruits Geographical distribution Geography Global temperature changes Grasslands International trade Introduced species invasive alien plants Invasive species Land use land use change Latitude Mexico Niche (Ecology) Niches Postwar reconstruction Quarantine Solanum viarum Trends Weeds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF-0RfRFtCperTKCYIWeTfbjPnyRVluKD6GYFvp27KcJ2Ls0TYT-Jf67ztxtElOpr3dzxy4zO_ub3ZnfMPYuGLqr66nUOy5TiXtkWkqXpc4rq4PzunAt2-cgOzmX3y7URTxwu45plQuf2Dpq11g6I9_nRVbyTIi-_Dy5SqlrFN2uxhYa99kmuuACg6_Nw6PB6fflKQsaNH6UdZw-AuP7_chtRCWjxIa2th21rP3_-ubb-ZJ_bUDHT9jjiBzhoFP1U3bP11vsQddL8maLPYztzEc3z9jvNkUGhhNEhA6aAGfTZkLagGHjNBDy9LA7xKi2nl_Cr7Gezi8_AJWTTaFrAgBd1cEnWNGIAEWqK77ZPRhQFikMR-Mw2wNdOzhtZpR7hKKLsYwtfCVm3thU6zk7Pz46-3KSxg4MqVUin6XG941ESFKIIjO5U4bnoWesCj2dc19qHnSuSpk5gZGHQbCB4txmAnGdFYi0xAu2UTe1f8kgUM29dAhAQpClK0zwge6XhXT418In7ONCEZWN9OTUJeNnhWEKaa66pbmE7S4_mHTMHHeLHpJml2JEqd0-aKY_qrhCK-IC5Bano6wklFNax4UxKufESC9Fwt6TXVS08HFgVsf6BZweUWhVB3lGFooeNGE7C9Opoke4rlb2m7C3y9e4lumCRte-mZNMTnSLGFLfLSPQ60qE-UolrFgzy7Xprb-px6OWObxPXQtlv7_9_xG-Yo84Yjk6OuflDttAy_KvEXvNzJu4wP4AldIxoQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9RAEF60IvhFfDe1ygqCFZp62ZdsIojUl1IEi3A96Lewr95Bm1zjndhf4t91Jtm786r3za_Z2ZDdmdl9JrvzDCEvgsGzuoFMvWMiFbBHpqVweeq8tDo4rwvXsX0e50cj8flUnq7KAcUJ_P7P0A7rSY3as_2fF5fvwOHfYsQJIfvrSFeEWaBIcHad3IBtSaGXfolYv1uWFYQbeFT5aEO_tZ2pI_D_e5m-enXyj73o8A65HUEkPei1fpdc8_U9crMvK3l5n_zqbsjQ4RQAoaNNoCdtM0Vl0GHjNEXg6enuEEZez8_pj4lu5-evKGaTtbSvAUD7pIM3dMUiQjFQXdHN7tFjvERKh-NJmO1RXTv6tZnh1SMQjZXVxxNLPyIxb6yp9YCMDj-dfDhKYwGG1EquZqnxmRGASApe5EY5aZgKA2NlGGjFfKlZ0EqWInccAg8DWAPEmc05wDrLAWjxh2Srbmr_mNCAKffCAf4IQZSuMMEHPF7mwsFbC5-Q_cXkVzayk2ORjLMKohTUVnVFWwnZXXaY9sQcm0XfozaXYsio3T1o2m9VdNAKqQCZheFIKxDklNYxboxUDAnpBU_IS7SFCi0RPszqmL4Aw0MGrepA5XnJclhAE7KzMJdqYc8VK7CV80wk5PmyGVwZz2d07Zs5yihkW4SIerMMh0VXAMqXMiHFmimuDW-9pZ6MO-LwDIsWiizb_h8T8oTcYgD48P86K3fIFtiffwoAbWaedY73GxTAPFY priority: 102 providerName: Scholars Portal |
Title | World Spread of Tropical Soda Apple (Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution |
URI | https://www.proquest.com/docview/2869263314 https://www.proquest.com/docview/2870143156 https://www.proquest.com/docview/3040408055 https://pubmed.ncbi.nlm.nih.gov/PMC10525411 https://doaj.org/article/07752c7595c440619cd23bb572610943 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIvgitipG2zKCYIXGXvYjm_jW1pYieBSvhb6F_eQO2uQ47wT_Ev9dZ5L0elcpvviSh-wkZHdnd36TnfkNY--jpbO6gUqD5zKVaCPTUvo89UE5E30whW_ZPof52aX8eqWuVkp9UUxYRw_cDdwBUbRxp1WpnCTjUzrPhbVKcyIKly3PJ9q8FWeq3YM1-hZ0LklcPgL9-oOe04hSRYkFbc0MtWz9f-_J9-MkVwzP6XP2rEeMcNh96SZ7FOot9qSrIfnrBfvdhsPAaIroz0MT4WLWTGnkYdR4A4QyA-yN0IOtFzfwc2Jmi5uPQKljM-gI_6HLMPgMd5QhQF7pHbfsPgwpYhRG40mc74OpPZw3c4ozQtG-jPp44uALsfD2BbRessvTk4vjs7SvtpA6JfQ8tSGzEuFHIYrcaq8s13FgnYoDo3koDY8GZ0HmXqCXYRFYoDh3uUAM5wSiKvGKbdRNHV4ziJRfLz2CjRhl6QsbQ6SzZCE9vrUICft0O_iV66nIqSLGdYUuCc1WdW-2Era3fGDasXA8LHpEs7kUI_rs9gYqVdUrVfUvpUrYB9KFihY5fpgzfa4Cdo_osqpDneclz3G3TNj2rbpU_er_UfGCWoXIZMLeLZtx3dJhjKlDsyAZTdSK6D4_LCNwh5UI6ZVKWLGmimvdW2-pJ-OWJTyjCoUyy978jwF5y55yRHf0M52X22wD9S_sIBqb2132-OhkeP59t12AeP0miz_MDjVC |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVKi8ICggDAUWCUSRahrvrm9ICLW0VUpLVJFU6pux90IiUTukCShfwl_wjcz4kpCi8tZXe2ztau67M2cAXtiM7uravms0l65EH-nGUgeuNr5KrTZppEu0z27QOZUfz_yzFfjd9MJQWWVjE0tDrQtFZ-TbPApiHgjhyfej7y5NjaLb1WaERiUWR2b2E1O2i3eHe8jfl5wf7Pc_dNx6qoCrfBFO3Mx4mUQ3G4koyELtZzy07Uz5tp2G3MQpt2noxzLQmOkjQcSRnKtAYKyiBEYPAv97A1alwFSmBau7-92Tz_NTHVQgXGRQYQgJEbe3aywlalEl9LUl91dOCfjXF1yuz_zL4R3cgdt1pMp2KtG6CysmX4eb1ezK2Tqs1ePTB7N78KssyWG9EUagmhWW9cfFiLjPeoVOGUW6hm32MIvOp-fsxzAdT89fM2pfG7Nq6ACruhzesgVsCaPMeIFvu8W6VLXKeoOhnWyxNNfspJhQrROSNmsZKrZHSMD1EK_7cHotvHkArbzIzUNglnr8pcaAx1oZ6yizxtJ9tpAa_xoZB940jEhUDYdOUzm-JZgWEeeSS5xzYHP-wahCArmadJc4OycjCO_yQTH-mtQWISHsQa5wO76SFFXFSnORZX7ICQFfCgdekVwkZGhwYSqt-yVwewTZleyEAWkEWmwHNhrRSWoLdJEs9MWB5_PXaDvoQijNTTElmpDgHTGFv5pGoJWXmFb4vgPRklgubW_5TT4clEjlHk1JlJ736P8rfAZrnf6n4-T4sHv0GG5xjCPp2J7HG9BCKTNPMO6bZE9rZWPw5br1-w8RTmzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVFBeEBQQhgKLBKJINUl21zckhFrSqKUoikgr9c3Ye2kiUTukCShfwr_wdcz4kpCi8tZXe2ztau67M2cAXtqU7upanms0l65EH-lGUvuuNp5KrDZJqAu0z55_cCI_nXqna_C77oWhssraJhaGWueKzsibPPQj7gvRlk1blUX0O90P4-8uTZCim9Z6nEYpIkdm_hPTt4v3hx3k9SvOu_vHHw_casKAqzwRTN3UtFOJLjcUoZ8G2kt5YFup8mwrCbiJEm6TwIukrzHrR4KQIzlXvsC4RQmMJAT-9wasB5gVtRqwvrff639ZnPDgM1ywX-IJCRG1mhWuErWrEhLbiissJgb86xcu12r-5fy6d-FOFbWy3VLM7sGayTbhZjnHcr4JG9Uo9eH8PvwqynPYYIzRqGa5ZceTfEySwAa5ThhFvYZtDzCjzmbn7McomczO3zBqZZuwcgABKzse3rElhAmjLHmJdbvDelTBygbDkZ3usCTTrJ9Pqe4JSeu1jBTrECpwNdDrAZxcC28eQiPLM_MImKV-f6kx-LFWRjpMrbF0ty2kxr-GxoG3NSNiVUGj04SObzGmSMS5-BLnHNhefDAuUUGuJt0jzi7ICM67eJBPzuLKOsSEQ8gVbsdTkiKsSGku0tQLOKHhS-HAa5KLmIwOLkwlVe8Ebo_gu-LdwCftQOvtwFYtOnFljS7ipe448GLxGu0IXQ4lmclnRBMQ1COm81fTCLT4ElMMz3MgXBHLle2tvslGwwK1vE0TE2W7_fj_K3wOt1Cv48-HvaMncJtjSEkn-DzaggYKmXmKIeA0fVbpGoOv163efwAKWnD1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=World+Spread+of+Tropical+Soda+Apple+%28Solanum+viarum%29+under+Global+Change%3A+Historical+Reconstruction%2C+Niche+Shift%2C+and+Potential+Geographic+Distribution&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Yuhan+Qi&rft.au=Xiaoqing+Xian&rft.au=Haoxiang+Zhao&rft.au=Ming+Yang&rft.date=2023-08-29&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=12&rft.issue=9&rft.spage=1179&rft_id=info:doi/10.3390%2Fbiology12091179&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07752c7595c440619cd23bb572610943 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |