World Spread of Tropical Soda Apple (Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution

Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distri...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 12; no. 9; p. 1179
Main Authors Qi, Yuhan, Xian, Xiaoqing, Zhao, Haoxiang, Yang, Ming, Zhang, Yu, Yu, Wentao, Liu, Wanxue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
AbstractList Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km²; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Solanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. The invasion history of S. viarum consisted of three phases: lagging (before 1980), dispersal (1980–2010), and equilibrium (2010–present). Ecological niches remained conservative. The potential geographic distribution of S. viarum will reach a maximum in the 2050s, SSP5–8.5, and in the future, it will migrate to higher latitudes. Global factors continue to increase this threat. The relevant quarantine authorities should take prevention and control measures. Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km[sup.2]; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Simple SummarySolanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. The invasion history of S. viarum consisted of three phases: lagging (before 1980), dispersal (1980–2010), and equilibrium (2010–present). Ecological niches remained conservative. The potential geographic distribution of S. viarum will reach a maximum in the 2050s, SSP5–8.5, and in the future, it will migrate to higher latitudes. Global factors continue to increase this threat. The relevant quarantine authorities should take prevention and control measures.AbstractSolanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980–2010), and equilibrium (2010–present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5–8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Audience Academic
Author Yu, Wentao
Qi, Yuhan
Zhao, Haoxiang
Zhang, Yu
Liu, Wanxue
Xian, Xiaoqing
Yang, Ming
AuthorAffiliation 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; qyh_nwnu@163.com (Y.Q.); xianxiaoqing@caas.cn (X.X.); hx_zhao@bjfu.edu.cn (H.Z.); y1750165592@163.com (M.Y.); zhangyuu960606@163.com (Y.Z.)
2 Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
AuthorAffiliation_xml – name: 2 Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
– name: 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; qyh_nwnu@163.com (Y.Q.); xianxiaoqing@caas.cn (X.X.); hx_zhao@bjfu.edu.cn (H.Z.); y1750165592@163.com (M.Y.); zhangyuu960606@163.com (Y.Z.)
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Qi
  fullname: Qi, Yuhan
– sequence: 2
  givenname: Xiaoqing
  surname: Xian
  fullname: Xian, Xiaoqing
– sequence: 3
  givenname: Haoxiang
  surname: Zhao
  fullname: Zhao, Haoxiang
– sequence: 4
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 6
  givenname: Wentao
  surname: Yu
  fullname: Yu, Wentao
– sequence: 7
  givenname: Wanxue
  surname: Liu
  fullname: Liu, Wanxue
BookMark eNqFkk1v1DAQhiNUJErpmaslLkXqtv6I7YQLWi2wrVQBYos4Ro7jZL1KPMFJKvWX8HeZdCtEV0J4Drbs533tGc_L5ChAcEnymtELIXJ6WXpooblnnOaM6fxZcsypzhdaC3301_pFcjoMO4pDU66EOk5-_YDYVmTTR2cqAjW5jdB7a1qygcqQZd-3jpxtoDVh6sidN3Hq3pIpVC6SdQslgqutCY17R678MEJ80H5zFsIwxsmOHsI5-ezt1pHN1tfjOTGhIl9hdGH0iK4dNNH0W2_JBzSIvpxmzavkeW3awZ0-zifJ908fb1dXi5sv6-vV8mZhpdDjonSsTJWQmchUqStZcl3T0sqaGs1dbnhttMxTVQlBEcg44twqQTNhhUpTcZJc730rMLuij74z8b4A44uHDYhNYeLobesKqrXkFu2kTVOqWG4rLspSaq4YzVOBXu_3Xv1Udq6ymGE07RPTpyfBb4sG7gpGJZcpY-hw9ugQ4efkhrHo_GBdi9V3MA2FoClGRqX8L8ozTVkqmFSIvjlAdzDFgGVFSuXYCILNlbjYU43BZH2oAd9oMSrXefxOV3vcX2o1KzSd073cC2yEYYiu_pMpo8XclcVBV6JCHiisH8383XiVb_-p-w1omel0
CitedBy_id crossref_primary_10_3390_f15020321
Cites_doi 10.1111/j.1558-5646.2008.00482.x
10.1111/ele.13751
10.5194/gmd-13-5425-2020
10.1111/j.1466-8238.2011.00698.x
10.1088/1748-9326/9/11/114002
10.1111/ele.12748
10.1038/sdata.2018.254
10.1007/s10980-022-01446-4
10.1371/journal.pone.0090121
10.1002/eap.2811
10.4102/abc.v33i1.429
10.1111/j.1600-0706.2009.17963.x
10.5958/2229-4473.2016.00038.0
10.1038/s41396-018-0219-5
10.1653/024.093.0121
10.1017/S0890037X00044638
10.1111/gcb.12244
10.1111/geb.12555
10.1614/IPSM-D-11-00062.1
10.1038/s41559-022-01737-8
10.1080/09583151003782551
10.1016/j.agsy.2022.103410
10.1111/j.1600-0587.2009.06142.x
10.1111/geb.12578
10.1016/j.ecolecon.2014.05.008
10.1111/j.1365-2486.2011.02621.x
10.1111/ele.13863
10.1016/j.oneear.2021.04.015
10.1002/joc.5086
10.1038/s41558-021-01201-8
10.1016/S0006-3207(01)00047-7
10.1017/S0890037X00037714
10.1016/j.revpalbo.2015.09.003
10.1038/s41598-021-85862-7
10.5194/gmd-10-4321-2017
10.1038/s41598-020-64568-2
10.1038/s41598-020-80157-9
10.1073/pnas.1525200113
10.7717/peerj.6281
10.1007/s10530-013-0559-z
10.1038/s41598-018-26493-3
10.1016/j.tree.2007.11.005
10.1046/j.1523-1739.1992.610091.x
10.1038/s41467-021-24826-x
10.1038/nature01286
10.1126/science.aaa8913
10.1016/j.tree.2014.02.009
10.1111/brv.12402
10.1038/s41598-020-66477-w
10.1111/j.0906-7590.2008.5203.x
10.1073/pnas.1606036114
10.1111/jbi.14395
10.1111/j.1365-2486.2010.02393.x
10.2307/3495757
10.1111/gcb.15486
10.1126/science.aai9214
10.1111/ecog.02671
10.1016/j.ecolind.2021.108204
10.3390/insects13010079
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology12091179
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geography
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_07752c7595c440619cd23bb572610943
PMC10525411
A766926703
10_3390_biology12091179
GeographicLocations South America
Brazil
Australia
North America
China
Western Europe
Mexico
GeographicLocations_xml – name: China
– name: South America
– name: North America
– name: Western Europe
– name: Australia
– name: Brazil
– name: Mexico
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021YFC2600400
– fundername: Technology Innovation Program of Chinese Academy of Agricultural Sciences
  grantid: caascx–2022–2025–IAS
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c537t-be1b46358386b7d5b27f0bc5f0a72e9a2fa75946d3306b7821b42c63083c36443
IEDL.DBID DOA
ISSN 2079-7737
IngestDate Wed Aug 27 01:32:15 EDT 2025
Thu Aug 21 18:36:24 EDT 2025
Fri Jul 11 00:18:54 EDT 2025
Fri Jul 11 00:19:25 EDT 2025
Fri Jul 25 10:43:07 EDT 2025
Tue Jun 10 21:18:59 EDT 2025
Thu Apr 24 22:54:52 EDT 2025
Tue Jul 01 01:29:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-be1b46358386b7d5b27f0bc5f0a72e9a2fa75946d3306b7821b42c63083c36443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/07752c7595c440619cd23bb572610943
PQID 2869263314
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_07752c7595c440619cd23bb572610943
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10525411
proquest_miscellaneous_3040408055
proquest_miscellaneous_2870143156
proquest_journals_2869263314
gale_infotracacademiconefile_A766926703
crossref_primary_10_3390_biology12091179
crossref_citationtrail_10_3390_biology12091179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230829
PublicationDateYYYYMMDD 2023-08-29
PublicationDate_xml – month: 8
  year: 2023
  text: 20230829
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Warren (ref_42) 2011; 62
Broennimann (ref_43) 2017; 40
Brown (ref_31) 2018; 5
Sitzia (ref_1) 2018; 8
ref_13
ref_12
ref_11
Hill (ref_41) 2017; 26
Medal (ref_18) 1996; 79
Broennimann (ref_39) 2012; 21
Dalmazzone (ref_10) 2014; 105
ref_19
Aikio (ref_21) 2010; 119
Hurtt (ref_34) 2020; 13
Parmesan (ref_60) 2003; 421
Thebo (ref_62) 2014; 9
Bonnamour (ref_64) 2021; 24
Greenwood (ref_58) 2017; 20
Carlson (ref_8) 2021; 12
Waheed (ref_45) 2023; 12
Fick (ref_32) 2017; 37
Pili (ref_24) 2020; 10
Capinha (ref_4) 2015; 348
ref_20
Mullahey (ref_52) 1998; 12
Frieler (ref_33) 2017; 10
Dong (ref_49) 2023; 11
Urvois (ref_25) 2021; 11
Puchalka (ref_27) 2021; 27
Essl (ref_48) 2018; 93
Corson (ref_65) 2022; 199
Zhu (ref_50) 2014; 16
Javidan (ref_35) 2021; 11
West (ref_66) 1990; 155
Phillips (ref_22) 2008; 31
Mislevy (ref_67) 1999; 58
Marchioro (ref_44) 2023; 1
Lu (ref_6) 2013; 19
Murray (ref_28) 2012; 18
Fiacconi (ref_47) 2015; 223
Welman (ref_16) 2003; 33
Warren (ref_30) 2010; 33
Mullahey (ref_55) 1993; 7
Cobos (ref_37) 2019; 7
Overholt (ref_54) 2010; 20
Sirami (ref_61) 2017; 26
Guisan (ref_23) 2014; 29
Betts (ref_36) 2022; 6
ref_38
Pearman (ref_56) 2008; 23
Pujadas (ref_3) 2001; 100
Dyderski (ref_29) 2022; 37
Lu (ref_51) 2018; 12
Bryson (ref_17) 2012; 5
Pecl (ref_57) 2017; 355
Skubel (ref_2) 2020; 10
Reitsma (ref_63) 2017; 114
ref_40
Brothers (ref_7) 1992; 6
Cao (ref_26) 2021; 131
Singha (ref_15) 2016; 29
Janssens (ref_9) 2021; 11
Medal (ref_14) 2010; 93
Hulme (ref_5) 2021; 4
Boivin (ref_46) 2016; 113
Lustenhouwer (ref_53) 2022; 49
Engler (ref_59) 2011; 17
Duncan (ref_68) 2021; 24
References_xml – volume: 62
  start-page: 2868
  year: 2011
  ident: ref_42
  article-title: Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2008.00482.x
– volume: 24
  start-page: 1363
  year: 2021
  ident: ref_68
  article-title: Time lags and the invasion debt in plant naturalisations
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13751
– volume: 13
  start-page: 5425
  year: 2020
  ident: ref_34
  article-title: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-5425-2020
– volume: 21
  start-page: 481
  year: 2012
  ident: ref_39
  article-title: Measuring ecological niche overlap from occurrence and spatial environmental data
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2011.00698.x
– volume: 9
  start-page: 9
  year: 2014
  ident: ref_62
  article-title: Global assessment of urban and peri–urban agriculture: Irrigated and rainfed croplands
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/11/114002
– volume: 20
  start-page: 539
  year: 2017
  ident: ref_58
  article-title: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12748
– volume: 5
  start-page: 180254
  year: 2018
  ident: ref_31
  article-title: PaleoClim, high spatial resolution paleoclimate surfaces for global land areas
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.254
– volume: 37
  start-page: 1871
  year: 2022
  ident: ref_29
  article-title: Propagule pressure and land–use are more important than climate for invasive bryophytes regional distributions
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-022-01446-4
– ident: ref_40
  doi: 10.1371/journal.pone.0090121
– volume: 11
  start-page: e2811
  year: 2023
  ident: ref_49
  article-title: Cultivated alien plants with high invasion potential are more likely to be traded online in China
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2811
– volume: 33
  start-page: 1
  year: 2003
  ident: ref_16
  article-title: The genus Solanum (Solanaceae) in southern Africa: Subgenus Leptostemonum, the introduced sections Acanthophora and Torva
  publication-title: Bothalia
  doi: 10.4102/abc.v33i1.429
– volume: 119
  start-page: 370
  year: 2010
  ident: ref_21
  article-title: Lag–phases in alien plant invasions: Separating the facts from the artefacts
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2009.17963.x
– volume: 29
  start-page: 65
  year: 2016
  ident: ref_15
  article-title: Karyomorphology of Solanum viarum Dunal–an ethnomedicinal species of Tripura
  publication-title: Vegetos
  doi: 10.5958/2229-4473.2016.00038.0
– volume: 12
  start-page: 2811
  year: 2018
  ident: ref_51
  article-title: Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0219-5
– volume: 93
  start-page: 130
  year: 2010
  ident: ref_14
  article-title: Biological control of Tropical soda apple (Solanaceae) in Florida: Post–release evaluation
  publication-title: Fla Entomol.
  doi: 10.1653/024.093.0121
– volume: 12
  start-page: 733
  year: 1998
  ident: ref_52
  article-title: Invasion of tropical soda apple (Solanum viarum) into the U.S.: Lessons learned
  publication-title: Weed Technol.
  doi: 10.1017/S0890037X00044638
– volume: 19
  start-page: 2339
  year: 2013
  ident: ref_6
  article-title: Climate warming affects biological invasions by shifting interactions of plants and herbivores
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12244
– volume: 26
  start-page: 385
  year: 2017
  ident: ref_61
  article-title: Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12555
– volume: 5
  start-page: 341
  year: 2012
  ident: ref_17
  article-title: Growth, development, and morphological differences among native and nonnative prickly nightshades (Solanum spp.) of the southeastern United States
  publication-title: Invasive Plant Sci. Manag.
  doi: 10.1614/IPSM-D-11-00062.1
– volume: 6
  start-page: 709
  year: 2022
  ident: ref_36
  article-title: Forest degradation drives widespread avian habitat and population declines
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-022-01737-8
– volume: 20
  start-page: 791
  year: 2010
  ident: ref_54
  article-title: The effect of Gratiana boliviana (Coleoptera: Chrysomelidae) herbivory on growth and population density of tropical soda apple (Solanum viarum) in Florida
  publication-title: Biocontrol Sci. Technol.
  doi: 10.1080/09583151003782551
– volume: 199
  start-page: 103410
  year: 2022
  ident: ref_65
  article-title: Beyond agroecology: Agricultural rewilding, a prospect for livestock systems
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2022.103410
– volume: 12
  start-page: 1
  year: 2023
  ident: ref_45
  article-title: Potential distribution of a noxious weed (Solanum viarum Du–nal), current status, and future invasion risk based on MaxEnt modeling
  publication-title: Geol. Eco. Landsc.
– volume: 33
  start-page: 607
  year: 2010
  ident: ref_30
  article-title: ENMTools: A toolbox for comparative studies of environmental niche models
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2009.06142.x
– volume: 26
  start-page: 679
  year: 2017
  ident: ref_41
  article-title: A global assessment of climatic niche shifts and human influence in insect invasions
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12578
– volume: 1
  start-page: 1
  year: 2023
  ident: ref_44
  article-title: Reconstructing the biological invasion of Tuta absoluta: Evidence of niche shift and its consequences for invasion risk assessment
  publication-title: J. Pest Sci.
– volume: 105
  start-page: 154
  year: 2014
  ident: ref_10
  article-title: Economic drivers of biological invasions: A worldwide, bio–geographic analysis
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2014.05.008
– volume: 18
  start-page: 1738
  year: 2012
  ident: ref_28
  article-title: Predicting the potential distribution of a riparian invasive plant: The effects of changing climate, flood regimes and land–use patterns
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02621.x
– ident: ref_13
– volume: 24
  start-page: 2418
  year: 2021
  ident: ref_64
  article-title: Insect and plant invasions follow two waves of globalisation
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13863
– volume: 4
  start-page: 666
  year: 2021
  ident: ref_5
  article-title: Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide
  publication-title: One Earth
  doi: 10.1016/j.oneear.2021.04.015
– volume: 37
  start-page: 4302
  year: 2017
  ident: ref_32
  article-title: WorldClim 2: New 1–km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 11
  start-page: 915
  year: 2021
  ident: ref_9
  article-title: International trade is a key component of climate change adaptation
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-021-01201-8
– volume: 100
  start-page: 397
  year: 2001
  ident: ref_3
  article-title: Land–use and socio–economic correlates of plant invasions in European and North African countries
  publication-title: Biol. Conserv.
  doi: 10.1016/S0006-3207(01)00047-7
– ident: ref_20
– volume: 7
  start-page: 783
  year: 1993
  ident: ref_55
  article-title: Tropical soda apple (Solanum viarum): A new weed threat in subtropical regions
  publication-title: Weed Technol.
  doi: 10.1017/S0890037X00037714
– volume: 223
  start-page: 87
  year: 2015
  ident: ref_47
  article-title: Pollen taphonomy at Shanidar Cave (Kurdish Iraq): An initial evaluation
  publication-title: Rev. Palaeobot. Palynol.
  doi: 10.1016/j.revpalbo.2015.09.003
– volume: 11
  start-page: 6496
  year: 2021
  ident: ref_35
  article-title: Evaluation of multi–hazard map produced using MaxEnt machine learning technique
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85862-7
– volume: 10
  start-page: 4321
  year: 2017
  ident: ref_33
  article-title: Assessing the impacts of 1.5 °C global warming—Simulation protocol of the Inter–Sectoral Impact Model Intercomparison Project (ISIMIP2b)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-4321-2017
– ident: ref_11
– volume: 10
  start-page: 7972
  year: 2020
  ident: ref_24
  article-title: Niche shifts and environmental non–equilibrium undermine the usefulness of ecological niche models for invasion risk assessments
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64568-2
– volume: 11
  start-page: 1339
  year: 2021
  ident: ref_25
  article-title: Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80157-9
– volume: 113
  start-page: 6388
  year: 2016
  ident: ref_46
  article-title: Ecological consequences of human niche construction: Examining long–term anthropogenic shaping of global species distributions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1525200113
– volume: 155
  start-page: 128
  year: 1990
  ident: ref_66
  article-title: The Use of Livestock to Control Weeds in New Zealand Forests
  publication-title: FRI Bull.
– volume: 7
  start-page: 15
  year: 2019
  ident: ref_37
  article-title: kuenm: An R package for detailed development of ecological niche models using Maxent
  publication-title: PeerJ
  doi: 10.7717/peerj.6281
– volume: 16
  start-page: 1069
  year: 2014
  ident: ref_50
  article-title: Effect of geographic background and equilibrium state on niche model transferability: Predicting areas of invasion of Leptoglossus occidentalis
  publication-title: Biol. Invas.
  doi: 10.1007/s10530-013-0559-z
– volume: 8
  start-page: 8410
  year: 2018
  ident: ref_1
  article-title: The invasion of abandoned fields by a major alien tree filters understory plant traits in novel forest ecosystems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26493-3
– volume: 23
  start-page: 149
  year: 2008
  ident: ref_56
  article-title: Niche dynamics in space and time
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2007.11.005
– volume: 6
  start-page: 91
  year: 1992
  ident: ref_7
  article-title: Forest fragmentation and alien plant invasion of central Indiana old–growth forests
  publication-title: Conserv. Biol.
  doi: 10.1046/j.1523-1739.1992.610091.x
– volume: 12
  start-page: 4572
  year: 2021
  ident: ref_8
  article-title: Individual environmental niches in mobile organisms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24826-x
– volume: 421
  start-page: 37
  year: 2003
  ident: ref_60
  article-title: A globally coherent fingerprint of climate change impacts across natural systems
  publication-title: Nature
  doi: 10.1038/nature01286
– volume: 348
  start-page: 1248
  year: 2015
  ident: ref_4
  article-title: The dispersal of alien species redefines biogeography in the Anthropocene
  publication-title: Science
  doi: 10.1126/science.aaa8913
– volume: 29
  start-page: 260
  year: 2014
  ident: ref_23
  article-title: Unifying niche shift studies: Insights from biological invasions
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.02.009
– volume: 93
  start-page: 1421
  year: 2018
  ident: ref_48
  article-title: The changing role of ornamental horticulture in alien plant invasions
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/brv.12402
– volume: 10
  start-page: 9749
  year: 2020
  ident: ref_2
  article-title: Metabolomic differences between invasive alien plants from native and invaded habitats
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66477-w
– volume: 58
  start-page: 107
  year: 1999
  ident: ref_67
  article-title: Tropical soda apple control as influenced by frost and herbicides
  publication-title: Soil Crop Sci. Soc. Fla Proc.
– volume: 31
  start-page: 161
  year: 2008
  ident: ref_22
  article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2008.5203.x
– volume: 114
  start-page: 8939
  year: 2017
  ident: ref_63
  article-title: Future urban land expansion and implications for global croplands
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1606036114
– ident: ref_12
– volume: 49
  start-page: 1481
  year: 2022
  ident: ref_53
  article-title: Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.14395
– volume: 17
  start-page: 2330
  year: 2011
  ident: ref_59
  article-title: 21st century climate change threatens mountain flora unequally across Europe
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02393.x
– volume: 79
  start-page: 70
  year: 1996
  ident: ref_18
  article-title: An exploratory insect survey of tropical soda apple in Brazil and Paraguay
  publication-title: Fla Entomol.
  doi: 10.2307/3495757
– volume: 27
  start-page: 1587
  year: 2021
  ident: ref_27
  article-title: Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15486
– volume: 355
  start-page: 9
  year: 2017
  ident: ref_57
  article-title: Biodiversity redistribution under climate change: Impacts on ecosystems and human well–being
  publication-title: Science
  doi: 10.1126/science.aai9214
– volume: 40
  start-page: 774
  year: 2017
  ident: ref_43
  article-title: ecospat: An R package to support spatial analyses and modeling of species niches and distributions
  publication-title: Ecography
  doi: 10.1111/ecog.02671
– ident: ref_19
– volume: 131
  start-page: 108204
  year: 2021
  ident: ref_26
  article-title: Potential impact of climate change on the global geographical distribution of the invasive species, Cenchrus spinifex (Field sandbur, Gramineae)
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108204
– ident: ref_38
  doi: 10.3390/insects13010079
SSID ssj0000702636
Score 2.307992
Snippet Solanum viarum has become extensively invasive owing to international trade, climate change, and land–use change. As it is classified as a quarantine weed by...
Solanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and distribution...
Simple SummarySolanum viarum has been a widely invasive species. We aimed to understand the prevailing historical dispersal, ecological niche dynamics, and...
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1179
SubjectTerms Biological Sciences
climate
Climate change
cropland
Datasets
Dispersal
ecological niche
ecosystem
Ecosystems
forests
Fruits
Geographical distribution
Geography
Global temperature changes
Grasslands
International trade
Introduced species
invasive alien plants
Invasive species
Land use
land use change
Latitude
Mexico
Niche (Ecology)
Niches
Postwar reconstruction
Quarantine
Solanum viarum
Trends
Weeds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF-0RfRFtCperTKCYIWeTfbjPnyRVluKD6GYFvp27KcJ2Ls0TYT-Jf67ztxtElOpr3dzxy4zO_ub3ZnfMPYuGLqr66nUOy5TiXtkWkqXpc4rq4PzunAt2-cgOzmX3y7URTxwu45plQuf2Dpq11g6I9_nRVbyTIi-_Dy5SqlrFN2uxhYa99kmuuACg6_Nw6PB6fflKQsaNH6UdZw-AuP7_chtRCWjxIa2th21rP3_-ubb-ZJ_bUDHT9jjiBzhoFP1U3bP11vsQddL8maLPYztzEc3z9jvNkUGhhNEhA6aAGfTZkLagGHjNBDy9LA7xKi2nl_Cr7Gezi8_AJWTTaFrAgBd1cEnWNGIAEWqK77ZPRhQFikMR-Mw2wNdOzhtZpR7hKKLsYwtfCVm3thU6zk7Pz46-3KSxg4MqVUin6XG941ESFKIIjO5U4bnoWesCj2dc19qHnSuSpk5gZGHQbCB4txmAnGdFYi0xAu2UTe1f8kgUM29dAhAQpClK0zwge6XhXT418In7ONCEZWN9OTUJeNnhWEKaa66pbmE7S4_mHTMHHeLHpJml2JEqd0-aKY_qrhCK-IC5Bano6wklFNax4UxKufESC9Fwt6TXVS08HFgVsf6BZweUWhVB3lGFooeNGE7C9Opoke4rlb2m7C3y9e4lumCRte-mZNMTnSLGFLfLSPQ60qE-UolrFgzy7Xprb-px6OWObxPXQtlv7_9_xG-Yo84Yjk6OuflDttAy_KvEXvNzJu4wP4AldIxoQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ta9RAEF60IvhFfDe1ygqCFZp62ZdsIojUl1IEi3A96Lewr95Bm1zjndhf4t91Jtm786r3za_Z2ZDdmdl9JrvzDCEvgsGzuoFMvWMiFbBHpqVweeq8tDo4rwvXsX0e50cj8flUnq7KAcUJ_P7P0A7rSY3as_2fF5fvwOHfYsQJIfvrSFeEWaBIcHad3IBtSaGXfolYv1uWFYQbeFT5aEO_tZ2pI_D_e5m-enXyj73o8A65HUEkPei1fpdc8_U9crMvK3l5n_zqbsjQ4RQAoaNNoCdtM0Vl0GHjNEXg6enuEEZez8_pj4lu5-evKGaTtbSvAUD7pIM3dMUiQjFQXdHN7tFjvERKh-NJmO1RXTv6tZnh1SMQjZXVxxNLPyIxb6yp9YCMDj-dfDhKYwGG1EquZqnxmRGASApe5EY5aZgKA2NlGGjFfKlZ0EqWInccAg8DWAPEmc05wDrLAWjxh2Srbmr_mNCAKffCAf4IQZSuMMEHPF7mwsFbC5-Q_cXkVzayk2ORjLMKohTUVnVFWwnZXXaY9sQcm0XfozaXYsio3T1o2m9VdNAKqQCZheFIKxDklNYxboxUDAnpBU_IS7SFCi0RPszqmL4Aw0MGrepA5XnJclhAE7KzMJdqYc8VK7CV80wk5PmyGVwZz2d07Zs5yihkW4SIerMMh0VXAMqXMiHFmimuDW-9pZ6MO-LwDIsWiizb_h8T8oTcYgD48P86K3fIFtiffwoAbWaedY73GxTAPFY
  priority: 102
  providerName: Scholars Portal
Title World Spread of Tropical Soda Apple (Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution
URI https://www.proquest.com/docview/2869263314
https://www.proquest.com/docview/2870143156
https://www.proquest.com/docview/3040408055
https://pubmed.ncbi.nlm.nih.gov/PMC10525411
https://doaj.org/article/07752c7595c440619cd23bb572610943
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIvgitipG2zKCYIXGXvYjm_jW1pYieBSvhb6F_eQO2uQ47wT_Ev9dZ5L0elcpvviSh-wkZHdnd36TnfkNY--jpbO6gUqD5zKVaCPTUvo89UE5E30whW_ZPof52aX8eqWuVkp9UUxYRw_cDdwBUbRxp1WpnCTjUzrPhbVKcyIKly3PJ9q8FWeq3YM1-hZ0LklcPgL9-oOe04hSRYkFbc0MtWz9f-_J9-MkVwzP6XP2rEeMcNh96SZ7FOot9qSrIfnrBfvdhsPAaIroz0MT4WLWTGnkYdR4A4QyA-yN0IOtFzfwc2Jmi5uPQKljM-gI_6HLMPgMd5QhQF7pHbfsPgwpYhRG40mc74OpPZw3c4ozQtG-jPp44uALsfD2BbRessvTk4vjs7SvtpA6JfQ8tSGzEuFHIYrcaq8s13FgnYoDo3koDY8GZ0HmXqCXYRFYoDh3uUAM5wSiKvGKbdRNHV4ziJRfLz2CjRhl6QsbQ6SzZCE9vrUICft0O_iV66nIqSLGdYUuCc1WdW-2Era3fGDasXA8LHpEs7kUI_rs9gYqVdUrVfUvpUrYB9KFihY5fpgzfa4Cdo_osqpDneclz3G3TNj2rbpU_er_UfGCWoXIZMLeLZtx3dJhjKlDsyAZTdSK6D4_LCNwh5UI6ZVKWLGmimvdW2-pJ-OWJTyjCoUyy978jwF5y55yRHf0M52X22wD9S_sIBqb2132-OhkeP59t12AeP0miz_MDjVC
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVKi8ICggDAUWCUSRahrvrm9ICLW0VUpLVJFU6pux90IiUTukCShfwl_wjcz4kpCi8tZXe2ztau67M2cAXtiM7uravms0l65EH-nGUgeuNr5KrTZppEu0z27QOZUfz_yzFfjd9MJQWWVjE0tDrQtFZ-TbPApiHgjhyfej7y5NjaLb1WaERiUWR2b2E1O2i3eHe8jfl5wf7Pc_dNx6qoCrfBFO3Mx4mUQ3G4koyELtZzy07Uz5tp2G3MQpt2noxzLQmOkjQcSRnKtAYKyiBEYPAv97A1alwFSmBau7-92Tz_NTHVQgXGRQYQgJEbe3aywlalEl9LUl91dOCfjXF1yuz_zL4R3cgdt1pMp2KtG6CysmX4eb1ezK2Tqs1ePTB7N78KssyWG9EUagmhWW9cfFiLjPeoVOGUW6hm32MIvOp-fsxzAdT89fM2pfG7Nq6ACruhzesgVsCaPMeIFvu8W6VLXKeoOhnWyxNNfspJhQrROSNmsZKrZHSMD1EK_7cHotvHkArbzIzUNglnr8pcaAx1oZ6yizxtJ9tpAa_xoZB940jEhUDYdOUzm-JZgWEeeSS5xzYHP-wahCArmadJc4OycjCO_yQTH-mtQWISHsQa5wO76SFFXFSnORZX7ICQFfCgdekVwkZGhwYSqt-yVwewTZleyEAWkEWmwHNhrRSWoLdJEs9MWB5_PXaDvoQijNTTElmpDgHTGFv5pGoJWXmFb4vgPRklgubW_5TT4clEjlHk1JlJ736P8rfAZrnf6n4-T4sHv0GG5xjCPp2J7HG9BCKTNPMO6bZE9rZWPw5br1-w8RTmzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVFBeEBQQhgKLBKJINUl21zckhFrSqKUoikgr9c3Ye2kiUTukCShfwr_wdcz4kpCi8tZXe2ztau67M2cAXtqU7upanms0l65EH-lGUvuuNp5KrDZJqAu0z55_cCI_nXqna_C77oWhssraJhaGWueKzsibPPQj7gvRlk1blUX0O90P4-8uTZCim9Z6nEYpIkdm_hPTt4v3hx3k9SvOu_vHHw_casKAqzwRTN3UtFOJLjcUoZ8G2kt5YFup8mwrCbiJEm6TwIukrzHrR4KQIzlXvsC4RQmMJAT-9wasB5gVtRqwvrff639ZnPDgM1ywX-IJCRG1mhWuErWrEhLbiissJgb86xcu12r-5fy6d-FOFbWy3VLM7sGayTbhZjnHcr4JG9Uo9eH8PvwqynPYYIzRqGa5ZceTfEySwAa5ThhFvYZtDzCjzmbn7McomczO3zBqZZuwcgABKzse3rElhAmjLHmJdbvDelTBygbDkZ3usCTTrJ9Pqe4JSeu1jBTrECpwNdDrAZxcC28eQiPLM_MImKV-f6kx-LFWRjpMrbF0ty2kxr-GxoG3NSNiVUGj04SObzGmSMS5-BLnHNhefDAuUUGuJt0jzi7ICM67eJBPzuLKOsSEQ8gVbsdTkiKsSGku0tQLOKHhS-HAa5KLmIwOLkwlVe8Ebo_gu-LdwCftQOvtwFYtOnFljS7ipe448GLxGu0IXQ4lmclnRBMQ1COm81fTCLT4ElMMz3MgXBHLle2tvslGwwK1vE0TE2W7_fj_K3wOt1Cv48-HvaMncJtjSEkn-DzaggYKmXmKIeA0fVbpGoOv163efwAKWnD1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=World+Spread+of+Tropical+Soda+Apple+%28Solanum+viarum%29+under+Global+Change%3A+Historical+Reconstruction%2C+Niche+Shift%2C+and+Potential+Geographic+Distribution&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Yuhan+Qi&rft.au=Xiaoqing+Xian&rft.au=Haoxiang+Zhao&rft.au=Ming+Yang&rft.date=2023-08-29&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=12&rft.issue=9&rft.spage=1179&rft_id=info:doi/10.3390%2Fbiology12091179&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07752c7595c440619cd23bb572610943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon