A Meta-Learning Approach for Few-Shot Face Forgery Segmentation and Classification

The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 7; p. 3647
Main Authors Lin, Yih-Kai, Yen, Ting-Yu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested approach to tackle this problem is to use a hand-crafted generator of forged images to create a range of fake images, which can then be used to train the neural network. However, the aforementioned method has limited detection performance when encountering unseen forging techniques that the hand-craft generator has not accounted for. To overcome the limitations of existing methods, in this paper, we adopt a meta-learning approach to develop a highly adaptive detector for identifying new forging techniques. The proposed method trains a forged image detector using meta-learning techniques, making it possible to fine-tune the detector with only a few new forged samples. The proposed method inputs a small number of the forged images to the detector and enables the detector to adjust its weights based on the statistical features of the input forged images, allowing the detection of forged images with similar characteristics. The proposed method achieves significant improvement in detecting forgery methods, with IoU improvements ranging from 35.4% to 127.2% and AUC improvements ranging from 2.0% to 48.9%, depending on the forgery method. These results show that the proposed method significantly improves detection performance with only a small number of samples and demonstrates better performance compared to current state-of-the-art methods in most scenarios.
AbstractList The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested approach to tackle this problem is to use a hand-crafted generator of forged images to create a range of fake images, which can then be used to train the neural network. However, the aforementioned method has limited detection performance when encountering unseen forging techniques that the hand-craft generator has not accounted for. To overcome the limitations of existing methods, in this paper, we adopt a meta-learning approach to develop a highly adaptive detector for identifying new forging techniques. The proposed method trains a forged image detector using meta-learning techniques, making it possible to fine-tune the detector with only a few new forged samples. The proposed method inputs a small number of the forged images to the detector and enables the detector to adjust its weights based on the statistical features of the input forged images, allowing the detection of forged images with similar characteristics. The proposed method achieves significant improvement in detecting forgery methods, with IoU improvements ranging from 35.4% to 127.2% and AUC improvements ranging from 2.0% to 48.9%, depending on the forgery method. These results show that the proposed method significantly improves detection performance with only a small number of samples and demonstrates better performance compared to current state-of-the-art methods in most scenarios.
The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested approach to tackle this problem is to use a hand-crafted generator of forged images to create a range of fake images, which can then be used to train the neural network. However, the aforementioned method has limited detection performance when encountering unseen forging techniques that the hand-craft generator has not accounted for. To overcome the limitations of existing methods, in this paper, we adopt a meta-learning approach to develop a highly adaptive detector for identifying new forging techniques. The proposed method trains a forged image detector using meta-learning techniques, making it possible to fine-tune the detector with only a few new forged samples. The proposed method inputs a small number of the forged images to the detector and enables the detector to adjust its weights based on the statistical features of the input forged images, allowing the detection of forged images with similar characteristics. The proposed method achieves significant improvement in detecting forgery methods, with IoU improvements ranging from 35.4% to 127.2% and AUC improvements ranging from 2.0% to 48.9%, depending on the forgery method. These results show that the proposed method significantly improves detection performance with only a small number of samples and demonstrates better performance compared to current state-of-the-art methods in most scenarios.The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged images created with known methods. However, when encountering unseen forgery methods, the technology performs poorly. Recently, one suggested approach to tackle this problem is to use a hand-crafted generator of forged images to create a range of fake images, which can then be used to train the neural network. However, the aforementioned method has limited detection performance when encountering unseen forging techniques that the hand-craft generator has not accounted for. To overcome the limitations of existing methods, in this paper, we adopt a meta-learning approach to develop a highly adaptive detector for identifying new forging techniques. The proposed method trains a forged image detector using meta-learning techniques, making it possible to fine-tune the detector with only a few new forged samples. The proposed method inputs a small number of the forged images to the detector and enables the detector to adjust its weights based on the statistical features of the input forged images, allowing the detection of forged images with similar characteristics. The proposed method achieves significant improvement in detecting forgery methods, with IoU improvements ranging from 35.4% to 127.2% and AUC improvements ranging from 2.0% to 48.9%, depending on the forgery method. These results show that the proposed method significantly improves detection performance with only a small number of samples and demonstrates better performance compared to current state-of-the-art methods in most scenarios.
Audience Academic
Author Lin, Yih-Kai
Yen, Ting-Yu
AuthorAffiliation Department of Computer Science and Artificial Intelligence, National Pingtung University, No. 4-18 Minsheng Road, Pingtung City 90003, Taiwan
AuthorAffiliation_xml – name: Department of Computer Science and Artificial Intelligence, National Pingtung University, No. 4-18 Minsheng Road, Pingtung City 90003, Taiwan
Author_xml – sequence: 1
  givenname: Yih-Kai
  orcidid: 0000-0001-6509-0017
  surname: Lin
  fullname: Lin, Yih-Kai
– sequence: 2
  givenname: Ting-Yu
  surname: Yen
  fullname: Yen, Ting-Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050708$$D View this record in MEDLINE/PubMed
BookMark eNptks1uEzEUhS1URNvAghdAI7GBxbT-98wKRRGBSkFIFNbWHY-dOJrYwZ6A-vY4TVuawsrW9bmffa7POToJMViEXhN8wViLLzNlWDHJ1TN0RjjldUMpPnm0P0XnOa8xpoyx5gU6ZQoLrHBzhr5Nqy92hHphIQUfltV0u00RzKpyMVVz-7u-XsWxmoOx1TympU031bVdbmwYYfQxVBD6ajZAzt55c1t6iZ47GLJ9dbdO0I_5x--zz_Xi66er2XRRG8HUWIPEvTNUKkG4oV2vWkIsFx0FAz1X0FsmJFWYuEYZg_uuEYTgRrTCFNNtzybo6sDtI6z1NvkNpBsdwevbQnmshjR6M1gNnXSKCIeVlJx1GAAcA8OZM9JJ0RbWhwNru-s2tjfFXoLhCHp8EvxKL-MvTTBuW1KmP0Hv7ggp_tzZPOqNz8YOAwQbd1nTBmNJy9R5kb59Il3HXQplVpqqtlUN5Zz9VS2hOPDBxXKx2UP1VHHZ8kaIPeviP6r9CO3GmxIT50v9qOHNY6cPFu8jUQSXB4FJMedknTb-8NeF7IfiWO9Dpx9CVzreP-m4h_6r_QPNUNMP
CitedBy_id crossref_primary_10_3390_s23146430
crossref_primary_10_3390_s23218763
Cites_doi 10.1109/TBIOM.2022.3143404
10.1007/978-1-4615-5529-2
10.1145/3082031.3083247
10.1109/CVPR46437.2021.00572
10.1145/2909827.2930786
10.1109/CVPR52688.2022.01816
10.1109/MMSP.2013.6659337
10.1007/978-3-319-50835-1_22
10.1186/s12880-015-0068-x
10.1145/3306346.3323035
10.18653/v1/2021.findings-emnlp.96
10.1109/CVPR.2016.262
10.1109/CVPR52688.2022.01436
10.1109/ICASSP.2014.6854801
10.1109/ICIP40778.2020.9191042
10.3390/rs14215368
10.1109/BTAS46853.2019.9185974
10.1109/TNNLS.2022.3185795
10.1109/CVPR42600.2020.00327
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23073647
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ab6f715f076643b0aaaf3ac43fc6f659
PMC10099107
A746948554
37050708
10_3390_s23073647
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST-109-2221-E-153-003
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c537t-a60dfc267514c2bd7911e45b2acad47ade3562701f87cc0db851108595c3399d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:07:23 EDT 2025
Thu Aug 21 18:38:03 EDT 2025
Fri Jul 11 07:14:02 EDT 2025
Fri Jul 25 20:23:09 EDT 2025
Thu Jul 03 03:20:41 EDT 2025
Tue Jul 01 05:45:15 EDT 2025
Wed Feb 19 02:24:20 EST 2025
Tue Jul 01 01:19:59 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords digital forensics
segmentation
face forgery detection
U-Net
meta-learning
few-shot learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-a60dfc267514c2bd7911e45b2acad47ade3562701f87cc0db851108595c3399d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6509-0017
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23073647
PMID 37050708
PQID 2799782443
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ab6f715f076643b0aaaf3ac43fc6f659
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10099107
proquest_miscellaneous_2800625074
proquest_journals_2799782443
gale_infotracmisc_A746948554
gale_infotracacademiconefile_A746948554
pubmed_primary_37050708
crossref_citationtrail_10_3390_s23073647
crossref_primary_10_3390_s23073647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230331
PublicationDateYYYYMMDD 2023-03-31
PublicationDate_xml – month: 3
  year: 2023
  text: 20230331
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Thies (ref_2) 2019; 38
Korshunov (ref_21) 2022; 4
ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
Taha (ref_37) 2015; 15
Thies (ref_4) 2019; 61
ref_19
ref_18
ref_17
ref_16
ref_38
Cozzolino (ref_13) 2018; 29
ref_15
ref_25
ref_24
ref_23
ref_22
ref_20
ref_1
ref_3
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_7
– volume: 4
  start-page: 386
  year: 2022
  ident: ref_21
  article-title: Improving Generalization of Deepfake Detection With Data Farming and Few-Shot Learning
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2022.3143404
– ident: ref_28
– ident: ref_30
– ident: ref_22
  doi: 10.1007/978-1-4615-5529-2
– ident: ref_5
– ident: ref_9
  doi: 10.1145/3082031.3083247
– ident: ref_32
– ident: ref_26
– ident: ref_19
  doi: 10.1109/CVPR46437.2021.00572
– ident: ref_8
  doi: 10.1145/2909827.2930786
– ident: ref_11
– ident: ref_1
  doi: 10.1109/CVPR52688.2022.01816
– ident: ref_14
  doi: 10.1109/MMSP.2013.6659337
– ident: ref_18
– ident: ref_23
– ident: ref_36
  doi: 10.1007/978-3-319-50835-1_22
– volume: 15
  start-page: 1
  year: 2015
  ident: ref_37
  article-title: Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_2
  article-title: Deferred neural rendering: Image synthesis using neural textures
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3306346.3323035
– ident: ref_24
  doi: 10.18653/v1/2021.findings-emnlp.96
– ident: ref_3
  doi: 10.1109/CVPR.2016.262
– ident: ref_6
– ident: ref_25
– ident: ref_31
– ident: ref_33
– ident: ref_27
– ident: ref_35
  doi: 10.1109/CVPR52688.2022.01436
– volume: 29
  start-page: 669
  year: 2018
  ident: ref_13
  article-title: A patchmatch-based dense-field algorithm for video copy–move detection and localization
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: ref_15
  doi: 10.1109/ICASSP.2014.6854801
– ident: ref_29
  doi: 10.1109/ICIP40778.2020.9191042
– volume: 61
  start-page: 143
  year: 2019
  ident: ref_4
  article-title: Face2Face: Real-time facial reenactment
  publication-title: IT-Inf. Technol.
– ident: ref_12
  doi: 10.3390/rs14215368
– ident: ref_10
  doi: 10.1109/BTAS46853.2019.9185974
– ident: ref_34
  doi: 10.1109/TNNLS.2022.3185795
– ident: ref_38
– ident: ref_17
– ident: ref_20
– ident: ref_16
  doi: 10.1109/CVPR42600.2020.00327
SSID ssj0023338
Score 2.3956685
Snippet The technology for detecting forged images is good at detecting known forgery methods. It trains neural networks using many original and corresponding forged...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3647
SubjectTerms Analysis
Classification
Deep learning
Detectors
digital forensics
face forgery detection
few-shot learning
Forgery
Medical imaging equipment
meta-learning
Methods
Neural networks
segmentation
Sensors
Technology application
U-Net
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yJz2Iv62uEkXQS9mmSZP2-BTLIqwH14W9hWSS7gpun7hd_PedSfPKKwpevDbT0kxnOt8HM18YexOF0QAQSh1qJCiiCqXXjUSqEiW0fuhEGhI7-ayPz9Sn8-Z876gv6gmb5YFnxx05rwcjmgH5NhZPXznnBulAyQH0oJs0uoc1b0emMtWSyLxmHSGJpP7omtqdSSl9VX2SSP-fv-K9WrTuk9wrPP09djcjRr6Z3_Q-uxXHB-zOno7gQ_Zlw0_i5MoslnrBN1kpnCMk5X38VZ5ebifeO4i836Y5aH4aL67y3NHI3Rh4Oh6TGofSpUfsrP_49cNxmQ9LKKGRZiqdrsIANeJ_oaD2weBfLKrG1w5cUMaFKBHqmEoMrQGogieoldTNAF3UBfmYHYzbMT5lvIU2dnVUnVSghBcu1sEEEman4ULtCvZu50QLWUmcDrT4bpFRkL_t4u-CvV5Mf8zyGX8zek9fYjEgxet0AR1icxzYf8VBwd7Sd7SUl_gy4PJ4AW6JFK7sxiidlHBUwQ5XlphPsF7eRYLN-Xxta9Mh3UYoJAv2almmO6lHbYzbG7RpaSAV8TU-4skcOMuWpKlwoWoL1q5CarXn9cr47TKpfQsC8UjSn_0PLz1nt2vMjnmo8pAdTD9v4gtEVZN_mRLoN5yPH00
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDI5gXOAw8ZvCQAEhwaVa26RJe0IPRDUhjQNj0rtViZNuk6Ade53497HTvO5VIK6NWzWOnfhr7c-MvfW5VgDgUuUKBCh55lKrSoFQxQuobFfnoUjs-Ks6OpVf1uU6fnDbxLTK7Z4YNmo3AH0jPyx0jYAHDyPx4fJXSl2j6O9qbKFxm90h6jJK6dLrG8AlEH9NbEICof3hhpKeiS99cQYFqv6_N-SdE2mZLblz_DT32X6MG_lqWugH7JbvH7J7O2yCj9i3FT_2o0kjZeoZX0W-cI6BKW_87_TkfBh5Y8DzZgjV0PzEn_2M1Uc9N73joUkmpQ-FS4_ZafP5-6ejNLZMSKEUekyNylwHBaKAXEJhnca9zMvSFgaMk9o4LzDg0VneVRogc5YCrsBxBqii2oknbK8fev-M8QoqXxde1kKCzG1ufOG0I3p2KjFUJmHvt0psIfKJU1uLHy3iCtJ3O-s7YW9m0cuJRONfQh9pJWYB4r0OF1AhbXSj1ljV6bzsMq0wlLKZMaYTBqToQHWqrBP2jtaxJe_ElwETiwxwSsRz1a60VIEPRybsYCGJXgXL4a0ltNGrN-2NDSbs9TxMd1KmWu-Ha5SpqCwVo2x8xNPJcOYpCZ3hQFYlrFqY1GLOy5H-4jxwfucUyiNUf_7_93rB7hZo91PR5AHbG6-u_UuMmkb7KrjGH0GAFho
  priority: 102
  providerName: ProQuest
Title A Meta-Learning Approach for Few-Shot Face Forgery Segmentation and Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/37050708
https://www.proquest.com/docview/2799782443
https://www.proquest.com/docview/2800625074
https://pubmed.ncbi.nlm.nih.gov/PMC10099107
https://doaj.org/article/ab6f715f076643b0aaaf3ac43fc6f659
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYEDKu9AuzIICS6BJHbs5ICqLWqokLZCLSvtLXJsp0Uq2T5SFf49M0422ogeuOQQT5L1eCYz38bzDcA7FytpjLGhtAkClDiyYSVTjlDFcZNVdR77IrHZsTyai2-LdLEBqx6bvQJv7oV21E9qfn3x8ffVn310-M-EOBGyf7qhzczEg74J2xiQFPnnTAwfExLOfUNrqukKMR5GHcHQ-NJRWPLs_f--o9eC1HgD5VpEKnbgUZ9Ksmm39o9hwzVP4OEaweBTOJmymWt12LOonrFpTyHOMFdlhbsLT8-XLSu0caxY-gJpdurOfvUFSQ3TjWW-bybtKPKnnsG8OPzx5SjsuyiEJuWqDbWMbG0SBAaxMEllFb7enEirRBtthdLWccyBVBTXmTImshXlYJ72zKCKcsufw1azbNxLYJnJXJ44kXNhRFzF2iVWWWJsp6pDqQP4sFJiaXqKcep0cVEi1CB9l4O-A3g7iF52vBr3CR3QSgwCRIXtT6BCyt6zSl3JWsVpHSmJ2VUVaa1rro3gtZG1TPMA3tM6lmRC-GOM7usOcEpEfVVOlZCeIkcEsDuSREcz4-GVJZQrOy0TlSMOxxyJB_BmGKYrafNa45a3KJNRpSom3niLF53hDFPiKsKBKAsgG5nUaM7jkebnuacBjym7R_T-6j8e_BoeJOgIXTHlLmy117duD7OptprAplooPGbF1wlsHxwefz-Z-H8mJt6L_gIPeh-b
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BLViRM7e0Boeay2tNsDbaW9pY7ttEhtUthUFX-K38iMk2w3AnHr1Z5Y8XjGM5PMfAPw2kVKGmNsKG2MAUrEbVjIVGCo4oTJinIU-SKx2a6cHiRf5-l8DX73tTCUVtnfif6itrWhb-SbsRphwIPGSHw4-xFS1yj6u9q30GjFYtv9usCQbfF-6zOe75s4nnzZ_zQNu64CoUmFakItuS1NjI5ylJi4sArV3SVpEWujbaK0dQJ9AsWjMlPGcFuQT-JhwIxAa24FrnsNrqPh5aRRan4Z4AmM91r0IqTkmwtKsiZ89oHN860B_jYAKxZwmJ25Yu4md-B256eycStYd2HNVffg1gp64X34NmYz1-iwg2g9YuMOn5yhI8wm7iLcO64bNtHGsUntq6_Znjs67aqdKqYry3xTTkpX8kMP4OBKmPkQ1qu6co-BZSZzo9glI5GYJCoi7WKrLMHBU0mj1AG865mYmw6_nNponOQYxxC_8yW_A3i1JD1rQTv-RfSRTmJJQDjbfgAZkndqm-tClipKS64kum4F11qXQptElEaWMh0F8JbOMafbAF_G6K6oAbdEuFr5WCXS4-8kAWwMKFGLzXC6l4S8u0UW-aXMB_ByOU1PUmZc5epzpMmoDBa9elziUSs4yy0JxXGCZwFkA5Ea7Hk4U30_9hjjEYUOEVdP_v9eL-DGdH-2k-9s7W4_hZsx6kBbsLkB683Pc_cMPbameO7VhMHhVevlH-IyUk0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLfGkBA8IP5TGBAQCF6qa5o26T0gdDCqjbEJMSbdW5cm6YYE7eA6TXw1Ph122t6uAvG218SNGseO7db-GeC540oaY2wobYwBCo9sWMpUYKjihMnKasp9kdjuntw6SD7M0_ka_B5qYSitcrgT_UVtG0PfyCexmmLAg8ZITKo-LeLTZv7m5EdIHaToT-vQTqMTkR336wzDt8Xr7U086xdxnL__8m4r7DsMhCYVqg21jGxlYnSaeWLi0ipUfZekZayNtonS1gn0D1TEq0wZE9mS_BMPCWYEWnYrcN1LcFmJlJOOqfl5sCcw9uuQjJAymiwo4Zqw2kf2z7cJ-NsYrFjDcabmiunLb8D13mdls07IbsKaq2_BtRUkw9vwecZ2XavDHq71iM16rHKGTjHL3Vm4f9y0LNfGsbzxldhs3x197yufaqZry3yDTkpd8kN34OBCmHkX1uumdveBZSZz09glU5GYhJdcu9gqS9DwVN4odQCvBiYWpscyp5Ya3wqMaYjfxZLfATxbkp50AB7_InpLJ7EkIMxtP4AMKXoVLnQpK8XTKlIS3bgy0lpXQptEVEZWMp0G8JLOsaCbAV_G6L7AAbdEGFvFTCXSY_EkAWyMKFGjzXh6kISiv1EWxbn8B_B0OU1PUpZc7ZpTpMmoJBY9fFziXic4yy0JFeFElAWQjURqtOfxTP312OONcwojeKQe_P-9nsAV1Mji4_bezkO4GqMKdLWbG7De_jx1j9B5a8vHXksYHF60Wv4Bq-pWgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Meta-Learning+Approach+for+Few-Shot+Face+Forgery+Segmentation+and+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Yih-Kai&rft.au=Yen%2C+Ting-Yu&rft.date=2023-03-31&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073647&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon