Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia
The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generat...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 11; p. 3613 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.06.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability. |
---|---|
AbstractList | The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability. The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability. |
Audience | Academic |
Author | Castiglia, Stefano Filippo Ranavolo, Alberto Varrecchia, Tiwana Ajoudani, Arash Casali, Carlo Trabassi, Dante Lorenzini, Marta Marinozzi, Franco Bini, Fabiano De Icco, Roberto Serrao, Mariano Chini, Giorgia |
AuthorAffiliation | 2 Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; roberto.deicco@unipv.it 3 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; fabiano.bini@uniroma1.it (F.B.); franco.marinozzi@uniroma1.it (F.M.) 5 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; g.chini@inail.it (G.C.); t.varrecchia@inail.it (T.V.); a.ranavolo@inail.it (A.R.) 6 Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy 7 Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy 1 Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; dante.trabassi@uniroma1.it (D.T.); carlo.casali@uniroma1.it (C.C.); mariano.serrao@uniroma1.it (M.S.) 4 Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; arash.ajoudani@iit.it (A.A.); marta.lore |
AuthorAffiliation_xml | – name: 6 Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy – name: 1 Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; dante.trabassi@uniroma1.it (D.T.); carlo.casali@uniroma1.it (C.C.); mariano.serrao@uniroma1.it (M.S.) – name: 3 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; fabiano.bini@uniroma1.it (F.B.); franco.marinozzi@uniroma1.it (F.M.) – name: 2 Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; roberto.deicco@unipv.it – name: 7 Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy – name: 5 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; g.chini@inail.it (G.C.); t.varrecchia@inail.it (T.V.); a.ranavolo@inail.it (A.R.) – name: 4 Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; arash.ajoudani@iit.it (A.A.); marta.lorenzini@iit.it (M.L.) |
Author_xml | – sequence: 1 givenname: Dante surname: Trabassi fullname: Trabassi, Dante – sequence: 2 givenname: Stefano Filippo orcidid: 0000-0001-5329-5197 surname: Castiglia fullname: Castiglia, Stefano Filippo – sequence: 3 givenname: Fabiano orcidid: 0000-0002-5641-1189 surname: Bini fullname: Bini, Fabiano – sequence: 4 givenname: Franco surname: Marinozzi fullname: Marinozzi, Franco – sequence: 5 givenname: Arash surname: Ajoudani fullname: Ajoudani, Arash – sequence: 6 givenname: Marta orcidid: 0000-0002-9458-6844 surname: Lorenzini fullname: Lorenzini, Marta – sequence: 7 givenname: Giorgia orcidid: 0000-0002-7654-0025 surname: Chini fullname: Chini, Giorgia – sequence: 8 givenname: Tiwana surname: Varrecchia fullname: Varrecchia, Tiwana – sequence: 9 givenname: Alberto orcidid: 0000-0002-0197-6166 surname: Ranavolo fullname: Ranavolo, Alberto – sequence: 10 givenname: Roberto surname: De Icco fullname: De Icco, Roberto – sequence: 11 givenname: Carlo surname: Casali fullname: Casali, Carlo – sequence: 12 givenname: Mariano orcidid: 0000-0003-3031-680X surname: Serrao fullname: Serrao, Mariano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38894404$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiLaBBS-ALLGBRVrfZjxmU4UU0kiVKqHurROPZ-JoYgfbqYAVj46nCVFTVV7Ysr_z-1z-8-LEeWeK4j3BF4xJfBkpJ4RVhL0qzginfFxTik-enE-L8xhXGFPGWP2mOGV1LTnH_Kz4e7dJdm3_WNehHxAMurbRQDRoBjahaQ8x2tZqSNY7lJbBb7sluoYE6Cv04PQQB65BM-NMyNSDQZP5FzR30XbLFFEb_BrdmGAamyD8RtN8XJi-h4AmCX5ZeFu8bqGP5t1-HxX337_dT2_Gt3ez-XRyO9YlE2lcGoxL3YIESTkFkItagBRlUxNSE56fWiwazVnDqoaVXNCF1IKXQnLZYGCjYr6TbTys1CbYdc5GebDq8cKHTkFIVvdGlS02bd2K2mDGCZaSMoqrCmutualqlrWudlqb7WJtGm1cCtAfiR6_OLtUnX9QhBBRUo6zwqe9QvA_tyYmtbZRD21xxm-jYljgGtNhYKPi4zN05bfB5VZlqhI8z_8xpT3VQa7Autbnj_UgqiZCColZWctMXbxA5dWYtdXZU63N90cBH55Weijxv38y8HkH6OBjDKY9IASrwZvq4M3MXj5jdfbEYKyche1fiPgHPoXizQ |
CitedBy_id | crossref_primary_10_1038_s41598_024_83357_9 crossref_primary_10_1186_s12883_025_04131_6 crossref_primary_10_1186_s12883_025_04132_5 crossref_primary_10_3390_s24237627 crossref_primary_10_3390_app15042177 crossref_primary_10_1038_s41598_024_83975_3 crossref_primary_10_3390_s25061764 crossref_primary_10_1186_s13102_025_01064_y crossref_primary_10_1186_s12984_024_01452_4 crossref_primary_10_33393_aop_2025_3289 |
Cites_doi | 10.3390/s23198158 10.1109/CCEM50674.2020.00030 10.1016/j.cmpb.2019.105033 10.3390/s24030812 10.1016/j.ebiom.2024.105075 10.1016/j.compbiomed.2014.04.001 10.1016/j.neunet.2007.12.031 10.1016/j.jbiomech.2017.07.034 10.3390/s120202255 10.1016/j.jbiomech.2022.111159 10.3390/s22103700 10.3390/s20113247 10.1016/j.clinbiomech.2017.07.001 10.1109/ic-ETITE47903.2020.253 10.1038/s41591-024-02838-6 10.1109/LSENS.2020.2994938 10.1016/j.compeleceng.2013.11.024 10.1109/JSEN.2019.2943879 10.3390/s20174756 10.1152/jn.00275.2014 10.3390/s22134957 10.3390/s22062304 10.1186/s12911-018-0677-8 10.1038/s41598-023-35744-x 10.3390/s16010134 10.1212/WNL.0000000000004311 10.1016/j.cmpb.2023.107713 10.1016/j.clinbiomech.2017.07.013 10.3390/technologies9030052 10.1007/s12311-021-01361-5 10.1109/JTEHM.2022.3180933 10.1109/JBHI.2023.3311677 10.1007/s12311-016-0837-2 10.3390/s23020891 10.1016/j.jns.2018.05.019 10.1016/j.gaitpost.2017.11.024 10.1109/5326.897072 10.1016/j.gaitpost.2018.08.025 10.1080/03091902.2020.1822940 10.1186/s12984-023-01232-6 10.1038/s41598-024-55598-1 10.1212/WNL.0000000000010176 10.1186/s12883-018-1111-7 10.3390/s22030908 10.1016/j.array.2022.100258 10.1186/1472-6947-11-51 10.1186/s40537-022-00648-6 10.1016/j.gaitpost.2022.07.235 10.1109/JSEN.2023.3259034 10.1016/j.gaitpost.2017.06.267 10.1007/s10115-022-01772-8 10.3390/s21103449 10.1038/s41746-022-00674-x 10.1212/01.wnl.0000219042.60538.92 10.3390/s19245571 10.1007/978-3-030-31635-8_140 10.1016/j.asoc.2020.106494 10.1613/jair.1.11192 10.1007/s12311-024-01663-4 10.1097/WCO.0000000000000774 10.1016/j.jbiomech.2017.01.005 10.1007/s12311-011-0348-0 10.1007/s12311-014-0586-z 10.1002/mds.28631 10.1016/j.jbiomech.2022.111301 10.1613/jair.953 10.1186/s40537-019-0192-5 10.1088/1741-2552/ad200e 10.1007/s10439-019-02216-1 10.1007/s00779-019-01332-y 10.20944/preprints202303.0323.v1 10.1007/s40846-017-0297-2 10.1007/s12311-022-01373-9 10.1038/s41598-023-39862-4 10.1016/j.cnp.2023.07.002 10.1007/s12311-020-01142-6 10.1016/j.humov.2017.09.005 10.1016/j.compbiomed.2022.105382 10.1007/s00415-022-11383-6 10.1186/1475-925X-13-56 10.1159/000538270 10.3390/brainsci9020034 10.23736/S1973-9087.17.04480-X 10.1007/s12559-023-10179-8 10.1109/TNSRE.2023.3333952 10.3390/diagnostics13091532 10.1007/s11517-022-02595-z 10.1371/journal.pone.0244396 10.1007/s11548-020-02260-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24113613 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_5f0ef8f78e03410992320660ccc4e683 PMC11175240 A797903589 38894404 10_3390_s24113613 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: BRIC "Bando Ricerche in Collaborazione 2022" grantid: 7074/470 DIG – fundername: INAIL, Bando Ricerche in Collaborazione (BRiC) 2022 program grantid: 57 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c537t-5e005cfa9a9242aa9b87a975d8118145cff07dc43d36d35472b9c7457949d0a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:57 EDT 2025 Thu Aug 21 18:33:07 EDT 2025 Thu Jul 10 18:36:53 EDT 2025 Fri Jul 25 02:43:02 EDT 2025 Tue Jun 17 22:09:07 EDT 2025 Tue Jun 10 21:02:32 EDT 2025 Mon Jul 21 05:49:50 EDT 2025 Tue Jul 01 03:51:02 EDT 2025 Thu Apr 24 23:04:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | inertial measurement unit rare diseases cerebellar ataxia data augmentation conditional tabular generative artificial network data balancing synthetic minority oversampling technique generative artificial network generative artificial intelligence gait analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-5e005cfa9a9242aa9b87a975d8118145cff07dc43d36d35472b9c7457949d0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-5329-5197 0000-0002-5641-1189 0000-0002-7654-0025 0000-0003-3031-680X 0000-0002-0197-6166 0000-0002-9458-6844 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113613 |
PMID | 38894404 |
PQID | 3067439083 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f0ef8f78e03410992320660ccc4e683 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175240 proquest_miscellaneous_3070802002 proquest_journals_3067439083 gale_infotracmisc_A797903589 gale_infotracacademiconefile_A797903589 pubmed_primary_38894404 crossref_primary_10_3390_s24113613 crossref_citationtrail_10_3390_s24113613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Qu (ref_50) 2020; 15 ref_94 ref_14 ref_13 ref_19 Chawla (ref_42) 2002; 16 ref_18 Mumuni (ref_40) 2022; 16 ref_17 Wu (ref_91) 2024; 21 David (ref_1) 2024; 28 Bisi (ref_20) 2018; 66 Riva (ref_60) 2014; 50 Ilg (ref_95) 2020; 95 Coarelli (ref_5) 2023; 270 Goodfellow (ref_53) 2014; 3 ref_25 Buckley (ref_3) 2018; 60 ref_24 Hassija (ref_93) 2024; 16 ref_23 Liuzzi (ref_34) 2023; 13 Johnson (ref_45) 2019; 6 ref_21 Chandrashekar (ref_67) 2014; 40 ref_29 Jeon (ref_78) 2023; 23 Wu (ref_69) 2019; 17 ref_72 (ref_64) 2023; 65 Mirelman (ref_26) 2021; 36 Zhang (ref_49) 2000; 30 Baliko (ref_55) 2006; 66 ref_79 Serrao (ref_96) 2017; 48 Balaji (ref_77) 2020; 94 ref_74 Castiglia (ref_22) 2022; 22 Avati (ref_70) 2018; 18 Giordano (ref_4) 2017; 89 Kim (ref_85) 2023; 20 Kotsiantis (ref_39) 2006; 30 Khoshgoftaar (ref_87) 2022; 9 ref_83 Pasciuto (ref_62) 2017; 53 ref_81 ref_89 Tao (ref_16) 2012; 12 ref_86 ref_84 Phan (ref_32) 2020; 20 Raffalt (ref_63) 2019; 47 Uchitomi (ref_47) 2023; 13 Herrera (ref_43) 2018; 61 Caliandro (ref_12) 2017; 57 Martino (ref_9) 2014; 112 Phinyomark (ref_27) 2018; 38 ref_52 ref_51 Fiori (ref_57) 2020; 19 Yang (ref_80) 2022; 60 ref_59 ref_68 Zuo (ref_92) 2023; 31 Serrao (ref_58) 2017; 53 ref_66 ref_65 Manto (ref_6) 2020; 33 Mazurowski (ref_38) 2008; 21 Conte (ref_11) 2012; 11 Lee (ref_88) 2021; 25 Castiglia (ref_97) 2022; 97 Manto (ref_7) 2023; 8 ref_36 ref_35 Ricciardi (ref_76) 2020; 76 ref_33 ref_31 ref_30 Lundberg (ref_71) 2017; 2017 Alkhatib (ref_75) 2020; 4 Syed (ref_54) 2018; 391 Rinaldi (ref_2) 2017; 48 ref_37 Ramesh (ref_82) 2022; 5 Cabaraux (ref_8) 2023; 22 Salehi (ref_44) 2024; 14 Yang (ref_99) 2022; 10 Taherdoost (ref_41) 2016; 5 Khera (ref_28) 2020; 44 ref_46 Conte (ref_98) 2014; 13 Serrao (ref_56) 2017; 16 Kroneberg (ref_61) 2019; 11 Akhiat (ref_73) 2021; 21 Bergamini (ref_15) 2017; 61 Serrao (ref_10) 2018; 57 ref_48 Ktena (ref_90) 2024; 30 |
References_xml | – ident: ref_86 doi: 10.3390/s23198158 – ident: ref_51 doi: 10.1109/CCEM50674.2020.00030 – ident: ref_79 doi: 10.1016/j.cmpb.2019.105033 – ident: ref_31 doi: 10.3390/s24030812 – ident: ref_68 – ident: ref_89 doi: 10.1016/j.ebiom.2024.105075 – volume: 50 start-page: 9 year: 2014 ident: ref_60 article-title: Gait Variability and Stability Measures: Minimum Number of Strides and within-Session Reliability publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.04.001 – volume: 17 start-page: 26 year: 2019 ident: ref_69 article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization publication-title: J. Electron. Sci. Technol. – volume: 21 start-page: 427 year: 2008 ident: ref_38 article-title: Training Neural Network Classifiers for Medical Decision Making: The Effects of Imbalanced Datasets on Classification Performance publication-title: Neural Netw. doi: 10.1016/j.neunet.2007.12.031 – volume: 61 start-page: 208 year: 2017 ident: ref_15 article-title: Multi-Sensor Assessment of Dynamic Balance during Gait in Patients with Subacute Stroke publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.07.034 – ident: ref_94 – volume: 12 start-page: 2255 year: 2012 ident: ref_16 article-title: Gait Analysis Using Wearable Sensors publication-title: Sensors doi: 10.3390/s120202255 – ident: ref_36 doi: 10.1016/j.jbiomech.2022.111159 – ident: ref_25 doi: 10.3390/s22103700 – ident: ref_13 doi: 10.3390/s20113247 – volume: 30 start-page: 25 year: 2006 ident: ref_39 article-title: Handling Imbalanced Datasets: A Review publication-title: GESTS Int. Trans. Comput. Sci. Eng. – volume: 5 start-page: 18 year: 2016 ident: ref_41 article-title: Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research publication-title: Int. J. Acad. Res. Manag. – volume: 48 start-page: 15 year: 2017 ident: ref_96 article-title: Harmony as a Convergence Attractor That Minimizes the Energy Expenditure and Variability in Physiological Gait and the Loss of Harmony in Cerebellar Ataxia publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2017.07.001 – ident: ref_74 doi: 10.1109/ic-ETITE47903.2020.253 – volume: 30 start-page: 1166 year: 2024 ident: ref_90 article-title: Generative Models Improve Fairness of Medical Classifiers under Distribution Shifts publication-title: Nat. Med. doi: 10.1038/s41591-024-02838-6 – volume: 4 start-page: 6000604 year: 2020 ident: ref_75 article-title: El Machine Learning Algorithm for Gait Analysis and Classification on Early Detection of Parkinson publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2994938 – volume: 40 start-page: 16 year: 2014 ident: ref_67 article-title: A Survey on Feature Selection Methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 20 start-page: 723 year: 2020 ident: ref_32 article-title: A Random Forest Approach for Quantifying Gait Ataxia with Truncal and Peripheral Measurements Using Multiple Wearable Sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2943879 – ident: ref_48 doi: 10.3390/s20174756 – volume: 112 start-page: 2810 year: 2014 ident: ref_9 article-title: Locomotor Patterns in Cerebellar Ataxia publication-title: J. Neurophysiol. doi: 10.1152/jn.00275.2014 – ident: ref_29 doi: 10.3390/s22134957 – ident: ref_19 doi: 10.3390/s22062304 – volume: 18 start-page: 55 year: 2018 ident: ref_70 article-title: Improving Palliative Care with Deep Learning publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-018-0677-8 – volume: 13 start-page: 8640 year: 2023 ident: ref_34 article-title: Machine Learning Based Estimation of Dynamic Balance and Gait Adaptability in Persons with Neurological Diseases Using Inertial Sensors publication-title: Sci. Rep. doi: 10.1038/s41598-023-35744-x – ident: ref_35 doi: 10.3390/s16010134 – volume: 89 start-page: 1043 year: 2017 ident: ref_4 article-title: Clinical and Genetic Characteristics of Sporadic Adult-Onset Degenerative Ataxia publication-title: Neurology doi: 10.1212/WNL.0000000000004311 – ident: ref_84 doi: 10.1016/j.cmpb.2023.107713 – volume: 48 start-page: 63 year: 2017 ident: ref_2 article-title: Increased Lower Limb Muscle Coactivation Reduces Gait Performance and Increases Metabolic Cost in Patients with Hereditary Spastic Paraparesis publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2017.07.013 – ident: ref_65 doi: 10.3390/technologies9030052 – volume: 22 start-page: 46 year: 2022 ident: ref_22 article-title: Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait publication-title: Cerebellum doi: 10.1007/s12311-021-01361-5 – volume: 10 start-page: 2200111 year: 2022 ident: ref_99 article-title: PD-ResNet for Classification of Parkinson’s Disease From Gait publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2022.3180933 – volume: 28 start-page: 1716 year: 2024 ident: ref_1 article-title: Human Locomotion Databases: A Systematic Review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3311677 – volume: 16 start-page: 629 year: 2017 ident: ref_56 article-title: Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: A 4-Year Follow-Up Study publication-title: Cerebellum doi: 10.1007/s12311-016-0837-2 – ident: ref_37 doi: 10.3390/s23020891 – volume: 11 start-page: 389096 year: 2019 ident: ref_61 article-title: Less Is More—Estimation of the Number of Strides Required to Assess Gait Variability in Spatially Confined Settings publication-title: Front. Aging Neurosci. – volume: 391 start-page: 40 year: 2018 ident: ref_54 article-title: Evaluation of the Use of the Scale for the Assessment and Rating of Ataxia (SARA) in Healthy Volunteers and Patients with Schizophrenia publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2018.05.019 – volume: 60 start-page: 154 year: 2018 ident: ref_3 article-title: A Systematic Review of the Gait Characteristics Associated with Cerebellar Ataxia publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.11.024 – volume: 30 start-page: 451 year: 2000 ident: ref_49 article-title: Neural networks for classification: A survey publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/5326.897072 – volume: 66 start-page: 76 year: 2018 ident: ref_20 article-title: Analysis of the Performance of 17 Algorithms from a Systematic Review: Influence of Sensor Position, Analysed Variable and Computational Approach in Gait Timing Estimation from IMU Measurements publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.08.025 – volume: 44 start-page: 441 year: 2020 ident: ref_28 article-title: Role of Machine Learning in Gait Analysis: A Review publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2020.1822940 – volume: 20 start-page: 115 year: 2023 ident: ref_85 article-title: Generating Synthetic Gait Patterns Based on Benchmark Datasets for Controlling Prosthetic Legs publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-023-01232-6 – volume: 2017 start-page: 4766 year: 2017 ident: ref_71 article-title: A Unified Approach to Interpreting Model Predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 5152 year: 2024 ident: ref_44 article-title: A Cluster-Based SMOTE Both-Sampling (CSBBoost) Ensemble Algorithm for Classifying Imbalanced Data publication-title: Sci. Rep. doi: 10.1038/s41598-024-55598-1 – volume: 95 start-page: E1199 year: 2020 ident: ref_95 article-title: Real-Life Gait Assessment in Degenerative Cerebellar Ataxia: Toward Ecologically Valid Biomarkers publication-title: Neurology doi: 10.1212/WNL.0000000000010176 – ident: ref_14 doi: 10.1186/s12883-018-1111-7 – ident: ref_18 doi: 10.3390/s22030908 – volume: 16 start-page: 100258 year: 2022 ident: ref_40 article-title: Data Augmentation: A Comprehensive Survey of Modern Approaches publication-title: Array doi: 10.1016/j.array.2022.100258 – ident: ref_52 doi: 10.1186/1472-6947-11-51 – volume: 9 start-page: 98 year: 2022 ident: ref_87 article-title: The Use of Generative Adversarial Networks to Alleviate Class Imbalance in Tabular Data: A Survey publication-title: J. Big Data doi: 10.1186/s40537-022-00648-6 – volume: 97 start-page: 152 year: 2022 ident: ref_97 article-title: Harmonic Ratio Is the Most Responsive Trunk-Acceleration Derived Gait Index to Rehabilitation in People with Parkinson’s Disease at Moderate Disease Stages publication-title: Gait Posture doi: 10.1016/j.gaitpost.2022.07.235 – volume: 23 start-page: 10041 year: 2023 ident: ref_78 article-title: Early Alzheimer’s Disease Diagnosis Using Wearable Sensors and Multilevel Gait Assessment: A Machine Learning Ensemble Approach publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3259034 – volume: 57 start-page: 252 year: 2017 ident: ref_12 article-title: Trunk-Lower Limb Coordination Pattern during Gait in Patients with Ataxia publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.06.267 – volume: 65 start-page: 31 year: 2023 ident: ref_64 article-title: Imbalanced Data Preprocessing Techniques for Machine Learning: A Systematic Mapping Study publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-022-01772-8 – ident: ref_21 doi: 10.3390/s21103449 – volume: 5 start-page: 138 year: 2022 ident: ref_82 article-title: Detecting Motor Symptom Fluctuations in Parkinson’s Disease with Generative Adversarial Networks publication-title: npj Digit. Med. doi: 10.1038/s41746-022-00674-x – volume: 66 start-page: 1717 year: 2006 ident: ref_55 article-title: Scale for the Assessment and Rating of Ataxia: Development of a New Clinical Scale publication-title: Neurology doi: 10.1212/01.wnl.0000219042.60538.92 – ident: ref_72 doi: 10.3390/s19245571 – volume: 76 start-page: 1155 year: 2020 ident: ref_76 article-title: Classifying Different Stages of Parkinson’s Disease through Random Forests publication-title: IFMBE Proc. doi: 10.1007/978-3-030-31635-8_140 – volume: 94 start-page: 106494 year: 2020 ident: ref_77 article-title: Supervised Machine Learning Based Gait Classification System for Early Detection and Stage Classification of Parkinson’s Disease publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106494 – ident: ref_66 – volume: 61 start-page: 863 year: 2018 ident: ref_43 article-title: SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.11192 – ident: ref_23 doi: 10.1007/s12311-024-01663-4 – volume: 33 start-page: 150 year: 2020 ident: ref_6 article-title: Cerebellar Ataxias: An Update publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000774 – volume: 53 start-page: 84 year: 2017 ident: ref_62 article-title: Overcoming the Limitations of the Harmonic Ratio for the Reliable Assessment of Gait Symmetry publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.005 – volume: 21 start-page: 10 year: 2021 ident: ref_73 article-title: A New Noisy Random Forest Based Method for Feature Selection publication-title: Cybern. Inf. Technol. – volume: 3 start-page: 2672 year: 2014 ident: ref_53 article-title: Generative Adversarial Networks publication-title: Sci. Robot. – volume: 11 start-page: 896 year: 2012 ident: ref_11 article-title: Planned Gait Termination in Cerebellar Ataxias publication-title: Cerebellum doi: 10.1007/s12311-011-0348-0 – volume: 13 start-page: 689 year: 2014 ident: ref_98 article-title: Upper Body Kinematics in Patients with Cerebellar Ataxia publication-title: Cerebellum doi: 10.1007/s12311-014-0586-z – volume: 36 start-page: 2144 year: 2021 ident: ref_26 article-title: Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning publication-title: Mov. Disord. doi: 10.1002/mds.28631 – ident: ref_83 doi: 10.1016/j.jbiomech.2022.111301 – volume: 16 start-page: 321 year: 2002 ident: ref_42 article-title: SMOTE: Synthetic Minority Over-Sampling Technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 6 start-page: 27 year: 2019 ident: ref_45 article-title: Survey on Deep Learning with Class Imbalance publication-title: J. Big Data doi: 10.1186/s40537-019-0192-5 – volume: 21 start-page: 016026 year: 2024 ident: ref_91 article-title: Data Augmentation for Invasive Brain-Computer Interfaces Based on Stereo-Electroencephalography (SEEG) publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ad200e – volume: 47 start-page: 913 year: 2019 ident: ref_63 article-title: Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-019-02216-1 – volume: 25 start-page: 121 year: 2021 ident: ref_88 article-title: GAN-Based Imbalanced Data Intrusion Detection System publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-019-01332-y – ident: ref_24 doi: 10.20944/preprints202303.0323.v1 – volume: 38 start-page: 244 year: 2018 ident: ref_27 article-title: Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0297-2 – volume: 22 start-page: 394 year: 2023 ident: ref_8 article-title: Consensus Paper: Ataxic Gait publication-title: Cerebellum doi: 10.1007/s12311-022-01373-9 – volume: 13 start-page: 12638 year: 2023 ident: ref_47 article-title: Classification of Mild Parkinson’s Disease: Data Augmentation of Time-Series Gait Data Obtained via Inertial Measurement Units publication-title: Sci. Rep. doi: 10.1038/s41598-023-39862-4 – volume: 8 start-page: 143 year: 2023 ident: ref_7 article-title: Neurophysiology of Cerebellar Ataxias and Gait Disorders publication-title: Clin. Neurophysiol. Pract. doi: 10.1016/j.cnp.2023.07.002 – volume: 19 start-page: 583 year: 2020 ident: ref_57 article-title: Impairment of Global Lower Limb Muscle Coactivation during Walking in Cerebellar Ataxias publication-title: Cerebellum doi: 10.1007/s12311-020-01142-6 – volume: 57 start-page: 267 year: 2018 ident: ref_10 article-title: Identification of Specific Gait Patterns in Patients with Cerebellar Ataxia, Spastic Paraplegia, and Parkinson’s Disease: A Non-Hierarchical Cluster Analysis publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2017.09.005 – ident: ref_81 doi: 10.1016/j.compbiomed.2022.105382 – volume: 270 start-page: 208 year: 2023 ident: ref_5 article-title: The Inherited Cerebellar Ataxias: An Update publication-title: J. Neurol. doi: 10.1007/s00415-022-11383-6 – ident: ref_59 doi: 10.1186/1475-925X-13-56 – ident: ref_30 doi: 10.1159/000538270 – ident: ref_17 doi: 10.3390/brainsci9020034 – volume: 53 start-page: 735 year: 2017 ident: ref_58 article-title: Use of Dynamic Movement Orthoses to Improve Gait Stability and Trunk Control in Ataxic Patients publication-title: Eur. J. Phys. Rehabil. Med. doi: 10.23736/S1973-9087.17.04480-X – volume: 16 start-page: 45 year: 2024 ident: ref_93 article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence publication-title: Cognit. Comput. doi: 10.1007/s12559-023-10179-8 – volume: 31 start-page: 4601 year: 2023 ident: ref_92 article-title: Alzheimer’s Disease Prediction via Brain Structural-Functional Deep Fusing Network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3333952 – ident: ref_46 doi: 10.3390/diagnostics13091532 – volume: 60 start-page: 2665 year: 2022 ident: ref_80 article-title: Data Augmentation for Depression Detection Using Skeleton-Based Gait Information publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02595-z – ident: ref_33 doi: 10.1371/journal.pone.0244396 – volume: 15 start-page: 2041 year: 2020 ident: ref_50 article-title: Assessing and Mitigating the Effects of Class Imbalance in Machine Learning with Application to X-Ray Imaging publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02260-6 |
SSID | ssj0023338 |
Score | 2.5187976 |
Snippet | The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3613 |
SubjectTerms | Adult Aged Algorithms Artificial Intelligence Ataxia Cerebellar ataxia Cerebellar Ataxia - diagnosis Cerebellar Ataxia - genetics Cerebellar Ataxia - physiopathology Classification data augmentation data balancing Data collection Datasets Diseases Female Fourier transforms Gait Gait - physiology gait analysis Gait Analysis - methods generative artificial intelligence Humans Kinematics Male Medical research Medicine, Experimental Middle Aged Range of motion Rare Diseases Software Walking |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QTuOAYHwVtikgJLhU62uSJuX2tjHekAAJDWm3yElTrRJ06L1OAk786dhNX9UKJC7c2sZVk9iObdX-mbEXogKt8tql1QJCKr3PU-clpAZcoCIfHfoisfcfitVn-e5SXU5afVFOWIQHjht3pOos1KbWJmR44KI_gy4AmsnMey9DYXqcT7R522BqCLUERl4RR0hgUH-0QTu1EH0Pg4n16UH6_zyKJ7Zonic5MTxnd9mdwWPkyzjTe-xWaPfY7QmO4H326yMq_tfmJ97wT7AO_DT-duFvoel43_eSMoJ6JvChMw8_hQ74MWU2enoP2opHDGo6APny_DU_bzcUum841aDwFXX1bDpY_-AneEk_LGDNlx18b-ABuzh7c3GySofWCqlXQnepCqh9voYSMP7KAUpnNJRaVYYKUSUO1ZmuvBSVKCqhpM5d6bVUqL1llYF4yHba6zY8ZjxkrgIVFCyUl7X2xrtCeBGkrguH8UrCXm133PoBdpy6X3yxGH4Qc-zInIQ9H0m_RayNvxEdE9tGAoLH7h-g0NhBaOy_hCZhL4nplpQYJ-NhqEXAJREcll3qUpeZUKZM2P6MEpXPz4e3YmMH5d9YisLQz8voO8_GYXqTONOG6xui0VTljKKasEdRysYlCWNKgm1MmJnJ32zN85G2ueqhwReEvIpO2pP_sUtP2W6OLlxMjNtnO936JhygC9a5w17bfgN0iS7f priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gvMDDxDeFgQJCgpdqbZM0KS_otnG7IQESGtLeKjdJoRLrjbaTgCf-dOy2V64C8Xa9OFVT27Hd2D8z9lw40Copi9DF4ENpbRIWVkJooPBU5KN9XyT27n26-iTfnqmz8YNbO6ZVbvbEfqN2a0vfyPfJtUXjiR7D64tvIXWNotPVsYXGVXYtRktDKV1meTwFXALjrwFNSODM_RatVSz6TgZbNqiH6v97Q96ySPNsyS3zs7zJdke_kS8GRt9iV3x9m93YQhO8w359QPU_r37iBf8IjedHw-ELP4aq4333S8oL6lnBx_48_Ag64AeU32hpHtSOD0jUtA3yxckrflK3FMC3nCpR-Ip6e1YdND_4If6kYwto-KKD7xXcZafLN6eHq3BssBBaJXQXKo86aEvIAKOwBCArjIZMK2eoHFXiUBlpZ6VwInVCSZ0UmdVSoQ5nLgJxj-3U69o_YNxHhQPlFcTKylJbY4tUWOGlLtMCo5aAvdy88dyO4OPUA-NrjkEIMSefmBOwZxPpxYC48S-iA2LbREAg2f0f6-ZzPupcrsrIl6bUxkdoq9EVRu8RPazIWit9avAmL4jpOakyPoyFsSIBl0SgWPlCZzqLhDJZwPZmlKiCdj68EZt83ALa_I_ABuzpNEwziTO1X18SjaZaZxTVgN0fpGxakjAmI_DGgJmZ_M3WPB-pqy89QHhM-Kvoqj38_3M9YtcTdNGGxLc9ttM1l_4xulhd8aTXo99qMCdd priority: 102 providerName: ProQuest |
Title | Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38894404 https://www.proquest.com/docview/3067439083 https://www.proquest.com/docview/3070802002 https://pubmed.ncbi.nlm.nih.gov/PMC11175240 https://doaj.org/article/5f0ef8f78e03410992320660ccc4e683 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbG9gIPiN8ERmUQErwE0tiOHSSE2m1dh7SBpk3qW3RxHIg0UkgzaeOJP527JI0aMfFSpbXdxrk7313t-z7GXosMtArz1M_G4HxpbeinVoJvIHVU5KNdUyR2fBLNz-XnhVpssTXHZvcAVzemdsQndV5dvLv6df0JDf4jZZyYsr9foRcai4i4a3fwUhORwbHsNxNCIRpCa6rp8tEfBi3A0HDowC016P3_rtEbTmp4gHLDI83usbtdKMknrezvsy1XPmB3NgAGH7I_X3BF-FH8xjf8FCrH99v9GH4IRc0bQkw6KtRIh3eUPXwfauBTOvJoaRyUGW_BqWll5JOjD_yoXFFOv-JUnMLnRPdZ1FBd8z28pJ0MqPikhqsCHrGz2cHZ3tzvOBd8q4SufeXQLG0OMWBiFgLEqdEQa5UZqlCV2JQHOrNSZCLKhJI6TGOrpUKzjrMAxGO2XS5L95RxF6QZKKdgrKzMtTU2jYQVTuo8SjGR8djb9RNPbIdHTrQYFwnmJSScpBeOx171XX-2IBw3dZqS2PoOhJvdfLCsviWdGSYqD1xucm1cgO4bo2MMKDHoCqy10kUGv-QNCT0hfcObsdAVKeCUCCcrmehYx4FQJvbY7qAnWqUdNq_VJlkrdULpGQaAAf3Oy76ZRpJkSre8pD6ayp9RbT32pNWyfkrCmJjwHD1mBvo3mPOwpSy-N5jhY4Jkxejt2f9v-zm7HWLU1p6F22XbdXXpXmDUVacjdksvNL6a2eGI7UwPTr6ejpp_MEaNtf0Fs9kutg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXKATgg3hgKLAgEF6uOdze7RkIobUgT-kBCQeptNV6vIRI4JXEF5cQP8Y_M2I6JBeLWm-0ZW17P2zsPxp6KDLSK8zTMeuBD6Vwcpk5CaCD1VOSjfVUkdnjUH3-Qb4_V8Qb7taqFobTKlU6sFHU2d_SPfJtcWzSe6DG8Pvka0tQo2l1djdCo2WLfn33DkG35ajJE-j6L49Gb6e44bKYKhE4JXYbKI-O5HBLA0CMGSFKjIdEqM1SDKRGURzpzUmSinwkldZwmTkuFjJtkEQh87AV2UQo05FSYPtpr4zuB4V7dvAiB0fYSjWNPVIMT1kxeNRngb_2_ZgC7yZlr1m50jV1t3FQ-qPnqOtvwxQ12Za154U328x1qmy-zH3jC38PC82G918P3YFbyatgmpSFVlOfNOCA-hBL4DqVTOroPiozXja9J6_LB5CWfFEv6X7DkVPjCxzRKdFbC4ozv4iHtksCCD0r4PoNbbHoeX_422yzmhb_LuI_SDJRX0FNO5toZl_aFE17qvJ9ikBSwF6svbl3T65xGbny2GPMQcWxLnIA9aVFP6gYf_0LaIbK1CNSTu7owX3y0jYhblUc-N7k2PkLXAD1vdFbRoYucc9L3DT7kORHdkubAl3HQFEDgkqgHlx3oRCeRUCYJ2FYHEyXedcErtrGNxlnaP_IRsMctmO4kyhR-fko4mkqrkVUDdqfmsnZJwpiEekUGzHT4r7PmLqSYfar6kfeo3St6hvf-_16P2KXx9PDAHkyO9u-zyzF6h3XO3RbbLBen_gF6d2X6sJIpzuw5y_Bv_8diow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgELxETeO4dpAQateVlkGZpiHtzXIcBypBOtpMMJ74W_w7zknS0AjE296a2onsnNt34nMBeMJTI0WYJX7aM86PrA39xEbGVyZxlOQjXZkk9m7Wn3yI3hyL4y34tc6FobDKtU4sFXW6sPSNvEvQFo0nIoZuVodFHIzGr06--tRBik5a1-00KhbZd2ff0H1bvZyOkNZPw3C8d7Q78esOA74VXBa-cMiENjOxQTckNCZOlDSxFKmifMwIh7JApjbiKe-nXEQyTGIrI4FMHKeB4fjYC7AtySnqwPZwb3Zw2Hh7HJ2_qpQRx2V3V2gqe7xso7BhAMs-AX9bgw1z2A7V3LB946twpQatbFBx2TXYcvl1uLxRyvAG_HyPuufL_AdesEOzdGxUnfyw12ZesLL1JgUllXzA6uZAbGQKw4YUXGnpPpOnrCqDTTqYDaYv2DRf0deDFaM0GDahxqLzwizP2C7-pDMTs2SDwnyfm5twdB7v_hZ08kXu7gBzQZIa4YTpCRtl0iqb9LnlLpJZP0GXyYPn6zeubV35nBpwfNboARFxdEMcDx43U0-qch__mjQksjUTqEJ3-cdi-VHXAq9FFrhMZVK5AIEC4nCErgjvAmtt5PoKH_KMiK5Jj-BirKnTIXBLVJFLD2Qs44ALFXuw05qJ8m_bw2u20bX-Wek_0uLBo2aY7iTK5G5xSnMkJVojq3pwu-KyZktcqZgqR3qgWvzX2nN7JJ9_KquT96j4K-LEu_9f10O4iPKr305n-_fgUohQsQrA24FOsTx19xHqFcmDWqgY6HMW499rWGg1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Rare+Disease+Gait+Classification+through+Data+Balancing+and+Generative+AI%3A+Insights+from+Hereditary+Cerebellar+Ataxia&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Trabassi%2C+Dante&rft.au=Castiglia%2C+Stefano+Filippo&rft.au=Bini%2C+Fabiano&rft.au=Marinozzi%2C+Franco&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113613&rft.externalDocID=A797903589 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |