Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia

The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generat...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 11; p. 3613
Main Authors Trabassi, Dante, Castiglia, Stefano Filippo, Bini, Fabiano, Marinozzi, Franco, Ajoudani, Arash, Lorenzini, Marta, Chini, Giorgia, Varrecchia, Tiwana, Ranavolo, Alberto, De Icco, Roberto, Casali, Carlo, Serrao, Mariano
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
AbstractList The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
Audience Academic
Author Castiglia, Stefano Filippo
Ranavolo, Alberto
Varrecchia, Tiwana
Ajoudani, Arash
Casali, Carlo
Trabassi, Dante
Lorenzini, Marta
Marinozzi, Franco
Bini, Fabiano
De Icco, Roberto
Serrao, Mariano
Chini, Giorgia
AuthorAffiliation 2 Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; roberto.deicco@unipv.it
3 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; fabiano.bini@uniroma1.it (F.B.); franco.marinozzi@uniroma1.it (F.M.)
5 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; g.chini@inail.it (G.C.); t.varrecchia@inail.it (T.V.); a.ranavolo@inail.it (A.R.)
6 Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
7 Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
1 Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; dante.trabassi@uniroma1.it (D.T.); carlo.casali@uniroma1.it (C.C.); mariano.serrao@uniroma1.it (M.S.)
4 Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; arash.ajoudani@iit.it (A.A.); marta.lore
AuthorAffiliation_xml – name: 6 Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
– name: 1 Department of Medical and Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy; dante.trabassi@uniroma1.it (D.T.); carlo.casali@uniroma1.it (C.C.); mariano.serrao@uniroma1.it (M.S.)
– name: 3 Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; fabiano.bini@uniroma1.it (F.B.); franco.marinozzi@uniroma1.it (F.M.)
– name: 2 Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; roberto.deicco@unipv.it
– name: 7 Movement Analysis Laboratory, Policlinico Italia, 00162 Rome, Italy
– name: 5 Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy; g.chini@inail.it (G.C.); t.varrecchia@inail.it (T.V.); a.ranavolo@inail.it (A.R.)
– name: 4 Department of Advanced Robotics, Italian Institute of Technology, 16163 Genoa, Italy; arash.ajoudani@iit.it (A.A.); marta.lorenzini@iit.it (M.L.)
Author_xml – sequence: 1
  givenname: Dante
  surname: Trabassi
  fullname: Trabassi, Dante
– sequence: 2
  givenname: Stefano Filippo
  orcidid: 0000-0001-5329-5197
  surname: Castiglia
  fullname: Castiglia, Stefano Filippo
– sequence: 3
  givenname: Fabiano
  orcidid: 0000-0002-5641-1189
  surname: Bini
  fullname: Bini, Fabiano
– sequence: 4
  givenname: Franco
  surname: Marinozzi
  fullname: Marinozzi, Franco
– sequence: 5
  givenname: Arash
  surname: Ajoudani
  fullname: Ajoudani, Arash
– sequence: 6
  givenname: Marta
  orcidid: 0000-0002-9458-6844
  surname: Lorenzini
  fullname: Lorenzini, Marta
– sequence: 7
  givenname: Giorgia
  orcidid: 0000-0002-7654-0025
  surname: Chini
  fullname: Chini, Giorgia
– sequence: 8
  givenname: Tiwana
  surname: Varrecchia
  fullname: Varrecchia, Tiwana
– sequence: 9
  givenname: Alberto
  orcidid: 0000-0002-0197-6166
  surname: Ranavolo
  fullname: Ranavolo, Alberto
– sequence: 10
  givenname: Roberto
  surname: De Icco
  fullname: De Icco, Roberto
– sequence: 11
  givenname: Carlo
  surname: Casali
  fullname: Casali, Carlo
– sequence: 12
  givenname: Mariano
  orcidid: 0000-0003-3031-680X
  surname: Serrao
  fullname: Serrao, Mariano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38894404$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiLaBBS-ALLGBRVrfZjxmU4UU0kiVKqHurROPZ-JoYgfbqYAVj46nCVFTVV7Ysr_z-1z-8-LEeWeK4j3BF4xJfBkpJ4RVhL0qzginfFxTik-enE-L8xhXGFPGWP2mOGV1LTnH_Kz4e7dJdm3_WNehHxAMurbRQDRoBjahaQ8x2tZqSNY7lJbBb7sluoYE6Cv04PQQB65BM-NMyNSDQZP5FzR30XbLFFEb_BrdmGAamyD8RtN8XJi-h4AmCX5ZeFu8bqGP5t1-HxX337_dT2_Gt3ez-XRyO9YlE2lcGoxL3YIESTkFkItagBRlUxNSE56fWiwazVnDqoaVXNCF1IKXQnLZYGCjYr6TbTys1CbYdc5GebDq8cKHTkFIVvdGlS02bd2K2mDGCZaSMoqrCmutualqlrWudlqb7WJtGm1cCtAfiR6_OLtUnX9QhBBRUo6zwqe9QvA_tyYmtbZRD21xxm-jYljgGtNhYKPi4zN05bfB5VZlqhI8z_8xpT3VQa7Autbnj_UgqiZCColZWctMXbxA5dWYtdXZU63N90cBH55Weijxv38y8HkH6OBjDKY9IASrwZvq4M3MXj5jdfbEYKyche1fiPgHPoXizQ
CitedBy_id crossref_primary_10_1038_s41598_024_83357_9
crossref_primary_10_1186_s12883_025_04131_6
crossref_primary_10_1186_s12883_025_04132_5
crossref_primary_10_3390_s24237627
crossref_primary_10_3390_app15042177
crossref_primary_10_1038_s41598_024_83975_3
crossref_primary_10_3390_s25061764
crossref_primary_10_1186_s13102_025_01064_y
crossref_primary_10_1186_s12984_024_01452_4
crossref_primary_10_33393_aop_2025_3289
Cites_doi 10.3390/s23198158
10.1109/CCEM50674.2020.00030
10.1016/j.cmpb.2019.105033
10.3390/s24030812
10.1016/j.ebiom.2024.105075
10.1016/j.compbiomed.2014.04.001
10.1016/j.neunet.2007.12.031
10.1016/j.jbiomech.2017.07.034
10.3390/s120202255
10.1016/j.jbiomech.2022.111159
10.3390/s22103700
10.3390/s20113247
10.1016/j.clinbiomech.2017.07.001
10.1109/ic-ETITE47903.2020.253
10.1038/s41591-024-02838-6
10.1109/LSENS.2020.2994938
10.1016/j.compeleceng.2013.11.024
10.1109/JSEN.2019.2943879
10.3390/s20174756
10.1152/jn.00275.2014
10.3390/s22134957
10.3390/s22062304
10.1186/s12911-018-0677-8
10.1038/s41598-023-35744-x
10.3390/s16010134
10.1212/WNL.0000000000004311
10.1016/j.cmpb.2023.107713
10.1016/j.clinbiomech.2017.07.013
10.3390/technologies9030052
10.1007/s12311-021-01361-5
10.1109/JTEHM.2022.3180933
10.1109/JBHI.2023.3311677
10.1007/s12311-016-0837-2
10.3390/s23020891
10.1016/j.jns.2018.05.019
10.1016/j.gaitpost.2017.11.024
10.1109/5326.897072
10.1016/j.gaitpost.2018.08.025
10.1080/03091902.2020.1822940
10.1186/s12984-023-01232-6
10.1038/s41598-024-55598-1
10.1212/WNL.0000000000010176
10.1186/s12883-018-1111-7
10.3390/s22030908
10.1016/j.array.2022.100258
10.1186/1472-6947-11-51
10.1186/s40537-022-00648-6
10.1016/j.gaitpost.2022.07.235
10.1109/JSEN.2023.3259034
10.1016/j.gaitpost.2017.06.267
10.1007/s10115-022-01772-8
10.3390/s21103449
10.1038/s41746-022-00674-x
10.1212/01.wnl.0000219042.60538.92
10.3390/s19245571
10.1007/978-3-030-31635-8_140
10.1016/j.asoc.2020.106494
10.1613/jair.1.11192
10.1007/s12311-024-01663-4
10.1097/WCO.0000000000000774
10.1016/j.jbiomech.2017.01.005
10.1007/s12311-011-0348-0
10.1007/s12311-014-0586-z
10.1002/mds.28631
10.1016/j.jbiomech.2022.111301
10.1613/jair.953
10.1186/s40537-019-0192-5
10.1088/1741-2552/ad200e
10.1007/s10439-019-02216-1
10.1007/s00779-019-01332-y
10.20944/preprints202303.0323.v1
10.1007/s40846-017-0297-2
10.1007/s12311-022-01373-9
10.1038/s41598-023-39862-4
10.1016/j.cnp.2023.07.002
10.1007/s12311-020-01142-6
10.1016/j.humov.2017.09.005
10.1016/j.compbiomed.2022.105382
10.1007/s00415-022-11383-6
10.1186/1475-925X-13-56
10.1159/000538270
10.3390/brainsci9020034
10.23736/S1973-9087.17.04480-X
10.1007/s12559-023-10179-8
10.1109/TNSRE.2023.3333952
10.3390/diagnostics13091532
10.1007/s11517-022-02595-z
10.1371/journal.pone.0244396
10.1007/s11548-020-02260-6
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24113613
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5f0ef8f78e03410992320660ccc4e683
PMC11175240
A797903589
38894404
10_3390_s24113613
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: BRIC "Bando Ricerche in Collaborazione 2022"
  grantid: 7074/470 DIG
– fundername: INAIL, Bando Ricerche in Collaborazione (BRiC) 2022 program
  grantid: 57
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c537t-5e005cfa9a9242aa9b87a975d8118145cff07dc43d36d35472b9c7457949d0a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:57 EDT 2025
Thu Aug 21 18:33:07 EDT 2025
Thu Jul 10 18:36:53 EDT 2025
Fri Jul 25 02:43:02 EDT 2025
Tue Jun 17 22:09:07 EDT 2025
Tue Jun 10 21:02:32 EDT 2025
Mon Jul 21 05:49:50 EDT 2025
Tue Jul 01 03:51:02 EDT 2025
Thu Apr 24 23:04:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords inertial measurement unit
rare diseases
cerebellar ataxia
data augmentation
conditional tabular generative artificial network
data balancing
synthetic minority oversampling technique
generative artificial network
generative artificial intelligence
gait analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-5e005cfa9a9242aa9b87a975d8118145cff07dc43d36d35472b9c7457949d0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-5329-5197
0000-0002-5641-1189
0000-0002-7654-0025
0000-0003-3031-680X
0000-0002-0197-6166
0000-0002-9458-6844
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113613
PMID 38894404
PQID 3067439083
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5f0ef8f78e03410992320660ccc4e683
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11175240
proquest_miscellaneous_3070802002
proquest_journals_3067439083
gale_infotracmisc_A797903589
gale_infotracacademiconefile_A797903589
pubmed_primary_38894404
crossref_primary_10_3390_s24113613
crossref_citationtrail_10_3390_s24113613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Qu (ref_50) 2020; 15
ref_94
ref_14
ref_13
ref_19
Chawla (ref_42) 2002; 16
ref_18
Mumuni (ref_40) 2022; 16
ref_17
Wu (ref_91) 2024; 21
David (ref_1) 2024; 28
Bisi (ref_20) 2018; 66
Riva (ref_60) 2014; 50
Ilg (ref_95) 2020; 95
Coarelli (ref_5) 2023; 270
Goodfellow (ref_53) 2014; 3
ref_25
Buckley (ref_3) 2018; 60
ref_24
Hassija (ref_93) 2024; 16
ref_23
Liuzzi (ref_34) 2023; 13
Johnson (ref_45) 2019; 6
ref_21
Chandrashekar (ref_67) 2014; 40
ref_29
Jeon (ref_78) 2023; 23
Wu (ref_69) 2019; 17
ref_72
(ref_64) 2023; 65
Mirelman (ref_26) 2021; 36
Zhang (ref_49) 2000; 30
Baliko (ref_55) 2006; 66
ref_79
Serrao (ref_96) 2017; 48
Balaji (ref_77) 2020; 94
ref_74
Castiglia (ref_22) 2022; 22
Avati (ref_70) 2018; 18
Giordano (ref_4) 2017; 89
Kim (ref_85) 2023; 20
Kotsiantis (ref_39) 2006; 30
Khoshgoftaar (ref_87) 2022; 9
ref_83
Pasciuto (ref_62) 2017; 53
ref_81
ref_89
Tao (ref_16) 2012; 12
ref_86
ref_84
Phan (ref_32) 2020; 20
Raffalt (ref_63) 2019; 47
Uchitomi (ref_47) 2023; 13
Herrera (ref_43) 2018; 61
Caliandro (ref_12) 2017; 57
Martino (ref_9) 2014; 112
Phinyomark (ref_27) 2018; 38
ref_52
ref_51
Fiori (ref_57) 2020; 19
Yang (ref_80) 2022; 60
ref_59
ref_68
Zuo (ref_92) 2023; 31
Serrao (ref_58) 2017; 53
ref_66
ref_65
Manto (ref_6) 2020; 33
Mazurowski (ref_38) 2008; 21
Conte (ref_11) 2012; 11
Lee (ref_88) 2021; 25
Castiglia (ref_97) 2022; 97
Manto (ref_7) 2023; 8
ref_36
ref_35
Ricciardi (ref_76) 2020; 76
ref_33
ref_31
ref_30
Lundberg (ref_71) 2017; 2017
Alkhatib (ref_75) 2020; 4
Syed (ref_54) 2018; 391
Rinaldi (ref_2) 2017; 48
ref_37
Ramesh (ref_82) 2022; 5
Cabaraux (ref_8) 2023; 22
Salehi (ref_44) 2024; 14
Yang (ref_99) 2022; 10
Taherdoost (ref_41) 2016; 5
Khera (ref_28) 2020; 44
ref_46
Conte (ref_98) 2014; 13
Serrao (ref_56) 2017; 16
Kroneberg (ref_61) 2019; 11
Akhiat (ref_73) 2021; 21
Bergamini (ref_15) 2017; 61
Serrao (ref_10) 2018; 57
ref_48
Ktena (ref_90) 2024; 30
References_xml – ident: ref_86
  doi: 10.3390/s23198158
– ident: ref_51
  doi: 10.1109/CCEM50674.2020.00030
– ident: ref_79
  doi: 10.1016/j.cmpb.2019.105033
– ident: ref_31
  doi: 10.3390/s24030812
– ident: ref_68
– ident: ref_89
  doi: 10.1016/j.ebiom.2024.105075
– volume: 50
  start-page: 9
  year: 2014
  ident: ref_60
  article-title: Gait Variability and Stability Measures: Minimum Number of Strides and within-Session Reliability
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.04.001
– volume: 17
  start-page: 26
  year: 2019
  ident: ref_69
  article-title: Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization
  publication-title: J. Electron. Sci. Technol.
– volume: 21
  start-page: 427
  year: 2008
  ident: ref_38
  article-title: Training Neural Network Classifiers for Medical Decision Making: The Effects of Imbalanced Datasets on Classification Performance
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2007.12.031
– volume: 61
  start-page: 208
  year: 2017
  ident: ref_15
  article-title: Multi-Sensor Assessment of Dynamic Balance during Gait in Patients with Subacute Stroke
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.07.034
– ident: ref_94
– volume: 12
  start-page: 2255
  year: 2012
  ident: ref_16
  article-title: Gait Analysis Using Wearable Sensors
  publication-title: Sensors
  doi: 10.3390/s120202255
– ident: ref_36
  doi: 10.1016/j.jbiomech.2022.111159
– ident: ref_25
  doi: 10.3390/s22103700
– ident: ref_13
  doi: 10.3390/s20113247
– volume: 30
  start-page: 25
  year: 2006
  ident: ref_39
  article-title: Handling Imbalanced Datasets: A Review
  publication-title: GESTS Int. Trans. Comput. Sci. Eng.
– volume: 5
  start-page: 18
  year: 2016
  ident: ref_41
  article-title: Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research
  publication-title: Int. J. Acad. Res. Manag.
– volume: 48
  start-page: 15
  year: 2017
  ident: ref_96
  article-title: Harmony as a Convergence Attractor That Minimizes the Energy Expenditure and Variability in Physiological Gait and the Loss of Harmony in Cerebellar Ataxia
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2017.07.001
– ident: ref_74
  doi: 10.1109/ic-ETITE47903.2020.253
– volume: 30
  start-page: 1166
  year: 2024
  ident: ref_90
  article-title: Generative Models Improve Fairness of Medical Classifiers under Distribution Shifts
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-02838-6
– volume: 4
  start-page: 6000604
  year: 2020
  ident: ref_75
  article-title: El Machine Learning Algorithm for Gait Analysis and Classification on Early Detection of Parkinson
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2994938
– volume: 40
  start-page: 16
  year: 2014
  ident: ref_67
  article-title: A Survey on Feature Selection Methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 20
  start-page: 723
  year: 2020
  ident: ref_32
  article-title: A Random Forest Approach for Quantifying Gait Ataxia with Truncal and Peripheral Measurements Using Multiple Wearable Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2943879
– ident: ref_48
  doi: 10.3390/s20174756
– volume: 112
  start-page: 2810
  year: 2014
  ident: ref_9
  article-title: Locomotor Patterns in Cerebellar Ataxia
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00275.2014
– ident: ref_29
  doi: 10.3390/s22134957
– ident: ref_19
  doi: 10.3390/s22062304
– volume: 18
  start-page: 55
  year: 2018
  ident: ref_70
  article-title: Improving Palliative Care with Deep Learning
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-018-0677-8
– volume: 13
  start-page: 8640
  year: 2023
  ident: ref_34
  article-title: Machine Learning Based Estimation of Dynamic Balance and Gait Adaptability in Persons with Neurological Diseases Using Inertial Sensors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35744-x
– ident: ref_35
  doi: 10.3390/s16010134
– volume: 89
  start-page: 1043
  year: 2017
  ident: ref_4
  article-title: Clinical and Genetic Characteristics of Sporadic Adult-Onset Degenerative Ataxia
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004311
– ident: ref_84
  doi: 10.1016/j.cmpb.2023.107713
– volume: 48
  start-page: 63
  year: 2017
  ident: ref_2
  article-title: Increased Lower Limb Muscle Coactivation Reduces Gait Performance and Increases Metabolic Cost in Patients with Hereditary Spastic Paraparesis
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2017.07.013
– ident: ref_65
  doi: 10.3390/technologies9030052
– volume: 22
  start-page: 46
  year: 2022
  ident: ref_22
  article-title: Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait
  publication-title: Cerebellum
  doi: 10.1007/s12311-021-01361-5
– volume: 10
  start-page: 2200111
  year: 2022
  ident: ref_99
  article-title: PD-ResNet for Classification of Parkinson’s Disease From Gait
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2022.3180933
– volume: 28
  start-page: 1716
  year: 2024
  ident: ref_1
  article-title: Human Locomotion Databases: A Systematic Review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3311677
– volume: 16
  start-page: 629
  year: 2017
  ident: ref_56
  article-title: Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: A 4-Year Follow-Up Study
  publication-title: Cerebellum
  doi: 10.1007/s12311-016-0837-2
– ident: ref_37
  doi: 10.3390/s23020891
– volume: 11
  start-page: 389096
  year: 2019
  ident: ref_61
  article-title: Less Is More—Estimation of the Number of Strides Required to Assess Gait Variability in Spatially Confined Settings
  publication-title: Front. Aging Neurosci.
– volume: 391
  start-page: 40
  year: 2018
  ident: ref_54
  article-title: Evaluation of the Use of the Scale for the Assessment and Rating of Ataxia (SARA) in Healthy Volunteers and Patients with Schizophrenia
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2018.05.019
– volume: 60
  start-page: 154
  year: 2018
  ident: ref_3
  article-title: A Systematic Review of the Gait Characteristics Associated with Cerebellar Ataxia
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.11.024
– volume: 30
  start-page: 451
  year: 2000
  ident: ref_49
  article-title: Neural networks for classification: A survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/5326.897072
– volume: 66
  start-page: 76
  year: 2018
  ident: ref_20
  article-title: Analysis of the Performance of 17 Algorithms from a Systematic Review: Influence of Sensor Position, Analysed Variable and Computational Approach in Gait Timing Estimation from IMU Measurements
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.08.025
– volume: 44
  start-page: 441
  year: 2020
  ident: ref_28
  article-title: Role of Machine Learning in Gait Analysis: A Review
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2020.1822940
– volume: 20
  start-page: 115
  year: 2023
  ident: ref_85
  article-title: Generating Synthetic Gait Patterns Based on Benchmark Datasets for Controlling Prosthetic Legs
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-023-01232-6
– volume: 2017
  start-page: 4766
  year: 2017
  ident: ref_71
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 5152
  year: 2024
  ident: ref_44
  article-title: A Cluster-Based SMOTE Both-Sampling (CSBBoost) Ensemble Algorithm for Classifying Imbalanced Data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-55598-1
– volume: 95
  start-page: E1199
  year: 2020
  ident: ref_95
  article-title: Real-Life Gait Assessment in Degenerative Cerebellar Ataxia: Toward Ecologically Valid Biomarkers
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000010176
– ident: ref_14
  doi: 10.1186/s12883-018-1111-7
– ident: ref_18
  doi: 10.3390/s22030908
– volume: 16
  start-page: 100258
  year: 2022
  ident: ref_40
  article-title: Data Augmentation: A Comprehensive Survey of Modern Approaches
  publication-title: Array
  doi: 10.1016/j.array.2022.100258
– ident: ref_52
  doi: 10.1186/1472-6947-11-51
– volume: 9
  start-page: 98
  year: 2022
  ident: ref_87
  article-title: The Use of Generative Adversarial Networks to Alleviate Class Imbalance in Tabular Data: A Survey
  publication-title: J. Big Data
  doi: 10.1186/s40537-022-00648-6
– volume: 97
  start-page: 152
  year: 2022
  ident: ref_97
  article-title: Harmonic Ratio Is the Most Responsive Trunk-Acceleration Derived Gait Index to Rehabilitation in People with Parkinson’s Disease at Moderate Disease Stages
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2022.07.235
– volume: 23
  start-page: 10041
  year: 2023
  ident: ref_78
  article-title: Early Alzheimer’s Disease Diagnosis Using Wearable Sensors and Multilevel Gait Assessment: A Machine Learning Ensemble Approach
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3259034
– volume: 57
  start-page: 252
  year: 2017
  ident: ref_12
  article-title: Trunk-Lower Limb Coordination Pattern during Gait in Patients with Ataxia
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.06.267
– volume: 65
  start-page: 31
  year: 2023
  ident: ref_64
  article-title: Imbalanced Data Preprocessing Techniques for Machine Learning: A Systematic Mapping Study
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01772-8
– ident: ref_21
  doi: 10.3390/s21103449
– volume: 5
  start-page: 138
  year: 2022
  ident: ref_82
  article-title: Detecting Motor Symptom Fluctuations in Parkinson’s Disease with Generative Adversarial Networks
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-022-00674-x
– volume: 66
  start-page: 1717
  year: 2006
  ident: ref_55
  article-title: Scale for the Assessment and Rating of Ataxia: Development of a New Clinical Scale
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000219042.60538.92
– ident: ref_72
  doi: 10.3390/s19245571
– volume: 76
  start-page: 1155
  year: 2020
  ident: ref_76
  article-title: Classifying Different Stages of Parkinson’s Disease through Random Forests
  publication-title: IFMBE Proc.
  doi: 10.1007/978-3-030-31635-8_140
– volume: 94
  start-page: 106494
  year: 2020
  ident: ref_77
  article-title: Supervised Machine Learning Based Gait Classification System for Early Detection and Stage Classification of Parkinson’s Disease
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106494
– ident: ref_66
– volume: 61
  start-page: 863
  year: 2018
  ident: ref_43
  article-title: SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11192
– ident: ref_23
  doi: 10.1007/s12311-024-01663-4
– volume: 33
  start-page: 150
  year: 2020
  ident: ref_6
  article-title: Cerebellar Ataxias: An Update
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000774
– volume: 53
  start-page: 84
  year: 2017
  ident: ref_62
  article-title: Overcoming the Limitations of the Harmonic Ratio for the Reliable Assessment of Gait Symmetry
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.005
– volume: 21
  start-page: 10
  year: 2021
  ident: ref_73
  article-title: A New Noisy Random Forest Based Method for Feature Selection
  publication-title: Cybern. Inf. Technol.
– volume: 3
  start-page: 2672
  year: 2014
  ident: ref_53
  article-title: Generative Adversarial Networks
  publication-title: Sci. Robot.
– volume: 11
  start-page: 896
  year: 2012
  ident: ref_11
  article-title: Planned Gait Termination in Cerebellar Ataxias
  publication-title: Cerebellum
  doi: 10.1007/s12311-011-0348-0
– volume: 13
  start-page: 689
  year: 2014
  ident: ref_98
  article-title: Upper Body Kinematics in Patients with Cerebellar Ataxia
  publication-title: Cerebellum
  doi: 10.1007/s12311-014-0586-z
– volume: 36
  start-page: 2144
  year: 2021
  ident: ref_26
  article-title: Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28631
– ident: ref_83
  doi: 10.1016/j.jbiomech.2022.111301
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_42
  article-title: SMOTE: Synthetic Minority Over-Sampling Technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 6
  start-page: 27
  year: 2019
  ident: ref_45
  article-title: Survey on Deep Learning with Class Imbalance
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 21
  start-page: 016026
  year: 2024
  ident: ref_91
  article-title: Data Augmentation for Invasive Brain-Computer Interfaces Based on Stereo-Electroencephalography (SEEG)
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad200e
– volume: 47
  start-page: 913
  year: 2019
  ident: ref_63
  article-title: Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02216-1
– volume: 25
  start-page: 121
  year: 2021
  ident: ref_88
  article-title: GAN-Based Imbalanced Data Intrusion Detection System
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-019-01332-y
– ident: ref_24
  doi: 10.20944/preprints202303.0323.v1
– volume: 38
  start-page: 244
  year: 2018
  ident: ref_27
  article-title: Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0297-2
– volume: 22
  start-page: 394
  year: 2023
  ident: ref_8
  article-title: Consensus Paper: Ataxic Gait
  publication-title: Cerebellum
  doi: 10.1007/s12311-022-01373-9
– volume: 13
  start-page: 12638
  year: 2023
  ident: ref_47
  article-title: Classification of Mild Parkinson’s Disease: Data Augmentation of Time-Series Gait Data Obtained via Inertial Measurement Units
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39862-4
– volume: 8
  start-page: 143
  year: 2023
  ident: ref_7
  article-title: Neurophysiology of Cerebellar Ataxias and Gait Disorders
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1016/j.cnp.2023.07.002
– volume: 19
  start-page: 583
  year: 2020
  ident: ref_57
  article-title: Impairment of Global Lower Limb Muscle Coactivation during Walking in Cerebellar Ataxias
  publication-title: Cerebellum
  doi: 10.1007/s12311-020-01142-6
– volume: 57
  start-page: 267
  year: 2018
  ident: ref_10
  article-title: Identification of Specific Gait Patterns in Patients with Cerebellar Ataxia, Spastic Paraplegia, and Parkinson’s Disease: A Non-Hierarchical Cluster Analysis
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2017.09.005
– ident: ref_81
  doi: 10.1016/j.compbiomed.2022.105382
– volume: 270
  start-page: 208
  year: 2023
  ident: ref_5
  article-title: The Inherited Cerebellar Ataxias: An Update
  publication-title: J. Neurol.
  doi: 10.1007/s00415-022-11383-6
– ident: ref_59
  doi: 10.1186/1475-925X-13-56
– ident: ref_30
  doi: 10.1159/000538270
– ident: ref_17
  doi: 10.3390/brainsci9020034
– volume: 53
  start-page: 735
  year: 2017
  ident: ref_58
  article-title: Use of Dynamic Movement Orthoses to Improve Gait Stability and Trunk Control in Ataxic Patients
  publication-title: Eur. J. Phys. Rehabil. Med.
  doi: 10.23736/S1973-9087.17.04480-X
– volume: 16
  start-page: 45
  year: 2024
  ident: ref_93
  article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
  publication-title: Cognit. Comput.
  doi: 10.1007/s12559-023-10179-8
– volume: 31
  start-page: 4601
  year: 2023
  ident: ref_92
  article-title: Alzheimer’s Disease Prediction via Brain Structural-Functional Deep Fusing Network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3333952
– ident: ref_46
  doi: 10.3390/diagnostics13091532
– volume: 60
  start-page: 2665
  year: 2022
  ident: ref_80
  article-title: Data Augmentation for Depression Detection Using Skeleton-Based Gait Information
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02595-z
– ident: ref_33
  doi: 10.1371/journal.pone.0244396
– volume: 15
  start-page: 2041
  year: 2020
  ident: ref_50
  article-title: Assessing and Mitigating the Effects of Class Imbalance in Machine Learning with Application to X-Ray Imaging
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02260-6
SSID ssj0023338
Score 2.5187976
Snippet The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3613
SubjectTerms Adult
Aged
Algorithms
Artificial Intelligence
Ataxia
Cerebellar ataxia
Cerebellar Ataxia - diagnosis
Cerebellar Ataxia - genetics
Cerebellar Ataxia - physiopathology
Classification
data augmentation
data balancing
Data collection
Datasets
Diseases
Female
Fourier transforms
Gait
Gait - physiology
gait analysis
Gait Analysis - methods
generative artificial intelligence
Humans
Kinematics
Male
Medical research
Medicine, Experimental
Middle Aged
Range of motion
Rare Diseases
Software
Walking
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QTuOAYHwVtikgJLhU62uSJuX2tjHekAAJDWm3yElTrRJ06L1OAk786dhNX9UKJC7c2sZVk9iObdX-mbEXogKt8tql1QJCKr3PU-clpAZcoCIfHfoisfcfitVn-e5SXU5afVFOWIQHjht3pOos1KbWJmR44KI_gy4AmsnMey9DYXqcT7R522BqCLUERl4RR0hgUH-0QTu1EH0Pg4n16UH6_zyKJ7Zonic5MTxnd9mdwWPkyzjTe-xWaPfY7QmO4H326yMq_tfmJ97wT7AO_DT-duFvoel43_eSMoJ6JvChMw8_hQ74MWU2enoP2opHDGo6APny_DU_bzcUum841aDwFXX1bDpY_-AneEk_LGDNlx18b-ABuzh7c3GySofWCqlXQnepCqh9voYSMP7KAUpnNJRaVYYKUSUO1ZmuvBSVKCqhpM5d6bVUqL1llYF4yHba6zY8ZjxkrgIVFCyUl7X2xrtCeBGkrguH8UrCXm133PoBdpy6X3yxGH4Qc-zInIQ9H0m_RayNvxEdE9tGAoLH7h-g0NhBaOy_hCZhL4nplpQYJ-NhqEXAJREcll3qUpeZUKZM2P6MEpXPz4e3YmMH5d9YisLQz8voO8_GYXqTONOG6xui0VTljKKasEdRysYlCWNKgm1MmJnJ32zN85G2ueqhwReEvIpO2pP_sUtP2W6OLlxMjNtnO936JhygC9a5w17bfgN0iS7f
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gvMDDxDeFgQJCgpdqbZM0KS_otnG7IQESGtLeKjdJoRLrjbaTgCf-dOy2V64C8Xa9OFVT27Hd2D8z9lw40Copi9DF4ENpbRIWVkJooPBU5KN9XyT27n26-iTfnqmz8YNbO6ZVbvbEfqN2a0vfyPfJtUXjiR7D64tvIXWNotPVsYXGVXYtRktDKV1meTwFXALjrwFNSODM_RatVSz6TgZbNqiH6v97Q96ySPNsyS3zs7zJdke_kS8GRt9iV3x9m93YQhO8w359QPU_r37iBf8IjedHw-ELP4aq4333S8oL6lnBx_48_Ag64AeU32hpHtSOD0jUtA3yxckrflK3FMC3nCpR-Ip6e1YdND_4If6kYwto-KKD7xXcZafLN6eHq3BssBBaJXQXKo86aEvIAKOwBCArjIZMK2eoHFXiUBlpZ6VwInVCSZ0UmdVSoQ5nLgJxj-3U69o_YNxHhQPlFcTKylJbY4tUWOGlLtMCo5aAvdy88dyO4OPUA-NrjkEIMSefmBOwZxPpxYC48S-iA2LbREAg2f0f6-ZzPupcrsrIl6bUxkdoq9EVRu8RPazIWit9avAmL4jpOakyPoyFsSIBl0SgWPlCZzqLhDJZwPZmlKiCdj68EZt83ALa_I_ABuzpNEwziTO1X18SjaZaZxTVgN0fpGxakjAmI_DGgJmZ_M3WPB-pqy89QHhM-Kvoqj38_3M9YtcTdNGGxLc9ttM1l_4xulhd8aTXo99qMCdd
  priority: 102
  providerName: ProQuest
Title Optimizing Rare Disease Gait Classification through Data Balancing and Generative AI: Insights from Hereditary Cerebellar Ataxia
URI https://www.ncbi.nlm.nih.gov/pubmed/38894404
https://www.proquest.com/docview/3067439083
https://www.proquest.com/docview/3070802002
https://pubmed.ncbi.nlm.nih.gov/PMC11175240
https://doaj.org/article/5f0ef8f78e03410992320660ccc4e683
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbG9gIPiN8ERmUQErwE0tiOHSSE2m1dh7SBpk3qW3RxHIg0UkgzaeOJP527JI0aMfFSpbXdxrk7313t-z7GXosMtArz1M_G4HxpbeinVoJvIHVU5KNdUyR2fBLNz-XnhVpssTXHZvcAVzemdsQndV5dvLv6df0JDf4jZZyYsr9foRcai4i4a3fwUhORwbHsNxNCIRpCa6rp8tEfBi3A0HDowC016P3_rtEbTmp4gHLDI83usbtdKMknrezvsy1XPmB3NgAGH7I_X3BF-FH8xjf8FCrH99v9GH4IRc0bQkw6KtRIh3eUPXwfauBTOvJoaRyUGW_BqWll5JOjD_yoXFFOv-JUnMLnRPdZ1FBd8z28pJ0MqPikhqsCHrGz2cHZ3tzvOBd8q4SufeXQLG0OMWBiFgLEqdEQa5UZqlCV2JQHOrNSZCLKhJI6TGOrpUKzjrMAxGO2XS5L95RxF6QZKKdgrKzMtTU2jYQVTuo8SjGR8djb9RNPbIdHTrQYFwnmJSScpBeOx171XX-2IBw3dZqS2PoOhJvdfLCsviWdGSYqD1xucm1cgO4bo2MMKDHoCqy10kUGv-QNCT0hfcObsdAVKeCUCCcrmehYx4FQJvbY7qAnWqUdNq_VJlkrdULpGQaAAf3Oy76ZRpJkSre8pD6ayp9RbT32pNWyfkrCmJjwHD1mBvo3mPOwpSy-N5jhY4Jkxejt2f9v-zm7HWLU1p6F22XbdXXpXmDUVacjdksvNL6a2eGI7UwPTr6ejpp_MEaNtf0Fs9kutg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXKATgg3hgKLAgEF6uOdze7RkIobUgT-kBCQeptNV6vIRI4JXEF5cQP8Y_M2I6JBeLWm-0ZW17P2zsPxp6KDLSK8zTMeuBD6Vwcpk5CaCD1VOSjfVUkdnjUH3-Qb4_V8Qb7taqFobTKlU6sFHU2d_SPfJtcWzSe6DG8Pvka0tQo2l1djdCo2WLfn33DkG35ajJE-j6L49Gb6e44bKYKhE4JXYbKI-O5HBLA0CMGSFKjIdEqM1SDKRGURzpzUmSinwkldZwmTkuFjJtkEQh87AV2UQo05FSYPtpr4zuB4V7dvAiB0fYSjWNPVIMT1kxeNRngb_2_ZgC7yZlr1m50jV1t3FQ-qPnqOtvwxQ12Za154U328x1qmy-zH3jC38PC82G918P3YFbyatgmpSFVlOfNOCA-hBL4DqVTOroPiozXja9J6_LB5CWfFEv6X7DkVPjCxzRKdFbC4ozv4iHtksCCD0r4PoNbbHoeX_422yzmhb_LuI_SDJRX0FNO5toZl_aFE17qvJ9ikBSwF6svbl3T65xGbny2GPMQcWxLnIA9aVFP6gYf_0LaIbK1CNSTu7owX3y0jYhblUc-N7k2PkLXAD1vdFbRoYucc9L3DT7kORHdkubAl3HQFEDgkqgHlx3oRCeRUCYJ2FYHEyXedcErtrGNxlnaP_IRsMctmO4kyhR-fko4mkqrkVUDdqfmsnZJwpiEekUGzHT4r7PmLqSYfar6kfeo3St6hvf-_16P2KXx9PDAHkyO9u-zyzF6h3XO3RbbLBen_gF6d2X6sJIpzuw5y_Bv_8diow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAgELxETeO4dpAQateVlkGZpiHtzXIcBypBOtpMMJ74W_w7zknS0AjE296a2onsnNt34nMBeMJTI0WYJX7aM86PrA39xEbGVyZxlOQjXZkk9m7Wn3yI3hyL4y34tc6FobDKtU4sFXW6sPSNvEvQFo0nIoZuVodFHIzGr06--tRBik5a1-00KhbZd2ff0H1bvZyOkNZPw3C8d7Q78esOA74VXBa-cMiENjOxQTckNCZOlDSxFKmifMwIh7JApjbiKe-nXEQyTGIrI4FMHKeB4fjYC7AtySnqwPZwb3Zw2Hh7HJ2_qpQRx2V3V2gqe7xso7BhAMs-AX9bgw1z2A7V3LB946twpQatbFBx2TXYcvl1uLxRyvAG_HyPuufL_AdesEOzdGxUnfyw12ZesLL1JgUllXzA6uZAbGQKw4YUXGnpPpOnrCqDTTqYDaYv2DRf0deDFaM0GDahxqLzwizP2C7-pDMTs2SDwnyfm5twdB7v_hZ08kXu7gBzQZIa4YTpCRtl0iqb9LnlLpJZP0GXyYPn6zeubV35nBpwfNboARFxdEMcDx43U0-qch__mjQksjUTqEJ3-cdi-VHXAq9FFrhMZVK5AIEC4nCErgjvAmtt5PoKH_KMiK5Jj-BirKnTIXBLVJFLD2Qs44ALFXuw05qJ8m_bw2u20bX-Wek_0uLBo2aY7iTK5G5xSnMkJVojq3pwu-KyZktcqZgqR3qgWvzX2nN7JJ9_KquT96j4K-LEu_9f10O4iPKr305n-_fgUohQsQrA24FOsTx19xHqFcmDWqgY6HMW499rWGg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Rare+Disease+Gait+Classification+through+Data+Balancing+and+Generative+AI%3A+Insights+from+Hereditary+Cerebellar+Ataxia&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Trabassi%2C+Dante&rft.au=Castiglia%2C+Stefano+Filippo&rft.au=Bini%2C+Fabiano&rft.au=Marinozzi%2C+Franco&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113613&rft.externalDocID=A797903589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon