Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles
Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 2; p. 660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects’ dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses. |
---|---|
AbstractList | Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects' dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses.Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects' dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses. Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects’ dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses. |
Audience | Academic |
Author | Wang, Hai Zhang, Xiaodong Tao, Qing |
AuthorAffiliation | 2 Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an 710049, China 1 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; wanghai@stu.xju.edu.cn (H.W.); xdzhang@mail.xjtu.edu.cn (X.Z.) |
AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; wanghai@stu.xju.edu.cn (H.W.); xdzhang@mail.xjtu.edu.cn (X.Z.) – name: 2 Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an 710049, China |
Author_xml | – sequence: 1 givenname: Hai surname: Wang fullname: Wang, Hai – sequence: 2 givenname: Qing orcidid: 0000-0001-5798-6526 surname: Tao fullname: Tao, Qing – sequence: 3 givenname: Xiaodong surname: Zhang fullname: Zhang, Xiaodong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38276352$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAURiNURB-w4A-gSGzoYlo_4jhZodFQ6KBBbGBt-XGd8Sixi51U4t_jdNrSKcgLW_a5x_6se1oc-eChKN5idEFpiy4TqRBBdY1eFCe4ItWiIQQdPVkfF6cp7RAilNLmVXFMG8JryshJsb7yCQbVQ7kBGb3zXfkNxm0wpQ2xHLdQroIfnZ_ClMpPoIOZkWDLa-lN-TU4P5ZL3_WQXhcvrewTvLmfz4qfn69-rK4Xm-9f1qvlZqEZ5eOiqjUYioBwo8EqW3GGKFGtYUwqIxkytdKcSVBS2RZaZKGR2LDaYEyanOCsWO-9JsiduIlukPG3CNKJu40QOyHj6HQPAvOKKlkrrrCqskmClbxhWGvNjTQquz7uXTeTGiA_yI9R9gfSwxPvtqILtwJjzCra8Gz4cG-I4dcEaRSDSxr6XnrIXyZIi9v8CoxwRt8_Q3dhij7_1Uw1vG0wrf9SncwJnLchX6xnqVjyBrWEEzZfe_EfKg8Dg9O5O6zL-wcF754mfYz40AkZuNwDOoaUIlih3ShHF-bgrhcYibnXxGOv5YrzZxUP0n_ZP_l70a8 |
CitedBy_id | crossref_primary_10_1109_TCYB_2025_3525652 crossref_primary_10_1186_s12984_024_01466_y crossref_primary_10_3390_s24175631 crossref_primary_10_1016_j_aej_2024_09_116 |
Cites_doi | 10.1109/TBME.2020.2989311 10.1109/LRA.2021.3097272 10.3390/math10224387 10.1109/10.204774 10.1371/journal.pone.0203835 10.1371/journal.pone.0206049 10.1088/1741-2552/aa9666 10.1109/BHI.2018.8333395 10.1109/TNSRE.2019.2896269 10.3934/mbe.2021177 10.1186/s12984-016-0172-3 10.1088/1741-2552/ab0e2e 10.1145/2939672.2939785 10.1038/s41551-016-0025 10.1109/EMBC44109.2020.9176278 10.1109/TBME.2010.2068298 10.1016/j.bspc.2019.101574 10.1016/j.neucom.2021.05.113 10.1016/j.bspc.2022.104088 10.1109/TNSRE.2017.2699598 10.3390/sym12010130 10.1016/j.neucom.2021.10.104 10.1109/TMECH.2020.2999532 10.1007/978-981-99-6480-2_45 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s24020660 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1743ba6b7b1b490faefa7851ccc7dadb PMC11154387 A780927257 38276352 10_3390_s24020660 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51865056 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c537t-46ced30e27dcefbf475032b9d55abda50d6bc75aebabf9e90fe8a1d56d1128023 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:58 EDT 2025 Thu Aug 21 18:33:12 EDT 2025 Thu Jul 10 17:35:57 EDT 2025 Fri Jul 25 04:33:37 EDT 2025 Tue Jun 17 22:23:09 EDT 2025 Tue Jun 10 21:15:19 EDT 2025 Mon Jul 21 06:00:07 EDT 2025 Tue Jul 01 03:50:43 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ensemble learning LightGBM XGBoost hand joint angle sEMG CatBoost stacking |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-46ced30e27dcefbf475032b9d55abda50d6bc75aebabf9e90fe8a1d56d1128023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5798-6526 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24020660 |
PMID | 38276352 |
PQID | 2918798136 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1743ba6b7b1b490faefa7851ccc7dadb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11154387 proquest_miscellaneous_2919743101 proquest_journals_2918798136 gale_infotracmisc_A780927257 gale_infotracacademiconefile_A780927257 pubmed_primary_38276352 crossref_citationtrail_10_3390_s24020660 crossref_primary_10_3390_s24020660 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bao (ref_20) 2021; 70 Zhang (ref_23) 2022; 484 Ngeo (ref_17) 2014; 11 ref_12 ref_11 Fang (ref_1) 2022; 470 ref_30 ref_16 Fall (ref_3) 2019; 27 Yao (ref_6) 2021; 18 Celadon (ref_18) 2016; 13 ref_25 Ameri (ref_14) 2019; 16 ref_24 ref_22 Nielsen (ref_15) 2011; 58 ref_21 Ma (ref_8) 2021; 6 Xiloyannis (ref_19) 2017; 25 Hudgins (ref_26) 1993; 40 Chen (ref_10) 2020; 67 ref_2 Lin (ref_13) 2018; 15 ref_29 ref_28 ref_27 Zhang (ref_7) 2020; 25 ref_9 ref_5 ref_4 |
References_xml | – volume: 67 start-page: 3501 year: 2020 ident: ref_10 article-title: Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals publication-title: IEEE Trans. Biomed Eng. doi: 10.1109/TBME.2020.2989311 – ident: ref_30 – volume: 6 start-page: 7217 year: 2021 ident: ref_8 article-title: A Bi-Directional LSTM Network for Estimating Continuous Upper Limb Movement From Surface Electromyography publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3097272 – ident: ref_5 doi: 10.3390/math10224387 – volume: 40 start-page: 82 year: 1993 ident: ref_26 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Bio-Med. Eng. doi: 10.1109/10.204774 – ident: ref_12 doi: 10.1371/journal.pone.0203835 – volume: 70 start-page: 1 year: 2021 ident: ref_20 article-title: A CNN-LSTM Hybrid Model for Wrist Kinematics Estimation Using Surface Electromyography publication-title: IEEE Trans. Instrum. Meas. – ident: ref_4 doi: 10.1371/journal.pone.0206049 – ident: ref_16 – volume: 15 start-page: 026017 year: 2018 ident: ref_13 article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9666 – ident: ref_21 doi: 10.1109/BHI.2018.8333395 – volume: 27 start-page: 760 year: 2019 ident: ref_3 article-title: Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning publication-title: Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896269 – volume: 18 start-page: 3521 year: 2021 ident: ref_6 article-title: Multi-feature gait recognition with DNN based on sEMG signals. Mathematical Biosciences and Engineering publication-title: Math. Biosci. Engineering doi: 10.3934/mbe.2021177 – volume: 13 start-page: 73 year: 2016 ident: ref_18 article-title: Proportional estimation of finger movements from high-density surface electromyography publication-title: J. Neuroeng Rehabil doi: 10.1186/s12984-016-0172-3 – ident: ref_25 – ident: ref_29 – volume: 16 start-page: 036015 year: 2019 ident: ref_14 article-title: Regression convolutional neural network for improved simultaneous EMG control publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0e2e – ident: ref_28 doi: 10.1145/2939672.2939785 – ident: ref_11 doi: 10.1038/s41551-016-0025 – volume: 11 start-page: 1122 year: 2014 ident: ref_17 article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model publication-title: IEEE J. Neuroeng. Rehabil. – ident: ref_22 doi: 10.1109/EMBC44109.2020.9176278 – volume: 58 start-page: 681 year: 2011 ident: ref_15 article-title: Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068298 – ident: ref_2 doi: 10.1016/j.bspc.2019.101574 – volume: 484 start-page: 38 year: 2022 ident: ref_23 article-title: Simultaneous estimation of joint angle and interaction force towards sEMG-driven human-robot interaction during constrained tasks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.05.113 – ident: ref_24 doi: 10.1016/j.bspc.2022.104088 – volume: 25 start-page: 1785 year: 2017 ident: ref_19 article-title: Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics publication-title: Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2017.2699598 – ident: ref_9 doi: 10.3390/sym12010130 – volume: 470 start-page: 89 year: 2022 ident: ref_1 article-title: Modelling EMG driven wrist movements using a bio-inspired neural network (in English) publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.104 – volume: 25 start-page: 1953 year: 2020 ident: ref_7 article-title: Simultaneous and Proportional Estimation of Multijoint Kinematics From EMG Signals for Myocontrol of Robotic Hands publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2020.2999532 – ident: ref_27 doi: 10.1007/978-981-99-6480-2_45 |
SSID | ssj0023338 |
Score | 2.4352722 |
Snippet | Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve... Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 660 |
SubjectTerms | Accuracy Algorithms Amputation Artificial Limbs CatBoost Deep learning Discriminant analysis Electromyography - methods ensemble learning Experiments Hand hand joint angle Hand Joints Hands Humans Implants, Artificial LightGBM Machine Learning Movement Neural networks Prostheses Prosthesis sEMG Training XGBoost |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyCAkuESNkzh2jgu0WiqVE5V6izx-lJW2XsRu_z8zSTZsBBIXrvFEsufhmS92vgF4J30MDo3KyV1UXltX5-jLJicQ56MytnaK_3e--NosL-vzK3V10OqL74QN9MCD4k64YkbboEaJdVtEG6LlhvLOOe2tR959KeftwdQItSpCXgOPUEWg_mTLZwjFwEP5O_v0JP1_bsUHuWh-T_Ig8Zw9gPtjxSgWw0wfwp2QHsG9Ax7Bx_DlNG3DDa6DGOlSr8VF3xlaUEkqqMQTTEK1SrcE88VnApycsMQmiqVNXpxvVmknFul6HbZP4PLs9NunZT72SMidqvQurxsXfFWEUtMsI8aazyVLbL1SFr1VhW_QaWUDWoxtIAUGY6VXjadCi8nfnsJR2qTwHIQtIirnQ5DW1FJjS1pGqUm5rglW2gw-7HXXuZFAnPtYrDsCEqzmblJzBm8n0R8Da8bfhD6yASYBJrruH5D5u9H83b_Mn8F7Nl_H4UiTcXb8q4CWxMRW3UKboi01bUwZHM8kKYzcfHjvAN0YxtuubLkZu5FVk8GbaZjf5KtpKZDVWKblMqyQGTwb_GVaUmVKJvwrMzAzT5qteT6SVt97km_JPEmV0S_-h5Zewt2SirHh09ExHO1-3oZXVEzt8HUfN78ABeYgZw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABQXkFSmUQElyixkkcJye09KGlUjlRaW-RX9mutDil2f5_ZhJvdiMQ13gijT0z9jd-fAPwidvGGV2KGN1FxLkyeaxtWsSYxNlGlCo3gt47X_0o5tf55UIswoZbF65VbufEfqK2raE98pO0orrYJc-Kr7e_Y6oaRaeroYTGQ3hE1GV0pUsudglXhvnXwCaUYWp_0tFJQjKwUe7WoJ6q_-8JeW9Fmt6W3Ft-Lp7B04Ab2Www9HN44PwhPNljE3wB3899537ptWOBNHXJrvr60AyBKUOgx4iKauXvMdlnZ5h20rLF2obNlbfssl35DZv55dp1L-H64vzn6TwOlRJiIzK5ifPCOJslLpWoZaObnE4nU11ZIZS2SiS20EYK5bTSTeWqpHGl4lYUFuEWUcC9ggPfevcGmEoaLYx1jqsy51JXCMk0lwgrTOEUVxF82Y5dbQKNOFWzWNeYTtAw1-MwR_BxFL0duDP-JfSNDDAKEN11_6G9W9YhempKm7QqtNRc56i9co2SqJgxRlpldQSfyXw1BSUqY1R4W4BdInqreibLpEolTk8RHE0kMZjMtHnrAHUI5q7euV4EH8Zm-pMuqHmHViOZisBYwiN4PfjL2KWsTIn2L42gnHjSpM_TFr-66am-ObElZaV8-3-93sHjFMHWsDV0BAebu3v3HsHSRh_3EfEHtqcWIg priority: 102 providerName: ProQuest |
Title | Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38276352 https://www.proquest.com/docview/2918798136 https://www.proquest.com/docview/2919743101 https://pubmed.ncbi.nlm.nih.gov/PMC11154387 https://doaj.org/article/1743ba6b7b1b490faefa7851ccc7dadb |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9NAEB_OO5DzQfw2epZVBH2J5muzmweRnrbWgx4iFvoW9iu1ULfa9kD_e2fSJDR4vvShOy27szOZ3y-b_AbgZWwrZ7TkIYYLDzNlslDbJA-RxNmKS5UZTu87Ty_zySy7mPP5EbQ9NhsHbq-ldtRParZZvfn96897TPh3xDiRsr_d0gkBlk5k7idYkATl5zTrDhOSFGnYXlSob34KN1OZkCJb0qtKtXj_v5fogxrVf37yoCCN78DtBkmy4X7r78KR8_fg1oG-4H34PPJb90OvHGtkVBdsWneMZghVGUI_RuJUS3-F9J99RCJKhYytKzZR3rKL9dLv2NAvVm77AGbj0bcPk7DpnRAanopdmOXG2TRyicBZVrrK6Lwy0YXlXGmreGRzbQRXTitdFa6IKidVbHluEYCRKNxDOPZr7x4DU1GlubHOxUqid3WBIE3HAoGGyZ2KVQCvW9-VphEWp_4WqxIJBnm87DwewIvO9OdeTeM6o3PagM6ABLDrL9abRdnkU0lESqtcCx3rDGevXKUETswYI6yyOoBXtH0lBQ5OxqjmbQNcEglelUMhoyIReMEK4Kxniell-sNtAJRtdJZJQU3aZZzmATzvhumX9Miad7hrZFMQPIviAB7t46VbUht2AcheJPXW3B_xy--1-HdM-kmpFE_--6dP4TRB5LW_T3QGx7vNlXuGyGmnB3BDzAV-yvGnAZycjy6_fB3UdyEGdcb8BR-IG54 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qygE4IPYaCgwIBBer3sZjHxAKtFXSNj21Um5mNodIwS51IsSf4jfynrfEAnHr1fMszfKW783yPYC3vsmtVgl3UV24G0kducoEsYtJnMl5IiPN6b3z9DweX0YnMz7bgd_dWxi6Vtn5xNpRm1LTHvlBkFJd7MQP409XP1yqGkWnq10JjUYtTu2vn5iyVR8nh7i-74Lg-Ojiy9htqwq4modi5Uaxtib0bCCMtrnKIzrJC1RqOJfKSO6ZWGnBpVVS5alNvdwm0jc8NghNkproAF3-LQy8HlmUmG0SvBDzvYa9KAxT76CikwuvYb_cxLy6NMDfAWArAg5vZ26Fu-P7cK_FqWzUKNYD2LHFQ7i7xV74CCZHRWW_q6VlLUnrnE3retQMgTBDYMmI-mpRrMt1xQ4xzaUwycqcjWVh2Em5KFZsVMyXtnoMlzcyh09gtygLuwdMerni2ljryyTyhUoRAipfIIzRsZW-dOBDN3eZbmnLqXrGMsP0haY566fZgTe96FXD1fEvoc-0AL0A0WvXH8rredZaa0ZpmpKxEspXEfZe2lwK7JjWWhhplAPvafkycgLYGS3btww4JKLTykYi8dJAoDt0YH8gicarh82dAmSt86iyjao78Lpvpj_pQlxhcdVIJiXw5_kOPG30pR9SmAREMxg4kAw0aTDmYUux-FZTi_vEzhQm4tn_-_UKbo8vpmfZ2eT89DncCRDoNdtS-7C7ul7bFwjUVuplbR0Mvt60Of4BPJRVRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQLwxFFgQCC5WvLbXax8QCqRR0tKKA5VyM_tyqBTsUidC_DV-HTO287BA3Hr1jqV9zOObfXwD8IrbwhmdCh_VRfixMrGvbZj4mMTZQqQqNoLeO5-cJpOz-GgmZnvwe_0Whq5Vrn1i46htZWiPfBBmVBc75VEyKLprEZ9H4_cXP3yqIEUnretyGq2KHLtfPzF9q99NR7jWr8NwfPjl48TvKgz4RkRy6ceJcTYKXCitcYUuYjrVC3VmhVDaKhHYRBsplNNKF5nLgsKliluRWIQpaUN6gO7_mowEJxuTs22yF2Hu1zIZRVEWDGo6xQhaJsxt_GvKBPwdDHaiYf-m5k7oG9-GWx1mZcNWye7Anivvws0dJsN7MD0sa_ddLxzrCFvn7KSpTc0QFDMEmYxosM7LVbWq2QhTXgqZrCrYRJWWHVXn5ZINy_nC1ffh7Erm8AHsl1XpHgFTQaGFsc5xlcZc6gzhoOYSIY1JnOLKg7fructNR2FOlTQWOaYyNM35Zpo9eLkRvWh5O_4l9IEWYCNAVNvNh-pynneWm1PKplWipeY6xt4rVyiJHTPGSKus9uANLV9ODgE7Y1T3rgGHRNRa-VCmQRZKdI0eHPQk0ZBNv3mtAHnnSOp8q_YevNg00590Oa50uGokkxEQDLgHD1t92QwpSkOiHAw9SHua1Btzv6U8_9bQjHNiaopS-fj__XoO19EQ80_T0-MncCNEzNfuUB3A_vJy5Z4iZlvqZ41xMPh61db4B-TSWX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning+Method+for+the+Continuous+Decoding+of+Hand+Joint+Angles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Hai&rft.au=Tao%2C+Qing&rft.au=Zhang%2C+Xiaodong&rft.date=2024-01-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fs24020660&rft_id=info%3Apmid%2F38276352&rft.externalDocID=38276352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |