Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles

Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 2; p. 660
Main Authors Wang, Hai, Tao, Qing, Zhang, Xiaodong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects’ dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses.
AbstractList Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects' dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses.Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects' dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses.
Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve the flexibility and dexterity of smart prostheses. In this research, a new model using ensemble learning to solve the angle decoding problem is proposed. Ultimately, seven models for angle decoding from surface electromyography (sEMG) signals are designed. The kinematics of five angles of the metacarpophalangeal (MCP) joints are estimated using the sEMG recorded during functional tasks. The estimation performance was evaluated through the Pearson correlation coefficient (CC). In this research, the comprehensive model, which combines CatBoost and LightGBM, is the best model for this task, whose average CC value and RMSE are 0.897 and 7.09. The mean of the CC and the mean of the RMSE for all the test scenarios of the subjects’ dataset outperform the results of the Gaussian process model, with significant differences. Moreover, the research proposed a whole pipeline that uses ensemble learning to build a high-performance angle decoding system for the hand motion recognition task. Researchers or engineers in this field can quickly find the most suitable ensemble learning model for angle decoding through this process, with fewer parameters and fewer training data requirements than traditional deep learning models. In conclusion, the proposed ensemble learning approach has the potential for simultaneous and proportional control (SPC) of future hand prostheses.
Audience Academic
Author Wang, Hai
Zhang, Xiaodong
Tao, Qing
AuthorAffiliation 2 Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an 710049, China
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; wanghai@stu.xju.edu.cn (H.W.); xdzhang@mail.xjtu.edu.cn (X.Z.)
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; wanghai@stu.xju.edu.cn (H.W.); xdzhang@mail.xjtu.edu.cn (X.Z.)
– name: 2 Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an 710049, China
Author_xml – sequence: 1
  givenname: Hai
  surname: Wang
  fullname: Wang, Hai
– sequence: 2
  givenname: Qing
  orcidid: 0000-0001-5798-6526
  surname: Tao
  fullname: Tao, Qing
– sequence: 3
  givenname: Xiaodong
  surname: Zhang
  fullname: Zhang, Xiaodong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38276352$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAURiNURB-w4A-gSGzoYlo_4jhZodFQ6KBBbGBt-XGd8Sixi51U4t_jdNrSKcgLW_a5x_6se1oc-eChKN5idEFpiy4TqRBBdY1eFCe4ItWiIQQdPVkfF6cp7RAilNLmVXFMG8JryshJsb7yCQbVQ7kBGb3zXfkNxm0wpQ2xHLdQroIfnZ_ClMpPoIOZkWDLa-lN-TU4P5ZL3_WQXhcvrewTvLmfz4qfn69-rK4Xm-9f1qvlZqEZ5eOiqjUYioBwo8EqW3GGKFGtYUwqIxkytdKcSVBS2RZaZKGR2LDaYEyanOCsWO-9JsiduIlukPG3CNKJu40QOyHj6HQPAvOKKlkrrrCqskmClbxhWGvNjTQquz7uXTeTGiA_yI9R9gfSwxPvtqILtwJjzCra8Gz4cG-I4dcEaRSDSxr6XnrIXyZIi9v8CoxwRt8_Q3dhij7_1Uw1vG0wrf9SncwJnLchX6xnqVjyBrWEEzZfe_EfKg8Dg9O5O6zL-wcF754mfYz40AkZuNwDOoaUIlih3ShHF-bgrhcYibnXxGOv5YrzZxUP0n_ZP_l70a8
CitedBy_id crossref_primary_10_1109_TCYB_2025_3525652
crossref_primary_10_1186_s12984_024_01466_y
crossref_primary_10_3390_s24175631
crossref_primary_10_1016_j_aej_2024_09_116
Cites_doi 10.1109/TBME.2020.2989311
10.1109/LRA.2021.3097272
10.3390/math10224387
10.1109/10.204774
10.1371/journal.pone.0203835
10.1371/journal.pone.0206049
10.1088/1741-2552/aa9666
10.1109/BHI.2018.8333395
10.1109/TNSRE.2019.2896269
10.3934/mbe.2021177
10.1186/s12984-016-0172-3
10.1088/1741-2552/ab0e2e
10.1145/2939672.2939785
10.1038/s41551-016-0025
10.1109/EMBC44109.2020.9176278
10.1109/TBME.2010.2068298
10.1016/j.bspc.2019.101574
10.1016/j.neucom.2021.05.113
10.1016/j.bspc.2022.104088
10.1109/TNSRE.2017.2699598
10.3390/sym12010130
10.1016/j.neucom.2021.10.104
10.1109/TMECH.2020.2999532
10.1007/978-981-99-6480-2_45
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24020660
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1743ba6b7b1b490faefa7851ccc7dadb
PMC11154387
A780927257
38276352
10_3390_s24020660
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51865056
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c537t-46ced30e27dcefbf475032b9d55abda50d6bc75aebabf9e90fe8a1d56d1128023
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:58 EDT 2025
Thu Aug 21 18:33:12 EDT 2025
Thu Jul 10 17:35:57 EDT 2025
Fri Jul 25 04:33:37 EDT 2025
Tue Jun 17 22:23:09 EDT 2025
Tue Jun 10 21:15:19 EDT 2025
Mon Jul 21 06:00:07 EDT 2025
Tue Jul 01 03:50:43 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ensemble learning
LightGBM
XGBoost
hand joint angle
sEMG
CatBoost
stacking
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-46ced30e27dcefbf475032b9d55abda50d6bc75aebabf9e90fe8a1d56d1128023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5798-6526
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24020660
PMID 38276352
PQID 2918798136
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_1743ba6b7b1b490faefa7851ccc7dadb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11154387
proquest_miscellaneous_2919743101
proquest_journals_2918798136
gale_infotracmisc_A780927257
gale_infotracacademiconefile_A780927257
pubmed_primary_38276352
crossref_citationtrail_10_3390_s24020660
crossref_primary_10_3390_s24020660
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bao (ref_20) 2021; 70
Zhang (ref_23) 2022; 484
Ngeo (ref_17) 2014; 11
ref_12
ref_11
Fang (ref_1) 2022; 470
ref_30
ref_16
Fall (ref_3) 2019; 27
Yao (ref_6) 2021; 18
Celadon (ref_18) 2016; 13
ref_25
Ameri (ref_14) 2019; 16
ref_24
ref_22
Nielsen (ref_15) 2011; 58
ref_21
Ma (ref_8) 2021; 6
Xiloyannis (ref_19) 2017; 25
Hudgins (ref_26) 1993; 40
Chen (ref_10) 2020; 67
ref_2
Lin (ref_13) 2018; 15
ref_29
ref_28
ref_27
Zhang (ref_7) 2020; 25
ref_9
ref_5
ref_4
References_xml – volume: 67
  start-page: 3501
  year: 2020
  ident: ref_10
  article-title: Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals
  publication-title: IEEE Trans. Biomed Eng.
  doi: 10.1109/TBME.2020.2989311
– ident: ref_30
– volume: 6
  start-page: 7217
  year: 2021
  ident: ref_8
  article-title: A Bi-Directional LSTM Network for Estimating Continuous Upper Limb Movement From Surface Electromyography
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3097272
– ident: ref_5
  doi: 10.3390/math10224387
– volume: 40
  start-page: 82
  year: 1993
  ident: ref_26
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Bio-Med. Eng.
  doi: 10.1109/10.204774
– ident: ref_12
  doi: 10.1371/journal.pone.0203835
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_20
  article-title: A CNN-LSTM Hybrid Model for Wrist Kinematics Estimation Using Surface Electromyography
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_4
  doi: 10.1371/journal.pone.0206049
– ident: ref_16
– volume: 15
  start-page: 026017
  year: 2018
  ident: ref_13
  article-title: Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9666
– ident: ref_21
  doi: 10.1109/BHI.2018.8333395
– volume: 27
  start-page: 760
  year: 2019
  ident: ref_3
  article-title: Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning
  publication-title: Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896269
– volume: 18
  start-page: 3521
  year: 2021
  ident: ref_6
  article-title: Multi-feature gait recognition with DNN based on sEMG signals. Mathematical Biosciences and Engineering
  publication-title: Math. Biosci. Engineering
  doi: 10.3934/mbe.2021177
– volume: 13
  start-page: 73
  year: 2016
  ident: ref_18
  article-title: Proportional estimation of finger movements from high-density surface electromyography
  publication-title: J. Neuroeng Rehabil
  doi: 10.1186/s12984-016-0172-3
– ident: ref_25
– ident: ref_29
– volume: 16
  start-page: 036015
  year: 2019
  ident: ref_14
  article-title: Regression convolutional neural network for improved simultaneous EMG control
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0e2e
– ident: ref_28
  doi: 10.1145/2939672.2939785
– ident: ref_11
  doi: 10.1038/s41551-016-0025
– volume: 11
  start-page: 1122
  year: 2014
  ident: ref_17
  article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model
  publication-title: IEEE J. Neuroeng. Rehabil.
– ident: ref_22
  doi: 10.1109/EMBC44109.2020.9176278
– volume: 58
  start-page: 681
  year: 2011
  ident: ref_15
  article-title: Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2068298
– ident: ref_2
  doi: 10.1016/j.bspc.2019.101574
– volume: 484
  start-page: 38
  year: 2022
  ident: ref_23
  article-title: Simultaneous estimation of joint angle and interaction force towards sEMG-driven human-robot interaction during constrained tasks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.113
– ident: ref_24
  doi: 10.1016/j.bspc.2022.104088
– volume: 25
  start-page: 1785
  year: 2017
  ident: ref_19
  article-title: Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics
  publication-title: Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2017.2699598
– ident: ref_9
  doi: 10.3390/sym12010130
– volume: 470
  start-page: 89
  year: 2022
  ident: ref_1
  article-title: Modelling EMG driven wrist movements using a bio-inspired neural network (in English)
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.10.104
– volume: 25
  start-page: 1953
  year: 2020
  ident: ref_7
  article-title: Simultaneous and Proportional Estimation of Multijoint Kinematics From EMG Signals for Myocontrol of Robotic Hands
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2020.2999532
– ident: ref_27
  doi: 10.1007/978-981-99-6480-2_45
SSID ssj0023338
Score 2.4352722
Snippet Human–machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve...
Human-machine interface technology is fundamentally constrained by the dexterity of motion decoding. Simultaneous and proportional control can greatly improve...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 660
SubjectTerms Accuracy
Algorithms
Amputation
Artificial Limbs
CatBoost
Deep learning
Discriminant analysis
Electromyography - methods
ensemble learning
Experiments
Hand
hand joint angle
Hand Joints
Hands
Humans
Implants, Artificial
LightGBM
Machine Learning
Movement
Neural networks
Prostheses
Prosthesis
sEMG
Training
XGBoost
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBMoyCAkuESNkzh2jgu0WiqVE5V6izx-lJW2XsRu_z8zSTZsBBIXrvFEsufhmS92vgF4J30MDo3KyV1UXltX5-jLJicQ56MytnaK_3e--NosL-vzK3V10OqL74QN9MCD4k64YkbboEaJdVtEG6LlhvLOOe2tR959KeftwdQItSpCXgOPUEWg_mTLZwjFwEP5O_v0JP1_bsUHuWh-T_Ig8Zw9gPtjxSgWw0wfwp2QHsG9Ax7Bx_DlNG3DDa6DGOlSr8VF3xlaUEkqqMQTTEK1SrcE88VnApycsMQmiqVNXpxvVmknFul6HbZP4PLs9NunZT72SMidqvQurxsXfFWEUtMsI8aazyVLbL1SFr1VhW_QaWUDWoxtIAUGY6VXjadCi8nfnsJR2qTwHIQtIirnQ5DW1FJjS1pGqUm5rglW2gw-7HXXuZFAnPtYrDsCEqzmblJzBm8n0R8Da8bfhD6yASYBJrruH5D5u9H83b_Mn8F7Nl_H4UiTcXb8q4CWxMRW3UKboi01bUwZHM8kKYzcfHjvAN0YxtuubLkZu5FVk8GbaZjf5KtpKZDVWKblMqyQGTwb_GVaUmVKJvwrMzAzT5qteT6SVt97km_JPEmV0S_-h5Zewt2SirHh09ExHO1-3oZXVEzt8HUfN78ABeYgZw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABQXkFSmUQElyixkkcJye09KGlUjlRaW-RX9mutDil2f5_ZhJvdiMQ13gijT0z9jd-fAPwidvGGV2KGN1FxLkyeaxtWsSYxNlGlCo3gt47X_0o5tf55UIswoZbF65VbufEfqK2raE98pO0orrYJc-Kr7e_Y6oaRaeroYTGQ3hE1GV0pUsudglXhvnXwCaUYWp_0tFJQjKwUe7WoJ6q_-8JeW9Fmt6W3Ft-Lp7B04Ab2Www9HN44PwhPNljE3wB3899537ptWOBNHXJrvr60AyBKUOgx4iKauXvMdlnZ5h20rLF2obNlbfssl35DZv55dp1L-H64vzn6TwOlRJiIzK5ifPCOJslLpWoZaObnE4nU11ZIZS2SiS20EYK5bTSTeWqpHGl4lYUFuEWUcC9ggPfevcGmEoaLYx1jqsy51JXCMk0lwgrTOEUVxF82Y5dbQKNOFWzWNeYTtAw1-MwR_BxFL0duDP-JfSNDDAKEN11_6G9W9YhempKm7QqtNRc56i9co2SqJgxRlpldQSfyXw1BSUqY1R4W4BdInqreibLpEolTk8RHE0kMZjMtHnrAHUI5q7euV4EH8Zm-pMuqHmHViOZisBYwiN4PfjL2KWsTIn2L42gnHjSpM_TFr-66am-ObElZaV8-3-93sHjFMHWsDV0BAebu3v3HsHSRh_3EfEHtqcWIg
  priority: 102
  providerName: ProQuest
Title Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles
URI https://www.ncbi.nlm.nih.gov/pubmed/38276352
https://www.proquest.com/docview/2918798136
https://www.proquest.com/docview/2919743101
https://pubmed.ncbi.nlm.nih.gov/PMC11154387
https://doaj.org/article/1743ba6b7b1b490faefa7851ccc7dadb
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9NAEB_OO5DzQfw2epZVBH2J5muzmweRnrbWgx4iFvoW9iu1ULfa9kD_e2fSJDR4vvShOy27szOZ3y-b_AbgZWwrZ7TkIYYLDzNlslDbJA-RxNmKS5UZTu87Ty_zySy7mPP5EbQ9NhsHbq-ldtRParZZvfn96897TPh3xDiRsr_d0gkBlk5k7idYkATl5zTrDhOSFGnYXlSob34KN1OZkCJb0qtKtXj_v5fogxrVf37yoCCN78DtBkmy4X7r78KR8_fg1oG-4H34PPJb90OvHGtkVBdsWneMZghVGUI_RuJUS3-F9J99RCJKhYytKzZR3rKL9dLv2NAvVm77AGbj0bcPk7DpnRAanopdmOXG2TRyicBZVrrK6Lwy0YXlXGmreGRzbQRXTitdFa6IKidVbHluEYCRKNxDOPZr7x4DU1GlubHOxUqid3WBIE3HAoGGyZ2KVQCvW9-VphEWp_4WqxIJBnm87DwewIvO9OdeTeM6o3PagM6ABLDrL9abRdnkU0lESqtcCx3rDGevXKUETswYI6yyOoBXtH0lBQ5OxqjmbQNcEglelUMhoyIReMEK4Kxniell-sNtAJRtdJZJQU3aZZzmATzvhumX9Miad7hrZFMQPIviAB7t46VbUht2AcheJPXW3B_xy--1-HdM-kmpFE_--6dP4TRB5LW_T3QGx7vNlXuGyGmnB3BDzAV-yvGnAZycjy6_fB3UdyEGdcb8BR-IG54
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qygE4IPYaCgwIBBer3sZjHxAKtFXSNj21Um5mNodIwS51IsSf4jfynrfEAnHr1fMszfKW783yPYC3vsmtVgl3UV24G0kducoEsYtJnMl5IiPN6b3z9DweX0YnMz7bgd_dWxi6Vtn5xNpRm1LTHvlBkFJd7MQP409XP1yqGkWnq10JjUYtTu2vn5iyVR8nh7i-74Lg-Ojiy9htqwq4modi5Uaxtib0bCCMtrnKIzrJC1RqOJfKSO6ZWGnBpVVS5alNvdwm0jc8NghNkproAF3-LQy8HlmUmG0SvBDzvYa9KAxT76CikwuvYb_cxLy6NMDfAWArAg5vZ26Fu-P7cK_FqWzUKNYD2LHFQ7i7xV74CCZHRWW_q6VlLUnrnE3retQMgTBDYMmI-mpRrMt1xQ4xzaUwycqcjWVh2Em5KFZsVMyXtnoMlzcyh09gtygLuwdMerni2ljryyTyhUoRAipfIIzRsZW-dOBDN3eZbmnLqXrGMsP0haY566fZgTe96FXD1fEvoc-0AL0A0WvXH8rredZaa0ZpmpKxEspXEfZe2lwK7JjWWhhplAPvafkycgLYGS3btww4JKLTykYi8dJAoDt0YH8gicarh82dAmSt86iyjao78Lpvpj_pQlxhcdVIJiXw5_kOPG30pR9SmAREMxg4kAw0aTDmYUux-FZTi_vEzhQm4tn_-_UKbo8vpmfZ2eT89DncCRDoNdtS-7C7ul7bFwjUVuplbR0Mvt60Of4BPJRVRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQLwxFFgQCC5WvLbXax8QCqRR0tKKA5VyM_tyqBTsUidC_DV-HTO287BA3Hr1jqV9zOObfXwD8IrbwhmdCh_VRfixMrGvbZj4mMTZQqQqNoLeO5-cJpOz-GgmZnvwe_0Whq5Vrn1i46htZWiPfBBmVBc75VEyKLprEZ9H4_cXP3yqIEUnretyGq2KHLtfPzF9q99NR7jWr8NwfPjl48TvKgz4RkRy6ceJcTYKXCitcYUuYjrVC3VmhVDaKhHYRBsplNNKF5nLgsKliluRWIQpaUN6gO7_mowEJxuTs22yF2Hu1zIZRVEWDGo6xQhaJsxt_GvKBPwdDHaiYf-m5k7oG9-GWx1mZcNWye7Anivvws0dJsN7MD0sa_ddLxzrCFvn7KSpTc0QFDMEmYxosM7LVbWq2QhTXgqZrCrYRJWWHVXn5ZINy_nC1ffh7Erm8AHsl1XpHgFTQaGFsc5xlcZc6gzhoOYSIY1JnOLKg7fructNR2FOlTQWOaYyNM35Zpo9eLkRvWh5O_4l9IEWYCNAVNvNh-pynneWm1PKplWipeY6xt4rVyiJHTPGSKus9uANLV9ODgE7Y1T3rgGHRNRa-VCmQRZKdI0eHPQk0ZBNv3mtAHnnSOp8q_YevNg00590Oa50uGokkxEQDLgHD1t92QwpSkOiHAw9SHua1Btzv6U8_9bQjHNiaopS-fj__XoO19EQ80_T0-MncCNEzNfuUB3A_vJy5Z4iZlvqZ41xMPh61db4B-TSWX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning+Method+for+the+Continuous+Decoding+of+Hand+Joint+Angles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Hai&rft.au=Tao%2C+Qing&rft.au=Zhang%2C+Xiaodong&rft.date=2024-01-01&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fs24020660&rft_id=info%3Apmid%2F38276352&rft.externalDocID=38276352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon