Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impac...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 156; no. 1; pp. 144 - 164 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.05.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-lcarboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor responsei (tirl) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive! (ein!) and ethylene resistantl (etrl) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra!, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, mybll mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testai (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport. |
---|---|
AbstractList | Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport. Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis ( Arabidopsis thaliana ) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 ( tir1 ) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 ( ein2 ) and ethylene resistant1 ( etr1 ) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12 , Transparent Testa Glabra1 , and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 ( tt4 ), which makes no flavonols, and tt7 , which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport. Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-lcarboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor responsei (tirl) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive! (ein!) and ethylene resistantl (etrl) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra!, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, mybll mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testai (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport. Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport. |
Author | Ramirez, Melissa V. Ray, W. Keith Muday, Gloria K. Winkel, Brenda S.J. Vallabhaneni, Prashanthi Lewis, Daniel R. Helm, Richard F. Miller, Nathan D. |
AuthorAffiliation | Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109 (D.R.L., G.K.M.); Department of Biological Sciences (M.V.R., P.V., B.S.J.W.) and Department of Biochemistry (W.K.R., R.F.H.), Virginia Tech, Blacksburg, Virginia 24061; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (N.D.M.) |
AuthorAffiliation_xml | – name: Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109 (D.R.L., G.K.M.); Department of Biological Sciences (M.V.R., P.V., B.S.J.W.) and Department of Biochemistry (W.K.R., R.F.H.), Virginia Tech, Blacksburg, Virginia 24061; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (N.D.M.) |
Author_xml | – sequence: 1 givenname: Daniel R. surname: Lewis fullname: Lewis, Daniel R. – sequence: 2 givenname: Melissa V. surname: Ramirez fullname: Ramirez, Melissa V. – sequence: 3 givenname: Nathan D. surname: Miller fullname: Miller, Nathan D. – sequence: 4 givenname: Prashanthi surname: Vallabhaneni fullname: Vallabhaneni, Prashanthi – sequence: 5 givenname: W. Keith surname: Ray fullname: Ray, W. Keith – sequence: 6 givenname: Richard F. surname: Helm fullname: Helm, Richard F. – sequence: 7 givenname: Brenda S.J. surname: Winkel fullname: Winkel, Brenda S.J. – sequence: 8 givenname: Gloria K. surname: Muday fullname: Muday, Gloria K. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24132667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21427279$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kr1vFDEQxS2UiFwCJSVomwiaDR7bu2s3SKeQLymCgjRUltfryzn47MX2JuS_x8ddEkCC6lma3zzNPM8-2vHBG4ReAT4CwOz9OBaFI-hIg8kzNIOGkpo0jO-gGcbljTkXe2g_pRuMMVBgz9EeAUY60okZ-jqfflhfKT9UJ3l574w31YUfJm2qU6dugw-umms9rSansg2-yssYputl9dGmbL3O1VVUPulox3VZueqTyXchfksv0O5CuWRebvUAfTk9uTo-ry8_n10czy9r3dAu16QbuOFYddBTzfUwCIOZAdEzThTRSmhgnW57w1o29MxQ2jAKWjDCCBX0AH3YuI5TvzKDNj5H5eQY7UrFexmUlX9WvF3K63ArKRYlvq4YvN0axPB9MinLlU3aOKe8CVOSvG2Ac8JxId_9lwRW8iUt5m1B3_w-1eM4D7kX4HALqKSVW5QMtU1PHANK2nY9Hd1wOoaUollIbfOvjyjLWCcBy_UVyHEsCnJzBaWr_qvrwfhf_OsNf5NyiI8wA0ZZwwX9CQoTvaM |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_3390_agronomy13112782 crossref_primary_10_1093_jxb_ers267 crossref_primary_10_3390_ijms25105546 crossref_primary_10_1093_jxb_erac050 crossref_primary_10_1093_treephys_tpab102 crossref_primary_10_1016_j_hpj_2023_07_004 crossref_primary_10_1071_FP11193 crossref_primary_10_1016_j_phytochem_2012_08_007 crossref_primary_10_1126_sciadv_adq5820 crossref_primary_10_1038_s41438_020_0238_z crossref_primary_10_1111_jipb_12204 crossref_primary_10_1016_j_plaphy_2020_03_008 crossref_primary_10_1111_nph_20195 crossref_primary_10_3390_plants10061046 crossref_primary_10_1007_s00344_011_9248_2 crossref_primary_10_1186_1471_2229_14_185 crossref_primary_10_1016_j_plaphy_2021_05_023 crossref_primary_10_1134_S1990519X22030026 crossref_primary_10_1074_jbc_RA120_014543 crossref_primary_10_1016_j_envexpbot_2024_106080 crossref_primary_10_1186_s12864_023_09732_4 crossref_primary_10_1016_j_cj_2019_11_006 crossref_primary_10_1111_ppl_13722 crossref_primary_10_1093_hr_uhae043 crossref_primary_10_1007_s00344_012_9315_3 crossref_primary_10_1111_j_1438_8677_2012_00572_x crossref_primary_10_1038_s41598_023_28252_5 crossref_primary_10_1007_s11829_012_9210_7 crossref_primary_10_3390_proteomes5030016 crossref_primary_10_1016_j_plaphy_2020_03_016 crossref_primary_10_3390_agronomy13061449 crossref_primary_10_3389_fpls_2018_01042 crossref_primary_10_1186_s12870_020_02692_x crossref_primary_10_1105_tpc_111_092973 crossref_primary_10_1186_s12870_016_0939_5 crossref_primary_10_3390_plants14010031 crossref_primary_10_1104_pp_112_198069 crossref_primary_10_1016_j_stress_2025_100738 crossref_primary_10_1111_nph_12558 crossref_primary_10_1016_j_plantsci_2018_12_010 crossref_primary_10_1007_s13659_023_00409_9 crossref_primary_10_1016_j_indcrop_2022_115295 crossref_primary_10_1038_s41438_021_00609_9 crossref_primary_10_1111_tpj_12140 crossref_primary_10_3389_fpls_2025_1533263 crossref_primary_10_15446_agron_colomb_v35n1_61796 crossref_primary_10_1093_jxb_erae005 crossref_primary_10_1093_plcell_koae222 crossref_primary_10_15407_microbiolj83_04_063 crossref_primary_10_3390_ijms160819195 crossref_primary_10_3390_plants10091934 crossref_primary_10_1093_jxb_eraa204 crossref_primary_10_1111_nph_16104 crossref_primary_10_1111_tpj_16752 crossref_primary_10_1016_j_tplants_2013_07_006 crossref_primary_10_1093_jxb_erad391 crossref_primary_10_3390_ijms23042033 crossref_primary_10_3389_fpls_2017_02129 crossref_primary_10_1016_j_bbrc_2013_04_022 crossref_primary_10_1007_s00299_015_1803_z crossref_primary_10_1104_pp_112_201921 crossref_primary_10_3389_fpls_2018_00618 crossref_primary_10_1016_j_scitotenv_2024_172693 crossref_primary_10_1134_S1021443724604208 crossref_primary_10_1016_j_plantsci_2020_110545 crossref_primary_10_1074_jbc_M115_701565 crossref_primary_10_1016_j_plaphy_2015_11_023 crossref_primary_10_1111_jipb_13054 crossref_primary_10_3389_fpls_2024_1425154 crossref_primary_10_1007_s11105_014_0826_x crossref_primary_10_1016_j_molp_2016_10_019 crossref_primary_10_3390_ijms231810548 crossref_primary_10_1371_journal_pone_0093371 crossref_primary_10_1016_j_jplph_2012_12_009 crossref_primary_10_1007_s11816_019_00579_4 crossref_primary_10_3390_biology10050410 crossref_primary_10_1016_j_jplph_2020_153328 crossref_primary_10_1186_s43088_023_00387_4 crossref_primary_10_1111_nph_17139 crossref_primary_10_1007_s00344_023_11011_1 crossref_primary_10_1016_j_hpj_2023_02_002 crossref_primary_10_1093_hr_uhab018 crossref_primary_10_1016_j_ymben_2024_08_004 crossref_primary_10_3390_ijms222312630 crossref_primary_10_1007_s12298_024_01441_w crossref_primary_10_1021_acs_chemrestox_9b00028 crossref_primary_10_1021_acs_jafc_5b02994 crossref_primary_10_1186_1471_2229_12_112 crossref_primary_10_1016_j_fcr_2011_12_006 crossref_primary_10_1016_j_molp_2020_02_015 crossref_primary_10_1093_bbb_zbaa005 crossref_primary_10_3390_plants13233279 crossref_primary_10_5511_plantbiotechnology_15_0116a crossref_primary_10_1007_s00299_023_02991_1 crossref_primary_10_1007_s11295_016_1003_1 crossref_primary_10_1111_tpj_12348 crossref_primary_10_1242_dev_185819 crossref_primary_10_1016_j_plaphy_2024_108698 crossref_primary_10_1016_j_plantsci_2013_02_001 crossref_primary_10_3390_molecules24061128 crossref_primary_10_1111_jipb_13627 crossref_primary_10_1016_j_scienta_2024_113769 crossref_primary_10_3390_genes10030213 crossref_primary_10_1111_pce_13409 crossref_primary_10_1105_tpc_113_114868 crossref_primary_10_1016_j_jinsphys_2015_12_009 crossref_primary_10_1016_j_scienta_2023_112374 crossref_primary_10_1093_hr_uhad095 crossref_primary_10_3389_fphys_2016_00217 crossref_primary_10_1016_j_jhazmat_2023_132710 crossref_primary_10_1186_s12870_024_04949_1 crossref_primary_10_1007_s11738_021_03271_9 crossref_primary_10_1007_s00425_017_2651_6 crossref_primary_10_1016_j_ijbiomac_2020_10_184 crossref_primary_10_3389_fpls_2022_876843 crossref_primary_10_1016_j_envpol_2022_119063 crossref_primary_10_1111_nph_70051 crossref_primary_10_3390_ijms19092506 crossref_primary_10_1038_s41438_020_0244_1 crossref_primary_10_1186_s12870_016_0721_8 crossref_primary_10_3389_fpls_2018_00567 crossref_primary_10_2503_hortj_UTD_045 crossref_primary_10_1111_tpj_13413 crossref_primary_10_1093_jxb_erad308 crossref_primary_10_1186_1471_2164_14_727 crossref_primary_10_3390_plants9080931 crossref_primary_10_1038_srep24485 crossref_primary_10_1038_s41598_019_57161_9 crossref_primary_10_1073_pnas_1809037116 crossref_primary_10_3389_fpls_2022_821563 crossref_primary_10_1093_jxb_erx323 crossref_primary_10_5511_plantbiotechnology_16_1215a crossref_primary_10_3390_plants11212938 crossref_primary_10_1007_s11540_022_09577_6 crossref_primary_10_1111_tpj_15718 crossref_primary_10_3390_plants13121644 crossref_primary_10_1021_acs_jproteome_8b00578 crossref_primary_10_1134_S1062360417020059 crossref_primary_10_1007_s11295_018_1247_z crossref_primary_10_1093_aobpla_plaa071 crossref_primary_10_1007_s11240_012_0265_z crossref_primary_10_3389_fpls_2019_01094 crossref_primary_10_1016_j_plaphy_2024_108773 crossref_primary_10_1186_s12870_019_1947_z crossref_primary_10_4028_www_scientific_net_AMM_891_9 crossref_primary_10_1007_s00468_016_1393_6 crossref_primary_10_1007_s00299_012_1382_1 crossref_primary_10_1016_j_hpj_2022_03_006 crossref_primary_10_1088_1742_6596_1524_1_012054 crossref_primary_10_3389_fpls_2020_00426 crossref_primary_10_3390_horticulturae11020215 crossref_primary_10_3389_fpls_2014_00556 crossref_primary_10_1007_s00425_022_03936_w crossref_primary_10_1093_jxb_erv243 crossref_primary_10_1016_j_scienta_2024_113168 crossref_primary_10_31857_S0015330324030074 crossref_primary_10_1016_j_plaphy_2022_06_021 crossref_primary_10_1016_j_envexpbot_2015_05_004 crossref_primary_10_1016_j_plaphy_2023_107835 crossref_primary_10_1016_j_plaphy_2016_03_010 crossref_primary_10_1371_journal_pone_0074646 crossref_primary_10_1093_pcp_pcab149 crossref_primary_10_1016_j_envexpbot_2022_104840 crossref_primary_10_1016_j_phytochem_2011_09_013 crossref_primary_10_3389_fpls_2022_1022961 crossref_primary_10_1016_j_molp_2018_12_021 crossref_primary_10_1080_07391102_2021_2011785 crossref_primary_10_3390_horticulturae10111229 crossref_primary_10_1093_jxb_erx475 crossref_primary_10_1093_plphys_kiad596 crossref_primary_10_3390_molecules26195836 crossref_primary_10_1093_jxb_erab284 crossref_primary_10_3390_plants12030517 crossref_primary_10_1093_jb_mvt102 crossref_primary_10_15832_ankutbd_731776 crossref_primary_10_3389_fpls_2023_1125194 crossref_primary_10_1039_D0RA10373J crossref_primary_10_3390_jof9111114 crossref_primary_10_1073_pnas_1811492115 crossref_primary_10_1111_nph_18758 crossref_primary_10_3389_fnut_2024_1434170 crossref_primary_10_1016_j_pbi_2023_102350 crossref_primary_10_1093_mp_sst161 crossref_primary_10_1016_j_plantsci_2022_111196 crossref_primary_10_1007_s00425_013_1883_3 crossref_primary_10_1093_jxb_erab156 crossref_primary_10_1093_jxb_erac249 crossref_primary_10_1186_1756_0500_5_485 crossref_primary_10_1007_s11103_013_0099_z crossref_primary_10_3389_fpls_2016_00613 crossref_primary_10_3389_fpls_2023_1116863 crossref_primary_10_3390_plants11020172 crossref_primary_10_1016_j_jhazmat_2021_127875 crossref_primary_10_1007_s11103_015_0303_4 crossref_primary_10_3389_fpls_2018_01570 crossref_primary_10_1016_j_plaphy_2020_02_010 crossref_primary_10_1186_s12864_017_4209_1 crossref_primary_10_3389_fpls_2023_1220732 crossref_primary_10_1016_j_plaphy_2019_11_033 crossref_primary_10_1088_1742_6596_1567_3_032055 crossref_primary_10_1534_g3_119_400909 crossref_primary_10_3389_fpls_2021_706667 crossref_primary_10_1007_s11240_013_0367_2 crossref_primary_10_1007_s12217_012_9322_9 crossref_primary_10_1073_pnas_1121134109 crossref_primary_10_3390_f13071094 crossref_primary_10_1080_15592324_2016_1139278 crossref_primary_10_1093_jxb_erz510 crossref_primary_10_3389_fpls_2014_00620 crossref_primary_10_1016_j_envpol_2023_122578 crossref_primary_10_1016_j_jia_2023_11_002 crossref_primary_10_1007_s00425_018_3019_2 crossref_primary_10_1111_nph_19382 crossref_primary_10_1186_s40538_022_00295_2 crossref_primary_10_21769_BioProtoc_3781 crossref_primary_10_3390_ijms18122736 crossref_primary_10_1186_s40529_018_0226_x crossref_primary_10_1111_j_1438_8677_2012_00609_x crossref_primary_10_4161_psb_25033 crossref_primary_10_1038_s41438_021_00478_2 crossref_primary_10_3389_fpls_2018_01235 crossref_primary_10_1016_j_foodchem_2024_139183 crossref_primary_10_1016_j_jplph_2013_06_010 crossref_primary_10_3389_fgene_2021_737293 crossref_primary_10_1016_j_tplants_2012_02_001 crossref_primary_10_1093_pcp_pcu172 crossref_primary_10_3390_agronomy13061489 crossref_primary_10_1016_j_plaphy_2024_109027 crossref_primary_10_1371_journal_pone_0260468 crossref_primary_10_1093_jxb_eru198 crossref_primary_10_1111_tpj_16312 crossref_primary_10_3390_ijms20030603 crossref_primary_10_3732_ajb_1200436 crossref_primary_10_1016_j_tplants_2020_01_001 crossref_primary_10_3390_plants11192623 crossref_primary_10_1021_acs_est_2c09352 crossref_primary_10_1038_srep12412 crossref_primary_10_1093_hr_uhac049 crossref_primary_10_1016_j_heliyon_2024_e35966 crossref_primary_10_1016_j_phytochem_2021_112702 |
Cites_doi | 10.1021/jf903619v 10.1105/tpc.107.052126 10.1016/j.pbi.2009.07.009 10.1046/j.1365-313x.1998.00343.x 10.1104/pp.106.083212 10.1016/0092-8674(93)90119-B 10.1046/j.1365-313X.1995.08050659.x 10.1101/gad.12.2.198 10.1074/jbc.M710122200 10.1126/science.284.5423.2148 10.1126/science.8211181 10.1111/j.1365-313X.2008.03528.x 10.1111/j.1744-7909.2010.00905.x 10.1105/tpc.021501 10.1104/pp.126.2.485 10.1105/tpc.107.053249 10.1007/s00425-009-0978-3 10.1371/journal.pgen.0020202 10.1073/pnas.0404312101 10.1104/pp.103.022582 10.1093/nar/29.9.e45 10.1016/S1369-5266(00)00136-9 10.1023/A:1005921914384 10.1104/pp.126.3.1105 10.1111/j.1365-313X.2009.04027.x 10.1023/B:PLAN.0000009270.81977.ef 10.1016/S0022-1759(03)00223-0 10.1371/journal.pbio.0040143 10.1104/pp.104.058032 10.1073/pnas.95.25.15112 10.1002/bies.20199 10.1105/tpc.12.12.2383 10.1104/pp.107.101824 10.1016/j.tplants.2009.05.002 10.1111/j.1365-313X.2004.02089.x 10.1093/nar/19.6.1349 10.1073/pnas.96.10.5844 10.1104/pp.103.022665 10.1104/pp.108.117754 10.1093/mp/ssm021 10.1104/pp.121.1.291 10.1111/j.1365-313X.2007.03373.x 10.1104/pp.105.075671 10.1093/nar/gkn764 10.4161/psb.3.6.5440 10.1016/j.tplants.2005.03.002 10.1016/S0378-1119(98)00433-8 10.1007/s11103-007-9147-x 10.1126/science.241.4863.346 10.1016/S1369-5266(00)00096-0 10.1105/tpc.105.035493 10.1146/annurev-genet-102108-134148 10.1126/science.241.4869.1086 10.1046/j.1365-313X.1998.00090.x 10.1007/s004250000300 10.1074/jbc.M413506200 10.1016/j.jplph.2007.06.010 10.1371/journal.pbio.0060307 10.1104/pp.126.2.524 10.1104/pp.116.2.455 10.1109/TSMC.1979.4310076 10.1105/tpc.107.050963 10.1111/j.1365-313X.2005.02371.x 10.1111/j.1469-8137.2010.03421.x 10.1016/S1369-5266(02)00256-X 10.1126/science.1146265 10.1105/tpc.107.052100 10.1016/j.cell.2011.02.015 10.1111/j.1365-313X.2004.02052.x 10.1038/nature03542 10.1111/j.1365-313X.2007.03078.x 10.1105/tpc.107.052068 10.1016/S0378-1119(00)00304-8 10.1093/mp/ssp106 10.1016/j.cub.2006.01.058 10.1111/j.1365-313X.2004.02061.x 10.1007/s00425-005-0197-5 10.1111/j.1365-313X.2008.03495.x 10.1111/j.1365-313X.2005.02519.x 10.1515/BC.2000.095 10.1105/tpc.108.058040 10.1023/A:1005846620791 10.1038/nature03543 10.1016/j.pbi.2008.06.011 10.1093/pcp/pce035 10.1146/annurev.arplant.54.031902.134938 10.1111/j.1751-1097.1997.tb01923.x 10.1104/pp.126.2.536 10.1104/pp.111.1.339 10.1104/pp.125.2.1061 10.1046/j.1365-313X.2003.01620.x 10.1093/jxb/ern323 10.1105/tpc.020313 10.2307/3869583 10.1038/nprot.2009.1 10.1016/j.tplants.2005.01.008 10.1046/j.1365-313x.2001.01073.x 10.1111/j.1365-313X.2004.02138.x 10.1038/ng1348 |
ContentType | Journal Article |
Copyright | 2011 American Society of Plant Biologists 2015 INIST-CNRS 2011 American Society of Plant Biologists 2011 |
Copyright_xml | – notice: 2011 American Society of Plant Biologists – notice: 2015 INIST-CNRS – notice: 2011 American Society of Plant Biologists 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.111.172502 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 164 |
ExternalDocumentID | PMC3091047 21427279 24132667 10_1104_pp_111_172502 41434589 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AEUYN AFAZZ AFFZL AFGWE AFKRA AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2O M2P M2Q M7P MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TN5 TR2 UKHRP W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM AAYXX CITATION 53G AAWDT AAYJJ ABIME ABPIB ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC AFFDN AFYAG AGMDO AHGBF AIDAL AIDBO AJDVS ANFBD APJGH AQDSO AS~ C1A IQODW LU7 MVM P0- PJZUB PPXIY PQGLB QZG TCN UBC UKR WHG XOL Y6R ZCG 3V. 88A ADYWZ CGR CUY CVF DOOOF ECM EIF ISR JSODD M0L NPM RHF RPM VQA VXZ 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c537t-27d8e80a71b3c8cdd9e04e19b482a2ca9c147c6be464db4e335431c94242393 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:42:46 EDT 2025 Thu Jul 10 20:31:34 EDT 2025 Fri Jul 11 10:02:39 EDT 2025 Wed Feb 19 01:53:30 EST 2025 Mon Jul 21 09:15:34 EDT 2025 Tue Jul 01 03:07:49 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Fri Jun 20 02:18:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Auxin Transcription Plant physiology Flavone(3-hydroxy) Ethylene Network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c537t-27d8e80a71b3c8cdd9e04e19b482a2ca9c147c6be464db4e335431c94242393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. Present address: Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523. The online version of this article contains Web-only data. www.plantphysiol.org/cgi/doi/10.1104/pp.111.172502 This work was supported by the National Science Foundation Arabidopsis 2010 Program (grant nos. IOB–0820717 to G.K.M. and 0820674 to B.S.J.W. and R.F.H.) and National Science Foundation Molecular Biochemistry (grant no. MCB–0445878 to B.S.J.W.), by the U.S. Department of Agriculture-National Research Initiative Competitive Grants Program (grant no. 2006–03406 to G.K.M.), by the National Science Foundation Major Research Instrumentation Program for purchase of the confocal microscope (grant no. MRI–0722926 to Anita McCauley and G.K.M.), and by the National Science Foundation Plant Genome Program (grant no. DBI–0621702 to Edgar Spalding). The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) are: Brenda S.J. Winkel (winkel@vt.edu) and Gloria K. Muday (muday@wfu.edu). Open Access articles can be viewed online without a subscription. |
OpenAccessLink | http://www.plantphysiol.org/content/plantphysiol/156/1/144.full.pdf |
PMID | 21427279 |
PQID | 1400126086 |
PQPubID | 24069 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3091047 proquest_miscellaneous_865188280 proquest_miscellaneous_1400126086 pubmed_primary_21427279 pascalfrancis_primary_24132667 crossref_citationtrail_10_1104_pp_111_172502 crossref_primary_10_1104_pp_111_172502 jstor_primary_41434589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-01 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2011 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Kendrick (2021041906353800400_b45) 2008; 11 Li (2021041906353800400_b53) 1993; 5 Swarup (2021041906353800400_b93) 2007; 19 Jensen (2021041906353800400_b43) 1998; 116 Bieza (2021041906353800400_b9) 2001; 126 Buer (2021041906353800400_b19) 2007; 145 Kepinski (2021041906353800400_b46) 2005; 435 Stracke (2021041906353800400_b90) 2010; 33 Baudry (2021041906353800400_b5) 2004; 39 Buer (2021041906353800400_b20) 2008; 3 Feyissa (2021041906353800400_b33) 2009; 230 Vandenbussche (2021041906353800400_b99) 2003; 133 Winkel-Shirley (2021041906353800400_b105) 2002; 5 Alonso (2021041906353800400_b1) 1999; 284 Otsu (2021041906353800400_b63) 1979; 9 Borevitz (2021041906353800400_b12) 2000; 12 Routaboul (2021041906353800400_b74) 2006; 224 Whelan (2021041906353800400_b103) 2003; 278 Vandenbussche (2021041906353800400_b98) 2005; 27 Muday (2021041906353800400_b56) 2006; 141 Chen (2021041906353800400_b27) 1998; 95 Brown (2021041906353800400_b15) 2001; 126 Bharti (2021041906353800400_b8) 1997; 65 Yonekura-Sakakibara (2021041906353800400_b106) 2008; 20 Berleth (2021041906353800400_b7) 2001; 4 Chapman (2021041906353800400_b25) 2009; 43 Lewis (2021041906353800400_b52) 2009; 4 Peer (2021041906353800400_b66) 2001; 126 Redman (2021041906353800400_b72) 2004; 38 Rahman (2021041906353800400_b70) 2001; 42 Geisler (2021041906353800400_b35) 2005; 44 Bleecker (2021041906353800400_b10) 1988; 241 Péret (2021041906353800400_b68) 2009; 14 Kieber (2021041906353800400_b47) 1993; 72 Ringli (2021041906353800400_b73) 2008; 20 Negi (2021041906353800400_b60) 2010; 61 Stepanova (2021041906353800400_b88) 2000; 3 Yosef (2021041906353800400_b107) 2011; 144 Chang (2021041906353800400_b24) 1993; 262 Paponov (2021041906353800400_b64) 2008; 1 Cominelli (2021041906353800400_b30) 2008; 165 Sheahan (2021041906353800400_b83) 1992; 13 Stepanova (2021041906353800400_b87) 2009; 12 Ohme-Takagi (2021041906353800400_b62) 1995; 7 Hartmann (2021041906353800400_b38) 1998; 36 Clough (2021041906353800400_b28) 1998; 16 Negi (2021041906353800400_b59) 2008; 55 Hall (2021041906353800400_b37) 1999; 121 Ulmasov (2021041906353800400_b97) 1987; 9 Winkel-Shirley (2021041906353800400_b104) 2001; 126 Murphy (2021041906353800400_b58) 2000; 211 Tohge (2021041906353800400_b94) 2005; 42 Huang (2021041906353800400_b40) 2003; 33 Santelia (2021041906353800400_b78) 2008; 283 Růzicka (2021041906353800400_b77) 2007; 19 Chen (2021041906353800400_b26) 1994; 16 Stepanova (2021041906353800400_b89) 2007; 19 von Arnim (2021041906353800400_b102) 1998; 221 Cluis (2021041906353800400_b29) 2004; 38 Rozen (2021041906353800400_b75) 2000; 132 Vogt (2021041906353800400_b101) 2010; 3 Vanneste (2021041906353800400_b100) 2005; 17 Laskowski (2021041906353800400_b50) 2008; 6 Sibout (2021041906353800400_b86) 2006; 2 Barrett (2021041906353800400_b4) 2009; 37 Dharmasiri (2021041906353800400_b31) 2005; 435 Larsen (2021041906353800400_b49) 2001; 125 Stracke (2021041906353800400_b91) 2007; 50 Böttcher (2021041906353800400_b13) 2008; 147 Shirley (2021041906353800400_b85) 1995; 8 Mathesius (2021041906353800400_b54) 1998; 14 Ulmasov (2021041906353800400_b95) 1999; 96 Neu (2021041906353800400_b61) 1956; 151 Bennett (2021041906353800400_b6) 2006; 16 Burbulis (2021041906353800400_b22) 1996; 8 Hemm (2021041906353800400_b39) 2004; 38 Rashotte (2021041906353800400_b71) 2003; 133 Brady (2021041906353800400_b14) 2007; 318 Auger (2021041906353800400_b3) 2010; 58 Peer (2021041906353800400_b65) 2004; 16 Armstrong (2021041906353800400_b2) 2004; 101 Gonzalez (2021041906353800400_b36) 2008; 53 Ruegger (2021041906353800400_b76) 1998; 12 Cain (2021041906353800400_b23) 1997; 35 Saslowsky (2021041906353800400_b80) 2000; 255 Ulmasov (2021041906353800400_b96) 1995; 7 Koes (2021041906353800400_b48) 2005; 10 Buer (2021041906353800400_b18) 2004; 16 Ivanchenko (2021041906353800400_b41) 2008; 55 Muday (2021041906353800400_b57) 2006 Buer (2021041906353800400_b16) 2009; 60 Schoenbohm (2021041906353800400_b82) 2000; 381 Pfaffl (2021041906353800400_b69) 2001; 29 Levesque (2021041906353800400_b51) 2006; 4 Jacobs (2021041906353800400_b42) 1988; 241 Shin (2021041906353800400_b84) 2007; 19 Boerjan (2021041906353800400_b11) 2003; 54 Frazzon (2021041906353800400_b34) 2007; 64 Saslowsky (2021041906353800400_b81) 2005; 280 Buer (2021041906353800400_b21) 2006; 140 Zaslaver (2021041906353800400_b108) 2004; 36 Buer (2021041906353800400_b17) 2010; 52 Zhong (2021041906353800400_b109) 2003; 53 Pelletier (2021041906353800400_b67) 1996; 111 Saslowsky (2021041906353800400_b79) 2001; 27 Edwards (2021041906353800400_b32) 1991; 19 Karimi (2021041906353800400_b44) 2005; 10 Stracke (2021041906353800400_b92) 2010; 188 Mehrtens (2021041906353800400_b55) 2005; 138 17121469 - PLoS Genet. 2006 Nov 24;2(11):e202 18552234 - Plant Physiol. 2008 Aug;147(4):2107-20 16546078 - Curr Biol. 2006 Mar 21;16(6):553-63 16489132 - Plant Physiol. 2006 Apr;140(4):1384-96 11030432 - Biol Chem. 2000 Aug;381(8):749-53 15494052 - Plant J. 1998 Apr;14(1):23-34 16212599 - Plant J. 2005 Oct;44(2):179-94 15882656 - Trends Plant Sci. 2005 May;10(5):236-42 9436980 - Genes Dev. 1998 Jan 15;12(2):198-207 17747490 - Science. 1988 Aug 26;241(4869):1086-9 10069079 - Plant J. 1998 Dec;16(6):735-43 15208397 - Plant Cell. 2004 Jul;16(7):1898-911 8024787 - Biotechniques. 1994 Apr;16(4):664-8, 670 11457961 - Plant Physiol. 2001 Jul;126(3):1105-15 18435826 - Plant J. 2008 Jul;55(2):335-47 12957413 - J Immunol Methods. 2003 Jul;278(1-2):261-9 19090618 - PLoS Biol. 2008 Dec 16;6(12):e307 19895401 - Plant Cell Environ. 2010 Jan;33(1):88-103 11024274 - Gene. 2000 Sep 19;255(2):127-38 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 19129166 - J Exp Bot. 2009;60(3):751-63 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55 1282347 - Biotechniques. 1992 Dec;13(6):880-3 12271060 - Plant Cell. 1993 Feb;5(2):171-179 14756311 - Plant Mol Biol. 2003 Sep;53(1-2):117-31 17630276 - Plant Cell. 2007 Jul;19(7):2169-85 11489181 - Plant J. 2001 Jul;27(1):37-48 18567791 - Plant Cell. 2008 Jun;20(6):1470-81 19825543 - Mol Plant. 2008 Mar;1(2):321-37 17419845 - Plant J. 2007 May;50(4):660-77 15807784 - Plant J. 2005 Apr;42(2):218-35 19282849 - Nat Protoc. 2009;4(4):437-51 15086809 - Plant J. 2004 May;38(3):545-61 15100399 - Plant Cell. 2004 May;16(5):1191-205 12535337 - Plant J. 2003 Jan;33(2):221-33 18363780 - Plant J. 2008 Jul;55(2):175-87 15466695 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14978-83 11402184 - Plant Physiol. 2001 Jun;126(2):524-35 15923334 - Plant Physiol. 2005 Jun;138(2):1083-96 18718912 - J Biol Chem. 2008 Nov 7;283(45):31218-26 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85 17734864 - Science. 1988 Jul 15;241(4863):346-9 10547847 - Methods Mol Biol. 2000;132:365-86 10381874 - Science. 1999 Jun 25;284(5423):2148-52 15817473 - J Biol Chem. 2005 Jun 24;280(25):23735-40 17675404 - Plant Cell. 2007 Aug;19(8):2440-53 20731781 - New Phytol. 2010 Dec;188(4):985-1000 17417719 - Plant Mol Biol. 2007 Jun;64(3):225-40 15749466 - Trends Plant Sci. 2005 Mar;10(3):103-5 18036197 - Plant J. 2008 Mar;53(5):814-27 20035037 - Mol Plant. 2010 Jan;3(1):2-20 18757557 - Plant Cell. 2008 Aug;20(8):2160-76 8528278 - Plant J. 1995 Nov;8(5):659-71 7756828 - Plant Cell. 1995 Feb;7(2):173-82 11148285 - Plant Cell. 2000 Dec;12(12):2383-2394 9852947 - Gene. 1998 Oct 9;221(1):35-43 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73 15144378 - Plant J. 2004 Jun;38(5):765-78 17630275 - Plant Cell. 2007 Jul;19(7):2186-96 20074144 - J Integr Plant Biol. 2010 Jan;52(1):98-111 17630274 - Plant Cell. 2007 Jul;19(7):2197-212 15078335 - Plant J. 2004 Apr;38(2):332-47 14526119 - Plant Physiol. 2003 Oct;133(2):761-72 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 11266581 - Plant Cell Physiol. 2001 Mar;42(3):301-7 19621239 - Planta. 2009 Sep;230(4):747-54 8211181 - Science. 1993 Oct 22;262(5133):539-44 9349261 - Plant Mol Biol. 1997 Oct;35(3):377-81 11402185 - Plant Physiol. 2001 Jun;126(2):536-48 11019801 - Curr Opin Plant Biol. 2000 Oct;3(5):353-60 2030957 - Nucleic Acids Res. 1991 Mar 25;19(6):1349 9844024 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112-7 10318972 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9 16395586 - Planta. 2006 Jun;224(1):96-107 10987549 - Planta. 2000 Aug;211(3):315-24 14503002 - Annu Rev Plant Biol. 2003;54:519-46 9401121 - Plant Cell. 1997 Nov;9(11):1963-71 8431946 - Cell. 1993 Feb 12;72(3):427-41 16640459 - PLoS Biol. 2006 May;4(5):e143 15255866 - Plant J. 2004 Aug;39(3):366-80 21414481 - Cell. 2011 Mar 18;144(6):886-96 16243906 - Plant Cell. 2005 Nov;17(11):3035-50 19704584 - Plant Signal Behav. 2008 Jun;3(6):415-7 20429588 - J Agric Food Chem. 2010 May 26;58(10):6246-56 8672888 - Plant Cell. 1996 Jun;8(6):1013-25 15714558 - Bioessays. 2005 Mar;27(3):275-84 10482685 - Plant Physiol. 1999 Sep;121(1):291-300 17975066 - Science. 2007 Nov 2;318(5851):801-6 9526507 - Plant Mol Biol. 1998 Mar;36(5):741-54 11402179 - Plant Physiol. 2001 Jun;126(2):485-93 8685272 - Plant Physiol. 1996 May;111(1):339-45 17720762 - Plant Physiol. 2007 Oct;145(2):478-90 17766004 - J Plant Physiol. 2008 May 26;165(8):886-94 11163169 - Curr Opin Plant Biol. 2001 Feb;4(1):57-62 11960739 - Curr Opin Plant Biol. 2002 Jun;5(3):218-23 19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408 15107854 - Nat Genet. 2004 May;36(5):486-91 15917797 - Nature. 2005 May 26;435(7041):441-5 7580254 - Plant Cell. 1995 Oct;7(10):1611-23 9155253 - Photochem Photobiol. 1997 May;65(5):765-76 12972669 - Plant Physiol. 2003 Oct;133(2):517-27 16798939 - Plant Physiol. 2006 Aug;141(4):1617-29 15917798 - Nature. 2005 May 26;435(7041):446-51 19793078 - Plant J. 2010 Jan;61(1):3-15 9489005 - Plant Physiol. 1998 Feb;116(2):455-62 19686081 - Annu Rev Genet. 2009;43:265-85 |
References_xml | – volume: 58 start-page: 6246 year: 2010 ident: 2021041906353800400_b3 article-title: A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L publication-title: J Agric Food Chem doi: 10.1021/jf903619v – volume: 19 start-page: 2197 year: 2007 ident: 2021041906353800400_b77 article-title: Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution publication-title: Plant Cell doi: 10.1105/tpc.107.052126 – volume: 12 start-page: 548 year: 2009 ident: 2021041906353800400_b87 article-title: Ethylene signaling and response: where different regulatory modules meet publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.07.009 – volume: 16 start-page: 735 year: 1998 ident: 2021041906353800400_b28 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: Plant J doi: 10.1046/j.1365-313x.1998.00343.x – volume: 141 start-page: 1617 year: 2006 ident: 2021041906353800400_b56 article-title: RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling publication-title: Plant Physiol doi: 10.1104/pp.106.083212 – volume: 72 start-page: 427 year: 1993 ident: 2021041906353800400_b47 article-title: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases publication-title: Cell doi: 10.1016/0092-8674(93)90119-B – volume: 8 start-page: 659 year: 1995 ident: 2021041906353800400_b85 article-title: Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis publication-title: Plant J doi: 10.1046/j.1365-313X.1995.08050659.x – volume: 12 start-page: 198 year: 1998 ident: 2021041906353800400_b76 article-title: The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p publication-title: Genes Dev doi: 10.1101/gad.12.2.198 – volume: 283 start-page: 31218 year: 2008 ident: 2021041906353800400_b78 article-title: Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses publication-title: J Biol Chem doi: 10.1074/jbc.M710122200 – volume: 284 start-page: 2148 year: 1999 ident: 2021041906353800400_b1 article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis publication-title: Science doi: 10.1126/science.284.5423.2148 – volume: 262 start-page: 539 year: 1993 ident: 2021041906353800400_b24 article-title: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators publication-title: Science doi: 10.1126/science.8211181 – volume: 55 start-page: 335 year: 2008 ident: 2021041906353800400_b41 article-title: Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03528.x – volume: 52 start-page: 98 year: 2010 ident: 2021041906353800400_b17 article-title: Flavonoids: new roles for old molecules publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2010.00905.x – volume: 16 start-page: 1898 year: 2004 ident: 2021041906353800400_b65 article-title: Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.021501 – volume: 126 start-page: 485 year: 2001 ident: 2021041906353800400_b104 article-title: Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology publication-title: Plant Physiol doi: 10.1104/pp.126.2.485 – volume: 8 start-page: 1013 year: 1996 ident: 2021041906353800400_b22 article-title: A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis publication-title: Plant Cell – volume: 20 start-page: 1470 year: 2008 ident: 2021041906353800400_b73 article-title: The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation publication-title: Plant Cell doi: 10.1105/tpc.107.053249 – volume: 230 start-page: 747 year: 2009 ident: 2021041906353800400_b33 article-title: The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves publication-title: Planta doi: 10.1007/s00425-009-0978-3 – volume: 2 start-page: e202 year: 2006 ident: 2021041906353800400_b86 article-title: Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020202 – volume: 101 start-page: 14978 year: 2004 ident: 2021041906353800400_b2 article-title: Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404312101 – volume: 16 start-page: 664 year: 1994 ident: 2021041906353800400_b26 article-title: Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection publication-title: Biotechniques – volume: 133 start-page: 761 year: 2003 ident: 2021041906353800400_b71 article-title: Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.103.022582 – volume: 29 start-page: 2002 year: 2001 ident: 2021041906353800400_b69 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 4 start-page: 57 year: 2001 ident: 2021041906353800400_b7 article-title: Plant morphogenesis: long-distance coordination and local patterning publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)00136-9 – volume: 36 start-page: 741 year: 1998 ident: 2021041906353800400_b38 article-title: Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system publication-title: Plant Mol Biol doi: 10.1023/A:1005921914384 – volume: 126 start-page: 1105 year: 2001 ident: 2021041906353800400_b9 article-title: An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics publication-title: Plant Physiol doi: 10.1104/pp.126.3.1105 – volume: 61 start-page: 3 year: 2010 ident: 2021041906353800400_b60 article-title: Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04027.x – volume: 53 start-page: 117 year: 2003 ident: 2021041906353800400_b109 article-title: Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis publication-title: Plant Mol Biol doi: 10.1023/B:PLAN.0000009270.81977.ef – volume: 278 start-page: 261 year: 2003 ident: 2021041906353800400_b103 article-title: A method for the absolute quantification of cDNA using real-time PCR publication-title: J Immunol Methods doi: 10.1016/S0022-1759(03)00223-0 – volume: 4 start-page: e143 year: 2006 ident: 2021041906353800400_b51 article-title: Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040143 – volume: 138 start-page: 1083 year: 2005 ident: 2021041906353800400_b55 article-title: The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis publication-title: Plant Physiol doi: 10.1104/pp.104.058032 – volume: 95 start-page: 15112 year: 1998 ident: 2021041906353800400_b27 article-title: The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.25.15112 – volume: 27 start-page: 275 year: 2005 ident: 2021041906353800400_b98 article-title: Of light and length: regulation of hypocotyl growth in Arabidopsis publication-title: Bioessays doi: 10.1002/bies.20199 – volume: 12 start-page: 2383 year: 2000 ident: 2021041906353800400_b12 article-title: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis publication-title: Plant Cell doi: 10.1105/tpc.12.12.2383 – volume: 145 start-page: 478 year: 2007 ident: 2021041906353800400_b19 article-title: Flavonoids are differentially taken up and transported long distances in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.107.101824 – start-page: 47 year: 2006 ident: 2021041906353800400_b57 article-title: Auxin transport and the integration of gravitropic growth – volume: 14 start-page: 399 year: 2009 ident: 2021041906353800400_b68 article-title: Arabidopsis lateral root development: an emerging story publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2009.05.002 – volume: 38 start-page: 765 year: 2004 ident: 2021041906353800400_b39 article-title: Light induces phenylpropanoid metabolism in Arabidopsis roots publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02089.x – volume: 19 start-page: 1349 year: 1991 ident: 2021041906353800400_b32 article-title: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/19.6.1349 – volume: 13 start-page: 880 year: 1992 ident: 2021041906353800400_b83 article-title: Flavonoid-specific staining of Arabidopsis thaliana publication-title: Biotechniques – volume: 96 start-page: 5844 year: 1999 ident: 2021041906353800400_b95 article-title: Activation and repression of transcription by auxin-response factors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.10.5844 – volume: 133 start-page: 517 year: 2003 ident: 2021041906353800400_b99 article-title: Ethylene and auxin control the Arabidopsis response to decreased light intensity publication-title: Plant Physiol doi: 10.1104/pp.103.022665 – volume: 147 start-page: 2107 year: 2008 ident: 2021041906353800400_b13 article-title: Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.108.117754 – volume: 1 start-page: 321 year: 2008 ident: 2021041906353800400_b64 article-title: Comprehensive transcriptome analysis of auxin responses in Arabidopsis publication-title: Mol Plant doi: 10.1093/mp/ssm021 – volume: 121 start-page: 291 year: 1999 ident: 2021041906353800400_b37 article-title: The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor publication-title: Plant Physiol doi: 10.1104/pp.121.1.291 – volume: 53 start-page: 814 year: 2008 ident: 2021041906353800400_b36 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03373.x – volume: 140 start-page: 1384 year: 2006 ident: 2021041906353800400_b21 article-title: Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.105.075671 – volume: 37 start-page: D885 year: 2009 ident: 2021041906353800400_b4 article-title: NCBI GEO: archive for high-throughput functional genomic data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn764 – volume: 3 start-page: 415 year: 2008 ident: 2021041906353800400_b20 article-title: Implications of long-distance flavonoid movement in Arabidopsis thaliana publication-title: Plant Signal Behav doi: 10.4161/psb.3.6.5440 – volume: 10 start-page: 236 year: 2005 ident: 2021041906353800400_b48 article-title: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2005.03.002 – volume: 221 start-page: 35 year: 1998 ident: 2021041906353800400_b102 article-title: Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants publication-title: Gene doi: 10.1016/S0378-1119(98)00433-8 – volume: 64 start-page: 225 year: 2007 ident: 2021041906353800400_b34 article-title: Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly publication-title: Plant Mol Biol doi: 10.1007/s11103-007-9147-x – volume: 241 start-page: 346 year: 1988 ident: 2021041906353800400_b42 article-title: Naturally occurring auxin transport regulators publication-title: Science doi: 10.1126/science.241.4863.346 – volume: 3 start-page: 353 year: 2000 ident: 2021041906353800400_b88 article-title: Ethylene signaling: from mutants to molecules publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(00)00096-0 – volume: 17 start-page: 3035 year: 2005 ident: 2021041906353800400_b100 article-title: Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.105.035493 – volume: 43 start-page: 265 year: 2009 ident: 2021041906353800400_b25 article-title: Mechanism of auxin-regulated gene expression in plants publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102108-134148 – volume: 241 start-page: 1086 year: 1988 ident: 2021041906353800400_b10 article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana publication-title: Science doi: 10.1126/science.241.4869.1086 – volume: 7 start-page: 1611 year: 1995 ident: 2021041906353800400_b96 article-title: Composite structure of auxin response elements publication-title: Plant Cell – volume: 14 start-page: 23 year: 1998 ident: 2021041906353800400_b54 article-title: Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides publication-title: Plant J doi: 10.1046/j.1365-313X.1998.00090.x – volume: 211 start-page: 315 year: 2000 ident: 2021041906353800400_b58 article-title: Regulation of auxin transport by aminopeptidases and endogenous flavonoids publication-title: Planta doi: 10.1007/s004250000300 – volume: 280 start-page: 23735 year: 2005 ident: 2021041906353800400_b81 article-title: Nuclear localization of flavonoid enzymes in Arabidopsis publication-title: J Biol Chem doi: 10.1074/jbc.M413506200 – volume: 165 start-page: 886 year: 2008 ident: 2021041906353800400_b30 article-title: Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana publication-title: J Plant Physiol doi: 10.1016/j.jplph.2007.06.010 – volume: 6 start-page: e307 year: 2008 ident: 2021041906353800400_b50 article-title: Root system architecture from coupling cell shape to auxin transport publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060307 – volume: 126 start-page: 524 year: 2001 ident: 2021041906353800400_b15 article-title: Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.126.2.524 – volume: 116 start-page: 455 year: 1998 ident: 2021041906353800400_b43 article-title: Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.116.2.455 – volume: 7 start-page: 173 year: 1995 ident: 2021041906353800400_b62 article-title: Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element publication-title: Plant Cell – volume: 9 start-page: 62 year: 1979 ident: 2021041906353800400_b63 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 19 start-page: 2440 year: 2007 ident: 2021041906353800400_b84 article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction publication-title: Plant Cell doi: 10.1105/tpc.107.050963 – volume: 42 start-page: 218 year: 2005 ident: 2021041906353800400_b94 article-title: Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02371.x – volume: 188 start-page: 985 year: 2010 ident: 2021041906353800400_b92 article-title: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03421.x – volume: 132 start-page: 365 year: 2000 ident: 2021041906353800400_b75 article-title: Primer3 on the WWW for general users and for biologist programmers publication-title: Methods Mol Biol – volume: 5 start-page: 218 year: 2002 ident: 2021041906353800400_b105 article-title: Biosynthesis of flavonoids and effects of stress publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(02)00256-X – volume: 318 start-page: 801 year: 2007 ident: 2021041906353800400_b14 article-title: A high-resolution root spatiotemporal map reveals dominant expression patterns publication-title: Science doi: 10.1126/science.1146265 – volume: 19 start-page: 2186 year: 2007 ident: 2021041906353800400_b93 article-title: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation publication-title: Plant Cell doi: 10.1105/tpc.107.052100 – volume: 144 start-page: 886 year: 2011 ident: 2021041906353800400_b107 article-title: Impulse control: temporal dynamics in gene transcription publication-title: Cell doi: 10.1016/j.cell.2011.02.015 – volume: 9 start-page: 1963 year: 1987 ident: 2021041906353800400_b97 article-title: Aux/IAA protein repress expression of reporter genes containing natural and highly active synthetic auxin response elements publication-title: Plant Cell – volume: 38 start-page: 332 year: 2004 ident: 2021041906353800400_b29 article-title: The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02052.x – volume: 435 start-page: 446 year: 2005 ident: 2021041906353800400_b46 article-title: The Arabidopsis F-box protein TIR1 is an auxin receptor publication-title: Nature doi: 10.1038/nature03542 – volume: 50 start-page: 660 year: 2007 ident: 2021041906353800400_b91 article-title: Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03078.x – volume: 19 start-page: 2169 year: 2007 ident: 2021041906353800400_b89 article-title: Multilevel interactions between ethylene and auxin in Arabidopsis roots publication-title: Plant Cell doi: 10.1105/tpc.107.052068 – volume: 255 start-page: 127 year: 2000 ident: 2021041906353800400_b80 article-title: An allelic series for the chalcone synthase locus in Arabidopsis publication-title: Gene doi: 10.1016/S0378-1119(00)00304-8 – volume: 33 start-page: 88 year: 2010 ident: 2021041906353800400_b90 article-title: The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation publication-title: Plant Cell Environ – volume: 3 start-page: 2 year: 2010 ident: 2021041906353800400_b101 article-title: Phenylpropanoid biosynthesis publication-title: Mol Plant doi: 10.1093/mp/ssp106 – volume: 16 start-page: 553 year: 2006 ident: 2021041906353800400_b6 article-title: The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport publication-title: Curr Biol doi: 10.1016/j.cub.2006.01.058 – volume: 38 start-page: 545 year: 2004 ident: 2021041906353800400_b72 article-title: Development and evaluation of an Arabidopsis whole genome Affymetrix probe array publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02061.x – volume: 224 start-page: 96 year: 2006 ident: 2021041906353800400_b74 article-title: Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-005-0197-5 – volume: 55 start-page: 175 year: 2008 ident: 2021041906353800400_b59 article-title: Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03495.x – volume: 44 start-page: 179 year: 2005 ident: 2021041906353800400_b35 article-title: Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02519.x – volume: 381 start-page: 749 year: 2000 ident: 2021041906353800400_b82 article-title: Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme publication-title: Biol Chem doi: 10.1515/BC.2000.095 – volume: 20 start-page: 2160 year: 2008 ident: 2021041906353800400_b106 article-title: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.058040 – volume: 35 start-page: 377 year: 1997 ident: 2021041906353800400_b23 article-title: Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings publication-title: Plant Mol Biol doi: 10.1023/A:1005846620791 – volume: 151 start-page: 328 year: 1956 ident: 2021041906353800400_b61 article-title: Aromatische Borsäuren als bathochrome Reagentien für Flavone publication-title: J Anal Chem – volume: 435 start-page: 441 year: 2005 ident: 2021041906353800400_b31 article-title: The F-box protein TIR1 is an auxin receptor publication-title: Nature doi: 10.1038/nature03543 – volume: 11 start-page: 479 year: 2008 ident: 2021041906353800400_b45 article-title: Ethylene signaling: new levels of complexity and regulation publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2008.06.011 – volume: 42 start-page: 301 year: 2001 ident: 2021041906353800400_b70 article-title: Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots publication-title: Plant Cell Physiol doi: 10.1093/pcp/pce035 – volume: 54 start-page: 519 year: 2003 ident: 2021041906353800400_b11 article-title: Lignin biosynthesis publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.54.031902.134938 – volume: 65 start-page: 765 year: 1997 ident: 2021041906353800400_b8 article-title: Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1997.tb01923.x – volume: 126 start-page: 536 year: 2001 ident: 2021041906353800400_b66 article-title: Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.126.2.536 – volume: 111 start-page: 339 year: 1996 ident: 2021041906353800400_b67 article-title: Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings: coordinate regulation with chalcone synthase and chalcone isomerase publication-title: Plant Physiol doi: 10.1104/pp.111.1.339 – volume: 125 start-page: 1061 year: 2001 ident: 2021041906353800400_b49 article-title: The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem publication-title: Plant Physiol doi: 10.1104/pp.125.2.1061 – volume: 33 start-page: 221 year: 2003 ident: 2021041906353800400_b40 article-title: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01620.x – volume: 60 start-page: 751 year: 2009 ident: 2021041906353800400_b16 article-title: Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana publication-title: J Exp Bot doi: 10.1093/jxb/ern323 – volume: 16 start-page: 1191 year: 2004 ident: 2021041906353800400_b18 article-title: The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light publication-title: Plant Cell doi: 10.1105/tpc.020313 – volume: 5 start-page: 171 year: 1993 ident: 2021041906353800400_b53 article-title: Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation publication-title: Plant Cell doi: 10.2307/3869583 – volume: 4 start-page: 437 year: 2009 ident: 2021041906353800400_b52 article-title: Measurement of auxin transport in Arabidopsis thaliana publication-title: Nat Protoc doi: 10.1038/nprot.2009.1 – volume: 10 start-page: 103 year: 2005 ident: 2021041906353800400_b44 article-title: Modular cloning and expression of tagged fluorescent protein in plant cells publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2005.01.008 – volume: 27 start-page: 37 year: 2001 ident: 2021041906353800400_b79 article-title: Localization of flavonoid enzymes in Arabidopsis roots publication-title: Plant J doi: 10.1046/j.1365-313x.2001.01073.x – volume: 39 start-page: 366 year: 2004 ident: 2021041906353800400_b5 article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02138.x – volume: 36 start-page: 486 year: 2004 ident: 2021041906353800400_b108 article-title: Just-in-time transcription program in metabolic pathways publication-title: Nat Genet doi: 10.1038/ng1348 – reference: 14526119 - Plant Physiol. 2003 Oct;133(2):761-72 – reference: 11148285 - Plant Cell. 2000 Dec;12(12):2383-2394 – reference: 15144378 - Plant J. 2004 Jun;38(5):765-78 – reference: 20731781 - New Phytol. 2010 Dec;188(4):985-1000 – reference: 11402179 - Plant Physiol. 2001 Jun;126(2):485-93 – reference: 19895401 - Plant Cell Environ. 2010 Jan;33(1):88-103 – reference: 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73 – reference: 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 – reference: 14503002 - Annu Rev Plant Biol. 2003;54:519-46 – reference: 17766004 - J Plant Physiol. 2008 May 26;165(8):886-94 – reference: 17630276 - Plant Cell. 2007 Jul;19(7):2169-85 – reference: 18567791 - Plant Cell. 2008 Jun;20(6):1470-81 – reference: 15882656 - Trends Plant Sci. 2005 May;10(5):236-42 – reference: 16640459 - PLoS Biol. 2006 May;4(5):e143 – reference: 10547847 - Methods Mol Biol. 2000;132:365-86 – reference: 11402184 - Plant Physiol. 2001 Jun;126(2):524-35 – reference: 11266581 - Plant Cell Physiol. 2001 Mar;42(3):301-7 – reference: 8672888 - Plant Cell. 1996 Jun;8(6):1013-25 – reference: 11457961 - Plant Physiol. 2001 Jul;126(3):1105-15 – reference: 8528278 - Plant J. 1995 Nov;8(5):659-71 – reference: 17419845 - Plant J. 2007 May;50(4):660-77 – reference: 20074144 - J Integr Plant Biol. 2010 Jan;52(1):98-111 – reference: 16489132 - Plant Physiol. 2006 Apr;140(4):1384-96 – reference: 1282347 - Biotechniques. 1992 Dec;13(6):880-3 – reference: 12535337 - Plant J. 2003 Jan;33(2):221-33 – reference: 17121469 - PLoS Genet. 2006 Nov 24;2(11):e202 – reference: 9155253 - Photochem Photobiol. 1997 May;65(5):765-76 – reference: 2030957 - Nucleic Acids Res. 1991 Mar 25;19(6):1349 – reference: 19704584 - Plant Signal Behav. 2008 Jun;3(6):415-7 – reference: 8431946 - Cell. 1993 Feb 12;72(3):427-41 – reference: 17630274 - Plant Cell. 2007 Jul;19(7):2197-212 – reference: 11163169 - Curr Opin Plant Biol. 2001 Feb;4(1):57-62 – reference: 17747490 - Science. 1988 Aug 26;241(4869):1086-9 – reference: 18036197 - Plant J. 2008 Mar;53(5):814-27 – reference: 16546078 - Curr Biol. 2006 Mar 21;16(6):553-63 – reference: 16798939 - Plant Physiol. 2006 Aug;141(4):1617-29 – reference: 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55 – reference: 10381874 - Science. 1999 Jun 25;284(5423):2148-52 – reference: 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85 – reference: 8024787 - Biotechniques. 1994 Apr;16(4):664-8, 670 – reference: 19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408 – reference: 17675404 - Plant Cell. 2007 Aug;19(8):2440-53 – reference: 7580254 - Plant Cell. 1995 Oct;7(10):1611-23 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 9349261 - Plant Mol Biol. 1997 Oct;35(3):377-81 – reference: 18435826 - Plant J. 2008 Jul;55(2):335-47 – reference: 17975066 - Science. 2007 Nov 2;318(5851):801-6 – reference: 18757557 - Plant Cell. 2008 Aug;20(8):2160-76 – reference: 17720762 - Plant Physiol. 2007 Oct;145(2):478-90 – reference: 9489005 - Plant Physiol. 1998 Feb;116(2):455-62 – reference: 18718912 - J Biol Chem. 2008 Nov 7;283(45):31218-26 – reference: 7756828 - Plant Cell. 1995 Feb;7(2):173-82 – reference: 9401121 - Plant Cell. 1997 Nov;9(11):1963-71 – reference: 17630275 - Plant Cell. 2007 Jul;19(7):2186-96 – reference: 11030432 - Biol Chem. 2000 Aug;381(8):749-53 – reference: 15749466 - Trends Plant Sci. 2005 Mar;10(3):103-5 – reference: 8211181 - Science. 1993 Oct 22;262(5133):539-44 – reference: 17734864 - Science. 1988 Jul 15;241(4863):346-9 – reference: 15817473 - J Biol Chem. 2005 Jun 24;280(25):23735-40 – reference: 15714558 - Bioessays. 2005 Mar;27(3):275-84 – reference: 11489181 - Plant J. 2001 Jul;27(1):37-48 – reference: 18552234 - Plant Physiol. 2008 Aug;147(4):2107-20 – reference: 15807784 - Plant J. 2005 Apr;42(2):218-35 – reference: 19282849 - Nat Protoc. 2009;4(4):437-51 – reference: 16243906 - Plant Cell. 2005 Nov;17(11):3035-50 – reference: 21414481 - Cell. 2011 Mar 18;144(6):886-96 – reference: 10482685 - Plant Physiol. 1999 Sep;121(1):291-300 – reference: 10987549 - Planta. 2000 Aug;211(3):315-24 – reference: 9436980 - Genes Dev. 1998 Jan 15;12(2):198-207 – reference: 19129166 - J Exp Bot. 2009;60(3):751-63 – reference: 19793078 - Plant J. 2010 Jan;61(1):3-15 – reference: 9526507 - Plant Mol Biol. 1998 Mar;36(5):741-54 – reference: 11024274 - Gene. 2000 Sep 19;255(2):127-38 – reference: 19686081 - Annu Rev Genet. 2009;43:265-85 – reference: 15917797 - Nature. 2005 May 26;435(7041):441-5 – reference: 17417719 - Plant Mol Biol. 2007 Jun;64(3):225-40 – reference: 15107854 - Nat Genet. 2004 May;36(5):486-91 – reference: 15466695 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14978-83 – reference: 9844024 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112-7 – reference: 15917798 - Nature. 2005 May 26;435(7041):446-51 – reference: 12972669 - Plant Physiol. 2003 Oct;133(2):517-27 – reference: 9852947 - Gene. 1998 Oct 9;221(1):35-43 – reference: 15086809 - Plant J. 2004 May;38(3):545-61 – reference: 19825543 - Mol Plant. 2008 Mar;1(2):321-37 – reference: 16395586 - Planta. 2006 Jun;224(1):96-107 – reference: 18363780 - Plant J. 2008 Jul;55(2):175-87 – reference: 20429588 - J Agric Food Chem. 2010 May 26;58(10):6246-56 – reference: 19090618 - PLoS Biol. 2008 Dec 16;6(12):e307 – reference: 11019801 - Curr Opin Plant Biol. 2000 Oct;3(5):353-60 – reference: 11402185 - Plant Physiol. 2001 Jun;126(2):536-48 – reference: 15100399 - Plant Cell. 2004 May;16(5):1191-205 – reference: 8685272 - Plant Physiol. 1996 May;111(1):339-45 – reference: 20035037 - Mol Plant. 2010 Jan;3(1):2-20 – reference: 16212599 - Plant J. 2005 Oct;44(2):179-94 – reference: 19621239 - Planta. 2009 Sep;230(4):747-54 – reference: 12271060 - Plant Cell. 1993 Feb;5(2):171-179 – reference: 12957413 - J Immunol Methods. 2003 Jul;278(1-2):261-9 – reference: 15078335 - Plant J. 2004 Apr;38(2):332-47 – reference: 10318972 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9 – reference: 15208397 - Plant Cell. 2004 Jul;16(7):1898-911 – reference: 14756311 - Plant Mol Biol. 2003 Sep;53(1-2):117-31 – reference: 15923334 - Plant Physiol. 2005 Jun;138(2):1083-96 – reference: 15255866 - Plant J. 2004 Aug;39(3):366-80 – reference: 15494052 - Plant J. 1998 Apr;14(1):23-34 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 11960739 - Curr Opin Plant Biol. 2002 Jun;5(3):218-23 |
SSID | ssj0001314 |
Score | 2.4953496 |
Snippet | Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 144 |
SubjectTerms | 1-aminocyclopropane-1-carboxylic acid Amino Acids, Cyclic - pharmacology Arabidopsis - cytology Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - metabolism Arabidopsis thaliana Auxins Biological and medical sciences biosynthesis CELL BIOLOGY AND SIGNAL TRANSDUCTION Enzymes ethylene Ethylenes - pharmacology Flavonoids Flavonols Flavonols - metabolism Fluorescence Fundamental and applied biological sciences. Psychology Gene expression regulation Gene Expression Regulation, Plant - drug effects Gene Regulatory Networks Genes Glycosides - metabolism Gravitropism growth and development hormones indole acetic acid Indoleacetic Acids - pharmacology Insulin antibodies kaempferol mutants Mutation phenotype plant development Plant Growth Regulators - pharmacology Plant physiology and development Plant roots Plant Roots - cytology Plant Roots - drug effects Plant Roots - genetics Plant Roots - metabolism Plants Plants, Genetically Modified quercetin Quercetin - metabolism receptors Recombinant Fusion Proteins RNA, Plant - genetics root growth roots Seedlings - cytology Seedlings - drug effects Seedlings - genetics Seedlings - metabolism testa |
Title | Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks |
URI | https://www.jstor.org/stable/41434589 https://www.ncbi.nlm.nih.gov/pubmed/21427279 https://www.proquest.com/docview/1400126086 https://www.proquest.com/docview/865188280 https://pubmed.ncbi.nlm.nih.gov/PMC3091047 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6jQdeELdBuFRGQryUlFzcOHlcWadxq9AY03iqbMfRKnVpRVNuv4afyjlx4ialkwYvUeu4SZNzfM757OPvEPI8y0TCsyx0pZdmLuN84AqIA9wglSrRKce1GMy2GEfHn9nb88F5p_O7kbW0KmRf_dq6r-R_pAptIFfcJfsPkrUXhQb4DPKFI0gYjteS8cHqx9QkE4_gfYP_wETIFITVO5qJb_N8PsNqEKvLqkSXLcpziAM7V4WhNq_tBghrbJLCl82QFcsaFWYGxPA1QUw6xG3Cy1Q05hHe6--GrsBsWu-d9NdLSJdgV8uJ6g96BoIWvTN7cr0XcVzO4vcO7akznOOX0KbLslNIrbSEb8XFtDlVgXOvdWKgta6BC4jUGFy9pa02yYZsvKV7xsD6hi2y8tW-YUD_2w14DGsXL9Ah9CFEG3jB2t_Va_wbbtAmJ5awyGOTxQLh0cT8fIfsBQBEStD-5p319X5Yssfbh7AsruxV6-6tqMckvmIWrljCQMxMBZVtEGczU7cR-pzeJrcqzEIPjALeIR2d3yU3hnPAFT_vkS-lFlLQQlprITVaSGstpE0tpJUW0loL6YYW0loL75NPR6PT18duVbDDVYOQF27A01jHnuC-DFWs0jTRHtN-IlkciECJRPmMq0hqFrFUMh2GyMSgEoZBfRLuk918nuuHhEZaZNLjGZIvMuF7MoRAXYRCBgDAJU8d8rJ-nRNVcdljSZXZZKvwHPLCdl8YEperOu6XsrG9GMAJNogTh3RbwrIdcFkaYlzukGe19CZgoHHVDYbHfLUEbI2QIvLiyCH0ij5xhLyIQew55IER-PoGPgsAY8A_4C1VsB2QH759Jp9elDzxIWIBxh9d9-kfk5vrUfuE7BZfV_ophNyF7JIdfs67ZG84Gn886ZZj4A-eH9pJ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auxin+and+Ethylene+Induce+Flavonol+Accumulation+through+Distinct+Transcriptional+Networks&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Lewis%2C+Daniel+R.&rft.au=Ramirez%2C+Melissa+V.&rft.au=Miller%2C+Nathan+D.&rft.au=Vallabhaneni%2C+Prashanthi&rft.date=2011-05-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=156&rft.issue=1&rft.spage=144&rft.epage=164&rft_id=info:doi/10.1104%2Fpp.111.172502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_111_172502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |