Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks

Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impac...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 156; no. 1; pp. 144 - 164
Main Authors Lewis, Daniel R., Ramirez, Melissa V., Miller, Nathan D., Vallabhaneni, Prashanthi, Ray, W. Keith, Helm, Richard F., Winkel, Brenda S.J., Muday, Gloria K.
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-lcarboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor responsei (tirl) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive! (ein!) and ethylene resistantl (etrl) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra!, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, mybll mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testai (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
AbstractList Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis ( Arabidopsis thaliana ) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 ( tir1 ) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 ( ein2 ) and ethylene resistant1 ( etr1 ) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12 , Transparent Testa Glabra1 , and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 ( tt4 ), which makes no flavonols, and tt7 , which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-lcarboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor responsei (tirl) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive! (ein!) and ethylene resistantl (etrl) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra!, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, mybll mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testai (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Author Ramirez, Melissa V.
Ray, W. Keith
Muday, Gloria K.
Winkel, Brenda S.J.
Vallabhaneni, Prashanthi
Lewis, Daniel R.
Helm, Richard F.
Miller, Nathan D.
AuthorAffiliation Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109 (D.R.L., G.K.M.); Department of Biological Sciences (M.V.R., P.V., B.S.J.W.) and Department of Biochemistry (W.K.R., R.F.H.), Virginia Tech, Blacksburg, Virginia 24061; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (N.D.M.)
AuthorAffiliation_xml – name: Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109 (D.R.L., G.K.M.); Department of Biological Sciences (M.V.R., P.V., B.S.J.W.) and Department of Biochemistry (W.K.R., R.F.H.), Virginia Tech, Blacksburg, Virginia 24061; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (N.D.M.)
Author_xml – sequence: 1
  givenname: Daniel R.
  surname: Lewis
  fullname: Lewis, Daniel R.
– sequence: 2
  givenname: Melissa V.
  surname: Ramirez
  fullname: Ramirez, Melissa V.
– sequence: 3
  givenname: Nathan D.
  surname: Miller
  fullname: Miller, Nathan D.
– sequence: 4
  givenname: Prashanthi
  surname: Vallabhaneni
  fullname: Vallabhaneni, Prashanthi
– sequence: 5
  givenname: W. Keith
  surname: Ray
  fullname: Ray, W. Keith
– sequence: 6
  givenname: Richard F.
  surname: Helm
  fullname: Helm, Richard F.
– sequence: 7
  givenname: Brenda S.J.
  surname: Winkel
  fullname: Winkel, Brenda S.J.
– sequence: 8
  givenname: Gloria K.
  surname: Muday
  fullname: Muday, Gloria K.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24132667$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21427279$$D View this record in MEDLINE/PubMed
BookMark eNp9kr1vFDEQxS2UiFwCJSVomwiaDR7bu2s3SKeQLymCgjRUltfryzn47MX2JuS_x8ddEkCC6lma3zzNPM8-2vHBG4ReAT4CwOz9OBaFI-hIg8kzNIOGkpo0jO-gGcbljTkXe2g_pRuMMVBgz9EeAUY60okZ-jqfflhfKT9UJ3l574w31YUfJm2qU6dugw-umms9rSansg2-yssYputl9dGmbL3O1VVUPulox3VZueqTyXchfksv0O5CuWRebvUAfTk9uTo-ry8_n10czy9r3dAu16QbuOFYddBTzfUwCIOZAdEzThTRSmhgnW57w1o29MxQ2jAKWjDCCBX0AH3YuI5TvzKDNj5H5eQY7UrFexmUlX9WvF3K63ArKRYlvq4YvN0axPB9MinLlU3aOKe8CVOSvG2Ac8JxId_9lwRW8iUt5m1B3_w-1eM4D7kX4HALqKSVW5QMtU1PHANK2nY9Hd1wOoaUollIbfOvjyjLWCcBy_UVyHEsCnJzBaWr_qvrwfhf_OsNf5NyiI8wA0ZZwwX9CQoTvaM
CODEN PPHYA5
CitedBy_id crossref_primary_10_3390_agronomy13112782
crossref_primary_10_1093_jxb_ers267
crossref_primary_10_3390_ijms25105546
crossref_primary_10_1093_jxb_erac050
crossref_primary_10_1093_treephys_tpab102
crossref_primary_10_1016_j_hpj_2023_07_004
crossref_primary_10_1071_FP11193
crossref_primary_10_1016_j_phytochem_2012_08_007
crossref_primary_10_1126_sciadv_adq5820
crossref_primary_10_1038_s41438_020_0238_z
crossref_primary_10_1111_jipb_12204
crossref_primary_10_1016_j_plaphy_2020_03_008
crossref_primary_10_1111_nph_20195
crossref_primary_10_3390_plants10061046
crossref_primary_10_1007_s00344_011_9248_2
crossref_primary_10_1186_1471_2229_14_185
crossref_primary_10_1016_j_plaphy_2021_05_023
crossref_primary_10_1134_S1990519X22030026
crossref_primary_10_1074_jbc_RA120_014543
crossref_primary_10_1016_j_envexpbot_2024_106080
crossref_primary_10_1186_s12864_023_09732_4
crossref_primary_10_1016_j_cj_2019_11_006
crossref_primary_10_1111_ppl_13722
crossref_primary_10_1093_hr_uhae043
crossref_primary_10_1007_s00344_012_9315_3
crossref_primary_10_1111_j_1438_8677_2012_00572_x
crossref_primary_10_1038_s41598_023_28252_5
crossref_primary_10_1007_s11829_012_9210_7
crossref_primary_10_3390_proteomes5030016
crossref_primary_10_1016_j_plaphy_2020_03_016
crossref_primary_10_3390_agronomy13061449
crossref_primary_10_3389_fpls_2018_01042
crossref_primary_10_1186_s12870_020_02692_x
crossref_primary_10_1105_tpc_111_092973
crossref_primary_10_1186_s12870_016_0939_5
crossref_primary_10_3390_plants14010031
crossref_primary_10_1104_pp_112_198069
crossref_primary_10_1016_j_stress_2025_100738
crossref_primary_10_1111_nph_12558
crossref_primary_10_1016_j_plantsci_2018_12_010
crossref_primary_10_1007_s13659_023_00409_9
crossref_primary_10_1016_j_indcrop_2022_115295
crossref_primary_10_1038_s41438_021_00609_9
crossref_primary_10_1111_tpj_12140
crossref_primary_10_3389_fpls_2025_1533263
crossref_primary_10_15446_agron_colomb_v35n1_61796
crossref_primary_10_1093_jxb_erae005
crossref_primary_10_1093_plcell_koae222
crossref_primary_10_15407_microbiolj83_04_063
crossref_primary_10_3390_ijms160819195
crossref_primary_10_3390_plants10091934
crossref_primary_10_1093_jxb_eraa204
crossref_primary_10_1111_nph_16104
crossref_primary_10_1111_tpj_16752
crossref_primary_10_1016_j_tplants_2013_07_006
crossref_primary_10_1093_jxb_erad391
crossref_primary_10_3390_ijms23042033
crossref_primary_10_3389_fpls_2017_02129
crossref_primary_10_1016_j_bbrc_2013_04_022
crossref_primary_10_1007_s00299_015_1803_z
crossref_primary_10_1104_pp_112_201921
crossref_primary_10_3389_fpls_2018_00618
crossref_primary_10_1016_j_scitotenv_2024_172693
crossref_primary_10_1134_S1021443724604208
crossref_primary_10_1016_j_plantsci_2020_110545
crossref_primary_10_1074_jbc_M115_701565
crossref_primary_10_1016_j_plaphy_2015_11_023
crossref_primary_10_1111_jipb_13054
crossref_primary_10_3389_fpls_2024_1425154
crossref_primary_10_1007_s11105_014_0826_x
crossref_primary_10_1016_j_molp_2016_10_019
crossref_primary_10_3390_ijms231810548
crossref_primary_10_1371_journal_pone_0093371
crossref_primary_10_1016_j_jplph_2012_12_009
crossref_primary_10_1007_s11816_019_00579_4
crossref_primary_10_3390_biology10050410
crossref_primary_10_1016_j_jplph_2020_153328
crossref_primary_10_1186_s43088_023_00387_4
crossref_primary_10_1111_nph_17139
crossref_primary_10_1007_s00344_023_11011_1
crossref_primary_10_1016_j_hpj_2023_02_002
crossref_primary_10_1093_hr_uhab018
crossref_primary_10_1016_j_ymben_2024_08_004
crossref_primary_10_3390_ijms222312630
crossref_primary_10_1007_s12298_024_01441_w
crossref_primary_10_1021_acs_chemrestox_9b00028
crossref_primary_10_1021_acs_jafc_5b02994
crossref_primary_10_1186_1471_2229_12_112
crossref_primary_10_1016_j_fcr_2011_12_006
crossref_primary_10_1016_j_molp_2020_02_015
crossref_primary_10_1093_bbb_zbaa005
crossref_primary_10_3390_plants13233279
crossref_primary_10_5511_plantbiotechnology_15_0116a
crossref_primary_10_1007_s00299_023_02991_1
crossref_primary_10_1007_s11295_016_1003_1
crossref_primary_10_1111_tpj_12348
crossref_primary_10_1242_dev_185819
crossref_primary_10_1016_j_plaphy_2024_108698
crossref_primary_10_1016_j_plantsci_2013_02_001
crossref_primary_10_3390_molecules24061128
crossref_primary_10_1111_jipb_13627
crossref_primary_10_1016_j_scienta_2024_113769
crossref_primary_10_3390_genes10030213
crossref_primary_10_1111_pce_13409
crossref_primary_10_1105_tpc_113_114868
crossref_primary_10_1016_j_jinsphys_2015_12_009
crossref_primary_10_1016_j_scienta_2023_112374
crossref_primary_10_1093_hr_uhad095
crossref_primary_10_3389_fphys_2016_00217
crossref_primary_10_1016_j_jhazmat_2023_132710
crossref_primary_10_1186_s12870_024_04949_1
crossref_primary_10_1007_s11738_021_03271_9
crossref_primary_10_1007_s00425_017_2651_6
crossref_primary_10_1016_j_ijbiomac_2020_10_184
crossref_primary_10_3389_fpls_2022_876843
crossref_primary_10_1016_j_envpol_2022_119063
crossref_primary_10_1111_nph_70051
crossref_primary_10_3390_ijms19092506
crossref_primary_10_1038_s41438_020_0244_1
crossref_primary_10_1186_s12870_016_0721_8
crossref_primary_10_3389_fpls_2018_00567
crossref_primary_10_2503_hortj_UTD_045
crossref_primary_10_1111_tpj_13413
crossref_primary_10_1093_jxb_erad308
crossref_primary_10_1186_1471_2164_14_727
crossref_primary_10_3390_plants9080931
crossref_primary_10_1038_srep24485
crossref_primary_10_1038_s41598_019_57161_9
crossref_primary_10_1073_pnas_1809037116
crossref_primary_10_3389_fpls_2022_821563
crossref_primary_10_1093_jxb_erx323
crossref_primary_10_5511_plantbiotechnology_16_1215a
crossref_primary_10_3390_plants11212938
crossref_primary_10_1007_s11540_022_09577_6
crossref_primary_10_1111_tpj_15718
crossref_primary_10_3390_plants13121644
crossref_primary_10_1021_acs_jproteome_8b00578
crossref_primary_10_1134_S1062360417020059
crossref_primary_10_1007_s11295_018_1247_z
crossref_primary_10_1093_aobpla_plaa071
crossref_primary_10_1007_s11240_012_0265_z
crossref_primary_10_3389_fpls_2019_01094
crossref_primary_10_1016_j_plaphy_2024_108773
crossref_primary_10_1186_s12870_019_1947_z
crossref_primary_10_4028_www_scientific_net_AMM_891_9
crossref_primary_10_1007_s00468_016_1393_6
crossref_primary_10_1007_s00299_012_1382_1
crossref_primary_10_1016_j_hpj_2022_03_006
crossref_primary_10_1088_1742_6596_1524_1_012054
crossref_primary_10_3389_fpls_2020_00426
crossref_primary_10_3390_horticulturae11020215
crossref_primary_10_3389_fpls_2014_00556
crossref_primary_10_1007_s00425_022_03936_w
crossref_primary_10_1093_jxb_erv243
crossref_primary_10_1016_j_scienta_2024_113168
crossref_primary_10_31857_S0015330324030074
crossref_primary_10_1016_j_plaphy_2022_06_021
crossref_primary_10_1016_j_envexpbot_2015_05_004
crossref_primary_10_1016_j_plaphy_2023_107835
crossref_primary_10_1016_j_plaphy_2016_03_010
crossref_primary_10_1371_journal_pone_0074646
crossref_primary_10_1093_pcp_pcab149
crossref_primary_10_1016_j_envexpbot_2022_104840
crossref_primary_10_1016_j_phytochem_2011_09_013
crossref_primary_10_3389_fpls_2022_1022961
crossref_primary_10_1016_j_molp_2018_12_021
crossref_primary_10_1080_07391102_2021_2011785
crossref_primary_10_3390_horticulturae10111229
crossref_primary_10_1093_jxb_erx475
crossref_primary_10_1093_plphys_kiad596
crossref_primary_10_3390_molecules26195836
crossref_primary_10_1093_jxb_erab284
crossref_primary_10_3390_plants12030517
crossref_primary_10_1093_jb_mvt102
crossref_primary_10_15832_ankutbd_731776
crossref_primary_10_3389_fpls_2023_1125194
crossref_primary_10_1039_D0RA10373J
crossref_primary_10_3390_jof9111114
crossref_primary_10_1073_pnas_1811492115
crossref_primary_10_1111_nph_18758
crossref_primary_10_3389_fnut_2024_1434170
crossref_primary_10_1016_j_pbi_2023_102350
crossref_primary_10_1093_mp_sst161
crossref_primary_10_1016_j_plantsci_2022_111196
crossref_primary_10_1007_s00425_013_1883_3
crossref_primary_10_1093_jxb_erab156
crossref_primary_10_1093_jxb_erac249
crossref_primary_10_1186_1756_0500_5_485
crossref_primary_10_1007_s11103_013_0099_z
crossref_primary_10_3389_fpls_2016_00613
crossref_primary_10_3389_fpls_2023_1116863
crossref_primary_10_3390_plants11020172
crossref_primary_10_1016_j_jhazmat_2021_127875
crossref_primary_10_1007_s11103_015_0303_4
crossref_primary_10_3389_fpls_2018_01570
crossref_primary_10_1016_j_plaphy_2020_02_010
crossref_primary_10_1186_s12864_017_4209_1
crossref_primary_10_3389_fpls_2023_1220732
crossref_primary_10_1016_j_plaphy_2019_11_033
crossref_primary_10_1088_1742_6596_1567_3_032055
crossref_primary_10_1534_g3_119_400909
crossref_primary_10_3389_fpls_2021_706667
crossref_primary_10_1007_s11240_013_0367_2
crossref_primary_10_1007_s12217_012_9322_9
crossref_primary_10_1073_pnas_1121134109
crossref_primary_10_3390_f13071094
crossref_primary_10_1080_15592324_2016_1139278
crossref_primary_10_1093_jxb_erz510
crossref_primary_10_3389_fpls_2014_00620
crossref_primary_10_1016_j_envpol_2023_122578
crossref_primary_10_1016_j_jia_2023_11_002
crossref_primary_10_1007_s00425_018_3019_2
crossref_primary_10_1111_nph_19382
crossref_primary_10_1186_s40538_022_00295_2
crossref_primary_10_21769_BioProtoc_3781
crossref_primary_10_3390_ijms18122736
crossref_primary_10_1186_s40529_018_0226_x
crossref_primary_10_1111_j_1438_8677_2012_00609_x
crossref_primary_10_4161_psb_25033
crossref_primary_10_1038_s41438_021_00478_2
crossref_primary_10_3389_fpls_2018_01235
crossref_primary_10_1016_j_foodchem_2024_139183
crossref_primary_10_1016_j_jplph_2013_06_010
crossref_primary_10_3389_fgene_2021_737293
crossref_primary_10_1016_j_tplants_2012_02_001
crossref_primary_10_1093_pcp_pcu172
crossref_primary_10_3390_agronomy13061489
crossref_primary_10_1016_j_plaphy_2024_109027
crossref_primary_10_1371_journal_pone_0260468
crossref_primary_10_1093_jxb_eru198
crossref_primary_10_1111_tpj_16312
crossref_primary_10_3390_ijms20030603
crossref_primary_10_3732_ajb_1200436
crossref_primary_10_1016_j_tplants_2020_01_001
crossref_primary_10_3390_plants11192623
crossref_primary_10_1021_acs_est_2c09352
crossref_primary_10_1038_srep12412
crossref_primary_10_1093_hr_uhac049
crossref_primary_10_1016_j_heliyon_2024_e35966
crossref_primary_10_1016_j_phytochem_2021_112702
Cites_doi 10.1021/jf903619v
10.1105/tpc.107.052126
10.1016/j.pbi.2009.07.009
10.1046/j.1365-313x.1998.00343.x
10.1104/pp.106.083212
10.1016/0092-8674(93)90119-B
10.1046/j.1365-313X.1995.08050659.x
10.1101/gad.12.2.198
10.1074/jbc.M710122200
10.1126/science.284.5423.2148
10.1126/science.8211181
10.1111/j.1365-313X.2008.03528.x
10.1111/j.1744-7909.2010.00905.x
10.1105/tpc.021501
10.1104/pp.126.2.485
10.1105/tpc.107.053249
10.1007/s00425-009-0978-3
10.1371/journal.pgen.0020202
10.1073/pnas.0404312101
10.1104/pp.103.022582
10.1093/nar/29.9.e45
10.1016/S1369-5266(00)00136-9
10.1023/A:1005921914384
10.1104/pp.126.3.1105
10.1111/j.1365-313X.2009.04027.x
10.1023/B:PLAN.0000009270.81977.ef
10.1016/S0022-1759(03)00223-0
10.1371/journal.pbio.0040143
10.1104/pp.104.058032
10.1073/pnas.95.25.15112
10.1002/bies.20199
10.1105/tpc.12.12.2383
10.1104/pp.107.101824
10.1016/j.tplants.2009.05.002
10.1111/j.1365-313X.2004.02089.x
10.1093/nar/19.6.1349
10.1073/pnas.96.10.5844
10.1104/pp.103.022665
10.1104/pp.108.117754
10.1093/mp/ssm021
10.1104/pp.121.1.291
10.1111/j.1365-313X.2007.03373.x
10.1104/pp.105.075671
10.1093/nar/gkn764
10.4161/psb.3.6.5440
10.1016/j.tplants.2005.03.002
10.1016/S0378-1119(98)00433-8
10.1007/s11103-007-9147-x
10.1126/science.241.4863.346
10.1016/S1369-5266(00)00096-0
10.1105/tpc.105.035493
10.1146/annurev-genet-102108-134148
10.1126/science.241.4869.1086
10.1046/j.1365-313X.1998.00090.x
10.1007/s004250000300
10.1074/jbc.M413506200
10.1016/j.jplph.2007.06.010
10.1371/journal.pbio.0060307
10.1104/pp.126.2.524
10.1104/pp.116.2.455
10.1109/TSMC.1979.4310076
10.1105/tpc.107.050963
10.1111/j.1365-313X.2005.02371.x
10.1111/j.1469-8137.2010.03421.x
10.1016/S1369-5266(02)00256-X
10.1126/science.1146265
10.1105/tpc.107.052100
10.1016/j.cell.2011.02.015
10.1111/j.1365-313X.2004.02052.x
10.1038/nature03542
10.1111/j.1365-313X.2007.03078.x
10.1105/tpc.107.052068
10.1016/S0378-1119(00)00304-8
10.1093/mp/ssp106
10.1016/j.cub.2006.01.058
10.1111/j.1365-313X.2004.02061.x
10.1007/s00425-005-0197-5
10.1111/j.1365-313X.2008.03495.x
10.1111/j.1365-313X.2005.02519.x
10.1515/BC.2000.095
10.1105/tpc.108.058040
10.1023/A:1005846620791
10.1038/nature03543
10.1016/j.pbi.2008.06.011
10.1093/pcp/pce035
10.1146/annurev.arplant.54.031902.134938
10.1111/j.1751-1097.1997.tb01923.x
10.1104/pp.126.2.536
10.1104/pp.111.1.339
10.1104/pp.125.2.1061
10.1046/j.1365-313X.2003.01620.x
10.1093/jxb/ern323
10.1105/tpc.020313
10.2307/3869583
10.1038/nprot.2009.1
10.1016/j.tplants.2005.01.008
10.1046/j.1365-313x.2001.01073.x
10.1111/j.1365-313X.2004.02138.x
10.1038/ng1348
ContentType Journal Article
Copyright 2011 American Society of Plant Biologists
2015 INIST-CNRS
2011 American Society of Plant Biologists 2011
Copyright_xml – notice: 2011 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: 2011 American Society of Plant Biologists 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.111.172502
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA


CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 164
ExternalDocumentID PMC3091047
21427279
24132667
10_1104_pp_111_172502
41434589
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFZL
AFGWE
AFKRA
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HMCUK
HTVGU
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MV1
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TN5
TR2
UKHRP
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
AAYXX
CITATION
53G
AAWDT
AAYJJ
ABIME
ABPIB
ABZEO
ACFRR
ACIPB
ACUTJ
ACVCV
ACZBC
AFFDN
AFYAG
AGMDO
AHGBF
AIDAL
AIDBO
AJDVS
ANFBD
APJGH
AQDSO
AS~
C1A
IQODW
LU7
MVM
P0-
PJZUB
PPXIY
PQGLB
QZG
TCN
UBC
UKR
WHG
XOL
Y6R
ZCG
3V.
88A
ADYWZ
CGR
CUY
CVF
DOOOF
ECM
EIF
ISR
JSODD
M0L
NPM
RHF
RPM
VQA
VXZ
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c537t-27d8e80a71b3c8cdd9e04e19b482a2ca9c147c6be464db4e335431c94242393
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:42:46 EDT 2025
Thu Jul 10 20:31:34 EDT 2025
Fri Jul 11 10:02:39 EDT 2025
Wed Feb 19 01:53:30 EST 2025
Mon Jul 21 09:15:34 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Fri Jun 20 02:18:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Auxin
Transcription
Plant physiology
Flavone(3-hydroxy)
Ethylene
Network
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c537t-27d8e80a71b3c8cdd9e04e19b482a2ca9c147c6be464db4e335431c94242393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Some figures in this article are displayed in color online but in black and white in the print edition.
Present address: Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523.
The online version of this article contains Web-only data.
www.plantphysiol.org/cgi/doi/10.1104/pp.111.172502
This work was supported by the National Science Foundation Arabidopsis 2010 Program (grant nos. IOB–0820717 to G.K.M. and 0820674 to B.S.J.W. and R.F.H.) and National Science Foundation Molecular Biochemistry (grant no. MCB–0445878 to B.S.J.W.), by the U.S. Department of Agriculture-National Research Initiative Competitive Grants Program (grant no. 2006–03406 to G.K.M.), by the National Science Foundation Major Research Instrumentation Program for purchase of the confocal microscope (grant no. MRI–0722926 to Anita McCauley and G.K.M.), and by the National Science Foundation Plant Genome Program (grant no. DBI–0621702 to Edgar Spalding).
The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) are: Brenda S.J. Winkel (winkel@vt.edu) and Gloria K. Muday (muday@wfu.edu).
Open Access articles can be viewed online without a subscription.
OpenAccessLink http://www.plantphysiol.org/content/plantphysiol/156/1/144.full.pdf
PMID 21427279
PQID 1400126086
PQPubID 24069
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3091047
proquest_miscellaneous_865188280
proquest_miscellaneous_1400126086
pubmed_primary_21427279
pascalfrancis_primary_24132667
crossref_citationtrail_10_1104_pp_111_172502
crossref_primary_10_1104_pp_111_172502
jstor_primary_41434589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2011
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Kendrick (2021041906353800400_b45) 2008; 11
Li (2021041906353800400_b53) 1993; 5
Swarup (2021041906353800400_b93) 2007; 19
Jensen (2021041906353800400_b43) 1998; 116
Bieza (2021041906353800400_b9) 2001; 126
Buer (2021041906353800400_b19) 2007; 145
Kepinski (2021041906353800400_b46) 2005; 435
Stracke (2021041906353800400_b90) 2010; 33
Baudry (2021041906353800400_b5) 2004; 39
Buer (2021041906353800400_b20) 2008; 3
Feyissa (2021041906353800400_b33) 2009; 230
Vandenbussche (2021041906353800400_b99) 2003; 133
Winkel-Shirley (2021041906353800400_b105) 2002; 5
Alonso (2021041906353800400_b1) 1999; 284
Otsu (2021041906353800400_b63) 1979; 9
Borevitz (2021041906353800400_b12) 2000; 12
Routaboul (2021041906353800400_b74) 2006; 224
Whelan (2021041906353800400_b103) 2003; 278
Vandenbussche (2021041906353800400_b98) 2005; 27
Muday (2021041906353800400_b56) 2006; 141
Chen (2021041906353800400_b27) 1998; 95
Brown (2021041906353800400_b15) 2001; 126
Bharti (2021041906353800400_b8) 1997; 65
Yonekura-Sakakibara (2021041906353800400_b106) 2008; 20
Berleth (2021041906353800400_b7) 2001; 4
Chapman (2021041906353800400_b25) 2009; 43
Lewis (2021041906353800400_b52) 2009; 4
Peer (2021041906353800400_b66) 2001; 126
Redman (2021041906353800400_b72) 2004; 38
Rahman (2021041906353800400_b70) 2001; 42
Geisler (2021041906353800400_b35) 2005; 44
Bleecker (2021041906353800400_b10) 1988; 241
Péret (2021041906353800400_b68) 2009; 14
Kieber (2021041906353800400_b47) 1993; 72
Ringli (2021041906353800400_b73) 2008; 20
Negi (2021041906353800400_b60) 2010; 61
Stepanova (2021041906353800400_b88) 2000; 3
Yosef (2021041906353800400_b107) 2011; 144
Chang (2021041906353800400_b24) 1993; 262
Paponov (2021041906353800400_b64) 2008; 1
Cominelli (2021041906353800400_b30) 2008; 165
Sheahan (2021041906353800400_b83) 1992; 13
Stepanova (2021041906353800400_b87) 2009; 12
Ohme-Takagi (2021041906353800400_b62) 1995; 7
Hartmann (2021041906353800400_b38) 1998; 36
Clough (2021041906353800400_b28) 1998; 16
Negi (2021041906353800400_b59) 2008; 55
Hall (2021041906353800400_b37) 1999; 121
Ulmasov (2021041906353800400_b97) 1987; 9
Winkel-Shirley (2021041906353800400_b104) 2001; 126
Murphy (2021041906353800400_b58) 2000; 211
Tohge (2021041906353800400_b94) 2005; 42
Huang (2021041906353800400_b40) 2003; 33
Santelia (2021041906353800400_b78) 2008; 283
Růzicka (2021041906353800400_b77) 2007; 19
Chen (2021041906353800400_b26) 1994; 16
Stepanova (2021041906353800400_b89) 2007; 19
von Arnim (2021041906353800400_b102) 1998; 221
Cluis (2021041906353800400_b29) 2004; 38
Rozen (2021041906353800400_b75) 2000; 132
Vogt (2021041906353800400_b101) 2010; 3
Vanneste (2021041906353800400_b100) 2005; 17
Laskowski (2021041906353800400_b50) 2008; 6
Sibout (2021041906353800400_b86) 2006; 2
Barrett (2021041906353800400_b4) 2009; 37
Dharmasiri (2021041906353800400_b31) 2005; 435
Larsen (2021041906353800400_b49) 2001; 125
Stracke (2021041906353800400_b91) 2007; 50
Böttcher (2021041906353800400_b13) 2008; 147
Shirley (2021041906353800400_b85) 1995; 8
Mathesius (2021041906353800400_b54) 1998; 14
Ulmasov (2021041906353800400_b95) 1999; 96
Neu (2021041906353800400_b61) 1956; 151
Bennett (2021041906353800400_b6) 2006; 16
Burbulis (2021041906353800400_b22) 1996; 8
Hemm (2021041906353800400_b39) 2004; 38
Rashotte (2021041906353800400_b71) 2003; 133
Brady (2021041906353800400_b14) 2007; 318
Auger (2021041906353800400_b3) 2010; 58
Peer (2021041906353800400_b65) 2004; 16
Armstrong (2021041906353800400_b2) 2004; 101
Gonzalez (2021041906353800400_b36) 2008; 53
Ruegger (2021041906353800400_b76) 1998; 12
Cain (2021041906353800400_b23) 1997; 35
Saslowsky (2021041906353800400_b80) 2000; 255
Ulmasov (2021041906353800400_b96) 1995; 7
Koes (2021041906353800400_b48) 2005; 10
Buer (2021041906353800400_b18) 2004; 16
Ivanchenko (2021041906353800400_b41) 2008; 55
Muday (2021041906353800400_b57) 2006
Buer (2021041906353800400_b16) 2009; 60
Schoenbohm (2021041906353800400_b82) 2000; 381
Pfaffl (2021041906353800400_b69) 2001; 29
Levesque (2021041906353800400_b51) 2006; 4
Jacobs (2021041906353800400_b42) 1988; 241
Shin (2021041906353800400_b84) 2007; 19
Boerjan (2021041906353800400_b11) 2003; 54
Frazzon (2021041906353800400_b34) 2007; 64
Saslowsky (2021041906353800400_b81) 2005; 280
Buer (2021041906353800400_b21) 2006; 140
Zaslaver (2021041906353800400_b108) 2004; 36
Buer (2021041906353800400_b17) 2010; 52
Zhong (2021041906353800400_b109) 2003; 53
Pelletier (2021041906353800400_b67) 1996; 111
Saslowsky (2021041906353800400_b79) 2001; 27
Edwards (2021041906353800400_b32) 1991; 19
Karimi (2021041906353800400_b44) 2005; 10
Stracke (2021041906353800400_b92) 2010; 188
Mehrtens (2021041906353800400_b55) 2005; 138
17121469 - PLoS Genet. 2006 Nov 24;2(11):e202
18552234 - Plant Physiol. 2008 Aug;147(4):2107-20
16546078 - Curr Biol. 2006 Mar 21;16(6):553-63
16489132 - Plant Physiol. 2006 Apr;140(4):1384-96
11030432 - Biol Chem. 2000 Aug;381(8):749-53
15494052 - Plant J. 1998 Apr;14(1):23-34
16212599 - Plant J. 2005 Oct;44(2):179-94
15882656 - Trends Plant Sci. 2005 May;10(5):236-42
9436980 - Genes Dev. 1998 Jan 15;12(2):198-207
17747490 - Science. 1988 Aug 26;241(4869):1086-9
10069079 - Plant J. 1998 Dec;16(6):735-43
15208397 - Plant Cell. 2004 Jul;16(7):1898-911
8024787 - Biotechniques. 1994 Apr;16(4):664-8, 670
11457961 - Plant Physiol. 2001 Jul;126(3):1105-15
18435826 - Plant J. 2008 Jul;55(2):335-47
12957413 - J Immunol Methods. 2003 Jul;278(1-2):261-9
19090618 - PLoS Biol. 2008 Dec 16;6(12):e307
19895401 - Plant Cell Environ. 2010 Jan;33(1):88-103
11024274 - Gene. 2000 Sep 19;255(2):127-38
18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90
19129166 - J Exp Bot. 2009;60(3):751-63
19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55
1282347 - Biotechniques. 1992 Dec;13(6):880-3
12271060 - Plant Cell. 1993 Feb;5(2):171-179
14756311 - Plant Mol Biol. 2003 Sep;53(1-2):117-31
17630276 - Plant Cell. 2007 Jul;19(7):2169-85
11489181 - Plant J. 2001 Jul;27(1):37-48
18567791 - Plant Cell. 2008 Jun;20(6):1470-81
19825543 - Mol Plant. 2008 Mar;1(2):321-37
17419845 - Plant J. 2007 May;50(4):660-77
15807784 - Plant J. 2005 Apr;42(2):218-35
19282849 - Nat Protoc. 2009;4(4):437-51
15086809 - Plant J. 2004 May;38(3):545-61
15100399 - Plant Cell. 2004 May;16(5):1191-205
12535337 - Plant J. 2003 Jan;33(2):221-33
18363780 - Plant J. 2008 Jul;55(2):175-87
15466695 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14978-83
11402184 - Plant Physiol. 2001 Jun;126(2):524-35
15923334 - Plant Physiol. 2005 Jun;138(2):1083-96
18718912 - J Biol Chem. 2008 Nov 7;283(45):31218-26
18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85
17734864 - Science. 1988 Jul 15;241(4863):346-9
10547847 - Methods Mol Biol. 2000;132:365-86
10381874 - Science. 1999 Jun 25;284(5423):2148-52
15817473 - J Biol Chem. 2005 Jun 24;280(25):23735-40
17675404 - Plant Cell. 2007 Aug;19(8):2440-53
20731781 - New Phytol. 2010 Dec;188(4):985-1000
17417719 - Plant Mol Biol. 2007 Jun;64(3):225-40
15749466 - Trends Plant Sci. 2005 Mar;10(3):103-5
18036197 - Plant J. 2008 Mar;53(5):814-27
20035037 - Mol Plant. 2010 Jan;3(1):2-20
18757557 - Plant Cell. 2008 Aug;20(8):2160-76
8528278 - Plant J. 1995 Nov;8(5):659-71
7756828 - Plant Cell. 1995 Feb;7(2):173-82
11148285 - Plant Cell. 2000 Dec;12(12):2383-2394
9852947 - Gene. 1998 Oct 9;221(1):35-43
11161061 - Plant Physiol. 2001 Feb;125(2):1061-73
15144378 - Plant J. 2004 Jun;38(5):765-78
17630275 - Plant Cell. 2007 Jul;19(7):2186-96
20074144 - J Integr Plant Biol. 2010 Jan;52(1):98-111
17630274 - Plant Cell. 2007 Jul;19(7):2197-212
15078335 - Plant J. 2004 Apr;38(2):332-47
14526119 - Plant Physiol. 2003 Oct;133(2):761-72
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
11266581 - Plant Cell Physiol. 2001 Mar;42(3):301-7
19621239 - Planta. 2009 Sep;230(4):747-54
8211181 - Science. 1993 Oct 22;262(5133):539-44
9349261 - Plant Mol Biol. 1997 Oct;35(3):377-81
11402185 - Plant Physiol. 2001 Jun;126(2):536-48
11019801 - Curr Opin Plant Biol. 2000 Oct;3(5):353-60
2030957 - Nucleic Acids Res. 1991 Mar 25;19(6):1349
9844024 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112-7
10318972 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9
16395586 - Planta. 2006 Jun;224(1):96-107
10987549 - Planta. 2000 Aug;211(3):315-24
14503002 - Annu Rev Plant Biol. 2003;54:519-46
9401121 - Plant Cell. 1997 Nov;9(11):1963-71
8431946 - Cell. 1993 Feb 12;72(3):427-41
16640459 - PLoS Biol. 2006 May;4(5):e143
15255866 - Plant J. 2004 Aug;39(3):366-80
21414481 - Cell. 2011 Mar 18;144(6):886-96
16243906 - Plant Cell. 2005 Nov;17(11):3035-50
19704584 - Plant Signal Behav. 2008 Jun;3(6):415-7
20429588 - J Agric Food Chem. 2010 May 26;58(10):6246-56
8672888 - Plant Cell. 1996 Jun;8(6):1013-25
15714558 - Bioessays. 2005 Mar;27(3):275-84
10482685 - Plant Physiol. 1999 Sep;121(1):291-300
17975066 - Science. 2007 Nov 2;318(5851):801-6
9526507 - Plant Mol Biol. 1998 Mar;36(5):741-54
11402179 - Plant Physiol. 2001 Jun;126(2):485-93
8685272 - Plant Physiol. 1996 May;111(1):339-45
17720762 - Plant Physiol. 2007 Oct;145(2):478-90
17766004 - J Plant Physiol. 2008 May 26;165(8):886-94
11163169 - Curr Opin Plant Biol. 2001 Feb;4(1):57-62
11960739 - Curr Opin Plant Biol. 2002 Jun;5(3):218-23
19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408
15107854 - Nat Genet. 2004 May;36(5):486-91
15917797 - Nature. 2005 May 26;435(7041):441-5
7580254 - Plant Cell. 1995 Oct;7(10):1611-23
9155253 - Photochem Photobiol. 1997 May;65(5):765-76
12972669 - Plant Physiol. 2003 Oct;133(2):517-27
16798939 - Plant Physiol. 2006 Aug;141(4):1617-29
15917798 - Nature. 2005 May 26;435(7041):446-51
19793078 - Plant J. 2010 Jan;61(1):3-15
9489005 - Plant Physiol. 1998 Feb;116(2):455-62
19686081 - Annu Rev Genet. 2009;43:265-85
References_xml – volume: 58
  start-page: 6246
  year: 2010
  ident: 2021041906353800400_b3
  article-title: A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L
  publication-title: J Agric Food Chem
  doi: 10.1021/jf903619v
– volume: 19
  start-page: 2197
  year: 2007
  ident: 2021041906353800400_b77
  article-title: Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052126
– volume: 12
  start-page: 548
  year: 2009
  ident: 2021041906353800400_b87
  article-title: Ethylene signaling and response: where different regulatory modules meet
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2009.07.009
– volume: 16
  start-page: 735
  year: 1998
  ident: 2021041906353800400_b28
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 141
  start-page: 1617
  year: 2006
  ident: 2021041906353800400_b56
  article-title: RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.083212
– volume: 72
  start-page: 427
  year: 1993
  ident: 2021041906353800400_b47
  article-title: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90119-B
– volume: 8
  start-page: 659
  year: 1995
  ident: 2021041906353800400_b85
  article-title: Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1995.08050659.x
– volume: 12
  start-page: 198
  year: 1998
  ident: 2021041906353800400_b76
  article-title: The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p
  publication-title: Genes Dev
  doi: 10.1101/gad.12.2.198
– volume: 283
  start-page: 31218
  year: 2008
  ident: 2021041906353800400_b78
  article-title: Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M710122200
– volume: 284
  start-page: 2148
  year: 1999
  ident: 2021041906353800400_b1
  article-title: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.284.5423.2148
– volume: 262
  start-page: 539
  year: 1993
  ident: 2021041906353800400_b24
  article-title: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators
  publication-title: Science
  doi: 10.1126/science.8211181
– volume: 55
  start-page: 335
  year: 2008
  ident: 2021041906353800400_b41
  article-title: Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03528.x
– volume: 52
  start-page: 98
  year: 2010
  ident: 2021041906353800400_b17
  article-title: Flavonoids: new roles for old molecules
  publication-title: J Integr Plant Biol
  doi: 10.1111/j.1744-7909.2010.00905.x
– volume: 16
  start-page: 1898
  year: 2004
  ident: 2021041906353800400_b65
  article-title: Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.021501
– volume: 126
  start-page: 485
  year: 2001
  ident: 2021041906353800400_b104
  article-title: Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.485
– volume: 8
  start-page: 1013
  year: 1996
  ident: 2021041906353800400_b22
  article-title: A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis
  publication-title: Plant Cell
– volume: 20
  start-page: 1470
  year: 2008
  ident: 2021041906353800400_b73
  article-title: The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.053249
– volume: 230
  start-page: 747
  year: 2009
  ident: 2021041906353800400_b33
  article-title: The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves
  publication-title: Planta
  doi: 10.1007/s00425-009-0978-3
– volume: 2
  start-page: e202
  year: 2006
  ident: 2021041906353800400_b86
  article-title: Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020202
– volume: 101
  start-page: 14978
  year: 2004
  ident: 2021041906353800400_b2
  article-title: Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404312101
– volume: 16
  start-page: 664
  year: 1994
  ident: 2021041906353800400_b26
  article-title: Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection
  publication-title: Biotechniques
– volume: 133
  start-page: 761
  year: 2003
  ident: 2021041906353800400_b71
  article-title: Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.022582
– volume: 29
  start-page: 2002
  year: 2001
  ident: 2021041906353800400_b69
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 4
  start-page: 57
  year: 2001
  ident: 2021041906353800400_b7
  article-title: Plant morphogenesis: long-distance coordination and local patterning
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(00)00136-9
– volume: 36
  start-page: 741
  year: 1998
  ident: 2021041906353800400_b38
  article-title: Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005921914384
– volume: 126
  start-page: 1105
  year: 2001
  ident: 2021041906353800400_b9
  article-title: An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.3.1105
– volume: 61
  start-page: 3
  year: 2010
  ident: 2021041906353800400_b60
  article-title: Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.04027.x
– volume: 53
  start-page: 117
  year: 2003
  ident: 2021041906353800400_b109
  article-title: Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis
  publication-title: Plant Mol Biol
  doi: 10.1023/B:PLAN.0000009270.81977.ef
– volume: 278
  start-page: 261
  year: 2003
  ident: 2021041906353800400_b103
  article-title: A method for the absolute quantification of cDNA using real-time PCR
  publication-title: J Immunol Methods
  doi: 10.1016/S0022-1759(03)00223-0
– volume: 4
  start-page: e143
  year: 2006
  ident: 2021041906353800400_b51
  article-title: Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040143
– volume: 138
  start-page: 1083
  year: 2005
  ident: 2021041906353800400_b55
  article-title: The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.058032
– volume: 95
  start-page: 15112
  year: 1998
  ident: 2021041906353800400_b27
  article-title: The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.15112
– volume: 27
  start-page: 275
  year: 2005
  ident: 2021041906353800400_b98
  article-title: Of light and length: regulation of hypocotyl growth in Arabidopsis
  publication-title: Bioessays
  doi: 10.1002/bies.20199
– volume: 12
  start-page: 2383
  year: 2000
  ident: 2021041906353800400_b12
  article-title: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.12.2383
– volume: 145
  start-page: 478
  year: 2007
  ident: 2021041906353800400_b19
  article-title: Flavonoids are differentially taken up and transported long distances in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.101824
– start-page: 47
  year: 2006
  ident: 2021041906353800400_b57
  article-title: Auxin transport and the integration of gravitropic growth
– volume: 14
  start-page: 399
  year: 2009
  ident: 2021041906353800400_b68
  article-title: Arabidopsis lateral root development: an emerging story
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2009.05.002
– volume: 38
  start-page: 765
  year: 2004
  ident: 2021041906353800400_b39
  article-title: Light induces phenylpropanoid metabolism in Arabidopsis roots
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02089.x
– volume: 19
  start-page: 1349
  year: 1991
  ident: 2021041906353800400_b32
  article-title: A simple and rapid method for the preparation of plant genomic DNA for PCR analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/19.6.1349
– volume: 13
  start-page: 880
  year: 1992
  ident: 2021041906353800400_b83
  article-title: Flavonoid-specific staining of Arabidopsis thaliana
  publication-title: Biotechniques
– volume: 96
  start-page: 5844
  year: 1999
  ident: 2021041906353800400_b95
  article-title: Activation and repression of transcription by auxin-response factors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.10.5844
– volume: 133
  start-page: 517
  year: 2003
  ident: 2021041906353800400_b99
  article-title: Ethylene and auxin control the Arabidopsis response to decreased light intensity
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.022665
– volume: 147
  start-page: 2107
  year: 2008
  ident: 2021041906353800400_b13
  article-title: Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.117754
– volume: 1
  start-page: 321
  year: 2008
  ident: 2021041906353800400_b64
  article-title: Comprehensive transcriptome analysis of auxin responses in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1093/mp/ssm021
– volume: 121
  start-page: 291
  year: 1999
  ident: 2021041906353800400_b37
  article-title: The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor
  publication-title: Plant Physiol
  doi: 10.1104/pp.121.1.291
– volume: 53
  start-page: 814
  year: 2008
  ident: 2021041906353800400_b36
  article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03373.x
– volume: 140
  start-page: 1384
  year: 2006
  ident: 2021041906353800400_b21
  article-title: Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.075671
– volume: 37
  start-page: D885
  year: 2009
  ident: 2021041906353800400_b4
  article-title: NCBI GEO: archive for high-throughput functional genomic data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn764
– volume: 3
  start-page: 415
  year: 2008
  ident: 2021041906353800400_b20
  article-title: Implications of long-distance flavonoid movement in Arabidopsis thaliana
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.3.6.5440
– volume: 10
  start-page: 236
  year: 2005
  ident: 2021041906353800400_b48
  article-title: Flavonoids: a colorful model for the regulation and evolution of biochemical pathways
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2005.03.002
– volume: 221
  start-page: 35
  year: 1998
  ident: 2021041906353800400_b102
  article-title: Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants
  publication-title: Gene
  doi: 10.1016/S0378-1119(98)00433-8
– volume: 64
  start-page: 225
  year: 2007
  ident: 2021041906353800400_b34
  article-title: Functional analysis of Arabidopsis genes involved in mitochondrial iron-sulfur cluster assembly
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9147-x
– volume: 241
  start-page: 346
  year: 1988
  ident: 2021041906353800400_b42
  article-title: Naturally occurring auxin transport regulators
  publication-title: Science
  doi: 10.1126/science.241.4863.346
– volume: 3
  start-page: 353
  year: 2000
  ident: 2021041906353800400_b88
  article-title: Ethylene signaling: from mutants to molecules
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(00)00096-0
– volume: 17
  start-page: 3035
  year: 2005
  ident: 2021041906353800400_b100
  article-title: Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035493
– volume: 43
  start-page: 265
  year: 2009
  ident: 2021041906353800400_b25
  article-title: Mechanism of auxin-regulated gene expression in plants
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-102108-134148
– volume: 241
  start-page: 1086
  year: 1988
  ident: 2021041906353800400_b10
  article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.241.4869.1086
– volume: 7
  start-page: 1611
  year: 1995
  ident: 2021041906353800400_b96
  article-title: Composite structure of auxin response elements
  publication-title: Plant Cell
– volume: 14
  start-page: 23
  year: 1998
  ident: 2021041906353800400_b54
  article-title: Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1998.00090.x
– volume: 211
  start-page: 315
  year: 2000
  ident: 2021041906353800400_b58
  article-title: Regulation of auxin transport by aminopeptidases and endogenous flavonoids
  publication-title: Planta
  doi: 10.1007/s004250000300
– volume: 280
  start-page: 23735
  year: 2005
  ident: 2021041906353800400_b81
  article-title: Nuclear localization of flavonoid enzymes in Arabidopsis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M413506200
– volume: 165
  start-page: 886
  year: 2008
  ident: 2021041906353800400_b30
  article-title: Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2007.06.010
– volume: 6
  start-page: e307
  year: 2008
  ident: 2021041906353800400_b50
  article-title: Root system architecture from coupling cell shape to auxin transport
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060307
– volume: 126
  start-page: 524
  year: 2001
  ident: 2021041906353800400_b15
  article-title: Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.524
– volume: 116
  start-page: 455
  year: 1998
  ident: 2021041906353800400_b43
  article-title: Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.116.2.455
– volume: 7
  start-page: 173
  year: 1995
  ident: 2021041906353800400_b62
  article-title: Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element
  publication-title: Plant Cell
– volume: 9
  start-page: 62
  year: 1979
  ident: 2021041906353800400_b63
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– volume: 19
  start-page: 2440
  year: 2007
  ident: 2021041906353800400_b84
  article-title: The Arabidopsis transcription factor MYB77 modulates auxin signal transduction
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050963
– volume: 42
  start-page: 218
  year: 2005
  ident: 2021041906353800400_b94
  article-title: Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02371.x
– volume: 188
  start-page: 985
  year: 2010
  ident: 2021041906353800400_b92
  article-title: Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03421.x
– volume: 132
  start-page: 365
  year: 2000
  ident: 2021041906353800400_b75
  article-title: Primer3 on the WWW for general users and for biologist programmers
  publication-title: Methods Mol Biol
– volume: 5
  start-page: 218
  year: 2002
  ident: 2021041906353800400_b105
  article-title: Biosynthesis of flavonoids and effects of stress
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(02)00256-X
– volume: 318
  start-page: 801
  year: 2007
  ident: 2021041906353800400_b14
  article-title: A high-resolution root spatiotemporal map reveals dominant expression patterns
  publication-title: Science
  doi: 10.1126/science.1146265
– volume: 19
  start-page: 2186
  year: 2007
  ident: 2021041906353800400_b93
  article-title: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052100
– volume: 144
  start-page: 886
  year: 2011
  ident: 2021041906353800400_b107
  article-title: Impulse control: temporal dynamics in gene transcription
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.015
– volume: 9
  start-page: 1963
  year: 1987
  ident: 2021041906353800400_b97
  article-title: Aux/IAA protein repress expression of reporter genes containing natural and highly active synthetic auxin response elements
  publication-title: Plant Cell
– volume: 38
  start-page: 332
  year: 2004
  ident: 2021041906353800400_b29
  article-title: The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02052.x
– volume: 435
  start-page: 446
  year: 2005
  ident: 2021041906353800400_b46
  article-title: The Arabidopsis F-box protein TIR1 is an auxin receptor
  publication-title: Nature
  doi: 10.1038/nature03542
– volume: 50
  start-page: 660
  year: 2007
  ident: 2021041906353800400_b91
  article-title: Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03078.x
– volume: 19
  start-page: 2169
  year: 2007
  ident: 2021041906353800400_b89
  article-title: Multilevel interactions between ethylene and auxin in Arabidopsis roots
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052068
– volume: 255
  start-page: 127
  year: 2000
  ident: 2021041906353800400_b80
  article-title: An allelic series for the chalcone synthase locus in Arabidopsis
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00304-8
– volume: 33
  start-page: 88
  year: 2010
  ident: 2021041906353800400_b90
  article-title: The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation
  publication-title: Plant Cell Environ
– volume: 3
  start-page: 2
  year: 2010
  ident: 2021041906353800400_b101
  article-title: Phenylpropanoid biosynthesis
  publication-title: Mol Plant
  doi: 10.1093/mp/ssp106
– volume: 16
  start-page: 553
  year: 2006
  ident: 2021041906353800400_b6
  article-title: The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2006.01.058
– volume: 38
  start-page: 545
  year: 2004
  ident: 2021041906353800400_b72
  article-title: Development and evaluation of an Arabidopsis whole genome Affymetrix probe array
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02061.x
– volume: 224
  start-page: 96
  year: 2006
  ident: 2021041906353800400_b74
  article-title: Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-005-0197-5
– volume: 55
  start-page: 175
  year: 2008
  ident: 2021041906353800400_b59
  article-title: Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03495.x
– volume: 44
  start-page: 179
  year: 2005
  ident: 2021041906353800400_b35
  article-title: Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02519.x
– volume: 381
  start-page: 749
  year: 2000
  ident: 2021041906353800400_b82
  article-title: Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme
  publication-title: Biol Chem
  doi: 10.1515/BC.2000.095
– volume: 20
  start-page: 2160
  year: 2008
  ident: 2021041906353800400_b106
  article-title: Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058040
– volume: 35
  start-page: 377
  year: 1997
  ident: 2021041906353800400_b23
  article-title: Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1005846620791
– volume: 151
  start-page: 328
  year: 1956
  ident: 2021041906353800400_b61
  article-title: Aromatische Borsäuren als bathochrome Reagentien für Flavone
  publication-title: J Anal Chem
– volume: 435
  start-page: 441
  year: 2005
  ident: 2021041906353800400_b31
  article-title: The F-box protein TIR1 is an auxin receptor
  publication-title: Nature
  doi: 10.1038/nature03543
– volume: 11
  start-page: 479
  year: 2008
  ident: 2021041906353800400_b45
  article-title: Ethylene signaling: new levels of complexity and regulation
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2008.06.011
– volume: 42
  start-page: 301
  year: 2001
  ident: 2021041906353800400_b70
  article-title: Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pce035
– volume: 54
  start-page: 519
  year: 2003
  ident: 2021041906353800400_b11
  article-title: Lignin biosynthesis
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.54.031902.134938
– volume: 65
  start-page: 765
  year: 1997
  ident: 2021041906353800400_b8
  article-title: Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1997.tb01923.x
– volume: 126
  start-page: 536
  year: 2001
  ident: 2021041906353800400_b66
  article-title: Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.126.2.536
– volume: 111
  start-page: 339
  year: 1996
  ident: 2021041906353800400_b67
  article-title: Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings: coordinate regulation with chalcone synthase and chalcone isomerase
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.1.339
– volume: 125
  start-page: 1061
  year: 2001
  ident: 2021041906353800400_b49
  article-title: The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.2.1061
– volume: 33
  start-page: 221
  year: 2003
  ident: 2021041906353800400_b40
  article-title: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01620.x
– volume: 60
  start-page: 751
  year: 2009
  ident: 2021041906353800400_b16
  article-title: Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern323
– volume: 16
  start-page: 1191
  year: 2004
  ident: 2021041906353800400_b18
  article-title: The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light
  publication-title: Plant Cell
  doi: 10.1105/tpc.020313
– volume: 5
  start-page: 171
  year: 1993
  ident: 2021041906353800400_b53
  article-title: Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation
  publication-title: Plant Cell
  doi: 10.2307/3869583
– volume: 4
  start-page: 437
  year: 2009
  ident: 2021041906353800400_b52
  article-title: Measurement of auxin transport in Arabidopsis thaliana
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.1
– volume: 10
  start-page: 103
  year: 2005
  ident: 2021041906353800400_b44
  article-title: Modular cloning and expression of tagged fluorescent protein in plant cells
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2005.01.008
– volume: 27
  start-page: 37
  year: 2001
  ident: 2021041906353800400_b79
  article-title: Localization of flavonoid enzymes in Arabidopsis roots
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2001.01073.x
– volume: 39
  start-page: 366
  year: 2004
  ident: 2021041906353800400_b5
  article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2004.02138.x
– volume: 36
  start-page: 486
  year: 2004
  ident: 2021041906353800400_b108
  article-title: Just-in-time transcription program in metabolic pathways
  publication-title: Nat Genet
  doi: 10.1038/ng1348
– reference: 14526119 - Plant Physiol. 2003 Oct;133(2):761-72
– reference: 11148285 - Plant Cell. 2000 Dec;12(12):2383-2394
– reference: 15144378 - Plant J. 2004 Jun;38(5):765-78
– reference: 20731781 - New Phytol. 2010 Dec;188(4):985-1000
– reference: 11402179 - Plant Physiol. 2001 Jun;126(2):485-93
– reference: 19895401 - Plant Cell Environ. 2010 Jan;33(1):88-103
– reference: 11161061 - Plant Physiol. 2001 Feb;125(2):1061-73
– reference: 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90
– reference: 14503002 - Annu Rev Plant Biol. 2003;54:519-46
– reference: 17766004 - J Plant Physiol. 2008 May 26;165(8):886-94
– reference: 17630276 - Plant Cell. 2007 Jul;19(7):2169-85
– reference: 18567791 - Plant Cell. 2008 Jun;20(6):1470-81
– reference: 15882656 - Trends Plant Sci. 2005 May;10(5):236-42
– reference: 16640459 - PLoS Biol. 2006 May;4(5):e143
– reference: 10547847 - Methods Mol Biol. 2000;132:365-86
– reference: 11402184 - Plant Physiol. 2001 Jun;126(2):524-35
– reference: 11266581 - Plant Cell Physiol. 2001 Mar;42(3):301-7
– reference: 8672888 - Plant Cell. 1996 Jun;8(6):1013-25
– reference: 11457961 - Plant Physiol. 2001 Jul;126(3):1105-15
– reference: 8528278 - Plant J. 1995 Nov;8(5):659-71
– reference: 17419845 - Plant J. 2007 May;50(4):660-77
– reference: 20074144 - J Integr Plant Biol. 2010 Jan;52(1):98-111
– reference: 16489132 - Plant Physiol. 2006 Apr;140(4):1384-96
– reference: 1282347 - Biotechniques. 1992 Dec;13(6):880-3
– reference: 12535337 - Plant J. 2003 Jan;33(2):221-33
– reference: 17121469 - PLoS Genet. 2006 Nov 24;2(11):e202
– reference: 9155253 - Photochem Photobiol. 1997 May;65(5):765-76
– reference: 2030957 - Nucleic Acids Res. 1991 Mar 25;19(6):1349
– reference: 19704584 - Plant Signal Behav. 2008 Jun;3(6):415-7
– reference: 8431946 - Cell. 1993 Feb 12;72(3):427-41
– reference: 17630274 - Plant Cell. 2007 Jul;19(7):2197-212
– reference: 11163169 - Curr Opin Plant Biol. 2001 Feb;4(1):57-62
– reference: 17747490 - Science. 1988 Aug 26;241(4869):1086-9
– reference: 18036197 - Plant J. 2008 Mar;53(5):814-27
– reference: 16546078 - Curr Biol. 2006 Mar 21;16(6):553-63
– reference: 16798939 - Plant Physiol. 2006 Aug;141(4):1617-29
– reference: 19709924 - Curr Opin Plant Biol. 2009 Oct;12(5):548-55
– reference: 10381874 - Science. 1999 Jun 25;284(5423):2148-52
– reference: 18692429 - Curr Opin Plant Biol. 2008 Oct;11(5):479-85
– reference: 8024787 - Biotechniques. 1994 Apr;16(4):664-8, 670
– reference: 19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408
– reference: 17675404 - Plant Cell. 2007 Aug;19(8):2440-53
– reference: 7580254 - Plant Cell. 1995 Oct;7(10):1611-23
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 9349261 - Plant Mol Biol. 1997 Oct;35(3):377-81
– reference: 18435826 - Plant J. 2008 Jul;55(2):335-47
– reference: 17975066 - Science. 2007 Nov 2;318(5851):801-6
– reference: 18757557 - Plant Cell. 2008 Aug;20(8):2160-76
– reference: 17720762 - Plant Physiol. 2007 Oct;145(2):478-90
– reference: 9489005 - Plant Physiol. 1998 Feb;116(2):455-62
– reference: 18718912 - J Biol Chem. 2008 Nov 7;283(45):31218-26
– reference: 7756828 - Plant Cell. 1995 Feb;7(2):173-82
– reference: 9401121 - Plant Cell. 1997 Nov;9(11):1963-71
– reference: 17630275 - Plant Cell. 2007 Jul;19(7):2186-96
– reference: 11030432 - Biol Chem. 2000 Aug;381(8):749-53
– reference: 15749466 - Trends Plant Sci. 2005 Mar;10(3):103-5
– reference: 8211181 - Science. 1993 Oct 22;262(5133):539-44
– reference: 17734864 - Science. 1988 Jul 15;241(4863):346-9
– reference: 15817473 - J Biol Chem. 2005 Jun 24;280(25):23735-40
– reference: 15714558 - Bioessays. 2005 Mar;27(3):275-84
– reference: 11489181 - Plant J. 2001 Jul;27(1):37-48
– reference: 18552234 - Plant Physiol. 2008 Aug;147(4):2107-20
– reference: 15807784 - Plant J. 2005 Apr;42(2):218-35
– reference: 19282849 - Nat Protoc. 2009;4(4):437-51
– reference: 16243906 - Plant Cell. 2005 Nov;17(11):3035-50
– reference: 21414481 - Cell. 2011 Mar 18;144(6):886-96
– reference: 10482685 - Plant Physiol. 1999 Sep;121(1):291-300
– reference: 10987549 - Planta. 2000 Aug;211(3):315-24
– reference: 9436980 - Genes Dev. 1998 Jan 15;12(2):198-207
– reference: 19129166 - J Exp Bot. 2009;60(3):751-63
– reference: 19793078 - Plant J. 2010 Jan;61(1):3-15
– reference: 9526507 - Plant Mol Biol. 1998 Mar;36(5):741-54
– reference: 11024274 - Gene. 2000 Sep 19;255(2):127-38
– reference: 19686081 - Annu Rev Genet. 2009;43:265-85
– reference: 15917797 - Nature. 2005 May 26;435(7041):441-5
– reference: 17417719 - Plant Mol Biol. 2007 Jun;64(3):225-40
– reference: 15107854 - Nat Genet. 2004 May;36(5):486-91
– reference: 15466695 - Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14978-83
– reference: 9844024 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112-7
– reference: 15917798 - Nature. 2005 May 26;435(7041):446-51
– reference: 12972669 - Plant Physiol. 2003 Oct;133(2):517-27
– reference: 9852947 - Gene. 1998 Oct 9;221(1):35-43
– reference: 15086809 - Plant J. 2004 May;38(3):545-61
– reference: 19825543 - Mol Plant. 2008 Mar;1(2):321-37
– reference: 16395586 - Planta. 2006 Jun;224(1):96-107
– reference: 18363780 - Plant J. 2008 Jul;55(2):175-87
– reference: 20429588 - J Agric Food Chem. 2010 May 26;58(10):6246-56
– reference: 19090618 - PLoS Biol. 2008 Dec 16;6(12):e307
– reference: 11019801 - Curr Opin Plant Biol. 2000 Oct;3(5):353-60
– reference: 11402185 - Plant Physiol. 2001 Jun;126(2):536-48
– reference: 15100399 - Plant Cell. 2004 May;16(5):1191-205
– reference: 8685272 - Plant Physiol. 1996 May;111(1):339-45
– reference: 20035037 - Mol Plant. 2010 Jan;3(1):2-20
– reference: 16212599 - Plant J. 2005 Oct;44(2):179-94
– reference: 19621239 - Planta. 2009 Sep;230(4):747-54
– reference: 12271060 - Plant Cell. 1993 Feb;5(2):171-179
– reference: 12957413 - J Immunol Methods. 2003 Jul;278(1-2):261-9
– reference: 15078335 - Plant J. 2004 Apr;38(2):332-47
– reference: 10318972 - Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9
– reference: 15208397 - Plant Cell. 2004 Jul;16(7):1898-911
– reference: 14756311 - Plant Mol Biol. 2003 Sep;53(1-2):117-31
– reference: 15923334 - Plant Physiol. 2005 Jun;138(2):1083-96
– reference: 15255866 - Plant J. 2004 Aug;39(3):366-80
– reference: 15494052 - Plant J. 1998 Apr;14(1):23-34
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 11960739 - Curr Opin Plant Biol. 2002 Jun;5(3):218-23
SSID ssj0001314
Score 2.4953496
Snippet Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 144
SubjectTerms 1-aminocyclopropane-1-carboxylic acid
Amino Acids, Cyclic - pharmacology
Arabidopsis - cytology
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Auxins
Biological and medical sciences
biosynthesis
CELL BIOLOGY AND SIGNAL TRANSDUCTION
Enzymes
ethylene
Ethylenes - pharmacology
Flavonoids
Flavonols
Flavonols - metabolism
Fluorescence
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Gene Expression Regulation, Plant - drug effects
Gene Regulatory Networks
Genes
Glycosides - metabolism
Gravitropism
growth and development
hormones
indole acetic acid
Indoleacetic Acids - pharmacology
Insulin antibodies
kaempferol
mutants
Mutation
phenotype
plant development
Plant Growth Regulators - pharmacology
Plant physiology and development
Plant roots
Plant Roots - cytology
Plant Roots - drug effects
Plant Roots - genetics
Plant Roots - metabolism
Plants
Plants, Genetically Modified
quercetin
Quercetin - metabolism
receptors
Recombinant Fusion Proteins
RNA, Plant - genetics
root growth
roots
Seedlings - cytology
Seedlings - drug effects
Seedlings - genetics
Seedlings - metabolism
testa
Title Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks
URI https://www.jstor.org/stable/41434589
https://www.ncbi.nlm.nih.gov/pubmed/21427279
https://www.proquest.com/docview/1400126086
https://www.proquest.com/docview/865188280
https://pubmed.ncbi.nlm.nih.gov/PMC3091047
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6jQdeELdBuFRGQryUlFzcOHlcWadxq9AY03iqbMfRKnVpRVNuv4afyjlx4ialkwYvUeu4SZNzfM757OPvEPI8y0TCsyx0pZdmLuN84AqIA9wglSrRKce1GMy2GEfHn9nb88F5p_O7kbW0KmRf_dq6r-R_pAptIFfcJfsPkrUXhQb4DPKFI0gYjteS8cHqx9QkE4_gfYP_wETIFITVO5qJb_N8PsNqEKvLqkSXLcpziAM7V4WhNq_tBghrbJLCl82QFcsaFWYGxPA1QUw6xG3Cy1Q05hHe6--GrsBsWu-d9NdLSJdgV8uJ6g96BoIWvTN7cr0XcVzO4vcO7akznOOX0KbLslNIrbSEb8XFtDlVgXOvdWKgta6BC4jUGFy9pa02yYZsvKV7xsD6hi2y8tW-YUD_2w14DGsXL9Ah9CFEG3jB2t_Va_wbbtAmJ5awyGOTxQLh0cT8fIfsBQBEStD-5p319X5Yssfbh7AsruxV6-6tqMckvmIWrljCQMxMBZVtEGczU7cR-pzeJrcqzEIPjALeIR2d3yU3hnPAFT_vkS-lFlLQQlprITVaSGstpE0tpJUW0loL6YYW0loL75NPR6PT18duVbDDVYOQF27A01jHnuC-DFWs0jTRHtN-IlkciECJRPmMq0hqFrFUMh2GyMSgEoZBfRLuk918nuuHhEZaZNLjGZIvMuF7MoRAXYRCBgDAJU8d8rJ-nRNVcdljSZXZZKvwHPLCdl8YEperOu6XsrG9GMAJNogTh3RbwrIdcFkaYlzukGe19CZgoHHVDYbHfLUEbI2QIvLiyCH0ij5xhLyIQew55IER-PoGPgsAY8A_4C1VsB2QH759Jp9elDzxIWIBxh9d9-kfk5vrUfuE7BZfV_ophNyF7JIdfs67ZG84Gn886ZZj4A-eH9pJ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auxin+and+Ethylene+Induce+Flavonol+Accumulation+through+Distinct+Transcriptional+Networks&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Lewis%2C+Daniel+R.&rft.au=Ramirez%2C+Melissa+V.&rft.au=Miller%2C+Nathan+D.&rft.au=Vallabhaneni%2C+Prashanthi&rft.date=2011-05-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=156&rft.issue=1&rft.spage=144&rft.epage=164&rft_id=info:doi/10.1104%2Fpp.111.172502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_111_172502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon