Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be...
Saved in:
Published in | BioMed research international Vol. 2019; no. 2019; pp. 1 - 9 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images. |
---|---|
AbstractList | Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images. Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images.Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images. |
Author | Toyama, Hiroshi Tsujimoto, Masakazu Teramoto, Atsushi Tsukamoto, Tetsuya Saito, Kuniaki Imaizumi, Kazuyoshi Fujita, Hiroshi Onishi, Yuya |
AuthorAffiliation | 1 Graduate School of Health Sciences, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan 2 Fujita Health University Hospital, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan 4 Gifu University, 1–1 Yanagido, Gifu 501-1194, Japan 3 School of Medicine, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan |
AuthorAffiliation_xml | – name: 2 Fujita Health University Hospital, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan – name: 1 Graduate School of Health Sciences, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan – name: 4 Gifu University, 1–1 Yanagido, Gifu 501-1194, Japan – name: 3 School of Medicine, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan |
Author_xml | – sequence: 1 fullname: Fujita, Hiroshi – sequence: 2 fullname: Toyama, Hiroshi – sequence: 3 fullname: Saito, Kuniaki – sequence: 4 fullname: Tsukamoto, Tetsuya – sequence: 5 fullname: Tsujimoto, Masakazu – sequence: 6 fullname: Teramoto, Atsushi – sequence: 7 fullname: Onishi, Yuya – sequence: 8 fullname: Imaizumi, Kazuyoshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30719445$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URMvSG2dkiQsSXRrHfxJfkFYLLZWqwmF7thxnsuuS2Fs72Wq_Cx8Wp7ttoRLCl2fJv3l6npnX6MB5Bwi9JdknQjg_zTMiT0XGiaTyBTrKKWFTQRg5eLxTeoiOY7zJ0imJyKR4hQ5pVhDJGD9Cv2ZD7zvdQ41_DG3nnQ5bfOXroQU8b3WMtrFG99Y7bB2e-249jOzCd34Z9Hq1xRedXkLE19G6Jdb4C8A6cW7j22Es0y2-giHcS3_nw0-8CNq65FFt8Tk4CMl9A3hWbyBEHewTGd-gl41uIxzvdYKuz74u5t-ml9_PL-azy6nhtOineV6aWmrOqzJ9CiqgUjTSCM3qGpLkum4KWQI3ssoLIZnkNRE5GFMCk1rSCfq8810PVQe1AdenwGodbJfaoby26u8XZ1dq6TdKUMpoNhp82BsEfztA7FVno4G21Q78EFVOCskpT2kT-v4ZeuOHkNo0UkKIomTJc4Le_ZnoMcrD4BKQ7wATfIwBGmVsfz-nFNC2imRqXBA1LojaL0gqOnlW9OD7D_zjDl9ZV-s7-z96HxkSA41-okkuGMnobzkx1Yk |
CitedBy_id | crossref_primary_10_1007_s12145_022_00901_9 crossref_primary_10_1007_s10278_024_01015_y crossref_primary_10_1155_2022_3490463 crossref_primary_10_1016_j_bspc_2022_104391 crossref_primary_10_3390_jimaging10090234 crossref_primary_10_1007_s00500_023_07877_8 crossref_primary_10_3389_fonc_2022_1021084 crossref_primary_10_3934_mbe_2021090 crossref_primary_10_1007_s12149_021_01661_0 crossref_primary_10_1002_mp_15700 crossref_primary_10_1016_j_compbiomed_2020_104032 crossref_primary_10_1007_s11548_022_02694_0 crossref_primary_10_1016_j_compbiomed_2022_105781 crossref_primary_10_1002_ima_22719 crossref_primary_10_3390_cancers14061370 crossref_primary_10_3390_cancers16193274 crossref_primary_10_1016_j_medcli_2020_01_026 crossref_primary_10_1148_radiol_2020201366 crossref_primary_10_1109_JTEHM_2023_3250352 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_3390_app13127281 crossref_primary_10_1016_j_compmedimag_2024_102438 crossref_primary_10_1016_j_eswa_2025_126860 crossref_primary_10_3389_fradi_2022_810731 crossref_primary_10_3390_diagnostics9040207 crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_1117_1_JMI_7_5_051202 crossref_primary_10_1016_j_media_2022_102688 crossref_primary_10_1016_j_medcle_2020_01_036 crossref_primary_10_1007_s13246_020_00933_9 crossref_primary_10_1109_TNNLS_2021_3105384 crossref_primary_10_1001_jamaoncol_2021_8202 crossref_primary_10_1007_s11604_024_01699_w crossref_primary_10_3389_frai_2021_694815 crossref_primary_10_1007_s11548_020_02283_z crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_1007_s10462_019_09788_3 |
Cites_doi | 10.1371/journal.pone.0188290 10.1155/2017/4067832 10.1016/j.compbiomed.2016.11.003 10.1007/978-3-319-67564-0_5 10.1118/1.4948498 10.1118/1.3528204 10.1002/1097-0142(197702)39:2<369::AID-CNCR2820390202>3.0.CO;2-I 10.1016/S0140-6736(97)08229-9 10.1007/s11548-017-1605-6 10.1186/s12938-015-0003-y 10.1016/j.artmed.2010.04.011 10.1038/nature14539 10.1016/j.cmpb.2013.10.011 10.1111/j.1440-1843.2011.02123.x |
ContentType | Journal Article |
Copyright | Copyright © 2019 Yuya Onishi et al. Copyright © 2019 Yuya Onishi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2019 Yuya Onishi et al. 2019 |
Copyright_xml | – notice: Copyright © 2019 Yuya Onishi et al. – notice: Copyright © 2019 Yuya Onishi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2019 Yuya Onishi et al. 2019 |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7T7 7TK 7U7 7U9 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU CWDGH DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1155/2019/6051939 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Middle East & Africa Database Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Toxicology Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2314-6141 |
Editor | Khuder, Sadik A. |
Editor_xml | – sequence: 1 givenname: Sadik A. surname: Khuder fullname: Khuder, Sadik A. |
EndPage | 9 |
ExternalDocumentID | PMC6334309 30719445 10_1155_2019_6051939 1126410 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Grant-in-Aid for Scientific Research grantid: 17K09070 – fundername: Grant-in-Aid for Scientific Research on Innovative Areas grantid: 26108005 |
GroupedDBID | 04C 24P 3V. 4.4 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJEY AAWTL ABDBF ABUWG ACIWK ACPRK ADBBV ADJCN ADOJX ADRAZ AENEX AFKRA AFRAH AHFXO AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BMSDO BPHCQ BVXVI CCPQU CWDGH DIK EAD EAP EAS EBD EBS ECF ECT EIHBH EJD EMB EMK EMOBN ESX FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE IAG IAO IEA IHR INH INR IOF ISR KQ8 LK8 M1P M48 M7P ML0 ML~ OK1 P62 PGMZT PIMPY PQQKQ PROAC PSQYO RHX RPM SV3 TUS UKHRP ITC RHU RHW 0R~ AAYXX ACCMX ACUHS CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7TK 7U7 7U9 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c537t-228cd9a55b8944ebe396f9c6a4ddec6a2adf798e5c9b2769495d162ecc8e49a93 |
IEDL.DBID | M48 |
ISSN | 2314-6133 2314-6141 |
IngestDate | Thu Aug 21 18:25:50 EDT 2025 Fri Jul 11 02:34:21 EDT 2025 Fri Jul 25 12:08:24 EDT 2025 Thu Apr 03 07:00:50 EDT 2025 Tue Jul 01 01:55:16 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 Sun Jun 02 19:21:12 EDT 2024 Tue Nov 26 16:45:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2019 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-228cd9a55b8944ebe396f9c6a4ddec6a2adf798e5c9b2769495d162ecc8e49a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Sadik A. Khuder |
ORCID | 0000-0001-7613-5348 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2019/6051939 |
PMID | 30719445 |
PQID | 2166678434 |
PQPubID | 237798 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6334309 proquest_miscellaneous_2179535537 proquest_journals_2166678434 pubmed_primary_30719445 crossref_citationtrail_10_1155_2019_6051939 crossref_primary_10_1155_2019_6051939 hindawi_primary_10_1155_2019_6051939 emarefa_primary_1126410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: United States – name: New York |
PublicationTitle | BioMed research international |
PublicationTitleAlternate | Biomed Res Int |
PublicationYear | 2019 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc |
References | 11 24 (25) 2017; 2017 18 (35) 2011; 38 2 3 4 5 6 7 (31) 2012; 25 8 (33) 2018 9 10 |
References_xml | – ident: 11 doi: 10.1371/journal.pone.0188290 – volume: 2017 year: 2017 ident: 25 publication-title: BioMed Research International doi: 10.1155/2017/4067832 – ident: 24 doi: 10.1016/j.compbiomed.2016.11.003 – ident: 18 doi: 10.1007/978-3-319-67564-0_5 – ident: 9 doi: 10.1118/1.4948498 – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 35 publication-title: Medical Physics doi: 10.1118/1.3528204 – ident: 2 doi: 10.1002/1097-0142(197702)39:2<369::AID-CNCR2820390202>3.0.CO;2-I – volume: 25 start-page: 1106 issue: 6 year: 2012 ident: 31 publication-title: Advances in Neurology – ident: 3 doi: 10.1016/S0140-6736(97)08229-9 – ident: 10 doi: 10.1007/s11548-017-1605-6 – ident: 7 doi: 10.1186/s12938-015-0003-y – ident: 6 doi: 10.1016/j.artmed.2010.04.011 – ident: 8 doi: 10.1038/nature14539 – year: 2018 ident: 33 – ident: 5 doi: 10.1016/j.cmpb.2013.10.011 – ident: 4 doi: 10.1111/j.1440-1843.2011.02123.x |
SSID | ssj0000816096 |
Score | 2.4938521 |
Snippet | Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be... |
SourceID | pubmedcentral proquest pubmed crossref hindawi emarefa |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial neural networks Automation Benign Biomedical research Biopsy Cancer Classification Computation Computed tomography Diagnosis Female Generative adversarial networks Humans Image classification Invasiveness Lung - diagnostic imaging Lung - pathology Lung cancer Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lung nodules Male Malignancy Medical imaging Medical research Neural networks Neural Networks, Computer Nodules Radiographic Image Interpretation, Computer-Assisted - methods Solitary Pulmonary Nodule - diagnostic imaging Solitary Pulmonary Nodule - pathology Tomography Tomography, X-Ray Computed - methods X-rays |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RSkVcEN8NFGSkckIRcfyR-FgB1YLUisNW2lvk2I660m5SNRtQ_ws_lrHjDWwBwSmJMnGivLH9Jp7MAziWObdMGpEaa2zKrRWpbphIy5IKZ7jNTfjr_exczi7454VYxCJJ_e9L-DjbYXhO1TsZqIbagz10MB-UzxbTpxSvHZGpUUaOcgyGGNumuN-6fGfyOXBrjTs4Ix1c-vj32_JPLPN2suQvs8_pA7gfaSM5GXF-CHdc-wjunsWF8cfw_WTYdEg-nSVfhhW6lr6-IeedHVaOBN1LnxEUQCDLlkQpB0vm3TqWrCaf1jiy9CSkEBBNPjh3hXbt1-iaeHNfxyNsQuI4mXtxCWyjviFj7Wo_cJIg8Nxr79Zby_4JXJx-nL-fpVF4ITWCFZs0z0tjlRaiLhXnCDNTslFGasTS4SbXtilU6YRRdV5IhUGWpTJHbygdV1qxp7Dfdq07BNK4BilQZqwXw5Fc1tgspRppVWaFLWQCb7eIVCZWJffiGKsqRCdCVB6_KuKXwJvJ-mqsxvEXu2cR3J9mFKkfzRI4jmD_o4GjrSdUsVP3Ve6XWIuSM57A6-k0dke_xqJb1w3eplACORwr8BlGx5luhMMpxfcpEih2XGoy8KW-d8-0y8tQ8lsyxlmmnv_f07-Ae_5w_FJ0BPub68G9RO60qV-FnvMDcBkTcw priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagqIgL4k2gICOVE4qaxI_EJ1QBS0FqxWEr9RY5tqOutJsszaZV_ws_lhnHSVnE45RIGdlO5vN4xp7MR8i-zLhl0ojYWGNjbq2Idc1EXBSpcIbbzPi_3o9P5NEp_3omzsKGWxfSKkeb6A21bQ3ukR9keL6VF5zx9-vvMbJG4elqoNC4Te6ksNJgSlcx-zztsSCpRKIGfrmUQ5TE2Jj7LgSE_ak6kN6FUVur0q5babiBpWr3HAPjq8Wf3M_fsyh_WZZmD8j94E_SwwEAD8kt1zwid4_Diflj8uOw37TglTpLv_VLeAl9cU1PWtsvHfWEmJgq5LVDFw0NHA-WzttVqGVNv6zA5HTU5xZQTT86twa55jJgFjrHAh_-4jPK6RxZJ6CN6poORa3RolLP_NxpxPso2T0hp7NP8w9HcWBkiI1g-SbOssJYpYWoCsU56J8pWSsjNSjZwSXTts5V4YRRVZZLBdGXTWUGMCkcV1qxp2SnaRv3nNDa1eAbJcYiS47ksoJm01SDv5VYYXMZkXejRkoTypUja8ay9GGLECXqrwz6i8jbSXo9lOn4i9yzoNwbMUAOT5OI7Adl_6eBvREJZZjtXXmDzYi8mR7DPMXDF924tkeZXAlw7lgOYxiAM3UEdjaF7ykikm9BahLAGuDbT5rFua8FLhnjLFEv_j2sl-QevsSwdbRHdjYXvXsFztSmeu1nzE-3FR2y priority: 102 providerName: ProQuest |
Title | Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks |
URI | https://search.emarefa.net/detail/BIM-1126410 https://dx.doi.org/10.1155/2019/6051939 https://www.ncbi.nlm.nih.gov/pubmed/30719445 https://www.proquest.com/docview/2166678434 https://www.proquest.com/docview/2179535537 https://pubmed.ncbi.nlm.nih.gov/PMC6334309 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ20RAviDuFURlpPKFAHN_iB4QGrBSkVtPUSn2LXNvRKrXp6AXof-HHcuw4hU5D8JKLcuREOZ_t78Qn50PoRGTMUmF4YqyxCbOWJ7qkPMlzwp1hNjPhr_deX3SH7MuIj_ZQozYaX-DyxtDO60kNF9PXP75u3kGHfxs6POcQvxP1RgQuovbRIcxJ0msZ9CLRD2NyTkSqaqU5wiBeorTJgr_WwM78dORmGg5g0jq69CHy98lNRPR6PuUfE1TnLroTmSU-raFwD-256j661Ytr5w_Qz9P1ag781Fl8vp4C-vRig_tzu546HKQxfdJQ8BOeVDiqPVg8mM9iVWv8eQaDzxKHLAOs8UfnrsCu-hbRCzf3pT7CLuSW44HXn4A2xhtcl7f2YysOGtBL7ZHfWC4fomHnbPChm0RthsRwKldJluXGKs35OFeMARKoEqUyQoO7HewybUupcseNGmdSKIjDLBEZACZ3TGlFH6GDal65JwiXrgSWlBrr9XIEE2NolhANzCu13ErRQq8ajxQmFi73-hnTIgQwnBfef0X0Xwu93Fpf1QU7_mL3ODr3txkBdkjSFjqJzv5HA8cNEooGtkXmV2FlzihroRfby9Bj_TKMrtx87W2k4kDzqIRnqIGzvRGMuATeJ28huQOprYGvBr57pZpchqrgglJGU_X0_57-GbrtT-uPScfoYLVYu-dAr1bjNtqXIwnbvPOpjQ7fn_XPL9qhN8H2ojv6BbDSJWQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVgUuFc8SKGCk9oRWya4fuz4gVFFCQpuIQyr1tji2o0ZKdkOTUOW_8Bv4jcx4vSlBPE497Uo78tqeh2fs8XyEHMqEWyaNiIw1NuLWikiPmIiyLBbOcJsYf-u915edc_7pQlxskR_1XRhMq6xtojfUtjS4R95M8HwrzTjj72ZfI0SNwtPVGkKjEotTt7qGkG3-tnsC_D1KkvaHwftOFFAFIiNYuoiSJDNWaSGGmeIcxsCUHCkjNXTUwSPRdpSqzAmjhkkqFUQQNpYJDDVzXGksvgQmf4czWMnxZnr743pPB0EsWqrCs4s5RGWM1bn2QjRhqVVN6V0mtbEK7rqphhdYGncvMRC_Hv_J3f09a_OXZbB9n-wF_5UeVwL3gGy54iG50wsn9I_I9-PlogQv2Fn6eTmBSdNXK9ov7XLiqAfgxNQkLw10XNCAKWHpoJyG2tm0OwUTN6c-l4FqeuLcDOiKb0FH4OdYUMQ_fAY7HSDKBbQxXNGqiDZacOqRpuca9aumnD8m57fCqydkuygL95TQkRuBL9YyFlF5JJdDaDaONfh3LStsKhvkTc2R3ITy6IjSMcl9mCREjvzLA_8a5GhNPavKgvyFbj8w94YsBh80bjXIYWD2fxo4qCUhD9Zlnt_oQoO8Xn8Gu4CHPbpw5RJpUiXAmWQp9KESnPWPwK7HMJ-iQdINkVoTYM3xzS_F-NLXHpeMcdZSz_7drVfkbmfQO8vPuv3T5-QeDqjatjog24urpXsBjtxi-NJrDyVfbltdfwKkvFvo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTpt4QeNeNsBI2xOK2sSXxA8IDbpqZayqUCftLbi2o1Vqk7I0TP0v_BJ-HceO01HE5WlPjpQjX3IuPsc-OR9ChzyimnDFAqWVDqjWLJAZYUGShMwoqiPl_no_H_LTC_rxkl1uoR_NvzA2rbKxic5Q60LZM_JOZO-34oQS2sl8WsSo13-3-BpYBCl709rAadQicmZWNxC-lW8HPeD1URT1T8YfTgOPMBAoRuJlEEWJ0kIyNkkEpbAeIngmFJcwaQNNJHUWi8QwJSZRzAVEEzrkESw7MVRIW4gJzP92bKOiFtp-fzIcfV6f8FhIi66o0e1CCjEaIU3mPWMd2HhFhzsHSmzsiTtmLuEBNsqdKxuW30z_5Pz-nsP5y6bY30P3vTeLj2vxe4C2TP4Q7Z77-_pH6PtxtSzAJzYaj6oZfDZ5vcLDQlczgx0cp01UcrKBpzn2CBMaj4u5r6SNB3MweCV2mQ1Y4p4xC6DLv3mNgcFteRHXuHx2PLaYF9DHZIXrktrWnmOHO11Kq20NZfkYXdwJt56gVl7k5hnCmcnAM-sqbTF6OOUT6DYMJXh7Xc10zNvoTcORVPli6RazY5a6oImx1PIv9fxro6M19aIuEvIXuqeeubdkIXikYbeNDj2z_9PBQSMJqbc1ZXqrGW30ev0arIS9-pG5KSpLEwsGriWJYQ614KwHAisfwvdkbRRviNSawFYg33yTT69cJXJOCCVd8fzf03qFdkFV00-D4dk-umfXU59hHaDW8royL8CrW05eevXB6Mtda-xPnfNheg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Pulmonary+Nodule+Classification+in+Computed+Tomography+Images+Using+a+Deep+Convolutional+Neural+Network+Trained+by+Generative+Adversarial+Networks&rft.jtitle=BioMed+research+international&rft.au=Onishi%2C+Yuya&rft.au=Teramoto%2C+Atsushi&rft.au=Tsujimoto%2C+Masakazu&rft.au=Tsukamoto%2C+Tetsuya&rft.date=2019-01-01&rft.pub=Hindawi&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F6051939&rft.externalDocID=10_1155_2019_6051939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon |