Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks

Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2019; no. 2019; pp. 1 - 9
Main Authors Fujita, Hiroshi, Toyama, Hiroshi, Saito, Kuniaki, Tsukamoto, Tetsuya, Tsujimoto, Masakazu, Teramoto, Atsushi, Onishi, Yuya, Imaizumi, Kazuyoshi
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images.
AbstractList Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images.
Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images.Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be conducted if malignancy is suspected following CT examinations. However, biopsies are highly invasive, and patients with benign nodules may undergo many unnecessary biopsies. To prevent this, an imaging diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to generate additional images when only small amounts of data are available, which is a common problem in medical research, and evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the GAN. Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. The benign nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original images.
Author Toyama, Hiroshi
Tsujimoto, Masakazu
Teramoto, Atsushi
Tsukamoto, Tetsuya
Saito, Kuniaki
Imaizumi, Kazuyoshi
Fujita, Hiroshi
Onishi, Yuya
AuthorAffiliation 1 Graduate School of Health Sciences, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
2 Fujita Health University Hospital, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
4 Gifu University, 1–1 Yanagido, Gifu 501-1194, Japan
3 School of Medicine, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
AuthorAffiliation_xml – name: 2 Fujita Health University Hospital, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
– name: 1 Graduate School of Health Sciences, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
– name: 4 Gifu University, 1–1 Yanagido, Gifu 501-1194, Japan
– name: 3 School of Medicine, Fujita Health University, 1–98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan
Author_xml – sequence: 1
  fullname: Fujita, Hiroshi
– sequence: 2
  fullname: Toyama, Hiroshi
– sequence: 3
  fullname: Saito, Kuniaki
– sequence: 4
  fullname: Tsukamoto, Tetsuya
– sequence: 5
  fullname: Tsujimoto, Masakazu
– sequence: 6
  fullname: Teramoto, Atsushi
– sequence: 7
  fullname: Onishi, Yuya
– sequence: 8
  fullname: Imaizumi, Kazuyoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30719445$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URMvSG2dkiQsSXRrHfxJfkFYLLZWqwmF7thxnsuuS2Fs72Wq_Cx8Wp7ttoRLCl2fJv3l6npnX6MB5Bwi9JdknQjg_zTMiT0XGiaTyBTrKKWFTQRg5eLxTeoiOY7zJ0imJyKR4hQ5pVhDJGD9Cv2ZD7zvdQ41_DG3nnQ5bfOXroQU8b3WMtrFG99Y7bB2e-249jOzCd34Z9Hq1xRedXkLE19G6Jdb4C8A6cW7j22Es0y2-giHcS3_nw0-8CNq65FFt8Tk4CMl9A3hWbyBEHewTGd-gl41uIxzvdYKuz74u5t-ml9_PL-azy6nhtOineV6aWmrOqzJ9CiqgUjTSCM3qGpLkum4KWQI3ssoLIZnkNRE5GFMCk1rSCfq8810PVQe1AdenwGodbJfaoby26u8XZ1dq6TdKUMpoNhp82BsEfztA7FVno4G21Q78EFVOCskpT2kT-v4ZeuOHkNo0UkKIomTJc4Le_ZnoMcrD4BKQ7wATfIwBGmVsfz-nFNC2imRqXBA1LojaL0gqOnlW9OD7D_zjDl9ZV-s7-z96HxkSA41-okkuGMnobzkx1Yk
CitedBy_id crossref_primary_10_1007_s12145_022_00901_9
crossref_primary_10_1007_s10278_024_01015_y
crossref_primary_10_1155_2022_3490463
crossref_primary_10_1016_j_bspc_2022_104391
crossref_primary_10_3390_jimaging10090234
crossref_primary_10_1007_s00500_023_07877_8
crossref_primary_10_3389_fonc_2022_1021084
crossref_primary_10_3934_mbe_2021090
crossref_primary_10_1007_s12149_021_01661_0
crossref_primary_10_1002_mp_15700
crossref_primary_10_1016_j_compbiomed_2020_104032
crossref_primary_10_1007_s11548_022_02694_0
crossref_primary_10_1016_j_compbiomed_2022_105781
crossref_primary_10_1002_ima_22719
crossref_primary_10_3390_cancers14061370
crossref_primary_10_3390_cancers16193274
crossref_primary_10_1016_j_medcli_2020_01_026
crossref_primary_10_1148_radiol_2020201366
crossref_primary_10_1109_JTEHM_2023_3250352
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_3390_app13127281
crossref_primary_10_1016_j_compmedimag_2024_102438
crossref_primary_10_1016_j_eswa_2025_126860
crossref_primary_10_3389_fradi_2022_810731
crossref_primary_10_3390_diagnostics9040207
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_1117_1_JMI_7_5_051202
crossref_primary_10_1016_j_media_2022_102688
crossref_primary_10_1016_j_medcle_2020_01_036
crossref_primary_10_1007_s13246_020_00933_9
crossref_primary_10_1109_TNNLS_2021_3105384
crossref_primary_10_1001_jamaoncol_2021_8202
crossref_primary_10_1007_s11604_024_01699_w
crossref_primary_10_3389_frai_2021_694815
crossref_primary_10_1007_s11548_020_02283_z
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_1007_s10462_019_09788_3
Cites_doi 10.1371/journal.pone.0188290
10.1155/2017/4067832
10.1016/j.compbiomed.2016.11.003
10.1007/978-3-319-67564-0_5
10.1118/1.4948498
10.1118/1.3528204
10.1002/1097-0142(197702)39:2<369::AID-CNCR2820390202>3.0.CO;2-I
10.1016/S0140-6736(97)08229-9
10.1007/s11548-017-1605-6
10.1186/s12938-015-0003-y
10.1016/j.artmed.2010.04.011
10.1038/nature14539
10.1016/j.cmpb.2013.10.011
10.1111/j.1440-1843.2011.02123.x
ContentType Journal Article
Copyright Copyright © 2019 Yuya Onishi et al.
Copyright © 2019 Yuya Onishi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2019 Yuya Onishi et al. 2019
Copyright_xml – notice: Copyright © 2019 Yuya Onishi et al.
– notice: Copyright © 2019 Yuya Onishi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2019 Yuya Onishi et al. 2019
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1155/2019/6051939
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Khuder, Sadik A.
Editor_xml – sequence: 1
  givenname: Sadik A.
  surname: Khuder
  fullname: Khuder, Sadik A.
EndPage 9
ExternalDocumentID PMC6334309
30719445
10_1155_2019_6051939
1126410
Genre Journal Article
GrantInformation_xml – fundername: Grant-in-Aid for Scientific Research
  grantid: 17K09070
– fundername: Grant-in-Aid for Scientific Research on Innovative Areas
  grantid: 26108005
GroupedDBID 04C
24P
3V.
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ACIWK
ACPRK
ADBBV
ADJCN
ADOJX
ADRAZ
AENEX
AFKRA
AFRAH
AHFXO
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EJD
EMB
EMK
EMOBN
ESX
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
IAG
IAO
IEA
IHR
INH
INR
IOF
ISR
KQ8
LK8
M1P
M48
M7P
ML0
ML~
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHX
RPM
SV3
TUS
UKHRP
ITC
RHU
RHW
0R~
AAYXX
ACCMX
ACUHS
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c537t-228cd9a55b8944ebe396f9c6a4ddec6a2adf798e5c9b2769495d162ecc8e49a93
IEDL.DBID M48
ISSN 2314-6133
2314-6141
IngestDate Thu Aug 21 18:25:50 EDT 2025
Fri Jul 11 02:34:21 EDT 2025
Fri Jul 25 12:08:24 EDT 2025
Thu Apr 03 07:00:50 EDT 2025
Tue Jul 01 01:55:16 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
Sun Jun 02 19:21:12 EDT 2024
Tue Nov 26 16:45:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-228cd9a55b8944ebe396f9c6a4ddec6a2adf798e5c9b2769495d162ecc8e49a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Sadik A. Khuder
ORCID 0000-0001-7613-5348
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2019/6051939
PMID 30719445
PQID 2166678434
PQPubID 237798
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6334309
proquest_miscellaneous_2179535537
proquest_journals_2166678434
pubmed_primary_30719445
crossref_citationtrail_10_1155_2019_6051939
crossref_primary_10_1155_2019_6051939
hindawi_primary_10_1155_2019_6051939
emarefa_primary_1126410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: New York
PublicationTitle BioMed research international
PublicationTitleAlternate Biomed Res Int
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
References 11
24
(25) 2017; 2017
18
(35) 2011; 38
2
3
4
5
6
7
(31) 2012; 25
8
(33) 2018
9
10
References_xml – ident: 11
  doi: 10.1371/journal.pone.0188290
– volume: 2017
  year: 2017
  ident: 25
  publication-title: BioMed Research International
  doi: 10.1155/2017/4067832
– ident: 24
  doi: 10.1016/j.compbiomed.2016.11.003
– ident: 18
  doi: 10.1007/978-3-319-67564-0_5
– ident: 9
  doi: 10.1118/1.4948498
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 35
  publication-title: Medical Physics
  doi: 10.1118/1.3528204
– ident: 2
  doi: 10.1002/1097-0142(197702)39:2<369::AID-CNCR2820390202>3.0.CO;2-I
– volume: 25
  start-page: 1106
  issue: 6
  year: 2012
  ident: 31
  publication-title: Advances in Neurology
– ident: 3
  doi: 10.1016/S0140-6736(97)08229-9
– ident: 10
  doi: 10.1007/s11548-017-1605-6
– ident: 7
  doi: 10.1186/s12938-015-0003-y
– ident: 6
  doi: 10.1016/j.artmed.2010.04.011
– ident: 8
  doi: 10.1038/nature14539
– year: 2018
  ident: 33
– ident: 5
  doi: 10.1016/j.cmpb.2013.10.011
– ident: 4
  doi: 10.1111/j.1440-1843.2011.02123.x
SSID ssj0000816096
Score 2.4938521
Snippet Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
emarefa
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Automation
Benign
Biomedical research
Biopsy
Cancer
Classification
Computation
Computed tomography
Diagnosis
Female
Generative adversarial networks
Humans
Image classification
Invasiveness
Lung - diagnostic imaging
Lung - pathology
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung nodules
Male
Malignancy
Medical imaging
Medical research
Neural networks
Neural Networks, Computer
Nodules
Radiographic Image Interpretation, Computer-Assisted - methods
Solitary Pulmonary Nodule - diagnostic imaging
Solitary Pulmonary Nodule - pathology
Tomography
Tomography, X-Ray Computed - methods
X-rays
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RSkVcEN8NFGSkckIRcfyR-FgB1YLUisNW2lvk2I660m5SNRtQ_ws_lrHjDWwBwSmJMnGivLH9Jp7MAziWObdMGpEaa2zKrRWpbphIy5IKZ7jNTfjr_exczi7454VYxCJJ_e9L-DjbYXhO1TsZqIbagz10MB-UzxbTpxSvHZGpUUaOcgyGGNumuN-6fGfyOXBrjTs4Ix1c-vj32_JPLPN2suQvs8_pA7gfaSM5GXF-CHdc-wjunsWF8cfw_WTYdEg-nSVfhhW6lr6-IeedHVaOBN1LnxEUQCDLlkQpB0vm3TqWrCaf1jiy9CSkEBBNPjh3hXbt1-iaeHNfxyNsQuI4mXtxCWyjviFj7Wo_cJIg8Nxr79Zby_4JXJx-nL-fpVF4ITWCFZs0z0tjlRaiLhXnCDNTslFGasTS4SbXtilU6YRRdV5IhUGWpTJHbygdV1qxp7Dfdq07BNK4BilQZqwXw5Fc1tgspRppVWaFLWQCb7eIVCZWJffiGKsqRCdCVB6_KuKXwJvJ-mqsxvEXu2cR3J9mFKkfzRI4jmD_o4GjrSdUsVP3Ve6XWIuSM57A6-k0dke_xqJb1w3eplACORwr8BlGx5luhMMpxfcpEih2XGoy8KW-d8-0y8tQ8lsyxlmmnv_f07-Ae_5w_FJ0BPub68G9RO60qV-FnvMDcBkTcw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagqIgL4k2gICOVE4qaxI_EJ1QBS0FqxWEr9RY5tqOutJsszaZV_ws_lhnHSVnE45RIGdlO5vN4xp7MR8i-zLhl0ojYWGNjbq2Idc1EXBSpcIbbzPi_3o9P5NEp_3omzsKGWxfSKkeb6A21bQ3ukR9keL6VF5zx9-vvMbJG4elqoNC4Te6ksNJgSlcx-zztsSCpRKIGfrmUQ5TE2Jj7LgSE_ak6kN6FUVur0q5babiBpWr3HAPjq8Wf3M_fsyh_WZZmD8j94E_SwwEAD8kt1zwid4_Diflj8uOw37TglTpLv_VLeAl9cU1PWtsvHfWEmJgq5LVDFw0NHA-WzttVqGVNv6zA5HTU5xZQTT86twa55jJgFjrHAh_-4jPK6RxZJ6CN6poORa3RolLP_NxpxPso2T0hp7NP8w9HcWBkiI1g-SbOssJYpYWoCsU56J8pWSsjNSjZwSXTts5V4YRRVZZLBdGXTWUGMCkcV1qxp2SnaRv3nNDa1eAbJcYiS47ksoJm01SDv5VYYXMZkXejRkoTypUja8ay9GGLECXqrwz6i8jbSXo9lOn4i9yzoNwbMUAOT5OI7Adl_6eBvREJZZjtXXmDzYi8mR7DPMXDF924tkeZXAlw7lgOYxiAM3UEdjaF7ykikm9BahLAGuDbT5rFua8FLhnjLFEv_j2sl-QevsSwdbRHdjYXvXsFztSmeu1nzE-3FR2y
  priority: 102
  providerName: ProQuest
Title Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
URI https://search.emarefa.net/detail/BIM-1126410
https://dx.doi.org/10.1155/2019/6051939
https://www.ncbi.nlm.nih.gov/pubmed/30719445
https://www.proquest.com/docview/2166678434
https://www.proquest.com/docview/2179535537
https://pubmed.ncbi.nlm.nih.gov/PMC6334309
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ20RAviDuFURlpPKFAHN_iB4QGrBSkVtPUSn2LXNvRKrXp6AXof-HHcuw4hU5D8JKLcuREOZ_t78Qn50PoRGTMUmF4YqyxCbOWJ7qkPMlzwp1hNjPhr_deX3SH7MuIj_ZQozYaX-DyxtDO60kNF9PXP75u3kGHfxs6POcQvxP1RgQuovbRIcxJ0msZ9CLRD2NyTkSqaqU5wiBeorTJgr_WwM78dORmGg5g0jq69CHy98lNRPR6PuUfE1TnLroTmSU-raFwD-256j661Ytr5w_Qz9P1ag781Fl8vp4C-vRig_tzu546HKQxfdJQ8BOeVDiqPVg8mM9iVWv8eQaDzxKHLAOs8UfnrsCu-hbRCzf3pT7CLuSW44HXn4A2xhtcl7f2YysOGtBL7ZHfWC4fomHnbPChm0RthsRwKldJluXGKs35OFeMARKoEqUyQoO7HewybUupcseNGmdSKIjDLBEZACZ3TGlFH6GDal65JwiXrgSWlBrr9XIEE2NolhANzCu13ErRQq8ajxQmFi73-hnTIgQwnBfef0X0Xwu93Fpf1QU7_mL3ODr3txkBdkjSFjqJzv5HA8cNEooGtkXmV2FlzihroRfby9Bj_TKMrtx87W2k4kDzqIRnqIGzvRGMuATeJ28huQOprYGvBr57pZpchqrgglJGU_X0_57-GbrtT-uPScfoYLVYu-dAr1bjNtqXIwnbvPOpjQ7fn_XPL9qhN8H2ojv6BbDSJWQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVgUuFc8SKGCk9oRWya4fuz4gVFFCQpuIQyr1tji2o0ZKdkOTUOW_8Bv4jcx4vSlBPE497Uo78tqeh2fs8XyEHMqEWyaNiIw1NuLWikiPmIiyLBbOcJsYf-u915edc_7pQlxskR_1XRhMq6xtojfUtjS4R95M8HwrzTjj72ZfI0SNwtPVGkKjEotTt7qGkG3-tnsC_D1KkvaHwftOFFAFIiNYuoiSJDNWaSGGmeIcxsCUHCkjNXTUwSPRdpSqzAmjhkkqFUQQNpYJDDVzXGksvgQmf4czWMnxZnr743pPB0EsWqrCs4s5RGWM1bn2QjRhqVVN6V0mtbEK7rqphhdYGncvMRC_Hv_J3f09a_OXZbB9n-wF_5UeVwL3gGy54iG50wsn9I_I9-PlogQv2Fn6eTmBSdNXK9ov7XLiqAfgxNQkLw10XNCAKWHpoJyG2tm0OwUTN6c-l4FqeuLcDOiKb0FH4OdYUMQ_fAY7HSDKBbQxXNGqiDZacOqRpuca9aumnD8m57fCqydkuygL95TQkRuBL9YyFlF5JJdDaDaONfh3LStsKhvkTc2R3ITy6IjSMcl9mCREjvzLA_8a5GhNPavKgvyFbj8w94YsBh80bjXIYWD2fxo4qCUhD9Zlnt_oQoO8Xn8Gu4CHPbpw5RJpUiXAmWQp9KESnPWPwK7HMJ-iQdINkVoTYM3xzS_F-NLXHpeMcdZSz_7drVfkbmfQO8vPuv3T5-QeDqjatjog24urpXsBjtxi-NJrDyVfbltdfwKkvFvo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTpt4QeNeNsBI2xOK2sSXxA8IDbpqZayqUCftLbi2o1Vqk7I0TP0v_BJ-HceO01HE5WlPjpQjX3IuPsc-OR9ChzyimnDFAqWVDqjWLJAZYUGShMwoqiPl_no_H_LTC_rxkl1uoR_NvzA2rbKxic5Q60LZM_JOZO-34oQS2sl8WsSo13-3-BpYBCl709rAadQicmZWNxC-lW8HPeD1URT1T8YfTgOPMBAoRuJlEEWJ0kIyNkkEpbAeIngmFJcwaQNNJHUWi8QwJSZRzAVEEzrkESw7MVRIW4gJzP92bKOiFtp-fzIcfV6f8FhIi66o0e1CCjEaIU3mPWMd2HhFhzsHSmzsiTtmLuEBNsqdKxuW30z_5Pz-nsP5y6bY30P3vTeLj2vxe4C2TP4Q7Z77-_pH6PtxtSzAJzYaj6oZfDZ5vcLDQlczgx0cp01UcrKBpzn2CBMaj4u5r6SNB3MweCV2mQ1Y4p4xC6DLv3mNgcFteRHXuHx2PLaYF9DHZIXrktrWnmOHO11Kq20NZfkYXdwJt56gVl7k5hnCmcnAM-sqbTF6OOUT6DYMJXh7Xc10zNvoTcORVPli6RazY5a6oImx1PIv9fxro6M19aIuEvIXuqeeubdkIXikYbeNDj2z_9PBQSMJqbc1ZXqrGW30ev0arIS9-pG5KSpLEwsGriWJYQ614KwHAisfwvdkbRRviNSawFYg33yTT69cJXJOCCVd8fzf03qFdkFV00-D4dk-umfXU59hHaDW8royL8CrW05eevXB6Mtda-xPnfNheg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Pulmonary+Nodule+Classification+in+Computed+Tomography+Images+Using+a+Deep+Convolutional+Neural+Network+Trained+by+Generative+Adversarial+Networks&rft.jtitle=BioMed+research+international&rft.au=Onishi%2C+Yuya&rft.au=Teramoto%2C+Atsushi&rft.au=Tsujimoto%2C+Masakazu&rft.au=Tsukamoto%2C+Tetsuya&rft.date=2019-01-01&rft.pub=Hindawi&rft.issn=2314-6133&rft.eissn=2314-6141&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F6051939&rft.externalDocID=10_1155_2019_6051939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon