Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity

We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 100; no. 7; pp. 1063 - 1070
Main Authors Zhang, Li Li, Liu, Dao Yan, Ma, Li Qun, Luo, Zhi Dan, Cao, Ting Bing, Zhong, Jian, Yan, Zhen Cheng, Wang, Li Juan, Zhao, Zhi Gang, Zhu, Shan Jun, Schrader, Mark, Thilo, Florian, Zhu, Zhi Ming, Tepel, Martin
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 13.04.2007
Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice.We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.
AbstractList We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.
We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.
We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice.We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.
We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.
Author Zhu, Zhi Ming
Ma, Li Qun
Thilo, Florian
Liu, Dao Yan
Luo, Zhi Dan
Yan, Zhen Cheng
Tepel, Martin
Schrader, Mark
Zhao, Zhi Gang
Wang, Li Juan
Cao, Ting Bing
Zhu, Shan Jun
Zhang, Li Li
Zhong, Jian
Author_xml – sequence: 1
  givenname: Li
  surname: Zhang
  middlename: Li
  fullname: Zhang, Li Li
– sequence: 2
  givenname: Dao
  surname: Liu
  middlename: Yan
  fullname: Liu, Dao Yan
– sequence: 3
  givenname: Li
  surname: Ma
  middlename: Qun
  fullname: Ma, Li Qun
– sequence: 4
  givenname: Zhi
  surname: Luo
  middlename: Dan
  fullname: Luo, Zhi Dan
– sequence: 5
  givenname: Ting
  surname: Cao
  middlename: Bing
  fullname: Cao, Ting Bing
– sequence: 6
  givenname: Jian
  surname: Zhong
  fullname: Zhong, Jian
– sequence: 7
  givenname: Zhen
  surname: Yan
  middlename: Cheng
  fullname: Yan, Zhen Cheng
– sequence: 8
  givenname: Li
  surname: Wang
  middlename: Juan
  fullname: Wang, Li Juan
– sequence: 9
  givenname: Zhi
  surname: Zhao
  middlename: Gang
  fullname: Zhao, Zhi Gang
– sequence: 10
  givenname: Shan
  surname: Zhu
  middlename: Jun
  fullname: Zhu, Shan Jun
– sequence: 11
  givenname: Mark
  surname: Schrader
  fullname: Schrader, Mark
– sequence: 12
  givenname: Florian
  surname: Thilo
  fullname: Thilo, Florian
– sequence: 13
  givenname: Zhi
  surname: Zhu
  middlename: Ming
  fullname: Zhu, Zhi Ming
– sequence: 14
  givenname: Martin
  surname: Tepel
  fullname: Tepel, Martin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18683562$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17347480$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCX0AWEuwm-DEPDwtEFJWHVKlVCWwtj-eaGBx7ajut8u9xm0AlNtQb29J3zr065wQd-eABoVeUzClt6VtC51dnX-ekHNaytuFzUYuGzMXwBM1ow-qqbjp6hGYF6KuOc3KMTlL6SQitOeufoWPa8bqrBZkhWOhsb1S2weNg8Coqnyz4jK9Aw5RDxJchl79VDn9X3joX7IhXuwkqipdr5T04fBnhpjAJL0Y7hR_gIdmElR_xxVCeefccPTXKJXhxuE_Rt49nq-Xn6vzi05fl4rzSDe-GqqOsH0ZKRG1Gw1jDoNWElZ2Z0uOgOBlqrlvSdIqLpjfQmx76zhQxN6IHzU_Rm73vFMP1FlKWG5s0OKc8hG2SHeGCtHX9X5D2ZQyjrIAvD-B22MAop2g3Ku7knwQL8PoAqKSVMyVAbdMDJ1rBm_bO6MOe0zGkFMFIbfN97jkq6yQl8q5cSags5cqHcuV9uVIMxeLdPxZ_pzxG_H4vvg0uQ0y_3PYWolyDcnn9GIPfam28rQ
CODEN CIRUAL
CitedBy_id crossref_primary_10_1016_j_appet_2012_05_015
crossref_primary_10_1155_2013_925171
crossref_primary_10_1038_s41598_018_19223_2
crossref_primary_10_1146_annurev_nutr_012809_104755
crossref_primary_10_1016_j_jnutbio_2018_09_028
crossref_primary_10_1016_j_focha_2023_100438
crossref_primary_10_1016_j_maturitas_2011_12_009
crossref_primary_10_1007_s10616_018_0209_5
crossref_primary_10_3390_cells11081292
crossref_primary_10_1152_ajpheart_01191_2007
crossref_primary_10_3109_02656736_2011_601283
crossref_primary_10_1152_jn_00004_2018
crossref_primary_10_1007_s13105_016_0469_5
crossref_primary_10_2337_db09_1881
crossref_primary_10_1080_10408398_2021_1884840
crossref_primary_10_1007_s00210_018_1547_8
crossref_primary_10_2337_db19_0526
crossref_primary_10_18632_oncotarget_16975
crossref_primary_10_1002_med_21427
crossref_primary_10_1093_cvr_cvr245
crossref_primary_10_1194_jlr_M076513
crossref_primary_10_1016_j_jbc_2023_104757
crossref_primary_10_1016_j_trsl_2009_08_003
crossref_primary_10_18632_oncotarget_20540
crossref_primary_10_1080_21623945_2020_1738792
crossref_primary_10_1016_j_fct_2018_10_051
crossref_primary_10_1016_j_indcrop_2012_11_019
crossref_primary_10_1039_C4FO01069H
crossref_primary_10_1002_dmrr_1279
crossref_primary_10_1016_j_orcp_2013_12_626
crossref_primary_10_1016_j_phymed_2025_156630
crossref_primary_10_1093_jmcb_mjs001
crossref_primary_10_1134_S0006297921140054
crossref_primary_10_1016_j_bbalip_2012_12_002
crossref_primary_10_1111_j_1476_5381_2012_01951_x
crossref_primary_10_1038_nrendo_2016_142
crossref_primary_10_1291_hypres_31_1989
crossref_primary_10_1038_embor_2011_200
crossref_primary_10_3390_nu8050174
crossref_primary_10_1002_oby_20103
crossref_primary_10_2147_DDDT_S423974
crossref_primary_10_1007_s00424_012_1078_y
crossref_primary_10_3390_plants12122273
crossref_primary_10_1016_j_bmcl_2008_04_052
crossref_primary_10_1016_j_peptides_2012_10_009
crossref_primary_10_1016_j_febslet_2008_05_021
crossref_primary_10_1016_j_cmet_2010_05_015
crossref_primary_10_1124_pr_113_008268
crossref_primary_10_1271_bbb_100850
crossref_primary_10_1002_ptr_8083
crossref_primary_10_1016_j_ebiom_2016_09_010
crossref_primary_10_1016_j_scr_2021_102291
crossref_primary_10_1007_s11030_024_10971_0
crossref_primary_10_1002_jcb_25052
crossref_primary_10_1016_j_biopha_2019_109270
crossref_primary_10_1186_s12933_015_0183_6
crossref_primary_10_1002_stem_1805
crossref_primary_10_2220_biomedres_39_279
crossref_primary_10_1007_s00418_016_1408_9
crossref_primary_10_1111_apha_12157
crossref_primary_10_1530_EJE_15_1217
crossref_primary_10_2337_db16_0245
crossref_primary_10_4236_fns_2013_48103
crossref_primary_10_3389_fcell_2021_686173
crossref_primary_10_3390_biomedicines9091246
crossref_primary_10_1186_s12929_017_0375_3
crossref_primary_10_1038_oby_2012_166
crossref_primary_10_1042_BCJ20190462
crossref_primary_10_1021_acschembio_4c00842
crossref_primary_10_1186_s12902_024_01738_7
crossref_primary_10_1016_j_ceca_2009_03_003
crossref_primary_10_1111_apha_12051
crossref_primary_10_3389_fnut_2021_750355
crossref_primary_10_1111_obr_12520
crossref_primary_10_3389_fphar_2016_00058
crossref_primary_10_1139_cjpp_2020_0306
crossref_primary_10_1371_journal_pbio_2004399
crossref_primary_10_1016_j_bbrc_2014_05_117
crossref_primary_10_1038_s41398_020_00918_y
crossref_primary_10_1016_j_plipres_2012_08_001
crossref_primary_10_1002_jsfa_8300
crossref_primary_10_1017_S0007114524000229
crossref_primary_10_1016_j_jnutbio_2014_04_004
crossref_primary_10_1002_iub_1563
crossref_primary_10_1371_journal_pone_0103093
crossref_primary_10_1080_03639045_2022_2070759
crossref_primary_10_1016_j_tips_2007_10_016
crossref_primary_10_3390_cells12182322
crossref_primary_10_1016_j_cell_2012_08_034
crossref_primary_10_3390_ijms17101689
crossref_primary_10_3892_ijmm_2022_5169
crossref_primary_10_1016_j_ijcard_2016_06_092
crossref_primary_10_3892_ijmm_2020_4462
crossref_primary_10_1016_j_jep_2010_08_034
crossref_primary_10_1096_fj_201601081RR
crossref_primary_10_1021_acs_jafc_8b02975
crossref_primary_10_4137_BCI_S3064
crossref_primary_10_22490_24629448_3926
crossref_primary_10_1002_2211_5463_12550
crossref_primary_10_1016_j_pharmthera_2011_03_006
crossref_primary_10_1038_s41598_020_77983_2
crossref_primary_10_1080_16546628_2017_1331658
crossref_primary_10_1038_s41598_018_32875_4
crossref_primary_10_1007_s11745_008_3217_y
crossref_primary_10_1371_journal_pone_0141017
crossref_primary_10_1186_s40608_018_0197_1
crossref_primary_10_1093_hmg_ddu193
crossref_primary_10_1016_j_cmet_2016_02_019
crossref_primary_10_1038_hr_2010_11
crossref_primary_10_1523_JNEUROSCI_4671_10_2011
crossref_primary_10_1016_j_freeradbiomed_2024_05_035
crossref_primary_10_1111_j_1533_2500_2010_00358_x
crossref_primary_10_1007_s00424_013_1274_4
crossref_primary_10_3390_ani12060797
crossref_primary_10_1007_s00424_016_1846_1
crossref_primary_10_29219_fnr_v66_8289
crossref_primary_10_1038_emm_2017_70
crossref_primary_10_3390_immuno2040038
crossref_primary_10_1016_j_lfs_2011_01_016
crossref_primary_10_1111_bph_12987
crossref_primary_10_3390_molecules28135258
crossref_primary_10_1007_s11684_013_0264_4
crossref_primary_10_1016_j_jff_2018_12_036
crossref_primary_10_1016_j_metabol_2020_154182
crossref_primary_10_1111_j_1476_5381_2012_01851_x
crossref_primary_10_1016_j_biocel_2009_03_009
crossref_primary_10_1016_j_ajpath_2014_09_007
crossref_primary_10_3389_fendo_2018_00420
crossref_primary_10_3390_antiox10060868
crossref_primary_10_1007_s11426_024_2411_7
crossref_primary_10_1186_s12986_021_00588_7
crossref_primary_10_1002_stem_137
crossref_primary_10_1007_s00125_008_1048_2
crossref_primary_10_1016_j_vph_2012_09_002
crossref_primary_10_1016_j_ceca_2024_102870
crossref_primary_10_29219_fnr_v64_3525
crossref_primary_10_3390_cosmetics11010024
crossref_primary_10_1038_srep18013
crossref_primary_10_15252_embr_201540819
crossref_primary_10_2337_db12_0570
crossref_primary_10_3390_cosmetics11010022
crossref_primary_10_1016_j_cmet_2013_12_004
crossref_primary_10_1016_j_jff_2021_104658
crossref_primary_10_1113_EP085568
crossref_primary_10_1039_c3fo30321g
crossref_primary_10_1016_j_anifeedsci_2010_03_007
crossref_primary_10_1007_s11745_008_3182_5
crossref_primary_10_1007_s00232_014_9658_8
crossref_primary_10_1016_j_jelechem_2009_03_022
crossref_primary_10_1016_j_ejmech_2019_111903
crossref_primary_10_1016_j_isci_2024_110467
crossref_primary_10_1096_fj_201700151R
crossref_primary_10_1172_JCI64628
crossref_primary_10_1016_j_physbeh_2019_04_015
crossref_primary_10_1210_en_2014_1831
crossref_primary_10_3389_fncel_2020_612480
crossref_primary_10_3390_nu15204469
crossref_primary_10_1016_j_ddmec_2010_12_002
crossref_primary_10_3390_nu10050630
crossref_primary_10_1002_oby_20246
crossref_primary_10_5713_ajas_2014_14720
crossref_primary_10_1038_srep20795
crossref_primary_10_1083_jcb_200712078
crossref_primary_10_3390_ph15070851
crossref_primary_10_1016_j_autrev_2016_01_009
crossref_primary_10_1080_07315724_2021_1938294
crossref_primary_10_3390_biom12121783
crossref_primary_10_1038_sj_bjp_0707424
crossref_primary_10_3390_cells11010018
crossref_primary_10_3390_cells11243996
crossref_primary_10_1097_CM9_0000000000001318
crossref_primary_10_3389_fendo_2020_00114
crossref_primary_10_1017_S0007114523000697
crossref_primary_10_3390_molecules25245840
crossref_primary_10_1213_ane_0b013e3181a7f589
crossref_primary_10_3390_ijms24119340
crossref_primary_10_3389_fmolb_2020_564339
crossref_primary_10_1016_j_nutres_2014_04_009
crossref_primary_10_1038_s41598_019_45050_0
crossref_primary_10_31665_JFB_2019_6186
crossref_primary_10_1007_s00109_014_1175_9
crossref_primary_10_1007_s00424_013_1355_4
crossref_primary_10_1002_mnfr_201200716
crossref_primary_10_1586_eem_13_4
crossref_primary_10_1016_j_bbadis_2018_11_004
crossref_primary_10_2337_db11_1503
crossref_primary_10_1016_j_cbi_2025_111380
crossref_primary_10_1016_j_febslet_2009_10_046
crossref_primary_10_1111_obr_12703
crossref_primary_10_1007_s12033_018_0071_x
crossref_primary_10_1021_jf304471t
crossref_primary_10_1007_s11892_019_1248_9
crossref_primary_10_1038_s42255_021_00373_z
crossref_primary_10_1002_ptr_6511
crossref_primary_10_1002_cbin_10783
crossref_primary_10_1007_s11356_023_25776_1
crossref_primary_10_1038_cddis_2014_146
crossref_primary_10_5646_jksh_2011_17_2_37
crossref_primary_10_1097_CD9_0000000000000047
crossref_primary_10_1111_bph_13514
crossref_primary_10_1002_jcp_22925
crossref_primary_10_1002_jcp_28106
crossref_primary_10_1016_j_phrs_2021_106025
crossref_primary_10_1021_acs_jafc_9b02191
crossref_primary_10_1016_j_tem_2013_06_005
crossref_primary_10_1002_1873_3468_14105
crossref_primary_10_1002_cbf_3162
crossref_primary_10_1080_00498254_2021_2025281
crossref_primary_10_1016_j_jep_2018_08_019
crossref_primary_10_3389_fendo_2018_00584
crossref_primary_10_1016_j_fitote_2009_09_012
crossref_primary_10_1186_1475_2840_12_69
crossref_primary_10_1111_j_1582_4934_2010_01085_x
crossref_primary_10_1016_j_xphs_2015_10_017
crossref_primary_10_3389_fphys_2021_645109
crossref_primary_10_1016_j_yexcr_2023_113908
crossref_primary_10_1016_j_bbrc_2019_06_039
crossref_primary_10_1016_S1734_1140_13_71055_7
crossref_primary_10_1016_j_foodres_2018_10_015
crossref_primary_10_1111_nyas_12838
crossref_primary_10_1186_1744_8069_9_30
crossref_primary_10_2500_ajra_2014_28_4059
crossref_primary_10_1038_bjp_2008_351
crossref_primary_10_1039_D2FO02209E
crossref_primary_10_3389_fphar_2022_875014
crossref_primary_10_1016_j_bbrc_2022_06_047
crossref_primary_10_1111_caim_12656
crossref_primary_10_1007_s12161_017_1009_9
crossref_primary_10_1016_j_abb_2024_109975
crossref_primary_10_15171_apb_2018_056
crossref_primary_10_3389_fphar_2017_00316
crossref_primary_10_1248_bpb_b18_00063
crossref_primary_10_1016_j_cbd_2019_02_006
crossref_primary_10_1155_2019_5796381
crossref_primary_10_1007_s00424_010_0902_5
crossref_primary_10_1016_j_jhep_2022_12_031
crossref_primary_10_1002_adfm_202011130
crossref_primary_10_1021_pr901175w
crossref_primary_10_1248_yakushi_13_00236_1
crossref_primary_10_54097_hset_v8i_1212
crossref_primary_10_1016_j_nutres_2017_11_006
crossref_primary_10_1038_s41598_022_10644_8
crossref_primary_10_1039_D2FO01073A
crossref_primary_10_3390_molecules25235681
crossref_primary_10_1080_13813455_2017_1367009
crossref_primary_10_3389_fphys_2017_00602
crossref_primary_10_1039_C8FO02154F
crossref_primary_10_3390_ijms24108769
crossref_primary_10_1016_j_heliyon_2024_e24153
crossref_primary_10_1007_s12038_012_9249_8
crossref_primary_10_1016_j_biopha_2021_111472
crossref_primary_10_1080_13813455_2021_1962913
crossref_primary_10_1371_journal_pone_0187497
crossref_primary_10_1002_ptr_3339
crossref_primary_10_1080_23328940_2015_1040604
crossref_primary_10_1097_NT_0b013e3182076ff2
crossref_primary_10_1096_fj_201801518RR
crossref_primary_10_1161_HYPERTENSIONAHA_117_09950
crossref_primary_10_3390_ijms20010122
crossref_primary_10_1016_j_toxlet_2021_03_003
crossref_primary_10_3390_molecules21080966
crossref_primary_10_1007_s13679_016_0216_9
crossref_primary_10_1038_oby_2009_301
crossref_primary_10_12998_wjcc_v10_i1_79
crossref_primary_10_2174_0115680266275768231027100120
crossref_primary_10_3390_biom14091058
crossref_primary_10_3390_nu11081956
crossref_primary_10_1016_j_rmed_2022_106772
crossref_primary_10_1007_s00281_015_0529_x
crossref_primary_10_1111_head_13033
crossref_primary_10_1371_journal_pone_0096597
crossref_primary_10_1042_BSR20170286
crossref_primary_10_1016_j_molmed_2007_07_006
crossref_primary_10_1016_j_pharmthera_2009_10_005
crossref_primary_10_1080_23328940_2021_1983354
crossref_primary_10_1016_j_bone_2010_01_368
crossref_primary_10_1080_19336950_2016_1228401
crossref_primary_10_3233_JAD_151079
crossref_primary_10_1042_BJ20140065
crossref_primary_10_1016_j_bcp_2022_115190
crossref_primary_10_1016_j_lfs_2008_04_018
crossref_primary_10_3390_ijms25073728
crossref_primary_10_1038_cr_2011_205
crossref_primary_10_22159_ajpcr_2022_v15i7_44405
crossref_primary_10_1016_j_arabjc_2023_105466
crossref_primary_10_1152_physrev_00034_2013
crossref_primary_10_2174_1573402114666181031141840
crossref_primary_10_1038_s41440_021_00842_8
crossref_primary_10_1096_fj_14_268300
crossref_primary_10_1007_s00395_016_0539_4
crossref_primary_10_1016_j_molmed_2017_09_005
crossref_primary_10_1016_j_mce_2013_12_005
crossref_primary_10_1039_c2fo10274a
crossref_primary_10_1371_journal_pone_0135892
crossref_primary_10_1124_pr_109_001263
crossref_primary_10_1083_jcb_200805110
crossref_primary_10_3390_healthcare11223001
crossref_primary_10_1016_j_foodchem_2023_135980
crossref_primary_10_1016_j_hsr_2024_100148
crossref_primary_10_1016_j_biopha_2023_114677
crossref_primary_10_1016_j_bbamcr_2012_08_018
crossref_primary_10_1113_jphysiol_2014_278226
crossref_primary_10_3390_molecules16108919
crossref_primary_10_1002_jcp_30837
crossref_primary_10_1093_advances_nmab064
crossref_primary_10_1016_j_clnesp_2022_09_021
crossref_primary_10_1111_apha_12005
crossref_primary_10_1007_s00418_016_1512_x
crossref_primary_10_1007_s11033_012_1592_1
crossref_primary_10_3390_ph9030050
crossref_primary_10_1155_2014_491963
Cites_doi 10.1210/en.2005-0003
10.1124/mol.105.015644
10.1530/eje.1.02046
10.1271/bbb.65.2735
10.1128/JVI.78.20.10848-10855.2004
10.1007/s00424-005-1457-8
10.1146/annurev.nutr.18.1.331
10.1016/j.tcm.2005.04.002
10.1038/39807
10.1073/pnas.0601752103
10.1161/01.res.0000199348.10580.1d
10.1016/S0092-8674(02)00670-0
10.1038/sj.ijo.0802862
10.1073/pnas.79.3.845
10.1038/sj.ejcn.1602121
10.1113/jphysiol.2004.081844
10.1161/hyp.31.5.1171
10.1093/ajcn/59.6.1386
10.1113/jphysiol.2004.071746
10.1016/S0306-4522(00)00447-4
10.1016/j.diabres.2004.11.015
10.1007/s11906-999-0005-x
10.1097/01.hjh.0000226201.73065.14
10.1146/annurev.physiol.68.040204.100431
10.1016/S0031-6997(24)01403-0
10.1016/0006-291X(87)90479-7
10.1023/A:1011863414321
10.1016/S0092-8674(02)00637-2
10.1152/physiolgenomics.2000.3.2.75
10.1016/S0092-8674(03)01081-X
10.1074/jbc.M207913200
10.1074/jbc.M100797200
10.1016/j.ceca.2003.11.006
ContentType Journal Article
Copyright 2007 American Heart Association, Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2007 American Heart Association, Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7X8
DOI 10.1161/01.RES.0000262653.84850.8b
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Calcium & Calcified Tissue Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 1070
ExternalDocumentID 17347480
18683562
10_1161_01_RES_0000262653_84850_8b
10.1161/01.RES.0000262653.84850.8b
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.-D
.3C
.55
.Z2
01R
0R~
18M
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AARTV
AASOK
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACNWC
ACPRK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
BAWUL
BOYCO
BQLVK
C1A
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OB2
OCUKA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
YFH
YOC
ZFV
ZZMQN
AAYXX
ADGHP
CITATION
.GJ
1CY
41~
AAQKA
AASCR
ABASU
ABVCZ
ABZZY
ACLDA
ACXJB
ADFPA
AFBFQ
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
BYPQX
EEVPB
ERAAH
GNXGY
GQDEL
HLJTE
IPNFZ
IQODW
JF9
JG8
MVM
N~M
ODA
OWU
OWV
OWX
OWZ
P-K
R58
RIG
TSPGW
XXN
XYM
ZGI
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OLW
RHF
7QP
7X8
ID FETCH-LOGICAL-c537b-7129bd1084fdf2252e6c024322acdba30b43c6057a3859fe9f9e97fc533f89ec3
ISSN 0009-7330
1524-4571
IngestDate Thu Jul 10 23:09:24 EDT 2025
Fri Jul 11 04:12:47 EDT 2025
Wed Feb 12 01:05:17 EST 2025
Mon Jul 21 09:13:14 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 01:24:36 EDT 2025
Fri May 16 03:47:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Obesity
RNAi
Nutrition disorder
Activation
transient receptor potential vanilloid type-1
Transients
Vertebrata
TRPV1 vanilloid receptor
Mammalia
TRPV1 knockout adipogenesis
Circulatory system
Mutation
Vanilloid receptor
Nutritional status
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c537b-7129bd1084fdf2252e6c024322acdba30b43c6057a3859fe9f9e97fc533f89ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17347480
PQID 19605212
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_70380644
proquest_miscellaneous_19605212
pubmed_primary_17347480
pascalfrancis_primary_18683562
crossref_citationtrail_10_1161_01_RES_0000262653_84850_8b
crossref_primary_10_1161_01_RES_0000262653_84850_8b
wolterskluwer_health_10_1161_01_RES_0000262653_84850_8b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-April-13
PublicationDateYYYYMMDD 2007-04-13
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-April-13
  day: 13
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2007
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References (e_1_3_3_10_2) 1996
(e_1_3_3_4_2) 1988; 80
e_1_3_3_17_2
(e_1_3_3_26_2) 1999; 51
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
(e_1_3_3_28_2) 1996; 60
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
17431193 - Circ Res. 2007 Apr 13;100(7):934-6
References_xml – ident: e_1_3_3_19_2
  doi: 10.1210/en.2005-0003
– ident: e_1_3_3_27_2
  doi: 10.1124/mol.105.015644
– ident: e_1_3_3_33_2
  doi: 10.1530/eje.1.02046
– ident: e_1_3_3_5_2
  doi: 10.1271/bbb.65.2735
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.78.20.10848-10855.2004
– ident: e_1_3_3_20_2
– volume: 60
  start-page: 151
  year: 1996
  ident: e_1_3_3_28_2
  publication-title: Differentiation
– ident: e_1_3_3_8_2
  doi: 10.1007/s00424-005-1457-8
– ident: e_1_3_3_15_2
  doi: 10.1146/annurev.nutr.18.1.331
– ident: e_1_3_3_14_2
  doi: 10.1016/j.tcm.2005.04.002
– ident: e_1_3_3_6_2
  doi: 10.1038/39807
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.0601752103
– ident: e_1_3_3_23_2
  doi: 10.1161/01.res.0000199348.10580.1d
– volume: 80
  start-page: 503
  year: 1988
  ident: e_1_3_3_4_2
  publication-title: Br J Nutr
– ident: e_1_3_3_9_2
  doi: 10.1016/S0092-8674(02)00670-0
– ident: e_1_3_3_36_2
  doi: 10.1038/sj.ijo.0802862
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.79.3.845
– start-page: 641
  year: 1996
  ident: e_1_3_3_10_2
  publication-title: Endocrinology
– ident: e_1_3_3_35_2
  doi: 10.1038/sj.ejcn.1602121
– ident: e_1_3_3_32_2
  doi: 10.1113/jphysiol.2004.081844
– ident: e_1_3_3_17_2
  doi: 10.1161/hyp.31.5.1171
– ident: e_1_3_3_34_2
  doi: 10.1093/ajcn/59.6.1386
– ident: e_1_3_3_37_2
  doi: 10.1113/jphysiol.2004.071746
– ident: e_1_3_3_22_2
  doi: 10.1016/S0306-4522(00)00447-4
– ident: e_1_3_3_21_2
  doi: 10.1016/j.diabres.2004.11.015
– ident: e_1_3_3_31_2
  doi: 10.1007/s11906-999-0005-x
– ident: e_1_3_3_18_2
  doi: 10.1097/01.hjh.0000226201.73065.14
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev.physiol.68.040204.100431
– volume: 51
  start-page: 159
  year: 1999
  ident: e_1_3_3_26_2
  publication-title: Pharmacol Rev
  doi: 10.1016/S0031-6997(24)01403-0
– ident: e_1_3_3_30_2
  doi: 10.1016/0006-291X(87)90479-7
– ident: e_1_3_3_2_2
  doi: 10.1023/A:1011863414321
– ident: e_1_3_3_7_2
  doi: 10.1016/S0092-8674(02)00637-2
– ident: e_1_3_3_11_2
  doi: 10.1152/physiolgenomics.2000.3.2.75
– ident: e_1_3_3_1_2
  doi: 10.1016/S0092-8674(03)01081-X
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.M207913200
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.M100797200
– ident: e_1_3_3_25_2
  doi: 10.1016/j.ceca.2003.11.006
– reference: 17431193 - Circ Res. 2007 Apr 13;100(7):934-6
SSID ssj0014329
Score 2.4093857
Snippet We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1063
SubjectTerms 3T3-L1 Cells
Adipocytes - metabolism
Adipogenesis
Adipose Tissue - metabolism
Animals
Biological and medical sciences
Calcium - metabolism
Capsaicin - pharmacology
Fundamental and applied biological sciences. Psychology
Humans
Male
Medical sciences
Metabolic diseases
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Mice, Obese
Obesity
Obesity - prevention & control
RNA, Small Interfering - pharmacology
Stem Cells - metabolism
TRPV Cation Channels - agonists
TRPV Cation Channels - deficiency
TRPV Cation Channels - drug effects
TRPV Cation Channels - genetics
TRPV Cation Channels - metabolism
Vertebrates: cardiovascular system
Viscera
Title Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity
URI https://www.ncbi.nlm.nih.gov/pubmed/17347480
https://www.proquest.com/docview/19605212
https://www.proquest.com/docview/70380644
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCiKIeHe8rHnwbeiY5tKkj8OqrJcVhV1ZfCltmq7FoR12pgj-Gf-qJ22admQW14UhDCU5tD1fzyU5F4RextLkQvIioFLQgBsig5QxGISJpE5VFimb4Hz0KTo84e9Pxelk8nsUtdRssrn-tTOv5CpchWvAV5sl-x-c9UThAvwH_sIIHIbxUjxe6L45mbX5WrVj0xutLWhW4EzPPtcbGw0EbPiaVuVyWZf5zHqeQdimFVRmOXM1nNazRV6u6jMr-squbrPrGTA2Xw_Kc-36fc1cmSC_ney3nj-W8PPSxLYFLpsufL4e9r_dxC_NEBLUtLu2376XFopbuxHSHqx0yaRewsaBZO6sxTihSnnARddqxUtdQkbwkiMZCk4qG-lj8E_JblkfhW3-whyg2pahpOCcCTZXXAkyV9mg4fpT_b8Unw9HbB2hKExImACtZKCVtLQSlV1D1yn4IbZFxut3H_wxFWc07lv12Yd2VW2B1quL72vLArq1StfwMRZdF5Vdbg7M-VnbyIn1jzZxYmT-HN9Bt53fghcdCO-iianuoRtHLjLjPjIDFnFdYI9F3GMReyxij0XcYRE7LOIei3iMRQxYxA6LD9DJ2zfHB4eBa-ERaMFkFkgwJ7M8JIoXeQGqg5pI2xqYlKY6z1JGMs40eNQyZUrEhYmL2MSygMWsULHR7CHaq-rKPEZYpwUYy0pzGuY8pyRL80iDMV-IjOg4ElMU96810a6-vW2zskz-zd4pYn7tqqvycqlV-1vcG5aqCBybiE7Ri56dCUhtexSXVqZu1gnovTZr_uIZoIkVuAt8ih51OBioS8YlV2SK5BYwki5z-hI3_uRKj_sU3Ry--Gdob3PemOdgkW-y_far-AOl5tS5
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Transient+Receptor+Potential+Vanilloid+Type-1+Channel+Prevents+Adipogenesis+and+Obesity&rft.jtitle=Circulation+research&rft.au=Zhang%2C+Li+Li&rft.au=Yan+Liu%2C+Dao&rft.au=Ma%2C+Li+Qun&rft.au=Luo%2C+Zhi+Dan&rft.date=2007-04-13&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=100&rft.issue=7&rft.spage=1063&rft.epage=1070&rft_id=info:doi/10.1161%2F01.RES.0000262653.84850.8b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_01_RES_0000262653_84850_8b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon