Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity
We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect...
Saved in:
Published in | Circulation research Vol. 100; no. 7; pp. 1063 - 1070 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
American Heart Association, Inc
13.04.2007
Lippincott |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice.We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity. |
---|---|
AbstractList | We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice.
We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity. We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity. We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-γ, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice.We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity. We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity. |
Author | Zhu, Zhi Ming Ma, Li Qun Thilo, Florian Liu, Dao Yan Luo, Zhi Dan Yan, Zhen Cheng Tepel, Martin Schrader, Mark Zhao, Zhi Gang Wang, Li Juan Cao, Ting Bing Zhu, Shan Jun Zhang, Li Li Zhong, Jian |
Author_xml | – sequence: 1 givenname: Li surname: Zhang middlename: Li fullname: Zhang, Li Li – sequence: 2 givenname: Dao surname: Liu middlename: Yan fullname: Liu, Dao Yan – sequence: 3 givenname: Li surname: Ma middlename: Qun fullname: Ma, Li Qun – sequence: 4 givenname: Zhi surname: Luo middlename: Dan fullname: Luo, Zhi Dan – sequence: 5 givenname: Ting surname: Cao middlename: Bing fullname: Cao, Ting Bing – sequence: 6 givenname: Jian surname: Zhong fullname: Zhong, Jian – sequence: 7 givenname: Zhen surname: Yan middlename: Cheng fullname: Yan, Zhen Cheng – sequence: 8 givenname: Li surname: Wang middlename: Juan fullname: Wang, Li Juan – sequence: 9 givenname: Zhi surname: Zhao middlename: Gang fullname: Zhao, Zhi Gang – sequence: 10 givenname: Shan surname: Zhu middlename: Jun fullname: Zhu, Shan Jun – sequence: 11 givenname: Mark surname: Schrader fullname: Schrader, Mark – sequence: 12 givenname: Florian surname: Thilo fullname: Thilo, Florian – sequence: 13 givenname: Zhi surname: Zhu middlename: Ming fullname: Zhu, Zhi Ming – sequence: 14 givenname: Martin surname: Tepel fullname: Tepel, Martin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18683562$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17347480$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URNPCX0AWEuwm-DEPDwtEFJWHVKlVCWwtj-eaGBx7ajut8u9xm0AlNtQb29J3zr065wQd-eABoVeUzClt6VtC51dnX-ekHNaytuFzUYuGzMXwBM1ow-qqbjp6hGYF6KuOc3KMTlL6SQitOeufoWPa8bqrBZkhWOhsb1S2weNg8Coqnyz4jK9Aw5RDxJchl79VDn9X3joX7IhXuwkqipdr5T04fBnhpjAJL0Y7hR_gIdmElR_xxVCeefccPTXKJXhxuE_Rt49nq-Xn6vzi05fl4rzSDe-GqqOsH0ZKRG1Gw1jDoNWElZ2Z0uOgOBlqrlvSdIqLpjfQmx76zhQxN6IHzU_Rm73vFMP1FlKWG5s0OKc8hG2SHeGCtHX9X5D2ZQyjrIAvD-B22MAop2g3Ku7knwQL8PoAqKSVMyVAbdMDJ1rBm_bO6MOe0zGkFMFIbfN97jkq6yQl8q5cSags5cqHcuV9uVIMxeLdPxZ_pzxG_H4vvg0uQ0y_3PYWolyDcnn9GIPfam28rQ |
CODEN | CIRUAL |
CitedBy_id | crossref_primary_10_1016_j_appet_2012_05_015 crossref_primary_10_1155_2013_925171 crossref_primary_10_1038_s41598_018_19223_2 crossref_primary_10_1146_annurev_nutr_012809_104755 crossref_primary_10_1016_j_jnutbio_2018_09_028 crossref_primary_10_1016_j_focha_2023_100438 crossref_primary_10_1016_j_maturitas_2011_12_009 crossref_primary_10_1007_s10616_018_0209_5 crossref_primary_10_3390_cells11081292 crossref_primary_10_1152_ajpheart_01191_2007 crossref_primary_10_3109_02656736_2011_601283 crossref_primary_10_1152_jn_00004_2018 crossref_primary_10_1007_s13105_016_0469_5 crossref_primary_10_2337_db09_1881 crossref_primary_10_1080_10408398_2021_1884840 crossref_primary_10_1007_s00210_018_1547_8 crossref_primary_10_2337_db19_0526 crossref_primary_10_18632_oncotarget_16975 crossref_primary_10_1002_med_21427 crossref_primary_10_1093_cvr_cvr245 crossref_primary_10_1194_jlr_M076513 crossref_primary_10_1016_j_jbc_2023_104757 crossref_primary_10_1016_j_trsl_2009_08_003 crossref_primary_10_18632_oncotarget_20540 crossref_primary_10_1080_21623945_2020_1738792 crossref_primary_10_1016_j_fct_2018_10_051 crossref_primary_10_1016_j_indcrop_2012_11_019 crossref_primary_10_1039_C4FO01069H crossref_primary_10_1002_dmrr_1279 crossref_primary_10_1016_j_orcp_2013_12_626 crossref_primary_10_1016_j_phymed_2025_156630 crossref_primary_10_1093_jmcb_mjs001 crossref_primary_10_1134_S0006297921140054 crossref_primary_10_1016_j_bbalip_2012_12_002 crossref_primary_10_1111_j_1476_5381_2012_01951_x crossref_primary_10_1038_nrendo_2016_142 crossref_primary_10_1291_hypres_31_1989 crossref_primary_10_1038_embor_2011_200 crossref_primary_10_3390_nu8050174 crossref_primary_10_1002_oby_20103 crossref_primary_10_2147_DDDT_S423974 crossref_primary_10_1007_s00424_012_1078_y crossref_primary_10_3390_plants12122273 crossref_primary_10_1016_j_bmcl_2008_04_052 crossref_primary_10_1016_j_peptides_2012_10_009 crossref_primary_10_1016_j_febslet_2008_05_021 crossref_primary_10_1016_j_cmet_2010_05_015 crossref_primary_10_1124_pr_113_008268 crossref_primary_10_1271_bbb_100850 crossref_primary_10_1002_ptr_8083 crossref_primary_10_1016_j_ebiom_2016_09_010 crossref_primary_10_1016_j_scr_2021_102291 crossref_primary_10_1007_s11030_024_10971_0 crossref_primary_10_1002_jcb_25052 crossref_primary_10_1016_j_biopha_2019_109270 crossref_primary_10_1186_s12933_015_0183_6 crossref_primary_10_1002_stem_1805 crossref_primary_10_2220_biomedres_39_279 crossref_primary_10_1007_s00418_016_1408_9 crossref_primary_10_1111_apha_12157 crossref_primary_10_1530_EJE_15_1217 crossref_primary_10_2337_db16_0245 crossref_primary_10_4236_fns_2013_48103 crossref_primary_10_3389_fcell_2021_686173 crossref_primary_10_3390_biomedicines9091246 crossref_primary_10_1186_s12929_017_0375_3 crossref_primary_10_1038_oby_2012_166 crossref_primary_10_1042_BCJ20190462 crossref_primary_10_1021_acschembio_4c00842 crossref_primary_10_1186_s12902_024_01738_7 crossref_primary_10_1016_j_ceca_2009_03_003 crossref_primary_10_1111_apha_12051 crossref_primary_10_3389_fnut_2021_750355 crossref_primary_10_1111_obr_12520 crossref_primary_10_3389_fphar_2016_00058 crossref_primary_10_1139_cjpp_2020_0306 crossref_primary_10_1371_journal_pbio_2004399 crossref_primary_10_1016_j_bbrc_2014_05_117 crossref_primary_10_1038_s41398_020_00918_y crossref_primary_10_1016_j_plipres_2012_08_001 crossref_primary_10_1002_jsfa_8300 crossref_primary_10_1017_S0007114524000229 crossref_primary_10_1016_j_jnutbio_2014_04_004 crossref_primary_10_1002_iub_1563 crossref_primary_10_1371_journal_pone_0103093 crossref_primary_10_1080_03639045_2022_2070759 crossref_primary_10_1016_j_tips_2007_10_016 crossref_primary_10_3390_cells12182322 crossref_primary_10_1016_j_cell_2012_08_034 crossref_primary_10_3390_ijms17101689 crossref_primary_10_3892_ijmm_2022_5169 crossref_primary_10_1016_j_ijcard_2016_06_092 crossref_primary_10_3892_ijmm_2020_4462 crossref_primary_10_1016_j_jep_2010_08_034 crossref_primary_10_1096_fj_201601081RR crossref_primary_10_1021_acs_jafc_8b02975 crossref_primary_10_4137_BCI_S3064 crossref_primary_10_22490_24629448_3926 crossref_primary_10_1002_2211_5463_12550 crossref_primary_10_1016_j_pharmthera_2011_03_006 crossref_primary_10_1038_s41598_020_77983_2 crossref_primary_10_1080_16546628_2017_1331658 crossref_primary_10_1038_s41598_018_32875_4 crossref_primary_10_1007_s11745_008_3217_y crossref_primary_10_1371_journal_pone_0141017 crossref_primary_10_1186_s40608_018_0197_1 crossref_primary_10_1093_hmg_ddu193 crossref_primary_10_1016_j_cmet_2016_02_019 crossref_primary_10_1038_hr_2010_11 crossref_primary_10_1523_JNEUROSCI_4671_10_2011 crossref_primary_10_1016_j_freeradbiomed_2024_05_035 crossref_primary_10_1111_j_1533_2500_2010_00358_x crossref_primary_10_1007_s00424_013_1274_4 crossref_primary_10_3390_ani12060797 crossref_primary_10_1007_s00424_016_1846_1 crossref_primary_10_29219_fnr_v66_8289 crossref_primary_10_1038_emm_2017_70 crossref_primary_10_3390_immuno2040038 crossref_primary_10_1016_j_lfs_2011_01_016 crossref_primary_10_1111_bph_12987 crossref_primary_10_3390_molecules28135258 crossref_primary_10_1007_s11684_013_0264_4 crossref_primary_10_1016_j_jff_2018_12_036 crossref_primary_10_1016_j_metabol_2020_154182 crossref_primary_10_1111_j_1476_5381_2012_01851_x crossref_primary_10_1016_j_biocel_2009_03_009 crossref_primary_10_1016_j_ajpath_2014_09_007 crossref_primary_10_3389_fendo_2018_00420 crossref_primary_10_3390_antiox10060868 crossref_primary_10_1007_s11426_024_2411_7 crossref_primary_10_1186_s12986_021_00588_7 crossref_primary_10_1002_stem_137 crossref_primary_10_1007_s00125_008_1048_2 crossref_primary_10_1016_j_vph_2012_09_002 crossref_primary_10_1016_j_ceca_2024_102870 crossref_primary_10_29219_fnr_v64_3525 crossref_primary_10_3390_cosmetics11010024 crossref_primary_10_1038_srep18013 crossref_primary_10_15252_embr_201540819 crossref_primary_10_2337_db12_0570 crossref_primary_10_3390_cosmetics11010022 crossref_primary_10_1016_j_cmet_2013_12_004 crossref_primary_10_1016_j_jff_2021_104658 crossref_primary_10_1113_EP085568 crossref_primary_10_1039_c3fo30321g crossref_primary_10_1016_j_anifeedsci_2010_03_007 crossref_primary_10_1007_s11745_008_3182_5 crossref_primary_10_1007_s00232_014_9658_8 crossref_primary_10_1016_j_jelechem_2009_03_022 crossref_primary_10_1016_j_ejmech_2019_111903 crossref_primary_10_1016_j_isci_2024_110467 crossref_primary_10_1096_fj_201700151R crossref_primary_10_1172_JCI64628 crossref_primary_10_1016_j_physbeh_2019_04_015 crossref_primary_10_1210_en_2014_1831 crossref_primary_10_3389_fncel_2020_612480 crossref_primary_10_3390_nu15204469 crossref_primary_10_1016_j_ddmec_2010_12_002 crossref_primary_10_3390_nu10050630 crossref_primary_10_1002_oby_20246 crossref_primary_10_5713_ajas_2014_14720 crossref_primary_10_1038_srep20795 crossref_primary_10_1083_jcb_200712078 crossref_primary_10_3390_ph15070851 crossref_primary_10_1016_j_autrev_2016_01_009 crossref_primary_10_1080_07315724_2021_1938294 crossref_primary_10_3390_biom12121783 crossref_primary_10_1038_sj_bjp_0707424 crossref_primary_10_3390_cells11010018 crossref_primary_10_3390_cells11243996 crossref_primary_10_1097_CM9_0000000000001318 crossref_primary_10_3389_fendo_2020_00114 crossref_primary_10_1017_S0007114523000697 crossref_primary_10_3390_molecules25245840 crossref_primary_10_1213_ane_0b013e3181a7f589 crossref_primary_10_3390_ijms24119340 crossref_primary_10_3389_fmolb_2020_564339 crossref_primary_10_1016_j_nutres_2014_04_009 crossref_primary_10_1038_s41598_019_45050_0 crossref_primary_10_31665_JFB_2019_6186 crossref_primary_10_1007_s00109_014_1175_9 crossref_primary_10_1007_s00424_013_1355_4 crossref_primary_10_1002_mnfr_201200716 crossref_primary_10_1586_eem_13_4 crossref_primary_10_1016_j_bbadis_2018_11_004 crossref_primary_10_2337_db11_1503 crossref_primary_10_1016_j_cbi_2025_111380 crossref_primary_10_1016_j_febslet_2009_10_046 crossref_primary_10_1111_obr_12703 crossref_primary_10_1007_s12033_018_0071_x crossref_primary_10_1021_jf304471t crossref_primary_10_1007_s11892_019_1248_9 crossref_primary_10_1038_s42255_021_00373_z crossref_primary_10_1002_ptr_6511 crossref_primary_10_1002_cbin_10783 crossref_primary_10_1007_s11356_023_25776_1 crossref_primary_10_1038_cddis_2014_146 crossref_primary_10_5646_jksh_2011_17_2_37 crossref_primary_10_1097_CD9_0000000000000047 crossref_primary_10_1111_bph_13514 crossref_primary_10_1002_jcp_22925 crossref_primary_10_1002_jcp_28106 crossref_primary_10_1016_j_phrs_2021_106025 crossref_primary_10_1021_acs_jafc_9b02191 crossref_primary_10_1016_j_tem_2013_06_005 crossref_primary_10_1002_1873_3468_14105 crossref_primary_10_1002_cbf_3162 crossref_primary_10_1080_00498254_2021_2025281 crossref_primary_10_1016_j_jep_2018_08_019 crossref_primary_10_3389_fendo_2018_00584 crossref_primary_10_1016_j_fitote_2009_09_012 crossref_primary_10_1186_1475_2840_12_69 crossref_primary_10_1111_j_1582_4934_2010_01085_x crossref_primary_10_1016_j_xphs_2015_10_017 crossref_primary_10_3389_fphys_2021_645109 crossref_primary_10_1016_j_yexcr_2023_113908 crossref_primary_10_1016_j_bbrc_2019_06_039 crossref_primary_10_1016_S1734_1140_13_71055_7 crossref_primary_10_1016_j_foodres_2018_10_015 crossref_primary_10_1111_nyas_12838 crossref_primary_10_1186_1744_8069_9_30 crossref_primary_10_2500_ajra_2014_28_4059 crossref_primary_10_1038_bjp_2008_351 crossref_primary_10_1039_D2FO02209E crossref_primary_10_3389_fphar_2022_875014 crossref_primary_10_1016_j_bbrc_2022_06_047 crossref_primary_10_1111_caim_12656 crossref_primary_10_1007_s12161_017_1009_9 crossref_primary_10_1016_j_abb_2024_109975 crossref_primary_10_15171_apb_2018_056 crossref_primary_10_3389_fphar_2017_00316 crossref_primary_10_1248_bpb_b18_00063 crossref_primary_10_1016_j_cbd_2019_02_006 crossref_primary_10_1155_2019_5796381 crossref_primary_10_1007_s00424_010_0902_5 crossref_primary_10_1016_j_jhep_2022_12_031 crossref_primary_10_1002_adfm_202011130 crossref_primary_10_1021_pr901175w crossref_primary_10_1248_yakushi_13_00236_1 crossref_primary_10_54097_hset_v8i_1212 crossref_primary_10_1016_j_nutres_2017_11_006 crossref_primary_10_1038_s41598_022_10644_8 crossref_primary_10_1039_D2FO01073A crossref_primary_10_3390_molecules25235681 crossref_primary_10_1080_13813455_2017_1367009 crossref_primary_10_3389_fphys_2017_00602 crossref_primary_10_1039_C8FO02154F crossref_primary_10_3390_ijms24108769 crossref_primary_10_1016_j_heliyon_2024_e24153 crossref_primary_10_1007_s12038_012_9249_8 crossref_primary_10_1016_j_biopha_2021_111472 crossref_primary_10_1080_13813455_2021_1962913 crossref_primary_10_1371_journal_pone_0187497 crossref_primary_10_1002_ptr_3339 crossref_primary_10_1080_23328940_2015_1040604 crossref_primary_10_1097_NT_0b013e3182076ff2 crossref_primary_10_1096_fj_201801518RR crossref_primary_10_1161_HYPERTENSIONAHA_117_09950 crossref_primary_10_3390_ijms20010122 crossref_primary_10_1016_j_toxlet_2021_03_003 crossref_primary_10_3390_molecules21080966 crossref_primary_10_1007_s13679_016_0216_9 crossref_primary_10_1038_oby_2009_301 crossref_primary_10_12998_wjcc_v10_i1_79 crossref_primary_10_2174_0115680266275768231027100120 crossref_primary_10_3390_biom14091058 crossref_primary_10_3390_nu11081956 crossref_primary_10_1016_j_rmed_2022_106772 crossref_primary_10_1007_s00281_015_0529_x crossref_primary_10_1111_head_13033 crossref_primary_10_1371_journal_pone_0096597 crossref_primary_10_1042_BSR20170286 crossref_primary_10_1016_j_molmed_2007_07_006 crossref_primary_10_1016_j_pharmthera_2009_10_005 crossref_primary_10_1080_23328940_2021_1983354 crossref_primary_10_1016_j_bone_2010_01_368 crossref_primary_10_1080_19336950_2016_1228401 crossref_primary_10_3233_JAD_151079 crossref_primary_10_1042_BJ20140065 crossref_primary_10_1016_j_bcp_2022_115190 crossref_primary_10_1016_j_lfs_2008_04_018 crossref_primary_10_3390_ijms25073728 crossref_primary_10_1038_cr_2011_205 crossref_primary_10_22159_ajpcr_2022_v15i7_44405 crossref_primary_10_1016_j_arabjc_2023_105466 crossref_primary_10_1152_physrev_00034_2013 crossref_primary_10_2174_1573402114666181031141840 crossref_primary_10_1038_s41440_021_00842_8 crossref_primary_10_1096_fj_14_268300 crossref_primary_10_1007_s00395_016_0539_4 crossref_primary_10_1016_j_molmed_2017_09_005 crossref_primary_10_1016_j_mce_2013_12_005 crossref_primary_10_1039_c2fo10274a crossref_primary_10_1371_journal_pone_0135892 crossref_primary_10_1124_pr_109_001263 crossref_primary_10_1083_jcb_200805110 crossref_primary_10_3390_healthcare11223001 crossref_primary_10_1016_j_foodchem_2023_135980 crossref_primary_10_1016_j_hsr_2024_100148 crossref_primary_10_1016_j_biopha_2023_114677 crossref_primary_10_1016_j_bbamcr_2012_08_018 crossref_primary_10_1113_jphysiol_2014_278226 crossref_primary_10_3390_molecules16108919 crossref_primary_10_1002_jcp_30837 crossref_primary_10_1093_advances_nmab064 crossref_primary_10_1016_j_clnesp_2022_09_021 crossref_primary_10_1111_apha_12005 crossref_primary_10_1007_s00418_016_1512_x crossref_primary_10_1007_s11033_012_1592_1 crossref_primary_10_3390_ph9030050 crossref_primary_10_1155_2014_491963 |
Cites_doi | 10.1210/en.2005-0003 10.1124/mol.105.015644 10.1530/eje.1.02046 10.1271/bbb.65.2735 10.1128/JVI.78.20.10848-10855.2004 10.1007/s00424-005-1457-8 10.1146/annurev.nutr.18.1.331 10.1016/j.tcm.2005.04.002 10.1038/39807 10.1073/pnas.0601752103 10.1161/01.res.0000199348.10580.1d 10.1016/S0092-8674(02)00670-0 10.1038/sj.ijo.0802862 10.1073/pnas.79.3.845 10.1038/sj.ejcn.1602121 10.1113/jphysiol.2004.081844 10.1161/hyp.31.5.1171 10.1093/ajcn/59.6.1386 10.1113/jphysiol.2004.071746 10.1016/S0306-4522(00)00447-4 10.1016/j.diabres.2004.11.015 10.1007/s11906-999-0005-x 10.1097/01.hjh.0000226201.73065.14 10.1146/annurev.physiol.68.040204.100431 10.1016/S0031-6997(24)01403-0 10.1016/0006-291X(87)90479-7 10.1023/A:1011863414321 10.1016/S0092-8674(02)00637-2 10.1152/physiolgenomics.2000.3.2.75 10.1016/S0092-8674(03)01081-X 10.1074/jbc.M207913200 10.1074/jbc.M100797200 10.1016/j.ceca.2003.11.006 |
ContentType | Journal Article |
Copyright | 2007 American Heart Association, Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 American Heart Association, Inc. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7X8 |
DOI | 10.1161/01.RES.0000262653.84850.8b |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4571 |
EndPage | 1070 |
ExternalDocumentID | 17347480 18683562 10_1161_01_RES_0000262653_84850_8b 10.1161/01.RES.0000262653.84850.8b |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .-D .3C .55 .Z2 01R 0R~ 18M 1J1 29B 2WC 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AARTV AASOK AAXQO ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACNWC ACPRK ACWDW ACWRI ACXNZ ACZKN ADBBV ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFFNX AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI BAWUL BOYCO BQLVK C1A C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OB2 OCUKA OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M YFH YOC ZFV ZZMQN AAYXX ADGHP CITATION .GJ 1CY 41~ AAQKA AASCR ABASU ABVCZ ABZZY ACLDA ACXJB ADFPA AFBFQ AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 BYPQX EEVPB ERAAH GNXGY GQDEL HLJTE IPNFZ IQODW JF9 JG8 MVM N~M ODA OWU OWV OWX OWZ P-K R58 RIG TSPGW XXN XYM ZGI ACIJW AWKKM CGR CUY CVF ECM EIF NPM OLW RHF 7QP 7X8 |
ID | FETCH-LOGICAL-c537b-7129bd1084fdf2252e6c024322acdba30b43c6057a3859fe9f9e97fc533f89ec3 |
ISSN | 0009-7330 1524-4571 |
IngestDate | Thu Jul 10 23:09:24 EDT 2025 Fri Jul 11 04:12:47 EDT 2025 Wed Feb 12 01:05:17 EST 2025 Mon Jul 21 09:13:14 EDT 2025 Thu Apr 24 22:59:43 EDT 2025 Tue Jul 01 01:24:36 EDT 2025 Fri May 16 03:47:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Obesity RNAi Nutrition disorder Activation transient receptor potential vanilloid type-1 Transients Vertebrata TRPV1 vanilloid receptor Mammalia TRPV1 knockout adipogenesis Circulatory system Mutation Vanilloid receptor Nutritional status |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c537b-7129bd1084fdf2252e6c024322acdba30b43c6057a3859fe9f9e97fc533f89ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17347480 |
PQID | 19605212 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_70380644 proquest_miscellaneous_19605212 pubmed_primary_17347480 pascalfrancis_primary_18683562 crossref_citationtrail_10_1161_01_RES_0000262653_84850_8b crossref_primary_10_1161_01_RES_0000262653_84850_8b wolterskluwer_health_10_1161_01_RES_0000262653_84850_8b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-April-13 |
PublicationDateYYYYMMDD | 2007-04-13 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-April-13 day: 13 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation research |
PublicationTitleAlternate | Circ Res |
PublicationYear | 2007 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | (e_1_3_3_10_2) 1996 (e_1_3_3_4_2) 1988; 80 e_1_3_3_17_2 (e_1_3_3_26_2) 1999; 51 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 (e_1_3_3_28_2) 1996; 60 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 17431193 - Circ Res. 2007 Apr 13;100(7):934-6 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1210/en.2005-0003 – ident: e_1_3_3_27_2 doi: 10.1124/mol.105.015644 – ident: e_1_3_3_33_2 doi: 10.1530/eje.1.02046 – ident: e_1_3_3_5_2 doi: 10.1271/bbb.65.2735 – ident: e_1_3_3_16_2 doi: 10.1128/JVI.78.20.10848-10855.2004 – ident: e_1_3_3_20_2 – volume: 60 start-page: 151 year: 1996 ident: e_1_3_3_28_2 publication-title: Differentiation – ident: e_1_3_3_8_2 doi: 10.1007/s00424-005-1457-8 – ident: e_1_3_3_15_2 doi: 10.1146/annurev.nutr.18.1.331 – ident: e_1_3_3_14_2 doi: 10.1016/j.tcm.2005.04.002 – ident: e_1_3_3_6_2 doi: 10.1038/39807 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.0601752103 – ident: e_1_3_3_23_2 doi: 10.1161/01.res.0000199348.10580.1d – volume: 80 start-page: 503 year: 1988 ident: e_1_3_3_4_2 publication-title: Br J Nutr – ident: e_1_3_3_9_2 doi: 10.1016/S0092-8674(02)00670-0 – ident: e_1_3_3_36_2 doi: 10.1038/sj.ijo.0802862 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.79.3.845 – start-page: 641 year: 1996 ident: e_1_3_3_10_2 publication-title: Endocrinology – ident: e_1_3_3_35_2 doi: 10.1038/sj.ejcn.1602121 – ident: e_1_3_3_32_2 doi: 10.1113/jphysiol.2004.081844 – ident: e_1_3_3_17_2 doi: 10.1161/hyp.31.5.1171 – ident: e_1_3_3_34_2 doi: 10.1093/ajcn/59.6.1386 – ident: e_1_3_3_37_2 doi: 10.1113/jphysiol.2004.071746 – ident: e_1_3_3_22_2 doi: 10.1016/S0306-4522(00)00447-4 – ident: e_1_3_3_21_2 doi: 10.1016/j.diabres.2004.11.015 – ident: e_1_3_3_31_2 doi: 10.1007/s11906-999-0005-x – ident: e_1_3_3_18_2 doi: 10.1097/01.hjh.0000226201.73065.14 – ident: e_1_3_3_24_2 doi: 10.1146/annurev.physiol.68.040204.100431 – volume: 51 start-page: 159 year: 1999 ident: e_1_3_3_26_2 publication-title: Pharmacol Rev doi: 10.1016/S0031-6997(24)01403-0 – ident: e_1_3_3_30_2 doi: 10.1016/0006-291X(87)90479-7 – ident: e_1_3_3_2_2 doi: 10.1023/A:1011863414321 – ident: e_1_3_3_7_2 doi: 10.1016/S0092-8674(02)00637-2 – ident: e_1_3_3_11_2 doi: 10.1152/physiolgenomics.2000.3.2.75 – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(03)01081-X – ident: e_1_3_3_12_2 doi: 10.1074/jbc.M207913200 – ident: e_1_3_3_13_2 doi: 10.1074/jbc.M100797200 – ident: e_1_3_3_25_2 doi: 10.1016/j.ceca.2003.11.006 – reference: 17431193 - Circ Res. 2007 Apr 13;100(7):934-6 |
SSID | ssj0014329 |
Score | 2.4093857 |
Snippet | We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1063 |
SubjectTerms | 3T3-L1 Cells Adipocytes - metabolism Adipogenesis Adipose Tissue - metabolism Animals Biological and medical sciences Calcium - metabolism Capsaicin - pharmacology Fundamental and applied biological sciences. Psychology Humans Male Medical sciences Metabolic diseases Mice Mice, Inbred C57BL Mice, Inbred NOD Mice, Knockout Mice, Obese Obesity Obesity - prevention & control RNA, Small Interfering - pharmacology Stem Cells - metabolism TRPV Cation Channels - agonists TRPV Cation Channels - deficiency TRPV Cation Channels - drug effects TRPV Cation Channels - genetics TRPV Cation Channels - metabolism Vertebrates: cardiovascular system Viscera |
Title | Activation of Transient Receptor Potential Vanilloid Type-1 Channel Prevents Adipogenesis and Obesity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17347480 https://www.proquest.com/docview/19605212 https://www.proquest.com/docview/70380644 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jCiKIeHe8rHnwbeiY5tKkj8OqrJcVhV1ZfCltmq7FoR12pgj-Gf-qJ22admQW14UhDCU5tD1fzyU5F4RextLkQvIioFLQgBsig5QxGISJpE5VFimb4Hz0KTo84e9Pxelk8nsUtdRssrn-tTOv5CpchWvAV5sl-x-c9UThAvwH_sIIHIbxUjxe6L45mbX5WrVj0xutLWhW4EzPPtcbGw0EbPiaVuVyWZf5zHqeQdimFVRmOXM1nNazRV6u6jMr-squbrPrGTA2Xw_Kc-36fc1cmSC_ney3nj-W8PPSxLYFLpsufL4e9r_dxC_NEBLUtLu2376XFopbuxHSHqx0yaRewsaBZO6sxTihSnnARddqxUtdQkbwkiMZCk4qG-lj8E_JblkfhW3-whyg2pahpOCcCTZXXAkyV9mg4fpT_b8Unw9HbB2hKExImACtZKCVtLQSlV1D1yn4IbZFxut3H_wxFWc07lv12Yd2VW2B1quL72vLArq1StfwMRZdF5Vdbg7M-VnbyIn1jzZxYmT-HN9Bt53fghcdCO-iianuoRtHLjLjPjIDFnFdYI9F3GMReyxij0XcYRE7LOIei3iMRQxYxA6LD9DJ2zfHB4eBa-ERaMFkFkgwJ7M8JIoXeQGqg5pI2xqYlKY6z1JGMs40eNQyZUrEhYmL2MSygMWsULHR7CHaq-rKPEZYpwUYy0pzGuY8pyRL80iDMV-IjOg4ElMU96810a6-vW2zskz-zd4pYn7tqqvycqlV-1vcG5aqCBybiE7Ri56dCUhtexSXVqZu1gnovTZr_uIZoIkVuAt8ih51OBioS8YlV2SK5BYwki5z-hI3_uRKj_sU3Ry--Gdob3PemOdgkW-y_far-AOl5tS5 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+of+Transient+Receptor+Potential+Vanilloid+Type-1+Channel+Prevents+Adipogenesis+and+Obesity&rft.jtitle=Circulation+research&rft.au=Zhang%2C+Li+Li&rft.au=Yan+Liu%2C+Dao&rft.au=Ma%2C+Li+Qun&rft.au=Luo%2C+Zhi+Dan&rft.date=2007-04-13&rft.issn=0009-7330&rft.eissn=1524-4571&rft.volume=100&rft.issue=7&rft.spage=1063&rft.epage=1070&rft_id=info:doi/10.1161%2F01.RES.0000262653.84850.8b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_01_RES_0000262653_84850_8b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon |