Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody
Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare t...
Saved in:
Published in | Journal of pharmaceutical sciences Vol. 99; no. 3; pp. 1582 - 1600 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Elsevier Inc
01.03.2010
Wiley Subscription Services, Inc., A Wiley Company Wiley American Pharmaceutical Association |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3549 1520-6017 1520-6017 |
DOI | 10.1002/jps.21918 |
Cover
Loading…
Abstract | Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a “target mediated” elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1582–1600, 2010 |
---|---|
AbstractList | Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a “target mediated” elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1582–1600, 2010 Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors.Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. |
Author | Urva, Shweta R. Balthasar, Joseph P. Yang, Victor C. |
Author_xml | – sequence: 1 givenname: Shweta R. surname: Urva fullname: Urva, Shweta R. organization: Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260 – sequence: 2 givenname: Victor C. surname: Yang fullname: Yang, Victor C. organization: Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065 – sequence: 3 givenname: Joseph P. surname: Balthasar fullname: Balthasar, Joseph P. email: jb@buffalo.edu organization: Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22482842$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19774657$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URNPCghdAs0GIxaT-HTvs0tAWUAWRKLC0HPsOdeuxgz0B5u2ZNmmRELCyZX_n6N5zDtBeTBEQekrwlGBMj67WZUrJjKgHaEIExXWDidxDk_GP1kzw2T46KOUKY9xgIR6hfTKTkjdCTtDn5eVQfArpq7cmhKFamQKuWl-a3Bmbrn2E3tuqSw5C1aZcXSg-bZpX1Xx8i8mGFE2oTOx9vTiZ315WyQ2P0cPWhAJPduch-nR6crF4U59_OHu7mJ_XVjCpaumwZLSVYBjDVDEqDbTGNURIwVupOAdpHDPKCWudAeewo4QIy1czwixnh-jF1ned07cNlF53vlgIwURIm6IlY0Ip2ZCRfLYjN6sOnF5n35k86LsoRuD5DjBljKLNJlpf7jlKuaKK05F7ueVsTqVkaH9bYX1Thx7r0Ld1jOzRH6z1vel9in02PvxP8cMHGP5trd8tP94p6q3Clx5-3itMvtaNZFLoL-_PNDul-Hj5mumbPdmWh7GX7x6yLtZDtOB8Bttrl_xf5voFfY-6UA |
CODEN | JPMSAE |
CitedBy_id | crossref_primary_10_1007_s11095_015_1653_y crossref_primary_10_1007_s10928_020_09713_0 crossref_primary_10_1080_19420862_2018_1506648 crossref_primary_10_1007_s10928_016_9482_0 crossref_primary_10_4155_ipk_2017_0010 crossref_primary_10_3389_fimmu_2019_00674 crossref_primary_10_1002_jcph_365 crossref_primary_10_1016_j_ijpharm_2016_03_066 crossref_primary_10_1007_s10928_019_09641_8 crossref_primary_10_1080_19420862_2016_1178436 crossref_primary_10_1021_mp300214k crossref_primary_10_1007_s10928_012_9279_8 crossref_primary_10_1208_s12248_012_9395_9 crossref_primary_10_1007_s00228_018_2513_6 crossref_primary_10_1016_j_xphs_2018_09_037 crossref_primary_10_3934_mbe_2021006 crossref_primary_10_1007_s10928_023_09893_5 crossref_primary_10_1016_j_jconrel_2013_08_016 crossref_primary_10_1186_s40203_016_0018_5 crossref_primary_10_1016_j_dmpk_2023_100506 crossref_primary_10_1016_j_xphs_2017_03_038 crossref_primary_10_1208_s12248_012_9357_2 crossref_primary_10_1080_19420862_2015_1115937 crossref_primary_10_1021_mp400748t crossref_primary_10_1007_s10928_022_09824_w crossref_primary_10_1208_s12248_012_9446_2 crossref_primary_10_3390_ijms23020679 crossref_primary_10_1002_psp4_12461 crossref_primary_10_1007_s10928_021_09800_w crossref_primary_10_1016_j_jconrel_2014_12_002 crossref_primary_10_1208_s12248_013_9464_8 crossref_primary_10_1208_s12248_022_00698_x crossref_primary_10_1080_19420862_2016_1238995 crossref_primary_10_1002_cpt_2170 crossref_primary_10_1124_dmd_117_077271 crossref_primary_10_1007_s11095_023_03496_y crossref_primary_10_1007_s10928_017_9559_4 crossref_primary_10_1016_j_pharmthera_2020_107574 crossref_primary_10_4161_mabs_2_1_10781 crossref_primary_10_1080_19420862_2017_1337619 crossref_primary_10_1208_s12248_018_0264_z crossref_primary_10_1124_jpet_117_246900 crossref_primary_10_1002_jps_24368 crossref_primary_10_3389_fimmu_2014_00670 crossref_primary_10_1124_dmd_121_000460 crossref_primary_10_1186_s13550_021_00813_7 crossref_primary_10_1016_j_xphs_2018_10_065 crossref_primary_10_1002_cpt_2937 crossref_primary_10_1002_psp4_12547 crossref_primary_10_1007_s10928_014_9401_1 crossref_primary_10_3389_fphys_2017_00149 crossref_primary_10_1080_19420862_2016_1261775 crossref_primary_10_1208_s12248_011_9256_y crossref_primary_10_1002_bdd_1994 crossref_primary_10_1007_s10928_011_9232_2 crossref_primary_10_1208_s12248_014_9640_5 crossref_primary_10_3109_00498254_2011_627477 crossref_primary_10_1007_s10928_015_9444_y crossref_primary_10_3390_pharmaceutics17030372 crossref_primary_10_1007_s40262_015_0361_4 crossref_primary_10_1016_j_yrtph_2015_02_005 crossref_primary_10_1021_mp100183k crossref_primary_10_1517_17425255_2011_537257 crossref_primary_10_1007_s10928_017_9524_2 crossref_primary_10_1208_s12248_016_9909_y crossref_primary_10_1002_jcph_382 crossref_primary_10_1007_s10928_013_9332_2 crossref_primary_10_1007_s10928_013_9328_y crossref_primary_10_1155_2012_282989 crossref_primary_10_1007_s10928_013_9346_9 crossref_primary_10_1016_j_dmpk_2018_11_002 crossref_primary_10_1002_jps_23504 crossref_primary_10_1007_s11095_011_0578_3 crossref_primary_10_1080_00498254_2022_2133649 crossref_primary_10_1007_s10928_018_9608_7 crossref_primary_10_1007_s11095_022_03177_2 crossref_primary_10_1016_j_xphs_2023_10_019 crossref_primary_10_1113_JP274819 crossref_primary_10_1002_jcph_4 crossref_primary_10_1007_s00280_013_2116_y crossref_primary_10_1208_s12248_011_9253_1 crossref_primary_10_1007_s10928_014_9349_1 crossref_primary_10_3390_ph15050508 crossref_primary_10_1007_s10928_019_09639_2 crossref_primary_10_1016_j_molimm_2013_05_008 crossref_primary_10_1016_j_ejps_2023_106375 crossref_primary_10_2165_11599970_000000000_00000 |
Cites_doi | 10.1006/scbi.1998.0119 10.1242/jcs.114.8.1591 10.1177/44.1.8543780 10.1084/jem.122.3.467 10.1016/j.molonc.2007.01.003 10.1158/0008-5472.CAN-05-4010 10.1124/jpet.104.079277 10.1016/S1359-6446(05)03638-X 10.1055/s-0037-1613331 10.1021/bc970101v 10.1007/s00262-004-0597-6 10.1073/pnas.93.11.5512 10.1080/07357900500524397 10.1016/1074-7613(94)90082-5 10.1124/dmd.104.002584 10.1158/1535-7163.1559.3.12 10.1158/1535-7163.MCT-06-0072 10.1046/j.1365-2567.1996.d01-775.x 10.1007/BF01059667 10.1002/eji.1830260327 10.1093/intimm/dxg018 10.1007/s11095-005-8814-3 10.1002/jps.10364 10.1289/ehp.8805 10.1007/s10439-005-7410-3 10.1016/S0198-8859(00)00244-5 10.1242/jcs.112.14.2291 10.1038/sj.neo.7900260 10.1007/s10928-007-9065-1 10.1023/A:1014414520282 10.1101/SQB.1989.054.01.068 10.1038/nrm972 10.1097/00000658-199711000-00007 10.1172/JCI106279 10.1038/2031352a0 10.1016/S0022-2836(03)00952-5 10.4049/jimmunol.130.5.2302 10.1002/eji.1830040207 10.1111/1523-1747.ep12327258 |
ContentType | Journal Article |
Copyright | 2010 Wiley-Liss, Inc. Copyright © 2009 Wiley‐Liss, Inc. 2015 INIST-CNRS 2009 Wiley-Liss, Inc. and the American Pharmacists Association |
Copyright_xml | – notice: 2010 Wiley-Liss, Inc. – notice: Copyright © 2009 Wiley‐Liss, Inc. – notice: 2015 INIST-CNRS – notice: 2009 Wiley-Liss, Inc. and the American Pharmacists Association |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jps.21918 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1520-6017 |
EndPage | 1600 |
ExternalDocumentID | 19774657 22482842 10_1002_jps_21918 JPS21918 ark_67375_WNG_3F20BPD3_7 S002235491532743X |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA114612 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OC 1ZS 31~ 33P 36B 3O- 3WU 4.4 457 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAEVG AAHHS AAIAV AAKUH AALRI AAOIN AAONW AAXUO AAYOK AAZKR ABCQN ABEML ABFRF ABIJN ABJNI ABMAC ABOCM ABPVW ABWRO ACBWZ ACCFJ ACGFO ACGFS ACIWK ACPRK ACSCC ACXME ACXQS ADBBV ADIZJ AEEZP AEFWE AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFRAH AFTJW AFZJQ AGHFR AI. AITUG AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMRAJ ATUGU AZBYB BAFTC BDRZF BFHJK BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DU5 E3Z EBD EBS EJD EMB EMOBN ESTFP F00 F01 F04 F5P FDB FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HOLLA HVGLF HX~ HZ~ IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LP6 LP7 LSO LW6 M41 M6Q MK0 MK4 N04 N05 N9A NF~ NNB O66 O9- P2P P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SSZ SUPJJ SV3 UB1 UKR UNMZH V2E V8K VH1 W8V W99 WBFHL WH7 WIB WJL WQJ WRC WUP WWP WYUIH XG1 XPP XV2 Y6R YCJ ZE2 ZGI ZXP ~IA ~WT ADVLN AFJKZ AKRWK BSCLL OIG AANHP ACRPL ACYXJ ADNMO AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY EFKBS IQODW CGR CUY CVF ECM EIF NPM VXZ Z5M 7X8 |
ID | FETCH-LOGICAL-c5378-7d0732f7ea33028327aefad615754f7844e7ad3a8d5ccdaedd0d2115c4b913c43 |
IEDL.DBID | DR2 |
ISSN | 0022-3549 1520-6017 |
IngestDate | Fri Jul 11 08:45:42 EDT 2025 Wed Feb 19 01:56:26 EST 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Jul 01 02:09:13 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Wed Jan 22 16:27:06 EST 2025 Wed Oct 30 09:57:06 EDT 2024 Fri Feb 23 02:33:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | target mediated disposition tumor associated antigen pharmacokinetics PBPK T84.66 anti-CEA antibody mathematical model physiological model carcinoembryonic antigen (CEA) preclinical pharmacokinetics Pharmaceutical technology Tumor associated antigen Targeting Preclinical trial Monoclonal antibody Carcinoembryonic antigen Target Physiologically based pharmacokinetic model Mathematical model Pharmacokinetics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 2009 Wiley-Liss, Inc. and the American Pharmacists Association |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5378-7d0732f7ea33028327aefad615754f7844e7ad3a8d5ccdaedd0d2115c4b913c43 |
Notes | ArticleID:JPS21918 istex:353486593DA5F6A7B82BAC3C3321B7EA441807A1 ark:/67375/WNG-3F20BPD3-7 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://hdl.handle.net/2027.42/64917 |
PMID | 19774657 |
PQID | 733588761 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_733588761 pubmed_primary_19774657 pascalfrancis_primary_22482842 crossref_primary_10_1002_jps_21918 crossref_citationtrail_10_1002_jps_21918 wiley_primary_10_1002_jps_21918_JPS21918 istex_primary_ark_67375_WNG_3F20BPD3_7 elsevier_sciencedirect_doi_10_1002_jps_21918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2010 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: March 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Washington, DC – name: Hoboken, NJ – name: United States |
PublicationTitle | Journal of pharmaceutical sciences |
PublicationTitleAlternate | J. Pharm. Sci |
PublicationYear | 2010 |
Publisher | Elsevier Inc Wiley Subscription Services, Inc., A Wiley Company Wiley American Pharmaceutical Association |
Publisher_xml | – name: Elsevier Inc – name: Wiley Subscription Services, Inc., A Wiley Company – name: American Pharmaceutical Association – name: Wiley |
References | Hebbar, Tournigand, Lledo, Mabro, Andre, Louvet, Aparicio, Flesch, Varette, de Gramont (bb0010) 2006; 24 Friedrich, Lin, Stoll, Baxter, Munn, Jain (bb0235) 2002; 4 Israel, Wilsker, Hayes, Schoenfeld, Simister (bb0045) 1996; 89 Tsipi Ben-Kasusa, Selaa, Yardenb (bb0015) 2007; 1 Goldenberg, Kim, DeLand, Bennett, Primus (bb0100) 1980; 40 Simister, Mostov (bb0040) 1989; 54 Junghans, Anderson (bb0050) 1996; 93 Prall, Nollau, Neumaier, Haubeck, Drzeniek, Helmchen, Loning, Wagener (bb0085) 1996; 44 Hammarstrom (bb0080) 1999; 9 Lammerts van Bueren, Bleeker, Bogh, Houtkamp, Schuurman, van de Winkel, Parren (bb0240) 2006; 66 Ferl, Wu, DiStefano (bb0260) 2005; 33 Baxter, Zhu, Mackensen, Butler, Jain (bb0180) 1995; 55 Morell, Terry, Waldmann (bb0020) 1970; 49 Nap, Hammarstrom, Bormer, Hammarstrom, Wagener, Handt, Schreyer, Mach, Buchegger, von Kleist, Gruner, Sequin, Fuks, Holm, Lamerz (bb0095) 1992; 52 Juweid, Neumann, Paik, Perez-Bacete, Sato, van Osdol, Weinstein (bb0210) 1992; 52 Waldmann, Jones (bb0035) 1972; 9 Sharkey, Karacay, Griffiths, Behr, Blumenthal, Mattes, Hansen, Goldenberg (bb0110) 1997; 8 Halpern, Hagan, Garver, Koziol, Chen, Frincke, Bartholomew, David, Adams (bb0255) 1983; 43 Mager, Jusko (bb0065) 2001; 28 Ng, Stefanich, Anand, Fielder, Vaickus (bb0245) 2006; 23 Emond, Birnbaum, DeVito (bb0225) 2006; 114 Chung, Jang, Lee, Lee, Koh (bb0200) 1994; 35 Ferl, Kenanova, Wu, DiStefano (bb0265) 2006; 5 Antohe, Radulescu, Gafencu, Ghetie, Simionescu (bb0135) 2001; 62 Ward, Zhou, Ghetie, Ober (bb0160) 2003; 15 D'Argenio, Schumitzky (bb0220) 1997 Brambell, Hemmings, Morris (bb0030) 1964; 203 Coffey, Fox, Pippig, Palmieri, Reitz, Gonzales, Bakshi, Padilla-Eagar, Fielder (bb0070) 2005; 33 Hughes, Pinsky, Petrelli, Moffat, Patt, Hammershaimb, Goldenberg (bb0105) 1997; 226 Praetor, Ellinger, Hunziker (bb0145) 1999; 112 Tabrizi, Tseng, Roskos (bb0060) 2006; 11 Hansen, Balthasar (bb0215) 2002; 88 Wagener, Clark, Rickard, Shively (bb0125) 1983; 130 Stein, Goldenberg (bb0115) 2004; 3 Zhu, Melder, Baxter, Jain (bb0195) 1996; 56 Gold, Freedman (bb0075) 1965; 122 Garg, Balthasar (bb0130) 2007; 34 Rojas, Apodaca (bb0150) 2002; 3 Ghetie, Hubbard, Kim, Tsen, Lee, Ward (bb0055) 1996; 26 Flessner, Lofthouse, Zakariael (bb0175) 1997; 273 Blumenthal, Osorio, Hayes, Horak, Hansen, Goldenberg (bb0120) 2005; 54 Hansen, Balthasar (bb0190) 2003; 92 Covell, Barbet, Holton, Black, Parker, Weinstein (bb0170) 1986; 46 Jensenius, Williams (bb0230) 1974; 4 Metze, Bhardwaj, Amann, Eades-Perner, Neumaier, Wagener, Jantscheff, Grunert, Luger (bb0090) 1996; 106 McCarthy, Lam, Subramanian, Shakya, Wu, Newton, Simister (bb0140) 2001; 114 Raghavan, Chen, Gastinel, Bjorkman (bb0155) 1994; 1 Rojas, Taylor, Cunningham, Rutkoski, Vennarini, Jang, Graham, Geboes, Rousselle, Wagner (bb0250) 2005; 313 Waldmann, Strober (bb0025) 1969; 13 Baxter, Zhu, Mackensen, Jain (bb0165) 1994; 54 Dedrick (bb0270) 1973; 1 Shockley, Lin, Nagy, Tompkins, Yarmush, Dvorak (bb0205) 1992; 52 Zhou, Johnson, Ghetie, Ober, Ward (bb0185) 2003; 332 Coffey GP, Fox JA, Pippig S, Palmieri S, Reitz B, Gonzales M, Bakshi A, Padilla-Eagar J, Fielder PJ. 2005. Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33: 623-629. Waldmann TA, Strober W. 1969. Metabolism of immunoglobulins. Prog Allergy 13: 1-110. Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM. 2005. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54: 315-327. McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE. 2001. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114: 1591-1598. Zhu H, Melder RJ, Baxter LT, Jain RK. 1996. Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy. Cancer Res 56: 3771-3781. Brambell FW, Hemmings WA, Morris IG. 1964. A theoretical model of gamma-globulin catabolism. Nature 203: 1352-1354. Tsipi Ben-Kasusa BS, Selaa M, Yardenb Y. 2007. Cancer therapeutic antibodies come of age: Targeting minimal residual disease. Mol Oncol 1: 42-54. Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, Graham MA, Geboes K, Rousselle SD, Wagner CL. 2005. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther 313: 578-585. Jensenius JC, Williams AF. 1974. The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol 4: 91-97. Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. 2001. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62: 93-105. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. 2006. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23: 95-103. Goldenberg DM, Kim EE, DeLand FH, Bennett S, Primus FJ. 1980. Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen. Cancer Res 40: 2984-2992. Simister NE, Mostov KE. 1989. Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54: 571-580. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN. 1992. Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer Res 52: 5144-5153. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. 1995. Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55: 4611-4622. Prall F, Nollau P, Neumaier M, Haubeck HD, Drzeniek Z, Helmchen U, Loning T, Wagener C. 1996. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J Histochem Cytochem 44: 35-41. Halpern SE, Hagan PL, Garver PR, Koziol JA, Chen AW, Frincke JM, Bartholomew RM, David GS, Adams TH. 1983. Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models. Cancer Res 43: 5347-5355. Rojas R, Apodaca G. 2002. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944-955. Hansen RJ, Balthasar JP. 2002. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 88: 898-899. Ferl GZ, Wu AM, DiStefano JJ III. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33: 1640-1652. Gold P, Freedman SO. 1965. Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467-481. Flessner MF, Lofthouse J, Zakariael R. 1997. In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273: H2783-H2793. Tabrizi MA, Tseng CM, Roskos LK. 2006. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11: 81-88. Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34: 687-709. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW. 2006. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res 66: 7630-7638. Waldmann TA, Jones EA. 1972. The role of cell-surface receptors in the transport and catabolism of immunoglobulins. Ciba Found Symp 9: 5-23. Morell A, Terry WD, Waldmann TA. 1970. Metabolic properties of IgG subclasses in man. J Clin Invest 49: 673-680. Mager DE, Jusko WJ. 2001. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28: 507-532. Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. 1986. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res 46: 3969-3978. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. 1996. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26: 690-696. Hansen RJ, Balthasar JP. 2003. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92: 1206-1215. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. 1996. Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn. Immunology 89: 573-578. Stein R, Goldenberg DM. 2004. A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy. Mol Cancer Therapeut 3: 1559-1564. D'Argenio DZ, Schumitzky A. 1997. ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simualtion Resource. Dedrick RL. 1973. Animal scale-up. J Pharmacokinet Biopharm 1: 435-461. Nap M, Hammarstrom ML, Bormer O, Hammarstrom S, Wagener C, Handt S, Schreyer M, Mach JP, Buchegger F, von Kleist S, Gruner F, Sequin P, Fuks A, Holm R, Lamerz R. 1992. Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen. Cancer Res 52: 2329-2339. Hammarstrom S. 1999. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9: 67-81. Junghans RP, Anderson CL. 1996. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512-5516. Wagener C, Clark BR, Rickard KJ, Shively JE. 1983. Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay. J Immunol 130: 2302-2307. Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES. 2003. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol 332: 901-913. Ferl GZ, Kenanova V, Wu AM, DiStefano JJ III. 2006. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Therapeut 5: 1550-1558. Hughes K, Pinsky CM, Petrelli NJ, Moffat FL, Patt YZ, Hammershaimb L, Goldenberg DM. 1997. Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226: 621-631. Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. 1992. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res 52: 367-376. Baxter LT, Zhu H, Mackensen DG, Jain RK. 1994. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517-1528. Emond C, Birnbaum LS, DeVito MJ. 2006. Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD. Environ Health Perspect 114: 1394-1400. Ward ES, Zhou J, Ghetie V, Ober RJ. 2003. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15: 187-195. Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK. 2002. Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4: 449-463. Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. 1994. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303-315. Sharkey RM, Karacay H, Griffiths GL, Behr TM, Blumenthal RD, Mattes MJ, Hansen HJ, Goldenberg DM. 1997. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug Chem 8: 595-604. Metze D, Bhardwaj R, Amann U, Eades-Perner AM, Neumaier M, Wagener C, Jantscheff P, Grunert F, Luger TA. 1996. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin. J Invest Dermatol 106: 64-69. Praetor A, Ellinger I, Hunziker W. 1999. Intracellular traffic of the MHC class I-like IgG Fc receptor, 1980; 40 1997; 273 2004; 3 2003; 15 2007; 34 1996; 106 1992; 52 1997; 8 1974; 4 1997; 226 2003; 92 2006; 23 2006; 24 2006; 66 1986; 46 2002; 88 1994; 35 2007; 1 1996; 26 2005; 33 1972; 9 1965; 122 1983; 130 2006; 11 2005; 313 1995; 55 1996; 93 1997 2002; 3 2006; 5 1969; 13 2002; 4 2001; 28 2003; 332 2001; 62 1996; 56 2006; 114 1999; 9 1989; 54 1983; 43 2005; 54 1999; 112 1994; 1 1970; 49 1973; 1 1964; 203 2001; 114 1996; 89 1994; 54 1996; 44 Juweid (10.1002/jps.21918_bb0210) 1992; 52 Praetor (10.1002/jps.21918_bb0145) 1999; 112 Garg (10.1002/jps.21918_bb0130) 2007; 34 Antohe (10.1002/jps.21918_bb0135) 2001; 62 Zhou (10.1002/jps.21918_bb0185) 2003; 332 Halpern (10.1002/jps.21918_bb0255) 1983; 43 Ward (10.1002/jps.21918_bb0160) 2003; 15 Shockley (10.1002/jps.21918_bb0205) 1992; 52 Prall (10.1002/jps.21918_bb0085) 1996; 44 Emond (10.1002/jps.21918_bb0225) 2006; 114 Friedrich (10.1002/jps.21918_bb0235) 2002; 4 Rojas (10.1002/jps.21918_bb0150) 2002; 3 Baxter (10.1002/jps.21918_bb0180) 1995; 55 Nap (10.1002/jps.21918_bb0095) 1992; 52 Israel (10.1002/jps.21918_bb0045) 1996; 89 Hughes (10.1002/jps.21918_bb0105) 1997; 226 Rojas (10.1002/jps.21918_bb0250) 2005; 313 Ng (10.1002/jps.21918_bb0245) 2006; 23 Blumenthal (10.1002/jps.21918_bb0120) 2005; 54 Hansen (10.1002/jps.21918_bb0190) 2003; 92 Junghans (10.1002/jps.21918_bb0050) 1996; 93 Baxter (10.1002/jps.21918_bb0165) 1994; 54 Goldenberg (10.1002/jps.21918_bb0100) 1980; 40 Covell (10.1002/jps.21918_bb0170) 1986; 46 Gold (10.1002/jps.21918_bb0075) 1965; 122 Ferl (10.1002/jps.21918_bb0265) 2006; 5 Sharkey (10.1002/jps.21918_bb0110) 1997; 8 Coffey (10.1002/jps.21918_bb0070) 2005; 33 Ghetie (10.1002/jps.21918_bb0055) 1996; 26 Hebbar (10.1002/jps.21918_bb0010) 2006; 24 Brambell (10.1002/jps.21918_bb0030) 1964; 203 Flessner (10.1002/jps.21918_bb0175) 1997; 273 Hansen (10.1002/jps.21918_bb0215) 2002; 88 Waldmann (10.1002/jps.21918_bb0035) 1972; 9 Mager (10.1002/jps.21918_bb0065) 2001; 28 Metze (10.1002/jps.21918_bb0090) 1996; 106 D'Argenio (10.1002/jps.21918_bb0220) 1997 Tsipi Ben-Kasusa (10.1002/jps.21918_bb0015) 2007; 1 Stein (10.1002/jps.21918_bb0115) 2004; 3 Hammarstrom (10.1002/jps.21918_bb0080) 1999; 9 McCarthy (10.1002/jps.21918_bb0140) 2001; 114 Jensenius (10.1002/jps.21918_bb0230) 1974; 4 Zhu (10.1002/jps.21918_bb0195) 1996; 56 Ferl (10.1002/jps.21918_bb0260) 2005; 33 Waldmann (10.1002/jps.21918_bb0025) 1969; 13 Raghavan (10.1002/jps.21918_bb0155) 1994; 1 Chung (10.1002/jps.21918_bb0200) 1994; 35 Lammerts van Bueren (10.1002/jps.21918_bb0240) 2006; 66 Tabrizi (10.1002/jps.21918_bb0060) 2006; 11 Morell (10.1002/jps.21918_bb0020) 1970; 49 Simister (10.1002/jps.21918_bb0040) 1989; 54 Dedrick (10.1002/jps.21918_bb0270) 1973; 1 Wagener (10.1002/jps.21918_bb0125) 1983; 130 |
References_xml | – volume: 1 start-page: 303 year: 1994 end-page: 315 ident: bb0155 article-title: Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand publication-title: Immunity – volume: 40 start-page: 2984 year: 1980 end-page: 2992 ident: bb0100 article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen publication-title: Cancer Res – volume: 54 start-page: 571 year: 1989 end-page: 580 ident: bb0040 article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog publication-title: Cold Spring Harb Symp Quant Biol – volume: 203 start-page: 1352 year: 1964 end-page: 1354 ident: bb0030 article-title: A theoretical model of gamma-globulin catabolism publication-title: Nature – volume: 26 start-page: 690 year: 1996 end-page: 696 ident: bb0055 article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice publication-title: Eur J Immunol – volume: 130 start-page: 2302 year: 1983 end-page: 2307 ident: bb0125 article-title: Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay publication-title: J Immunol – volume: 52 start-page: 5144 year: 1992 end-page: 5153 ident: bb0210 article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier publication-title: Cancer Res – volume: 8 start-page: 595 year: 1997 end-page: 604 ident: bb0110 article-title: Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model publication-title: Bioconjug Chem – volume: 93 start-page: 5512 year: 1996 end-page: 5516 ident: bb0050 article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor publication-title: Proc Natl Acad Sci USA – volume: 66 start-page: 7630 year: 2006 end-page: 7638 ident: bb0240 article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action publication-title: Cancer Res – volume: 13 start-page: 1 year: 1969 end-page: 110 ident: bb0025 article-title: Metabolism of immunoglobulins publication-title: Prog Allergy – volume: 52 start-page: 367 year: 1992 end-page: 376 ident: bb0205 article-title: Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts publication-title: Cancer Res – volume: 52 start-page: 2329 year: 1992 end-page: 2339 ident: bb0095 article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen publication-title: Cancer Res – volume: 122 start-page: 467 year: 1965 end-page: 481 ident: bb0075 article-title: Specific carcinoembryonic antigens of the human digestive system publication-title: J Exp Med – volume: 54 start-page: 315 year: 2005 end-page: 327 ident: bb0120 article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft publication-title: Cancer Immunol Immunother – volume: 33 start-page: 623 year: 2005 end-page: 629 ident: bb0070 article-title: Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice publication-title: Drug Metab Dispos – volume: 15 start-page: 187 year: 2003 end-page: 195 ident: bb0160 article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans publication-title: Int Immunol – volume: 3 start-page: 1559 year: 2004 end-page: 1564 ident: bb0115 article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy publication-title: Mol Cancer Therapeut – volume: 62 start-page: 93 year: 2001 end-page: 105 ident: bb0135 article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells publication-title: Hum Immunol – volume: 55 start-page: 4611 year: 1995 end-page: 4622 ident: bb0180 article-title: Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model publication-title: Cancer Res – volume: 89 start-page: 573 year: 1996 end-page: 578 ident: bb0045 article-title: Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn publication-title: Immunology – volume: 4 start-page: 91 year: 1974 end-page: 97 ident: bb0230 article-title: The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes publication-title: Eur J Immunol – volume: 114 start-page: 1394 year: 2006 end-page: 1400 ident: bb0225 article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD publication-title: Environ Health Perspect – year: 1997 ident: bb0220 article-title: ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software – volume: 1 start-page: 435 year: 1973 end-page: 461 ident: bb0270 article-title: Animal scale-up publication-title: J Pharmacokinet Biopharm – volume: 46 start-page: 3969 year: 1986 end-page: 3978 ident: bb0170 article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice publication-title: Cancer Res – volume: 88 start-page: 898 year: 2002 end-page: 899 ident: bb0215 article-title: Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor publication-title: Thromb Haemost – volume: 5 start-page: 1550 year: 2006 end-page: 1558 ident: bb0265 article-title: A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments publication-title: Mol Cancer Therapeut – volume: 56 start-page: 3771 year: 1996 end-page: 3781 ident: bb0195 article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy publication-title: Cancer Res – volume: 3 start-page: 944 year: 2002 end-page: 955 ident: bb0150 article-title: Immunoglobulin transport across polarized epithelial cells publication-title: Nat Rev Mol Cell Biol – volume: 273 start-page: H2783 year: 1997 end-page: H2793 ident: bb0175 article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal publication-title: Am J Physiol – volume: 106 start-page: 64 year: 1996 end-page: 69 ident: bb0090 article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin publication-title: J Invest Dermatol – volume: 23 start-page: 95 year: 2006 end-page: 103 ident: bb0245 article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers publication-title: Pharm Res – volume: 313 start-page: 578 year: 2005 end-page: 585 ident: bb0250 article-title: Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys publication-title: J Pharmacol Exp Ther – volume: 28 start-page: 507 year: 2001 end-page: 532 ident: bb0065 article-title: General pharmacokinetic model for drugs exhibiting target-mediated drug disposition publication-title: J Pharmacokinet Pharmacodyn – volume: 11 start-page: 81 year: 2006 end-page: 88 ident: bb0060 article-title: Elimination mechanisms of therapeutic monoclonal antibodies publication-title: Drug Discov Today – volume: 34 start-page: 687 year: 2007 end-page: 709 ident: bb0130 article-title: Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice publication-title: J Pharmacokinet Pharmacodyn – volume: 4 start-page: 449 year: 2002 end-page: 463 ident: bb0235 article-title: Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model publication-title: Neoplasia – volume: 24 start-page: 154 year: 2006 end-page: 159 ident: bb0010 article-title: Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study) publication-title: Cancer Invest – volume: 9 start-page: 67 year: 1999 end-page: 81 ident: bb0080 article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues publication-title: Semin Cancer Biol – volume: 49 start-page: 673 year: 1970 end-page: 680 ident: bb0020 article-title: Metabolic properties of IgG subclasses in man publication-title: J Clin Invest – volume: 43 start-page: 5347 year: 1983 end-page: 5355 ident: bb0255 article-title: Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models publication-title: Cancer Res – volume: 114 start-page: 1591 year: 2001 end-page: 1598 ident: bb0140 article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn publication-title: J Cell Sci – volume: 44 start-page: 35 year: 1996 end-page: 41 ident: bb0085 article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues publication-title: J Histochem Cytochem – volume: 33 start-page: 1640 year: 2005 end-page: 1652 ident: bb0260 article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn) publication-title: Ann Biomed Eng – volume: 9 start-page: 5 year: 1972 end-page: 23 ident: bb0035 article-title: The role of cell-surface receptors in the transport and catabolism of immunoglobulins publication-title: Ciba Found Symp – volume: 112 start-page: 2291 year: 1999 end-page: 2299 ident: bb0145 article-title: Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells publication-title: J Cell Sci – volume: 54 start-page: 1517 year: 1994 end-page: 1528 ident: bb0165 article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice publication-title: Cancer Res – volume: 1 start-page: 42 year: 2007 end-page: 54 ident: bb0015 article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease publication-title: Mol Oncol – volume: 92 start-page: 1206 year: 2003 end-page: 1215 ident: bb0190 article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia publication-title: J Pharm Sci – volume: 35 start-page: 1499 year: 1994 end-page: 1505 ident: bb0200 article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography publication-title: J Nucl Med – volume: 226 start-page: 621 year: 1997 end-page: 631 ident: bb0105 article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer publication-title: Ann Surg – volume: 332 start-page: 901 year: 2003 end-page: 913 ident: bb0185 article-title: Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G publication-title: J Mol Biol – reference: Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. 2006. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23: 95-103. – reference: Morell A, Terry WD, Waldmann TA. 1970. Metabolic properties of IgG subclasses in man. J Clin Invest 49: 673-680. – reference: Hansen RJ, Balthasar JP. 2002. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 88: 898-899. – reference: Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. 1996. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26: 690-696. – reference: Mager DE, Jusko WJ. 2001. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28: 507-532. – reference: Zhu H, Melder RJ, Baxter LT, Jain RK. 1996. Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy. Cancer Res 56: 3771-3781. – reference: Stein R, Goldenberg DM. 2004. A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy. Mol Cancer Therapeut 3: 1559-1564. – reference: Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES. 2003. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol 332: 901-913. – reference: Sharkey RM, Karacay H, Griffiths GL, Behr TM, Blumenthal RD, Mattes MJ, Hansen HJ, Goldenberg DM. 1997. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug Chem 8: 595-604. – reference: Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW. 2006. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res 66: 7630-7638. – reference: Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN. 1992. Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer Res 52: 5144-5153. – reference: Simister NE, Mostov KE. 1989. Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54: 571-580. – reference: Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. 2001. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62: 93-105. – reference: Praetor A, Ellinger I, Hunziker W. 1999. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 112: 2291-2299. – reference: Tabrizi MA, Tseng CM, Roskos LK. 2006. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11: 81-88. – reference: Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. 1992. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res 52: 367-376. – reference: Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34: 687-709. – reference: Ward ES, Zhou J, Ghetie V, Ober RJ. 2003. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15: 187-195. – reference: Jensenius JC, Williams AF. 1974. The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol 4: 91-97. – reference: Coffey GP, Fox JA, Pippig S, Palmieri S, Reitz B, Gonzales M, Bakshi A, Padilla-Eagar J, Fielder PJ. 2005. Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33: 623-629. – reference: Metze D, Bhardwaj R, Amann U, Eades-Perner AM, Neumaier M, Wagener C, Jantscheff P, Grunert F, Luger TA. 1996. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin. J Invest Dermatol 106: 64-69. – reference: Waldmann TA, Jones EA. 1972. The role of cell-surface receptors in the transport and catabolism of immunoglobulins. Ciba Found Symp 9: 5-23. – reference: Hansen RJ, Balthasar JP. 2003. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92: 1206-1215. – reference: Junghans RP, Anderson CL. 1996. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512-5516. – reference: Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. 1995. Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55: 4611-4622. – reference: Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK. 2002. Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4: 449-463. – reference: Brambell FW, Hemmings WA, Morris IG. 1964. A theoretical model of gamma-globulin catabolism. Nature 203: 1352-1354. – reference: Goldenberg DM, Kim EE, DeLand FH, Bennett S, Primus FJ. 1980. Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen. Cancer Res 40: 2984-2992. – reference: Hughes K, Pinsky CM, Petrelli NJ, Moffat FL, Patt YZ, Hammershaimb L, Goldenberg DM. 1997. Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226: 621-631. – reference: Chung JK, Jang JJ, Lee DS, Lee MC, Koh CS. 1994. Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography. J Nucl Med 35: 1499-1505. – reference: Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, Graham MA, Geboes K, Rousselle SD, Wagner CL. 2005. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther 313: 578-585. – reference: Gold P, Freedman SO. 1965. Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467-481. – reference: Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. 1986. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res 46: 3969-3978. – reference: Rojas R, Apodaca G. 2002. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944-955. – reference: Halpern SE, Hagan PL, Garver PR, Koziol JA, Chen AW, Frincke JM, Bartholomew RM, David GS, Adams TH. 1983. Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models. Cancer Res 43: 5347-5355. – reference: D'Argenio DZ, Schumitzky A. 1997. ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simualtion Resource. – reference: Emond C, Birnbaum LS, DeVito MJ. 2006. Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD. Environ Health Perspect 114: 1394-1400. – reference: Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. 1996. Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn. Immunology 89: 573-578. – reference: Flessner MF, Lofthouse J, Zakariael R. 1997. In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273: H2783-H2793. – reference: Wagener C, Clark BR, Rickard KJ, Shively JE. 1983. Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay. J Immunol 130: 2302-2307. – reference: McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE. 2001. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114: 1591-1598. – reference: Ferl GZ, Kenanova V, Wu AM, DiStefano JJ III. 2006. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Therapeut 5: 1550-1558. – reference: Dedrick RL. 1973. Animal scale-up. J Pharmacokinet Biopharm 1: 435-461. – reference: Hammarstrom S. 1999. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9: 67-81. – reference: Tsipi Ben-Kasusa BS, Selaa M, Yardenb Y. 2007. Cancer therapeutic antibodies come of age: Targeting minimal residual disease. Mol Oncol 1: 42-54. – reference: Nap M, Hammarstrom ML, Bormer O, Hammarstrom S, Wagener C, Handt S, Schreyer M, Mach JP, Buchegger F, von Kleist S, Gruner F, Sequin P, Fuks A, Holm R, Lamerz R. 1992. Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen. Cancer Res 52: 2329-2339. – reference: Prall F, Nollau P, Neumaier M, Haubeck HD, Drzeniek Z, Helmchen U, Loning T, Wagener C. 1996. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J Histochem Cytochem 44: 35-41. – reference: Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. 1994. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303-315. – reference: Ferl GZ, Wu AM, DiStefano JJ III. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33: 1640-1652. – reference: Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM. 2005. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54: 315-327. – reference: Hebbar M, Tournigand C, Lledo G, Mabro M, Andre T, Louvet C, Aparicio T, Flesch M, Varette C, de Gramont A. 2006. Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study). Cancer Invest 24: 154-159. – reference: Waldmann TA, Strober W. 1969. Metabolism of immunoglobulins. Prog Allergy 13: 1-110. – reference: Baxter LT, Zhu H, Mackensen DG, Jain RK. 1994. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517-1528. – volume: 1 start-page: 303 year: 1994 end-page: 315 article-title: Investigation of the interaction between the class I MHC‐related Fc receptor and its immunoglobulin G ligand publication-title: Immunity – volume: 4 start-page: 449 year: 2002 end-page: 463 article-title: Antibody‐directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model publication-title: Neoplasia – volume: 62 start-page: 93 year: 2001 end-page: 105 article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells publication-title: Hum Immunol – volume: 46 start-page: 3969 year: 1986 end-page: 3978 article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice publication-title: Cancer Res – volume: 4 start-page: 91 year: 1974 end-page: 97 article-title: The binding of anti‐immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes publication-title: Eur J Immunol – volume: 13 start-page: 1 year: 1969 end-page: 110 article-title: Metabolism of immunoglobulins publication-title: Prog Allergy – volume: 203 start-page: 1352 year: 1964 end-page: 1354 article-title: A theoretical model of gamma‐globulin catabolism publication-title: Nature – volume: 5 start-page: 1550 year: 2006 end-page: 1558 article-title: A two‐tiered physiologically based model for dually labeled single‐chain Fv‐Fc antibody fragments publication-title: Mol Cancer Therapeut – volume: 89 start-page: 573 year: 1996 end-page: 578 article-title: Increased clearance of IgG in mice that lack beta 2‐microglobulin: Possible protective role of FcRn publication-title: Immunology – volume: 54 start-page: 1517 year: 1994 end-page: 1528 article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice publication-title: Cancer Res – volume: 9 start-page: 67 year: 1999 end-page: 81 article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues publication-title: Semin Cancer Biol – volume: 3 start-page: 1559 year: 2004 end-page: 1564 article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy publication-title: Mol Cancer Therapeut – volume: 28 start-page: 507 year: 2001 end-page: 532 article-title: General pharmacokinetic model for drugs exhibiting target‐mediated drug disposition publication-title: J Pharmacokinet Pharmacodyn – volume: 9 start-page: 5 year: 1972 end-page: 23 article-title: The role of cell‐surface receptors in the transport and catabolism of immunoglobulins publication-title: Ciba Found Symp – year: 1997 – volume: 23 start-page: 95 year: 2006 end-page: 103 article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti‐CD4 monoclonal antibody (TRX1) in healthy human volunteers publication-title: Pharm Res – volume: 52 start-page: 2329 year: 1992 end-page: 2339 article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen publication-title: Cancer Res – volume: 15 start-page: 187 year: 2003 end-page: 195 article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans publication-title: Int Immunol – volume: 332 start-page: 901 year: 2003 end-page: 913 article-title: Generation of mutated variants of the human form of the MHC class I‐related receptor, FcRn, with increased affinity for mouse immunoglobulin G publication-title: J Mol Biol – volume: 54 start-page: 571 year: 1989 end-page: 580 article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog publication-title: Cold Spring Harb Symp Quant Biol – volume: 40 start-page: 2984 year: 1980 end-page: 2992 article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen publication-title: Cancer Res – volume: 114 start-page: 1591 year: 2001 end-page: 1598 article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn publication-title: J Cell Sci – volume: 52 start-page: 367 year: 1992 end-page: 376 article-title: Spatial distribution of tumor‐specific monoclonal antibodies in human melanoma xenografts publication-title: Cancer Res – volume: 1 start-page: 42 year: 2007 end-page: 54 article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease publication-title: Mol Oncol – volume: 3 start-page: 944 year: 2002 end-page: 955 article-title: Immunoglobulin transport across polarized epithelial cells publication-title: Nat Rev Mol Cell Biol – volume: 49 start-page: 673 year: 1970 end-page: 680 article-title: Metabolic properties of IgG subclasses in man publication-title: J Clin Invest – volume: 226 start-page: 621 year: 1997 end-page: 631 article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer publication-title: Ann Surg – volume: 1 start-page: 435 year: 1973 end-page: 461 article-title: Animal scale‐up publication-title: J Pharmacokinet Biopharm – volume: 24 start-page: 154 year: 2006 end-page: 159 article-title: Phase II trial alternating FOLFOX‐6 and FOLFIRI regimens in second‐line therapy of patients with metastatic colorectal cancer (FIREFOX study) publication-title: Cancer Invest – volume: 34 start-page: 687 year: 2007 end-page: 709 article-title: Physiologically‐based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild‐type and FcRn‐knockout mice publication-title: J Pharmacokinet Pharmacodyn – volume: 122 start-page: 467 year: 1965 end-page: 481 article-title: Specific carcinoembryonic antigens of the human digestive system publication-title: J Exp Med – volume: 54 start-page: 315 year: 2005 end-page: 327 article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft publication-title: Cancer Immunol Immunother – volume: 66 start-page: 7630 year: 2006 end-page: 7638 article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action publication-title: Cancer Res – volume: 93 start-page: 5512 year: 1996 end-page: 5516 article-title: The protection receptor for IgG catabolism is the beta2‐microglobulin‐containing neonatal intestinal transport receptor publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 595 year: 1997 end-page: 604 article-title: Development of a streptavidin‐anti‐carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model publication-title: Bioconjug Chem – volume: 11 start-page: 81 year: 2006 end-page: 88 article-title: Elimination mechanisms of therapeutic monoclonal antibodies publication-title: Drug Discov Today – volume: 56 start-page: 3771 year: 1996 end-page: 3781 article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy publication-title: Cancer Res – volume: 92 start-page: 1206 year: 2003 end-page: 1215 article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia publication-title: J Pharm Sci – volume: 114 start-page: 1394 year: 2006 end-page: 1400 article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD publication-title: Environ Health Perspect – volume: 130 start-page: 2302 year: 1983 end-page: 2307 article-title: Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin‐labeled antibodies and avidin as precipitating agent in a solution phase immunoassay publication-title: J Immunol – volume: 88 start-page: 898 year: 2002 end-page: 899 article-title: Intravenous immunoglobulin mediates an increase in anti‐platelet antibody clearance via the FcRn receptor publication-title: Thromb Haemost – volume: 33 start-page: 623 year: 2005 end-page: 629 article-title: Tissue distribution and receptor‐mediated clearance of anti‐CD11a antibody in mice publication-title: Drug Metab Dispos – volume: 273 start-page: H2783 year: 1997 end-page: H2793 article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal publication-title: Am J Physiol – volume: 35 start-page: 1499 year: 1994 end-page: 1505 article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography publication-title: J Nucl Med – volume: 44 start-page: 35 year: 1996 end-page: 41 article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues publication-title: J Histochem Cytochem – volume: 43 start-page: 5347 year: 1983 end-page: 5355 article-title: Stability, characterization, and kinetics of 111In‐labeled monoclonal antitumor antibodies in normal animals and nude mouse‐human tumor models publication-title: Cancer Res – volume: 106 start-page: 64 year: 1996 end-page: 69 article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin publication-title: J Invest Dermatol – volume: 313 start-page: 578 year: 2005 end-page: 585 article-title: Formation, distribution, and elimination of infliximab and anti‐infliximab immune complexes in cynomolgus monkeys publication-title: J Pharmacol Exp Ther – volume: 55 start-page: 4611 year: 1995 end-page: 4622 article-title: Biodistribution of monoclonal antibodies: Scale‐up from mouse to human using a physiologically based pharmacokinetic model publication-title: Cancer Res – volume: 26 start-page: 690 year: 1996 end-page: 696 article-title: Abnormally short serum half‐lives of IgG in beta 2‐microglobulin‐deficient mice publication-title: Eur J Immunol – volume: 112 start-page: 2291 year: 1999 end-page: 2299 article-title: Intracellular traffic of the MHC class I‐like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells publication-title: J Cell Sci – volume: 52 start-page: 5144 year: 1992 end-page: 5153 article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier publication-title: Cancer Res – volume: 33 start-page: 1640 year: 2005 end-page: 1652 article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn) publication-title: Ann Biomed Eng – volume: 13 start-page: 1 year: 1969 ident: 10.1002/jps.21918_bb0025 article-title: Metabolism of immunoglobulins publication-title: Prog Allergy – volume: 9 start-page: 67 year: 1999 ident: 10.1002/jps.21918_bb0080 article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues publication-title: Semin Cancer Biol doi: 10.1006/scbi.1998.0119 – volume: 114 start-page: 1591 year: 2001 ident: 10.1002/jps.21918_bb0140 article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn publication-title: J Cell Sci doi: 10.1242/jcs.114.8.1591 – volume: 44 start-page: 35 year: 1996 ident: 10.1002/jps.21918_bb0085 article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues publication-title: J Histochem Cytochem doi: 10.1177/44.1.8543780 – volume: 122 start-page: 467 year: 1965 ident: 10.1002/jps.21918_bb0075 article-title: Specific carcinoembryonic antigens of the human digestive system publication-title: J Exp Med doi: 10.1084/jem.122.3.467 – year: 1997 ident: 10.1002/jps.21918_bb0220 – volume: 1 start-page: 42 year: 2007 ident: 10.1002/jps.21918_bb0015 article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease publication-title: Mol Oncol doi: 10.1016/j.molonc.2007.01.003 – volume: 66 start-page: 7630 year: 2006 ident: 10.1002/jps.21918_bb0240 article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4010 – volume: 313 start-page: 578 year: 2005 ident: 10.1002/jps.21918_bb0250 article-title: Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.104.079277 – volume: 9 start-page: 5 year: 1972 ident: 10.1002/jps.21918_bb0035 article-title: The role of cell-surface receptors in the transport and catabolism of immunoglobulins publication-title: Ciba Found Symp – volume: 11 start-page: 81 year: 2006 ident: 10.1002/jps.21918_bb0060 article-title: Elimination mechanisms of therapeutic monoclonal antibodies publication-title: Drug Discov Today doi: 10.1016/S1359-6446(05)03638-X – volume: 88 start-page: 898 year: 2002 ident: 10.1002/jps.21918_bb0215 article-title: Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor publication-title: Thromb Haemost doi: 10.1055/s-0037-1613331 – volume: 8 start-page: 595 year: 1997 ident: 10.1002/jps.21918_bb0110 article-title: Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model publication-title: Bioconjug Chem doi: 10.1021/bc970101v – volume: 54 start-page: 315 year: 2005 ident: 10.1002/jps.21918_bb0120 article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-004-0597-6 – volume: 93 start-page: 5512 year: 1996 ident: 10.1002/jps.21918_bb0050 article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.11.5512 – volume: 24 start-page: 154 year: 2006 ident: 10.1002/jps.21918_bb0010 article-title: Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study) publication-title: Cancer Invest doi: 10.1080/07357900500524397 – volume: 1 start-page: 303 year: 1994 ident: 10.1002/jps.21918_bb0155 article-title: Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand publication-title: Immunity doi: 10.1016/1074-7613(94)90082-5 – volume: 33 start-page: 623 year: 2005 ident: 10.1002/jps.21918_bb0070 article-title: Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice publication-title: Drug Metab Dispos doi: 10.1124/dmd.104.002584 – volume: 3 start-page: 1559 year: 2004 ident: 10.1002/jps.21918_bb0115 article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy publication-title: Mol Cancer Therapeut doi: 10.1158/1535-7163.1559.3.12 – volume: 5 start-page: 1550 year: 2006 ident: 10.1002/jps.21918_bb0265 article-title: A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments publication-title: Mol Cancer Therapeut doi: 10.1158/1535-7163.MCT-06-0072 – volume: 52 start-page: 2329 year: 1992 ident: 10.1002/jps.21918_bb0095 article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen publication-title: Cancer Res – volume: 89 start-page: 573 year: 1996 ident: 10.1002/jps.21918_bb0045 article-title: Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn publication-title: Immunology doi: 10.1046/j.1365-2567.1996.d01-775.x – volume: 55 start-page: 4611 year: 1995 ident: 10.1002/jps.21918_bb0180 article-title: Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model publication-title: Cancer Res – volume: 54 start-page: 1517 year: 1994 ident: 10.1002/jps.21918_bb0165 article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice publication-title: Cancer Res – volume: 1 start-page: 435 year: 1973 ident: 10.1002/jps.21918_bb0270 article-title: Animal scale-up publication-title: J Pharmacokinet Biopharm doi: 10.1007/BF01059667 – volume: 26 start-page: 690 year: 1996 ident: 10.1002/jps.21918_bb0055 article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice publication-title: Eur J Immunol doi: 10.1002/eji.1830260327 – volume: 15 start-page: 187 year: 2003 ident: 10.1002/jps.21918_bb0160 article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans publication-title: Int Immunol doi: 10.1093/intimm/dxg018 – volume: 23 start-page: 95 year: 2006 ident: 10.1002/jps.21918_bb0245 article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers publication-title: Pharm Res doi: 10.1007/s11095-005-8814-3 – volume: 40 start-page: 2984 year: 1980 ident: 10.1002/jps.21918_bb0100 article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen publication-title: Cancer Res – volume: 56 start-page: 3771 year: 1996 ident: 10.1002/jps.21918_bb0195 article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy publication-title: Cancer Res – volume: 92 start-page: 1206 year: 2003 ident: 10.1002/jps.21918_bb0190 article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia publication-title: J Pharm Sci doi: 10.1002/jps.10364 – volume: 114 start-page: 1394 year: 2006 ident: 10.1002/jps.21918_bb0225 article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD publication-title: Environ Health Perspect doi: 10.1289/ehp.8805 – volume: 52 start-page: 5144 year: 1992 ident: 10.1002/jps.21918_bb0210 article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier publication-title: Cancer Res – volume: 273 start-page: H2783 year: 1997 ident: 10.1002/jps.21918_bb0175 article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal publication-title: Am J Physiol – volume: 33 start-page: 1640 year: 2005 ident: 10.1002/jps.21918_bb0260 article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn) publication-title: Ann Biomed Eng doi: 10.1007/s10439-005-7410-3 – volume: 46 start-page: 3969 year: 1986 ident: 10.1002/jps.21918_bb0170 article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice publication-title: Cancer Res – volume: 62 start-page: 93 year: 2001 ident: 10.1002/jps.21918_bb0135 article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells publication-title: Hum Immunol doi: 10.1016/S0198-8859(00)00244-5 – volume: 112 start-page: 2291 year: 1999 ident: 10.1002/jps.21918_bb0145 article-title: Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells publication-title: J Cell Sci doi: 10.1242/jcs.112.14.2291 – volume: 4 start-page: 449 year: 2002 ident: 10.1002/jps.21918_bb0235 article-title: Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model publication-title: Neoplasia doi: 10.1038/sj.neo.7900260 – volume: 34 start-page: 687 year: 2007 ident: 10.1002/jps.21918_bb0130 article-title: Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-007-9065-1 – volume: 28 start-page: 507 year: 2001 ident: 10.1002/jps.21918_bb0065 article-title: General pharmacokinetic model for drugs exhibiting target-mediated drug disposition publication-title: J Pharmacokinet Pharmacodyn doi: 10.1023/A:1014414520282 – volume: 54 start-page: 571 year: 1989 ident: 10.1002/jps.21918_bb0040 article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1989.054.01.068 – volume: 3 start-page: 944 year: 2002 ident: 10.1002/jps.21918_bb0150 article-title: Immunoglobulin transport across polarized epithelial cells publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm972 – volume: 226 start-page: 621 year: 1997 ident: 10.1002/jps.21918_bb0105 article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer publication-title: Ann Surg doi: 10.1097/00000658-199711000-00007 – volume: 52 start-page: 367 year: 1992 ident: 10.1002/jps.21918_bb0205 article-title: Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts publication-title: Cancer Res – volume: 49 start-page: 673 year: 1970 ident: 10.1002/jps.21918_bb0020 article-title: Metabolic properties of IgG subclasses in man publication-title: J Clin Invest doi: 10.1172/JCI106279 – volume: 203 start-page: 1352 year: 1964 ident: 10.1002/jps.21918_bb0030 article-title: A theoretical model of gamma-globulin catabolism publication-title: Nature doi: 10.1038/2031352a0 – volume: 35 start-page: 1499 year: 1994 ident: 10.1002/jps.21918_bb0200 article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography publication-title: J Nucl Med – volume: 332 start-page: 901 year: 2003 ident: 10.1002/jps.21918_bb0185 article-title: Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G publication-title: J Mol Biol doi: 10.1016/S0022-2836(03)00952-5 – volume: 130 start-page: 2302 year: 1983 ident: 10.1002/jps.21918_bb0125 publication-title: J Immunol doi: 10.4049/jimmunol.130.5.2302 – volume: 4 start-page: 91 year: 1974 ident: 10.1002/jps.21918_bb0230 article-title: The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes publication-title: Eur J Immunol doi: 10.1002/eji.1830040207 – volume: 43 start-page: 5347 year: 1983 ident: 10.1002/jps.21918_bb0255 article-title: Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models publication-title: Cancer Res – volume: 106 start-page: 64 year: 1996 ident: 10.1002/jps.21918_bb0090 article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin publication-title: J Invest Dermatol doi: 10.1111/1523-1747.ep12327258 |
SSID | ssj0006055 |
Score | 2.2765353 |
Snippet | Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1582 |
SubjectTerms | Animals Antibodies, Monoclonal - pharmacokinetics Biological and medical sciences carcinoembryonic antigen (CEA) Carcinoembryonic Antigen - immunology Cell Line, Tumor General pharmacology Histocompatibility Antigens Class I - metabolism Male mathematical model Medical sciences Mice Mice, Nude Models, Statistical Neoplasms - metabolism PBPK Pharmaceutical technology. Pharmaceutical industry pharmacokinetics Pharmacology. Drug treatments physiological model preclinical pharmacokinetics Receptors, Fc - metabolism T84.66 anti-CEA antibody target mediated disposition Transplantation, Heterologous tumor associated antigen |
Title | Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody |
URI | https://dx.doi.org/10.1002/jps.21918 https://api.istex.fr/ark:/67375/WNG-3F20BPD3-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjps.21918 https://www.ncbi.nlm.nih.gov/pubmed/19774657 https://www.proquest.com/docview/733588761 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhufTSNn1umwZRisnB69h6rJz25KZxQ6DBtA71oSC0khZSm7XJ2hD31J-Q35hf0pG0D1IcKL0s2mW06DEjfbM7-gahdwnLdJJaEROiRcwo4TGgIuYuKdeCk4y4s8NfzpPTC3Y24ZMt9KE6CxP4IeoPbs4y_HrtDFylxWFDGvpzUXTA3HruoK-L1XKA6GtDHQUwnddM4eAEVaxCXXJY17xvL9pxI3ztwiRVASOVhRQXmzDoXUjr96ThI_Sj6k0IRZl2Vsu0o3_9RfT4n919jB6WWBUPgnLtoi2bP0GtUSC7XrfxuDm7VbRxC48aGuz1UzTxwaXV2jpbY7dhGrwohabQIqiIfSoeDNAZj_uskyTv8QCe5XM9cz4Chom_vP19c3wy8MV0btbP0MXwZHx8Gpd5HGLNKTipwsA6QjJhFaU-NZJQNlMGsJTgLBN9xqxQhqq-4VobZY3pGvBLuWbpUY9qRp-j7Xye25cIJyqlsCBraplgjNKjrulrlZoM7pRNbIQOqhmVuiQ5d7k2ZjLQMxMJ4yj9OEbobS26CMwem4TalVrIEpIEqCFhhjaJt7zq1C9UV1MXOSe4_H7-WdIh6X4cfaJSRGj_jm7VFQBRgQ_MSIRwpWwSDN79xVG5na8KKSjlsDMkvQi9CErYNN-B-YTD2w-8Kt3fL3k2-uYLr_5d9DV6EEInXADeHtpeXq3sG0Bky3Tfm94fv5wx8g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKe4AL78fyKBZCUQ_ZNPFjvUVcQtsQShtFkKq5IMtreyVItImaRCKc-An8Rn4JY-9LRamEuKy8q7G1tmfsb3bH3yD0OmKpjhIrQkK0CBklPARUxNwl4VpwkhJ3dvhsEPXP2cmYj7fQ2_IsTM4PUX1wc5bh12tn4O6D9H7NGvptvmiBvXXiG2jHZfR2-QuOPtXkUQDUecUVDm5QySvUJvtV1et2ox03xt9doKRawFileZKLTSj0Kqj1u1LvDvpS9icPRpm0VsukpX_8RfX4vx2-i24XcBV3c_26h7Zsdh81hjnf9bqJR_XxrUUTN_CwZsJeP0BjH19aLq_TNXZ7psHzQmgCrwQVsc_GgwE941HMWlH0BnfhWTbTU-cmYJj7r79__jo87vpiMjPrh-i8dzw67IdFKodQcwp-qjCwlJBUWEWpz44klE2VATglOEtFzJgVylAVG661UdaYtgHXlGuWHHSoZvQR2s5mmX2CcKQSCmuyppYJxig9aJtYq8SkcKdsZAO0V06p1AXPuUu3MZU5QzORMI7Sj2OAXlWi85zcY5NQs9QLWaCSHG1ImKJN4g2vO1WD6nLigucElxeD95L2SPvd8IhKEaDdK8pVVQBQBW4wIwHCpbZJsHn3I0dldrZaSEEph80h6gToca6F9es7PB9xaH3P69L1_ZInw8--8PTfRV-im_3R2ak8_TD4-AzdyiMpXDzec7S9vFzZFwDQlsmut8M_swA2DA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiFeuF_CZVgIVXtoutaXOIOnsq2MAVUEndYHJMuxHQlapdXaSpQnfgK_kV_CsXPTUCchXiInOo58Ocf-TnL8HYReRizTUWpFSIgWIaOEh4CKmLukXAtOMuLODn8cRidn7HTMx1vodXUWpuCHqD-4Ocvw67Uz8LnJ9hvS0G_zRQfMrRdfQzssAmNxiOhTwx0FOJ3XVOHgBVW0Ql2yX1e9ajPacUP83cVJqgUMVVbkuNgEQi9jWr8pDW6hL1V3iliUSWe1TDv6x19Mj__Z39voZglWcb_Qrjtoy-Z3USsp2K7XbTxqDm8t2riFk4YHe30PjX10abW4TtfY7ZgGz0uhCbQIKmKfiwcDdsajmHWi6BXuw7N8pqfOScAw819___x1eNz3xXRm1vfR2eB4dHgSlokcQs0peKnCwEJCMmEVpT43klA2UwbAlOAsEzFjVihDVWy41kZZY7oGHFOuWXrQo5rRB2g7n-X2EcKRSimsyJpaJhij9KBrYq1Sk8GdspEN0F41o1KXLOcu2cZUFvzMRMI4Sj-OAXpRi84Lao9NQu1KLWSJSQqsIWGGNom3vOrUL1QXExc6J7g8H76VdEC6b5IjKkWAdi_pVl0BIBU4wYwECFfKJsHi3W8cldvZaiEFpRy2hqgXoIeFEjbNd2g-4vD2Pa9KV_dLniaffeHxv4s-R9eTo4H88G74_gm6UYRRuGC8p2h7ebGyzwCdLdNdb4V_AA6hNMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiologically+based+pharmacokinetic+model+for+T84.66%3A+a+monoclonal+anti-CEA+antibody&rft.jtitle=Journal+of+pharmaceutical+sciences&rft.au=Urva%2C+Shweta+R&rft.au=Yang%2C+Victor+C&rft.au=Balthasar%2C+Joseph+P&rft.date=2010-03-01&rft.eissn=1520-6017&rft.volume=99&rft.issue=3&rft.spage=1582&rft_id=info:doi/10.1002%2Fjps.21918&rft_id=info%3Apmid%2F19774657&rft.externalDocID=19774657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3549&client=summon |