Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody

Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare t...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical sciences Vol. 99; no. 3; pp. 1582 - 1600
Main Authors Urva, Shweta R., Yang, Victor C., Balthasar, Joseph P.
Format Journal Article
LanguageEnglish
Published Hoboken Elsevier Inc 01.03.2010
Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Pharmaceutical Association
Subjects
Online AccessGet full text
ISSN0022-3549
1520-6017
1520-6017
DOI10.1002/jps.21918

Cover

Loading…
Abstract Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a “target mediated” elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1582–1600, 2010
AbstractList Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors.
Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a “target mediated” elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 1582–1600, 2010
Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors.Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor associated carcinoembryonic antigen (CEA), in control and CEA expressing LS174T xenograft bearing mice, and (b) to develop a physiologically based pharmacokinetic (PBPK) model capable of integrating the influence of CEA and the IgG salvage receptor, FcRn, on T84.66 disposition. T84.66 pharmacokinetics were studied following i.v. administration (1, 10, 25 mg/kg) in control and xenograft bearing mice. In control mice, no significant differences in clearance were observed across the dose range studied. In mice bearing xenograft tumors, clearance was increased by four- to sevenfold, suggesting the presence of a "target mediated" elimination pathway. T84.66 plasma disposition was characterized with a PBPK model, and the model was applied to successfully predict antibody concentrations in tumor tissue. The PBPK model will be used to assist in the development of antibody-based targeting strategies for CEA-positive tumors.
Author Urva, Shweta R.
Balthasar, Joseph P.
Yang, Victor C.
Author_xml – sequence: 1
  givenname: Shweta R.
  surname: Urva
  fullname: Urva, Shweta R.
  organization: Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260
– sequence: 2
  givenname: Victor C.
  surname: Yang
  fullname: Yang, Victor C.
  organization: Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065
– sequence: 3
  givenname: Joseph P.
  surname: Balthasar
  fullname: Balthasar, Joseph P.
  email: jb@buffalo.edu
  organization: Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22482842$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19774657$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCghdAs0GIxaT-HTvs0tAWUAWRKLC0HPsOdeuxgz0B5u2ZNmmRELCyZX_n6N5zDtBeTBEQekrwlGBMj67WZUrJjKgHaEIExXWDidxDk_GP1kzw2T46KOUKY9xgIR6hfTKTkjdCTtDn5eVQfArpq7cmhKFamQKuWl-a3Bmbrn2E3tuqSw5C1aZcXSg-bZpX1Xx8i8mGFE2oTOx9vTiZ315WyQ2P0cPWhAJPduch-nR6crF4U59_OHu7mJ_XVjCpaumwZLSVYBjDVDEqDbTGNURIwVupOAdpHDPKCWudAeewo4QIy1czwixnh-jF1ned07cNlF53vlgIwURIm6IlY0Ip2ZCRfLYjN6sOnF5n35k86LsoRuD5DjBljKLNJlpf7jlKuaKK05F7ueVsTqVkaH9bYX1Thx7r0Ld1jOzRH6z1vel9in02PvxP8cMHGP5trd8tP94p6q3Clx5-3itMvtaNZFLoL-_PNDul-Hj5mumbPdmWh7GX7x6yLtZDtOB8Bttrl_xf5voFfY-6UA
CODEN JPMSAE
CitedBy_id crossref_primary_10_1007_s11095_015_1653_y
crossref_primary_10_1007_s10928_020_09713_0
crossref_primary_10_1080_19420862_2018_1506648
crossref_primary_10_1007_s10928_016_9482_0
crossref_primary_10_4155_ipk_2017_0010
crossref_primary_10_3389_fimmu_2019_00674
crossref_primary_10_1002_jcph_365
crossref_primary_10_1016_j_ijpharm_2016_03_066
crossref_primary_10_1007_s10928_019_09641_8
crossref_primary_10_1080_19420862_2016_1178436
crossref_primary_10_1021_mp300214k
crossref_primary_10_1007_s10928_012_9279_8
crossref_primary_10_1208_s12248_012_9395_9
crossref_primary_10_1007_s00228_018_2513_6
crossref_primary_10_1016_j_xphs_2018_09_037
crossref_primary_10_3934_mbe_2021006
crossref_primary_10_1007_s10928_023_09893_5
crossref_primary_10_1016_j_jconrel_2013_08_016
crossref_primary_10_1186_s40203_016_0018_5
crossref_primary_10_1016_j_dmpk_2023_100506
crossref_primary_10_1016_j_xphs_2017_03_038
crossref_primary_10_1208_s12248_012_9357_2
crossref_primary_10_1080_19420862_2015_1115937
crossref_primary_10_1021_mp400748t
crossref_primary_10_1007_s10928_022_09824_w
crossref_primary_10_1208_s12248_012_9446_2
crossref_primary_10_3390_ijms23020679
crossref_primary_10_1002_psp4_12461
crossref_primary_10_1007_s10928_021_09800_w
crossref_primary_10_1016_j_jconrel_2014_12_002
crossref_primary_10_1208_s12248_013_9464_8
crossref_primary_10_1208_s12248_022_00698_x
crossref_primary_10_1080_19420862_2016_1238995
crossref_primary_10_1002_cpt_2170
crossref_primary_10_1124_dmd_117_077271
crossref_primary_10_1007_s11095_023_03496_y
crossref_primary_10_1007_s10928_017_9559_4
crossref_primary_10_1016_j_pharmthera_2020_107574
crossref_primary_10_4161_mabs_2_1_10781
crossref_primary_10_1080_19420862_2017_1337619
crossref_primary_10_1208_s12248_018_0264_z
crossref_primary_10_1124_jpet_117_246900
crossref_primary_10_1002_jps_24368
crossref_primary_10_3389_fimmu_2014_00670
crossref_primary_10_1124_dmd_121_000460
crossref_primary_10_1186_s13550_021_00813_7
crossref_primary_10_1016_j_xphs_2018_10_065
crossref_primary_10_1002_cpt_2937
crossref_primary_10_1002_psp4_12547
crossref_primary_10_1007_s10928_014_9401_1
crossref_primary_10_3389_fphys_2017_00149
crossref_primary_10_1080_19420862_2016_1261775
crossref_primary_10_1208_s12248_011_9256_y
crossref_primary_10_1002_bdd_1994
crossref_primary_10_1007_s10928_011_9232_2
crossref_primary_10_1208_s12248_014_9640_5
crossref_primary_10_3109_00498254_2011_627477
crossref_primary_10_1007_s10928_015_9444_y
crossref_primary_10_3390_pharmaceutics17030372
crossref_primary_10_1007_s40262_015_0361_4
crossref_primary_10_1016_j_yrtph_2015_02_005
crossref_primary_10_1021_mp100183k
crossref_primary_10_1517_17425255_2011_537257
crossref_primary_10_1007_s10928_017_9524_2
crossref_primary_10_1208_s12248_016_9909_y
crossref_primary_10_1002_jcph_382
crossref_primary_10_1007_s10928_013_9332_2
crossref_primary_10_1007_s10928_013_9328_y
crossref_primary_10_1155_2012_282989
crossref_primary_10_1007_s10928_013_9346_9
crossref_primary_10_1016_j_dmpk_2018_11_002
crossref_primary_10_1002_jps_23504
crossref_primary_10_1007_s11095_011_0578_3
crossref_primary_10_1080_00498254_2022_2133649
crossref_primary_10_1007_s10928_018_9608_7
crossref_primary_10_1007_s11095_022_03177_2
crossref_primary_10_1016_j_xphs_2023_10_019
crossref_primary_10_1113_JP274819
crossref_primary_10_1002_jcph_4
crossref_primary_10_1007_s00280_013_2116_y
crossref_primary_10_1208_s12248_011_9253_1
crossref_primary_10_1007_s10928_014_9349_1
crossref_primary_10_3390_ph15050508
crossref_primary_10_1007_s10928_019_09639_2
crossref_primary_10_1016_j_molimm_2013_05_008
crossref_primary_10_1016_j_ejps_2023_106375
crossref_primary_10_2165_11599970_000000000_00000
Cites_doi 10.1006/scbi.1998.0119
10.1242/jcs.114.8.1591
10.1177/44.1.8543780
10.1084/jem.122.3.467
10.1016/j.molonc.2007.01.003
10.1158/0008-5472.CAN-05-4010
10.1124/jpet.104.079277
10.1016/S1359-6446(05)03638-X
10.1055/s-0037-1613331
10.1021/bc970101v
10.1007/s00262-004-0597-6
10.1073/pnas.93.11.5512
10.1080/07357900500524397
10.1016/1074-7613(94)90082-5
10.1124/dmd.104.002584
10.1158/1535-7163.1559.3.12
10.1158/1535-7163.MCT-06-0072
10.1046/j.1365-2567.1996.d01-775.x
10.1007/BF01059667
10.1002/eji.1830260327
10.1093/intimm/dxg018
10.1007/s11095-005-8814-3
10.1002/jps.10364
10.1289/ehp.8805
10.1007/s10439-005-7410-3
10.1016/S0198-8859(00)00244-5
10.1242/jcs.112.14.2291
10.1038/sj.neo.7900260
10.1007/s10928-007-9065-1
10.1023/A:1014414520282
10.1101/SQB.1989.054.01.068
10.1038/nrm972
10.1097/00000658-199711000-00007
10.1172/JCI106279
10.1038/2031352a0
10.1016/S0022-2836(03)00952-5
10.4049/jimmunol.130.5.2302
10.1002/eji.1830040207
10.1111/1523-1747.ep12327258
ContentType Journal Article
Copyright 2010 Wiley-Liss, Inc.
Copyright © 2009 Wiley‐Liss, Inc.
2015 INIST-CNRS
2009 Wiley-Liss, Inc. and the American Pharmacists Association
Copyright_xml – notice: 2010 Wiley-Liss, Inc.
– notice: Copyright © 2009 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: 2009 Wiley-Liss, Inc. and the American Pharmacists Association
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jps.21918
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-6017
EndPage 1600
ExternalDocumentID 19774657
22482842
10_1002_jps_21918
JPS21918
ark_67375_WNG_3F20BPD3_7
S002235491532743X
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA114612
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OC
1ZS
31~
33P
36B
3O-
3WU
4.4
457
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAEVG
AAHHS
AAIAV
AAKUH
AALRI
AAOIN
AAONW
AAXUO
AAYOK
AAZKR
ABCQN
ABEML
ABFRF
ABIJN
ABJNI
ABMAC
ABOCM
ABPVW
ABWRO
ACBWZ
ACCFJ
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACXME
ACXQS
ADBBV
ADIZJ
AEEZP
AEFWE
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFRAH
AFTJW
AFZJQ
AGHFR
AI.
AITUG
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMRAJ
ATUGU
AZBYB
BAFTC
BDRZF
BFHJK
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F00
F01
F04
F5P
FDB
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HOLLA
HVGLF
HX~
HZ~
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LP6
LP7
LSO
LW6
M41
M6Q
MK0
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SSZ
SUPJJ
SV3
UB1
UKR
UNMZH
V2E
V8K
VH1
W8V
W99
WBFHL
WH7
WIB
WJL
WQJ
WRC
WUP
WWP
WYUIH
XG1
XPP
XV2
Y6R
YCJ
ZE2
ZGI
ZXP
~IA
~WT
ADVLN
AFJKZ
AKRWK
BSCLL
OIG
AANHP
ACRPL
ACYXJ
ADNMO
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
Z5M
7X8
ID FETCH-LOGICAL-c5378-7d0732f7ea33028327aefad615754f7844e7ad3a8d5ccdaedd0d2115c4b913c43
IEDL.DBID DR2
ISSN 0022-3549
1520-6017
IngestDate Fri Jul 11 08:45:42 EDT 2025
Wed Feb 19 01:56:26 EST 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Jul 01 02:09:13 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Wed Jan 22 16:27:06 EST 2025
Wed Oct 30 09:57:06 EDT 2024
Fri Feb 23 02:33:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords target mediated disposition
tumor associated antigen
pharmacokinetics
PBPK
T84.66 anti-CEA antibody
mathematical model
physiological model
carcinoembryonic antigen (CEA)
preclinical pharmacokinetics
Pharmaceutical technology
Tumor associated antigen
Targeting
Preclinical trial
Monoclonal antibody
Carcinoembryonic antigen
Target
Physiologically based pharmacokinetic model
Mathematical model
Pharmacokinetics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
2009 Wiley-Liss, Inc. and the American Pharmacists Association
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5378-7d0732f7ea33028327aefad615754f7844e7ad3a8d5ccdaedd0d2115c4b913c43
Notes ArticleID:JPS21918
istex:353486593DA5F6A7B82BAC3C3321B7EA441807A1
ark:/67375/WNG-3F20BPD3-7
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://hdl.handle.net/2027.42/64917
PMID 19774657
PQID 733588761
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_733588761
pubmed_primary_19774657
pascalfrancis_primary_22482842
crossref_primary_10_1002_jps_21918
crossref_citationtrail_10_1002_jps_21918
wiley_primary_10_1002_jps_21918_JPS21918
istex_primary_ark_67375_WNG_3F20BPD3_7
elsevier_sciencedirect_doi_10_1002_jps_21918
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2010
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: March 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Washington, DC
– name: Hoboken, NJ
– name: United States
PublicationTitle Journal of pharmaceutical sciences
PublicationTitleAlternate J. Pharm. Sci
PublicationYear 2010
Publisher Elsevier Inc
Wiley Subscription Services, Inc., A Wiley Company
Wiley
American Pharmaceutical Association
Publisher_xml – name: Elsevier Inc
– name: Wiley Subscription Services, Inc., A Wiley Company
– name: American Pharmaceutical Association
– name: Wiley
References Hebbar, Tournigand, Lledo, Mabro, Andre, Louvet, Aparicio, Flesch, Varette, de Gramont (bb0010) 2006; 24
Friedrich, Lin, Stoll, Baxter, Munn, Jain (bb0235) 2002; 4
Israel, Wilsker, Hayes, Schoenfeld, Simister (bb0045) 1996; 89
Tsipi Ben-Kasusa, Selaa, Yardenb (bb0015) 2007; 1
Goldenberg, Kim, DeLand, Bennett, Primus (bb0100) 1980; 40
Simister, Mostov (bb0040) 1989; 54
Junghans, Anderson (bb0050) 1996; 93
Prall, Nollau, Neumaier, Haubeck, Drzeniek, Helmchen, Loning, Wagener (bb0085) 1996; 44
Hammarstrom (bb0080) 1999; 9
Lammerts van Bueren, Bleeker, Bogh, Houtkamp, Schuurman, van de Winkel, Parren (bb0240) 2006; 66
Ferl, Wu, DiStefano (bb0260) 2005; 33
Baxter, Zhu, Mackensen, Butler, Jain (bb0180) 1995; 55
Morell, Terry, Waldmann (bb0020) 1970; 49
Nap, Hammarstrom, Bormer, Hammarstrom, Wagener, Handt, Schreyer, Mach, Buchegger, von Kleist, Gruner, Sequin, Fuks, Holm, Lamerz (bb0095) 1992; 52
Juweid, Neumann, Paik, Perez-Bacete, Sato, van Osdol, Weinstein (bb0210) 1992; 52
Waldmann, Jones (bb0035) 1972; 9
Sharkey, Karacay, Griffiths, Behr, Blumenthal, Mattes, Hansen, Goldenberg (bb0110) 1997; 8
Halpern, Hagan, Garver, Koziol, Chen, Frincke, Bartholomew, David, Adams (bb0255) 1983; 43
Mager, Jusko (bb0065) 2001; 28
Ng, Stefanich, Anand, Fielder, Vaickus (bb0245) 2006; 23
Emond, Birnbaum, DeVito (bb0225) 2006; 114
Chung, Jang, Lee, Lee, Koh (bb0200) 1994; 35
Ferl, Kenanova, Wu, DiStefano (bb0265) 2006; 5
Antohe, Radulescu, Gafencu, Ghetie, Simionescu (bb0135) 2001; 62
Ward, Zhou, Ghetie, Ober (bb0160) 2003; 15
D'Argenio, Schumitzky (bb0220) 1997
Brambell, Hemmings, Morris (bb0030) 1964; 203
Coffey, Fox, Pippig, Palmieri, Reitz, Gonzales, Bakshi, Padilla-Eagar, Fielder (bb0070) 2005; 33
Hughes, Pinsky, Petrelli, Moffat, Patt, Hammershaimb, Goldenberg (bb0105) 1997; 226
Praetor, Ellinger, Hunziker (bb0145) 1999; 112
Tabrizi, Tseng, Roskos (bb0060) 2006; 11
Hansen, Balthasar (bb0215) 2002; 88
Wagener, Clark, Rickard, Shively (bb0125) 1983; 130
Stein, Goldenberg (bb0115) 2004; 3
Zhu, Melder, Baxter, Jain (bb0195) 1996; 56
Gold, Freedman (bb0075) 1965; 122
Garg, Balthasar (bb0130) 2007; 34
Rojas, Apodaca (bb0150) 2002; 3
Ghetie, Hubbard, Kim, Tsen, Lee, Ward (bb0055) 1996; 26
Flessner, Lofthouse, Zakariael (bb0175) 1997; 273
Blumenthal, Osorio, Hayes, Horak, Hansen, Goldenberg (bb0120) 2005; 54
Hansen, Balthasar (bb0190) 2003; 92
Covell, Barbet, Holton, Black, Parker, Weinstein (bb0170) 1986; 46
Jensenius, Williams (bb0230) 1974; 4
Metze, Bhardwaj, Amann, Eades-Perner, Neumaier, Wagener, Jantscheff, Grunert, Luger (bb0090) 1996; 106
McCarthy, Lam, Subramanian, Shakya, Wu, Newton, Simister (bb0140) 2001; 114
Raghavan, Chen, Gastinel, Bjorkman (bb0155) 1994; 1
Rojas, Taylor, Cunningham, Rutkoski, Vennarini, Jang, Graham, Geboes, Rousselle, Wagner (bb0250) 2005; 313
Waldmann, Strober (bb0025) 1969; 13
Baxter, Zhu, Mackensen, Jain (bb0165) 1994; 54
Dedrick (bb0270) 1973; 1
Shockley, Lin, Nagy, Tompkins, Yarmush, Dvorak (bb0205) 1992; 52
Zhou, Johnson, Ghetie, Ober, Ward (bb0185) 2003; 332
Coffey GP, Fox JA, Pippig S, Palmieri S, Reitz B, Gonzales M, Bakshi A, Padilla-Eagar J, Fielder PJ. 2005. Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33: 623-629.
Waldmann TA, Strober W. 1969. Metabolism of immunoglobulins. Prog Allergy 13: 1-110.
Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM. 2005. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54: 315-327.
McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE. 2001. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114: 1591-1598.
Zhu H, Melder RJ, Baxter LT, Jain RK. 1996. Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy. Cancer Res 56: 3771-3781.
Brambell FW, Hemmings WA, Morris IG. 1964. A theoretical model of gamma-globulin catabolism. Nature 203: 1352-1354.
Tsipi Ben-Kasusa BS, Selaa M, Yardenb Y. 2007. Cancer therapeutic antibodies come of age: Targeting minimal residual disease. Mol Oncol 1: 42-54.
Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, Graham MA, Geboes K, Rousselle SD, Wagner CL. 2005. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther 313: 578-585.
Jensenius JC, Williams AF. 1974. The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol 4: 91-97.
Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. 2001. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62: 93-105.
Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. 2006. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23: 95-103.
Goldenberg DM, Kim EE, DeLand FH, Bennett S, Primus FJ. 1980. Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen. Cancer Res 40: 2984-2992.
Simister NE, Mostov KE. 1989. Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54: 571-580.
Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN. 1992. Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer Res 52: 5144-5153.
Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. 1995. Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55: 4611-4622.
Prall F, Nollau P, Neumaier M, Haubeck HD, Drzeniek Z, Helmchen U, Loning T, Wagener C. 1996. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J Histochem Cytochem 44: 35-41.
Halpern SE, Hagan PL, Garver PR, Koziol JA, Chen AW, Frincke JM, Bartholomew RM, David GS, Adams TH. 1983. Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models. Cancer Res 43: 5347-5355.
Rojas R, Apodaca G. 2002. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944-955.
Hansen RJ, Balthasar JP. 2002. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 88: 898-899.
Ferl GZ, Wu AM, DiStefano JJ III. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33: 1640-1652.
Gold P, Freedman SO. 1965. Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467-481.
Flessner MF, Lofthouse J, Zakariael R. 1997. In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273: H2783-H2793.
Tabrizi MA, Tseng CM, Roskos LK. 2006. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11: 81-88.
Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34: 687-709.
Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW. 2006. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res 66: 7630-7638.
Waldmann TA, Jones EA. 1972. The role of cell-surface receptors in the transport and catabolism of immunoglobulins. Ciba Found Symp 9: 5-23.
Morell A, Terry WD, Waldmann TA. 1970. Metabolic properties of IgG subclasses in man. J Clin Invest 49: 673-680.
Mager DE, Jusko WJ. 2001. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28: 507-532.
Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. 1986. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res 46: 3969-3978.
Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. 1996. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26: 690-696.
Hansen RJ, Balthasar JP. 2003. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92: 1206-1215.
Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. 1996. Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn. Immunology 89: 573-578.
Stein R, Goldenberg DM. 2004. A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy. Mol Cancer Therapeut 3: 1559-1564.
D'Argenio DZ, Schumitzky A. 1997. ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simualtion Resource.
Dedrick RL. 1973. Animal scale-up. J Pharmacokinet Biopharm 1: 435-461.
Nap M, Hammarstrom ML, Bormer O, Hammarstrom S, Wagener C, Handt S, Schreyer M, Mach JP, Buchegger F, von Kleist S, Gruner F, Sequin P, Fuks A, Holm R, Lamerz R. 1992. Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen. Cancer Res 52: 2329-2339.
Hammarstrom S. 1999. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9: 67-81.
Junghans RP, Anderson CL. 1996. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512-5516.
Wagener C, Clark BR, Rickard KJ, Shively JE. 1983. Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay. J Immunol 130: 2302-2307.
Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES. 2003. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol 332: 901-913.
Ferl GZ, Kenanova V, Wu AM, DiStefano JJ III. 2006. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Therapeut 5: 1550-1558.
Hughes K, Pinsky CM, Petrelli NJ, Moffat FL, Patt YZ, Hammershaimb L, Goldenberg DM. 1997. Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226: 621-631.
Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. 1992. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res 52: 367-376.
Baxter LT, Zhu H, Mackensen DG, Jain RK. 1994. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517-1528.
Emond C, Birnbaum LS, DeVito MJ. 2006. Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD. Environ Health Perspect 114: 1394-1400.
Ward ES, Zhou J, Ghetie V, Ober RJ. 2003. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15: 187-195.
Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK. 2002. Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4: 449-463.
Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. 1994. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303-315.
Sharkey RM, Karacay H, Griffiths GL, Behr TM, Blumenthal RD, Mattes MJ, Hansen HJ, Goldenberg DM. 1997. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug Chem 8: 595-604.
Metze D, Bhardwaj R, Amann U, Eades-Perner AM, Neumaier M, Wagener C, Jantscheff P, Grunert F, Luger TA. 1996. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin. J Invest Dermatol 106: 64-69.
Praetor A, Ellinger I, Hunziker W. 1999. Intracellular traffic of the MHC class I-like IgG Fc receptor,
1980; 40
1997; 273
2004; 3
2003; 15
2007; 34
1996; 106
1992; 52
1997; 8
1974; 4
1997; 226
2003; 92
2006; 23
2006; 24
2006; 66
1986; 46
2002; 88
1994; 35
2007; 1
1996; 26
2005; 33
1972; 9
1965; 122
1983; 130
2006; 11
2005; 313
1995; 55
1996; 93
1997
2002; 3
2006; 5
1969; 13
2002; 4
2001; 28
2003; 332
2001; 62
1996; 56
2006; 114
1999; 9
1989; 54
1983; 43
2005; 54
1999; 112
1994; 1
1970; 49
1973; 1
1964; 203
2001; 114
1996; 89
1994; 54
1996; 44
Juweid (10.1002/jps.21918_bb0210) 1992; 52
Praetor (10.1002/jps.21918_bb0145) 1999; 112
Garg (10.1002/jps.21918_bb0130) 2007; 34
Antohe (10.1002/jps.21918_bb0135) 2001; 62
Zhou (10.1002/jps.21918_bb0185) 2003; 332
Halpern (10.1002/jps.21918_bb0255) 1983; 43
Ward (10.1002/jps.21918_bb0160) 2003; 15
Shockley (10.1002/jps.21918_bb0205) 1992; 52
Prall (10.1002/jps.21918_bb0085) 1996; 44
Emond (10.1002/jps.21918_bb0225) 2006; 114
Friedrich (10.1002/jps.21918_bb0235) 2002; 4
Rojas (10.1002/jps.21918_bb0150) 2002; 3
Baxter (10.1002/jps.21918_bb0180) 1995; 55
Nap (10.1002/jps.21918_bb0095) 1992; 52
Israel (10.1002/jps.21918_bb0045) 1996; 89
Hughes (10.1002/jps.21918_bb0105) 1997; 226
Rojas (10.1002/jps.21918_bb0250) 2005; 313
Ng (10.1002/jps.21918_bb0245) 2006; 23
Blumenthal (10.1002/jps.21918_bb0120) 2005; 54
Hansen (10.1002/jps.21918_bb0190) 2003; 92
Junghans (10.1002/jps.21918_bb0050) 1996; 93
Baxter (10.1002/jps.21918_bb0165) 1994; 54
Goldenberg (10.1002/jps.21918_bb0100) 1980; 40
Covell (10.1002/jps.21918_bb0170) 1986; 46
Gold (10.1002/jps.21918_bb0075) 1965; 122
Ferl (10.1002/jps.21918_bb0265) 2006; 5
Sharkey (10.1002/jps.21918_bb0110) 1997; 8
Coffey (10.1002/jps.21918_bb0070) 2005; 33
Ghetie (10.1002/jps.21918_bb0055) 1996; 26
Hebbar (10.1002/jps.21918_bb0010) 2006; 24
Brambell (10.1002/jps.21918_bb0030) 1964; 203
Flessner (10.1002/jps.21918_bb0175) 1997; 273
Hansen (10.1002/jps.21918_bb0215) 2002; 88
Waldmann (10.1002/jps.21918_bb0035) 1972; 9
Mager (10.1002/jps.21918_bb0065) 2001; 28
Metze (10.1002/jps.21918_bb0090) 1996; 106
D'Argenio (10.1002/jps.21918_bb0220) 1997
Tsipi Ben-Kasusa (10.1002/jps.21918_bb0015) 2007; 1
Stein (10.1002/jps.21918_bb0115) 2004; 3
Hammarstrom (10.1002/jps.21918_bb0080) 1999; 9
McCarthy (10.1002/jps.21918_bb0140) 2001; 114
Jensenius (10.1002/jps.21918_bb0230) 1974; 4
Zhu (10.1002/jps.21918_bb0195) 1996; 56
Ferl (10.1002/jps.21918_bb0260) 2005; 33
Waldmann (10.1002/jps.21918_bb0025) 1969; 13
Raghavan (10.1002/jps.21918_bb0155) 1994; 1
Chung (10.1002/jps.21918_bb0200) 1994; 35
Lammerts van Bueren (10.1002/jps.21918_bb0240) 2006; 66
Tabrizi (10.1002/jps.21918_bb0060) 2006; 11
Morell (10.1002/jps.21918_bb0020) 1970; 49
Simister (10.1002/jps.21918_bb0040) 1989; 54
Dedrick (10.1002/jps.21918_bb0270) 1973; 1
Wagener (10.1002/jps.21918_bb0125) 1983; 130
References_xml – volume: 1
  start-page: 303
  year: 1994
  end-page: 315
  ident: bb0155
  article-title: Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand
  publication-title: Immunity
– volume: 40
  start-page: 2984
  year: 1980
  end-page: 2992
  ident: bb0100
  article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 54
  start-page: 571
  year: 1989
  end-page: 580
  ident: bb0040
  article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 203
  start-page: 1352
  year: 1964
  end-page: 1354
  ident: bb0030
  article-title: A theoretical model of gamma-globulin catabolism
  publication-title: Nature
– volume: 26
  start-page: 690
  year: 1996
  end-page: 696
  ident: bb0055
  article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice
  publication-title: Eur J Immunol
– volume: 130
  start-page: 2302
  year: 1983
  end-page: 2307
  ident: bb0125
  article-title: Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay
  publication-title: J Immunol
– volume: 52
  start-page: 5144
  year: 1992
  end-page: 5153
  ident: bb0210
  article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier
  publication-title: Cancer Res
– volume: 8
  start-page: 595
  year: 1997
  end-page: 604
  ident: bb0110
  article-title: Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model
  publication-title: Bioconjug Chem
– volume: 93
  start-page: 5512
  year: 1996
  end-page: 5516
  ident: bb0050
  article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 7630
  year: 2006
  end-page: 7638
  ident: bb0240
  article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action
  publication-title: Cancer Res
– volume: 13
  start-page: 1
  year: 1969
  end-page: 110
  ident: bb0025
  article-title: Metabolism of immunoglobulins
  publication-title: Prog Allergy
– volume: 52
  start-page: 367
  year: 1992
  end-page: 376
  ident: bb0205
  article-title: Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts
  publication-title: Cancer Res
– volume: 52
  start-page: 2329
  year: 1992
  end-page: 2339
  ident: bb0095
  article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 122
  start-page: 467
  year: 1965
  end-page: 481
  ident: bb0075
  article-title: Specific carcinoembryonic antigens of the human digestive system
  publication-title: J Exp Med
– volume: 54
  start-page: 315
  year: 2005
  end-page: 327
  ident: bb0120
  article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft
  publication-title: Cancer Immunol Immunother
– volume: 33
  start-page: 623
  year: 2005
  end-page: 629
  ident: bb0070
  article-title: Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice
  publication-title: Drug Metab Dispos
– volume: 15
  start-page: 187
  year: 2003
  end-page: 195
  ident: bb0160
  article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans
  publication-title: Int Immunol
– volume: 3
  start-page: 1559
  year: 2004
  end-page: 1564
  ident: bb0115
  article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy
  publication-title: Mol Cancer Therapeut
– volume: 62
  start-page: 93
  year: 2001
  end-page: 105
  ident: bb0135
  article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells
  publication-title: Hum Immunol
– volume: 55
  start-page: 4611
  year: 1995
  end-page: 4622
  ident: bb0180
  article-title: Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model
  publication-title: Cancer Res
– volume: 89
  start-page: 573
  year: 1996
  end-page: 578
  ident: bb0045
  article-title: Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn
  publication-title: Immunology
– volume: 4
  start-page: 91
  year: 1974
  end-page: 97
  ident: bb0230
  article-title: The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes
  publication-title: Eur J Immunol
– volume: 114
  start-page: 1394
  year: 2006
  end-page: 1400
  ident: bb0225
  article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD
  publication-title: Environ Health Perspect
– year: 1997
  ident: bb0220
  article-title: ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software
– volume: 1
  start-page: 435
  year: 1973
  end-page: 461
  ident: bb0270
  article-title: Animal scale-up
  publication-title: J Pharmacokinet Biopharm
– volume: 46
  start-page: 3969
  year: 1986
  end-page: 3978
  ident: bb0170
  article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice
  publication-title: Cancer Res
– volume: 88
  start-page: 898
  year: 2002
  end-page: 899
  ident: bb0215
  article-title: Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor
  publication-title: Thromb Haemost
– volume: 5
  start-page: 1550
  year: 2006
  end-page: 1558
  ident: bb0265
  article-title: A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments
  publication-title: Mol Cancer Therapeut
– volume: 56
  start-page: 3771
  year: 1996
  end-page: 3781
  ident: bb0195
  article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy
  publication-title: Cancer Res
– volume: 3
  start-page: 944
  year: 2002
  end-page: 955
  ident: bb0150
  article-title: Immunoglobulin transport across polarized epithelial cells
  publication-title: Nat Rev Mol Cell Biol
– volume: 273
  start-page: H2783
  year: 1997
  end-page: H2793
  ident: bb0175
  article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal
  publication-title: Am J Physiol
– volume: 106
  start-page: 64
  year: 1996
  end-page: 69
  ident: bb0090
  article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin
  publication-title: J Invest Dermatol
– volume: 23
  start-page: 95
  year: 2006
  end-page: 103
  ident: bb0245
  article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers
  publication-title: Pharm Res
– volume: 313
  start-page: 578
  year: 2005
  end-page: 585
  ident: bb0250
  article-title: Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys
  publication-title: J Pharmacol Exp Ther
– volume: 28
  start-page: 507
  year: 2001
  end-page: 532
  ident: bb0065
  article-title: General pharmacokinetic model for drugs exhibiting target-mediated drug disposition
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 11
  start-page: 81
  year: 2006
  end-page: 88
  ident: bb0060
  article-title: Elimination mechanisms of therapeutic monoclonal antibodies
  publication-title: Drug Discov Today
– volume: 34
  start-page: 687
  year: 2007
  end-page: 709
  ident: bb0130
  article-title: Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 4
  start-page: 449
  year: 2002
  end-page: 463
  ident: bb0235
  article-title: Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model
  publication-title: Neoplasia
– volume: 24
  start-page: 154
  year: 2006
  end-page: 159
  ident: bb0010
  article-title: Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study)
  publication-title: Cancer Invest
– volume: 9
  start-page: 67
  year: 1999
  end-page: 81
  ident: bb0080
  article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues
  publication-title: Semin Cancer Biol
– volume: 49
  start-page: 673
  year: 1970
  end-page: 680
  ident: bb0020
  article-title: Metabolic properties of IgG subclasses in man
  publication-title: J Clin Invest
– volume: 43
  start-page: 5347
  year: 1983
  end-page: 5355
  ident: bb0255
  article-title: Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models
  publication-title: Cancer Res
– volume: 114
  start-page: 1591
  year: 2001
  end-page: 1598
  ident: bb0140
  article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn
  publication-title: J Cell Sci
– volume: 44
  start-page: 35
  year: 1996
  end-page: 41
  ident: bb0085
  article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues
  publication-title: J Histochem Cytochem
– volume: 33
  start-page: 1640
  year: 2005
  end-page: 1652
  ident: bb0260
  article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn)
  publication-title: Ann Biomed Eng
– volume: 9
  start-page: 5
  year: 1972
  end-page: 23
  ident: bb0035
  article-title: The role of cell-surface receptors in the transport and catabolism of immunoglobulins
  publication-title: Ciba Found Symp
– volume: 112
  start-page: 2291
  year: 1999
  end-page: 2299
  ident: bb0145
  article-title: Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells
  publication-title: J Cell Sci
– volume: 54
  start-page: 1517
  year: 1994
  end-page: 1528
  ident: bb0165
  article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice
  publication-title: Cancer Res
– volume: 1
  start-page: 42
  year: 2007
  end-page: 54
  ident: bb0015
  article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease
  publication-title: Mol Oncol
– volume: 92
  start-page: 1206
  year: 2003
  end-page: 1215
  ident: bb0190
  article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia
  publication-title: J Pharm Sci
– volume: 35
  start-page: 1499
  year: 1994
  end-page: 1505
  ident: bb0200
  article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography
  publication-title: J Nucl Med
– volume: 226
  start-page: 621
  year: 1997
  end-page: 631
  ident: bb0105
  article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer
  publication-title: Ann Surg
– volume: 332
  start-page: 901
  year: 2003
  end-page: 913
  ident: bb0185
  article-title: Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G
  publication-title: J Mol Biol
– reference: Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. 2006. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23: 95-103.
– reference: Morell A, Terry WD, Waldmann TA. 1970. Metabolic properties of IgG subclasses in man. J Clin Invest 49: 673-680.
– reference: Hansen RJ, Balthasar JP. 2002. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost 88: 898-899.
– reference: Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. 1996. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26: 690-696.
– reference: Mager DE, Jusko WJ. 2001. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28: 507-532.
– reference: Zhu H, Melder RJ, Baxter LT, Jain RK. 1996. Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy. Cancer Res 56: 3771-3781.
– reference: Stein R, Goldenberg DM. 2004. A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy. Mol Cancer Therapeut 3: 1559-1564.
– reference: Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES. 2003. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol 332: 901-913.
– reference: Sharkey RM, Karacay H, Griffiths GL, Behr TM, Blumenthal RD, Mattes MJ, Hansen HJ, Goldenberg DM. 1997. Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconjug Chem 8: 595-604.
– reference: Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW. 2006. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res 66: 7630-7638.
– reference: Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN. 1992. Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer Res 52: 5144-5153.
– reference: Simister NE, Mostov KE. 1989. Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog. Cold Spring Harb Symp Quant Biol 54: 571-580.
– reference: Antohe F, Radulescu L, Gafencu A, Ghetie V, Simionescu M. 2001. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62: 93-105.
– reference: Praetor A, Ellinger I, Hunziker W. 1999. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 112: 2291-2299.
– reference: Tabrizi MA, Tseng CM, Roskos LK. 2006. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11: 81-88.
– reference: Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. 1992. Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res 52: 367-376.
– reference: Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34: 687-709.
– reference: Ward ES, Zhou J, Ghetie V, Ober RJ. 2003. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15: 187-195.
– reference: Jensenius JC, Williams AF. 1974. The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol 4: 91-97.
– reference: Coffey GP, Fox JA, Pippig S, Palmieri S, Reitz B, Gonzales M, Bakshi A, Padilla-Eagar J, Fielder PJ. 2005. Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice. Drug Metab Dispos 33: 623-629.
– reference: Metze D, Bhardwaj R, Amann U, Eades-Perner AM, Neumaier M, Wagener C, Jantscheff P, Grunert F, Luger TA. 1996. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin. J Invest Dermatol 106: 64-69.
– reference: Waldmann TA, Jones EA. 1972. The role of cell-surface receptors in the transport and catabolism of immunoglobulins. Ciba Found Symp 9: 5-23.
– reference: Hansen RJ, Balthasar JP. 2003. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92: 1206-1215.
– reference: Junghans RP, Anderson CL. 1996. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512-5516.
– reference: Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. 1995. Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55: 4611-4622.
– reference: Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK. 2002. Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4: 449-463.
– reference: Brambell FW, Hemmings WA, Morris IG. 1964. A theoretical model of gamma-globulin catabolism. Nature 203: 1352-1354.
– reference: Goldenberg DM, Kim EE, DeLand FH, Bennett S, Primus FJ. 1980. Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen. Cancer Res 40: 2984-2992.
– reference: Hughes K, Pinsky CM, Petrelli NJ, Moffat FL, Patt YZ, Hammershaimb L, Goldenberg DM. 1997. Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226: 621-631.
– reference: Chung JK, Jang JJ, Lee DS, Lee MC, Koh CS. 1994. Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography. J Nucl Med 35: 1499-1505.
– reference: Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, Graham MA, Geboes K, Rousselle SD, Wagner CL. 2005. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther 313: 578-585.
– reference: Gold P, Freedman SO. 1965. Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467-481.
– reference: Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. 1986. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res 46: 3969-3978.
– reference: Rojas R, Apodaca G. 2002. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944-955.
– reference: Halpern SE, Hagan PL, Garver PR, Koziol JA, Chen AW, Frincke JM, Bartholomew RM, David GS, Adams TH. 1983. Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models. Cancer Res 43: 5347-5355.
– reference: D'Argenio DZ, Schumitzky A. 1997. ADAPT II user's guide: Pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simualtion Resource.
– reference: Emond C, Birnbaum LS, DeVito MJ. 2006. Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD. Environ Health Perspect 114: 1394-1400.
– reference: Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. 1996. Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn. Immunology 89: 573-578.
– reference: Flessner MF, Lofthouse J, Zakariael R. 1997. In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273: H2783-H2793.
– reference: Wagener C, Clark BR, Rickard KJ, Shively JE. 1983. Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin-labeled antibodies and avidin as precipitating agent in a solution phase immunoassay. J Immunol 130: 2302-2307.
– reference: McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE. 2001. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114: 1591-1598.
– reference: Ferl GZ, Kenanova V, Wu AM, DiStefano JJ III. 2006. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Therapeut 5: 1550-1558.
– reference: Dedrick RL. 1973. Animal scale-up. J Pharmacokinet Biopharm 1: 435-461.
– reference: Hammarstrom S. 1999. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9: 67-81.
– reference: Tsipi Ben-Kasusa BS, Selaa M, Yardenb Y. 2007. Cancer therapeutic antibodies come of age: Targeting minimal residual disease. Mol Oncol 1: 42-54.
– reference: Nap M, Hammarstrom ML, Bormer O, Hammarstrom S, Wagener C, Handt S, Schreyer M, Mach JP, Buchegger F, von Kleist S, Gruner F, Sequin P, Fuks A, Holm R, Lamerz R. 1992. Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen. Cancer Res 52: 2329-2339.
– reference: Prall F, Nollau P, Neumaier M, Haubeck HD, Drzeniek Z, Helmchen U, Loning T, Wagener C. 1996. CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues. J Histochem Cytochem 44: 35-41.
– reference: Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ. 1994. Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303-315.
– reference: Ferl GZ, Wu AM, DiStefano JJ III. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33: 1640-1652.
– reference: Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM. 2005. Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54: 315-327.
– reference: Hebbar M, Tournigand C, Lledo G, Mabro M, Andre T, Louvet C, Aparicio T, Flesch M, Varette C, de Gramont A. 2006. Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study). Cancer Invest 24: 154-159.
– reference: Waldmann TA, Strober W. 1969. Metabolism of immunoglobulins. Prog Allergy 13: 1-110.
– reference: Baxter LT, Zhu H, Mackensen DG, Jain RK. 1994. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517-1528.
– volume: 1
  start-page: 303
  year: 1994
  end-page: 315
  article-title: Investigation of the interaction between the class I MHC‐related Fc receptor and its immunoglobulin G ligand
  publication-title: Immunity
– volume: 4
  start-page: 449
  year: 2002
  end-page: 463
  article-title: Antibody‐directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model
  publication-title: Neoplasia
– volume: 62
  start-page: 93
  year: 2001
  end-page: 105
  article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells
  publication-title: Hum Immunol
– volume: 46
  start-page: 3969
  year: 1986
  end-page: 3978
  article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice
  publication-title: Cancer Res
– volume: 4
  start-page: 91
  year: 1974
  end-page: 97
  article-title: The binding of anti‐immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes
  publication-title: Eur J Immunol
– volume: 13
  start-page: 1
  year: 1969
  end-page: 110
  article-title: Metabolism of immunoglobulins
  publication-title: Prog Allergy
– volume: 203
  start-page: 1352
  year: 1964
  end-page: 1354
  article-title: A theoretical model of gamma‐globulin catabolism
  publication-title: Nature
– volume: 5
  start-page: 1550
  year: 2006
  end-page: 1558
  article-title: A two‐tiered physiologically based model for dually labeled single‐chain Fv‐Fc antibody fragments
  publication-title: Mol Cancer Therapeut
– volume: 89
  start-page: 573
  year: 1996
  end-page: 578
  article-title: Increased clearance of IgG in mice that lack beta 2‐microglobulin: Possible protective role of FcRn
  publication-title: Immunology
– volume: 54
  start-page: 1517
  year: 1994
  end-page: 1528
  article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice
  publication-title: Cancer Res
– volume: 9
  start-page: 67
  year: 1999
  end-page: 81
  article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues
  publication-title: Semin Cancer Biol
– volume: 3
  start-page: 1559
  year: 2004
  end-page: 1564
  article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy
  publication-title: Mol Cancer Therapeut
– volume: 28
  start-page: 507
  year: 2001
  end-page: 532
  article-title: General pharmacokinetic model for drugs exhibiting target‐mediated drug disposition
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 9
  start-page: 5
  year: 1972
  end-page: 23
  article-title: The role of cell‐surface receptors in the transport and catabolism of immunoglobulins
  publication-title: Ciba Found Symp
– year: 1997
– volume: 23
  start-page: 95
  year: 2006
  end-page: 103
  article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti‐CD4 monoclonal antibody (TRX1) in healthy human volunteers
  publication-title: Pharm Res
– volume: 52
  start-page: 2329
  year: 1992
  end-page: 2339
  article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 15
  start-page: 187
  year: 2003
  end-page: 195
  article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans
  publication-title: Int Immunol
– volume: 332
  start-page: 901
  year: 2003
  end-page: 913
  article-title: Generation of mutated variants of the human form of the MHC class I‐related receptor, FcRn, with increased affinity for mouse immunoglobulin G
  publication-title: J Mol Biol
– volume: 54
  start-page: 571
  year: 1989
  end-page: 580
  article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 40
  start-page: 2984
  year: 1980
  end-page: 2992
  article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 114
  start-page: 1591
  year: 2001
  end-page: 1598
  article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn
  publication-title: J Cell Sci
– volume: 52
  start-page: 367
  year: 1992
  end-page: 376
  article-title: Spatial distribution of tumor‐specific monoclonal antibodies in human melanoma xenografts
  publication-title: Cancer Res
– volume: 1
  start-page: 42
  year: 2007
  end-page: 54
  article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease
  publication-title: Mol Oncol
– volume: 3
  start-page: 944
  year: 2002
  end-page: 955
  article-title: Immunoglobulin transport across polarized epithelial cells
  publication-title: Nat Rev Mol Cell Biol
– volume: 49
  start-page: 673
  year: 1970
  end-page: 680
  article-title: Metabolic properties of IgG subclasses in man
  publication-title: J Clin Invest
– volume: 226
  start-page: 621
  year: 1997
  end-page: 631
  article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer
  publication-title: Ann Surg
– volume: 1
  start-page: 435
  year: 1973
  end-page: 461
  article-title: Animal scale‐up
  publication-title: J Pharmacokinet Biopharm
– volume: 24
  start-page: 154
  year: 2006
  end-page: 159
  article-title: Phase II trial alternating FOLFOX‐6 and FOLFIRI regimens in second‐line therapy of patients with metastatic colorectal cancer (FIREFOX study)
  publication-title: Cancer Invest
– volume: 34
  start-page: 687
  year: 2007
  end-page: 709
  article-title: Physiologically‐based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild‐type and FcRn‐knockout mice
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 122
  start-page: 467
  year: 1965
  end-page: 481
  article-title: Specific carcinoembryonic antigens of the human digestive system
  publication-title: J Exp Med
– volume: 54
  start-page: 315
  year: 2005
  end-page: 327
  article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft
  publication-title: Cancer Immunol Immunother
– volume: 66
  start-page: 7630
  year: 2006
  end-page: 7638
  article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action
  publication-title: Cancer Res
– volume: 93
  start-page: 5512
  year: 1996
  end-page: 5516
  article-title: The protection receptor for IgG catabolism is the beta2‐microglobulin‐containing neonatal intestinal transport receptor
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 595
  year: 1997
  end-page: 604
  article-title: Development of a streptavidin‐anti‐carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model
  publication-title: Bioconjug Chem
– volume: 11
  start-page: 81
  year: 2006
  end-page: 88
  article-title: Elimination mechanisms of therapeutic monoclonal antibodies
  publication-title: Drug Discov Today
– volume: 56
  start-page: 3771
  year: 1996
  end-page: 3781
  article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy
  publication-title: Cancer Res
– volume: 92
  start-page: 1206
  year: 2003
  end-page: 1215
  article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia
  publication-title: J Pharm Sci
– volume: 114
  start-page: 1394
  year: 2006
  end-page: 1400
  article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD
  publication-title: Environ Health Perspect
– volume: 130
  start-page: 2302
  year: 1983
  end-page: 2307
  article-title: Monoclonal antibodies for carcinoembryonic antigen and related antigens as a model system: Determination of affinities and specificities of monoclonal antibodies by using biotin‐labeled antibodies and avidin as precipitating agent in a solution phase immunoassay
  publication-title: J Immunol
– volume: 88
  start-page: 898
  year: 2002
  end-page: 899
  article-title: Intravenous immunoglobulin mediates an increase in anti‐platelet antibody clearance via the FcRn receptor
  publication-title: Thromb Haemost
– volume: 33
  start-page: 623
  year: 2005
  end-page: 629
  article-title: Tissue distribution and receptor‐mediated clearance of anti‐CD11a antibody in mice
  publication-title: Drug Metab Dispos
– volume: 273
  start-page: H2783
  year: 1997
  end-page: H2793
  article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal
  publication-title: Am J Physiol
– volume: 35
  start-page: 1499
  year: 1994
  end-page: 1505
  article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography
  publication-title: J Nucl Med
– volume: 44
  start-page: 35
  year: 1996
  end-page: 41
  article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues
  publication-title: J Histochem Cytochem
– volume: 43
  start-page: 5347
  year: 1983
  end-page: 5355
  article-title: Stability, characterization, and kinetics of 111In‐labeled monoclonal antitumor antibodies in normal animals and nude mouse‐human tumor models
  publication-title: Cancer Res
– volume: 106
  start-page: 64
  year: 1996
  end-page: 69
  article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin
  publication-title: J Invest Dermatol
– volume: 313
  start-page: 578
  year: 2005
  end-page: 585
  article-title: Formation, distribution, and elimination of infliximab and anti‐infliximab immune complexes in cynomolgus monkeys
  publication-title: J Pharmacol Exp Ther
– volume: 55
  start-page: 4611
  year: 1995
  end-page: 4622
  article-title: Biodistribution of monoclonal antibodies: Scale‐up from mouse to human using a physiologically based pharmacokinetic model
  publication-title: Cancer Res
– volume: 26
  start-page: 690
  year: 1996
  end-page: 696
  article-title: Abnormally short serum half‐lives of IgG in beta 2‐microglobulin‐deficient mice
  publication-title: Eur J Immunol
– volume: 112
  start-page: 2291
  year: 1999
  end-page: 2299
  article-title: Intracellular traffic of the MHC class I‐like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells
  publication-title: J Cell Sci
– volume: 52
  start-page: 5144
  year: 1992
  end-page: 5153
  article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier
  publication-title: Cancer Res
– volume: 33
  start-page: 1640
  year: 2005
  end-page: 1652
  article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn)
  publication-title: Ann Biomed Eng
– volume: 13
  start-page: 1
  year: 1969
  ident: 10.1002/jps.21918_bb0025
  article-title: Metabolism of immunoglobulins
  publication-title: Prog Allergy
– volume: 9
  start-page: 67
  year: 1999
  ident: 10.1002/jps.21918_bb0080
  article-title: The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues
  publication-title: Semin Cancer Biol
  doi: 10.1006/scbi.1998.0119
– volume: 114
  start-page: 1591
  year: 2001
  ident: 10.1002/jps.21918_bb0140
  article-title: Effects of mutations in potential phosphorylation sites on transcytosis of FcRn
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.8.1591
– volume: 44
  start-page: 35
  year: 1996
  ident: 10.1002/jps.21918_bb0085
  article-title: CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues
  publication-title: J Histochem Cytochem
  doi: 10.1177/44.1.8543780
– volume: 122
  start-page: 467
  year: 1965
  ident: 10.1002/jps.21918_bb0075
  article-title: Specific carcinoembryonic antigens of the human digestive system
  publication-title: J Exp Med
  doi: 10.1084/jem.122.3.467
– year: 1997
  ident: 10.1002/jps.21918_bb0220
– volume: 1
  start-page: 42
  year: 2007
  ident: 10.1002/jps.21918_bb0015
  article-title: Cancer therapeutic antibodies come of age: Targeting minimal residual disease
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2007.01.003
– volume: 66
  start-page: 7630
  year: 2006
  ident: 10.1002/jps.21918_bb0240
  article-title: Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4010
– volume: 313
  start-page: 578
  year: 2005
  ident: 10.1002/jps.21918_bb0250
  article-title: Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.104.079277
– volume: 9
  start-page: 5
  year: 1972
  ident: 10.1002/jps.21918_bb0035
  article-title: The role of cell-surface receptors in the transport and catabolism of immunoglobulins
  publication-title: Ciba Found Symp
– volume: 11
  start-page: 81
  year: 2006
  ident: 10.1002/jps.21918_bb0060
  article-title: Elimination mechanisms of therapeutic monoclonal antibodies
  publication-title: Drug Discov Today
  doi: 10.1016/S1359-6446(05)03638-X
– volume: 88
  start-page: 898
  year: 2002
  ident: 10.1002/jps.21918_bb0215
  article-title: Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor
  publication-title: Thromb Haemost
  doi: 10.1055/s-0037-1613331
– volume: 8
  start-page: 595
  year: 1997
  ident: 10.1002/jps.21918_bb0110
  article-title: Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model
  publication-title: Bioconjug Chem
  doi: 10.1021/bc970101v
– volume: 54
  start-page: 315
  year: 2005
  ident: 10.1002/jps.21918_bb0120
  article-title: Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-004-0597-6
– volume: 93
  start-page: 5512
  year: 1996
  ident: 10.1002/jps.21918_bb0050
  article-title: The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.11.5512
– volume: 24
  start-page: 154
  year: 2006
  ident: 10.1002/jps.21918_bb0010
  article-title: Phase II trial alternating FOLFOX-6 and FOLFIRI regimens in second-line therapy of patients with metastatic colorectal cancer (FIREFOX study)
  publication-title: Cancer Invest
  doi: 10.1080/07357900500524397
– volume: 1
  start-page: 303
  year: 1994
  ident: 10.1002/jps.21918_bb0155
  article-title: Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand
  publication-title: Immunity
  doi: 10.1016/1074-7613(94)90082-5
– volume: 33
  start-page: 623
  year: 2005
  ident: 10.1002/jps.21918_bb0070
  article-title: Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.104.002584
– volume: 3
  start-page: 1559
  year: 2004
  ident: 10.1002/jps.21918_bb0115
  article-title: A humanized monoclonal antibody to carcinoembryonic antigen, labetuzumab, inhibits tumor growth and sensitizes human medullary thyroid cancer xenografts to dacarbazine chemotherapy
  publication-title: Mol Cancer Therapeut
  doi: 10.1158/1535-7163.1559.3.12
– volume: 5
  start-page: 1550
  year: 2006
  ident: 10.1002/jps.21918_bb0265
  article-title: A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments
  publication-title: Mol Cancer Therapeut
  doi: 10.1158/1535-7163.MCT-06-0072
– volume: 52
  start-page: 2329
  year: 1992
  ident: 10.1002/jps.21918_bb0095
  article-title: Specificity and affinity of monoclonal antibodies against carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 89
  start-page: 573
  year: 1996
  ident: 10.1002/jps.21918_bb0045
  article-title: Increased clearance of IgG in mice that lack beta 2-microglobulin: Possible protective role of FcRn
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.1996.d01-775.x
– volume: 55
  start-page: 4611
  year: 1995
  ident: 10.1002/jps.21918_bb0180
  article-title: Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model
  publication-title: Cancer Res
– volume: 54
  start-page: 1517
  year: 1994
  ident: 10.1002/jps.21918_bb0165
  article-title: Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice
  publication-title: Cancer Res
– volume: 1
  start-page: 435
  year: 1973
  ident: 10.1002/jps.21918_bb0270
  article-title: Animal scale-up
  publication-title: J Pharmacokinet Biopharm
  doi: 10.1007/BF01059667
– volume: 26
  start-page: 690
  year: 1996
  ident: 10.1002/jps.21918_bb0055
  article-title: Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice
  publication-title: Eur J Immunol
  doi: 10.1002/eji.1830260327
– volume: 15
  start-page: 187
  year: 2003
  ident: 10.1002/jps.21918_bb0160
  article-title: Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxg018
– volume: 23
  start-page: 95
  year: 2006
  ident: 10.1002/jps.21918_bb0245
  article-title: Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers
  publication-title: Pharm Res
  doi: 10.1007/s11095-005-8814-3
– volume: 40
  start-page: 2984
  year: 1980
  ident: 10.1002/jps.21918_bb0100
  article-title: Radioimmunodetection of cancer with radioactive antibodies to carcinoembryonic antigen
  publication-title: Cancer Res
– volume: 56
  start-page: 3771
  year: 1996
  ident: 10.1002/jps.21918_bb0195
  article-title: Physiologically based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy
  publication-title: Cancer Res
– volume: 92
  start-page: 1206
  year: 2003
  ident: 10.1002/jps.21918_bb0190
  article-title: Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia
  publication-title: J Pharm Sci
  doi: 10.1002/jps.10364
– volume: 114
  start-page: 1394
  year: 2006
  ident: 10.1002/jps.21918_bb0225
  article-title: Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.8805
– volume: 52
  start-page: 5144
  year: 1992
  ident: 10.1002/jps.21918_bb0210
  article-title: Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier
  publication-title: Cancer Res
– volume: 273
  start-page: H2783
  year: 1997
  ident: 10.1002/jps.21918_bb0175
  article-title: In vivo diffusion of immunoglobulin G in muscle: Effects of binding, solute exclusion, and lymphatic removal
  publication-title: Am J Physiol
– volume: 33
  start-page: 1640
  year: 2005
  ident: 10.1002/jps.21918_bb0260
  article-title: A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn)
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-005-7410-3
– volume: 46
  start-page: 3969
  year: 1986
  ident: 10.1002/jps.21918_bb0170
  article-title: Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice
  publication-title: Cancer Res
– volume: 62
  start-page: 93
  year: 2001
  ident: 10.1002/jps.21918_bb0135
  article-title: Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(00)00244-5
– volume: 112
  start-page: 2291
  year: 1999
  ident: 10.1002/jps.21918_bb0145
  article-title: Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.112.14.2291
– volume: 4
  start-page: 449
  year: 2002
  ident: 10.1002/jps.21918_bb0235
  article-title: Antibody-directed effector cell therapy of tumors: Analysis and optimization using a physiologically based pharmacokinetic model
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900260
– volume: 34
  start-page: 687
  year: 2007
  ident: 10.1002/jps.21918_bb0130
  article-title: Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-007-9065-1
– volume: 28
  start-page: 507
  year: 2001
  ident: 10.1002/jps.21918_bb0065
  article-title: General pharmacokinetic model for drugs exhibiting target-mediated drug disposition
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1023/A:1014414520282
– volume: 54
  start-page: 571
  year: 1989
  ident: 10.1002/jps.21918_bb0040
  article-title: Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1989.054.01.068
– volume: 3
  start-page: 944
  year: 2002
  ident: 10.1002/jps.21918_bb0150
  article-title: Immunoglobulin transport across polarized epithelial cells
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm972
– volume: 226
  start-page: 621
  year: 1997
  ident: 10.1002/jps.21918_bb0105
  article-title: Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer
  publication-title: Ann Surg
  doi: 10.1097/00000658-199711000-00007
– volume: 52
  start-page: 367
  year: 1992
  ident: 10.1002/jps.21918_bb0205
  article-title: Spatial distribution of tumor-specific monoclonal antibodies in human melanoma xenografts
  publication-title: Cancer Res
– volume: 49
  start-page: 673
  year: 1970
  ident: 10.1002/jps.21918_bb0020
  article-title: Metabolic properties of IgG subclasses in man
  publication-title: J Clin Invest
  doi: 10.1172/JCI106279
– volume: 203
  start-page: 1352
  year: 1964
  ident: 10.1002/jps.21918_bb0030
  article-title: A theoretical model of gamma-globulin catabolism
  publication-title: Nature
  doi: 10.1038/2031352a0
– volume: 35
  start-page: 1499
  year: 1994
  ident: 10.1002/jps.21918_bb0200
  article-title: Tumor concentration and distribution of carcinoembryonic antigen measured by in vitro quantitative autoradiography
  publication-title: J Nucl Med
– volume: 332
  start-page: 901
  year: 2003
  ident: 10.1002/jps.21918_bb0185
  article-title: Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(03)00952-5
– volume: 130
  start-page: 2302
  year: 1983
  ident: 10.1002/jps.21918_bb0125
  publication-title: J Immunol
  doi: 10.4049/jimmunol.130.5.2302
– volume: 4
  start-page: 91
  year: 1974
  ident: 10.1002/jps.21918_bb0230
  article-title: The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes
  publication-title: Eur J Immunol
  doi: 10.1002/eji.1830040207
– volume: 43
  start-page: 5347
  year: 1983
  ident: 10.1002/jps.21918_bb0255
  article-title: Stability, characterization, and kinetics of 111In-labeled monoclonal antitumor antibodies in normal animals and nude mouse-human tumor models
  publication-title: Cancer Res
– volume: 106
  start-page: 64
  year: 1996
  ident: 10.1002/jps.21918_bb0090
  article-title: Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin
  publication-title: J Invest Dermatol
  doi: 10.1111/1523-1747.ep12327258
SSID ssj0006055
Score 2.2765353
Snippet Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1582
SubjectTerms Animals
Antibodies, Monoclonal - pharmacokinetics
Biological and medical sciences
carcinoembryonic antigen (CEA)
Carcinoembryonic Antigen - immunology
Cell Line, Tumor
General pharmacology
Histocompatibility Antigens Class I - metabolism
Male
mathematical model
Medical sciences
Mice
Mice, Nude
Models, Statistical
Neoplasms - metabolism
PBPK
Pharmaceutical technology. Pharmaceutical industry
pharmacokinetics
Pharmacology. Drug treatments
physiological model
preclinical pharmacokinetics
Receptors, Fc - metabolism
T84.66 anti-CEA antibody
target mediated disposition
Transplantation, Heterologous
tumor associated antigen
Title Physiologically based pharmacokinetic model for T84.66: A monoclonal anti-CEA antibody
URI https://dx.doi.org/10.1002/jps.21918
https://api.istex.fr/ark:/67375/WNG-3F20BPD3-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjps.21918
https://www.ncbi.nlm.nih.gov/pubmed/19774657
https://www.proquest.com/docview/733588761
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhufTSNn1umwZRisnB69h6rJz25KZxQ6DBtA71oSC0khZSm7XJ2hD31J-Q35hf0pG0D1IcKL0s2mW06DEjfbM7-gahdwnLdJJaEROiRcwo4TGgIuYuKdeCk4y4s8NfzpPTC3Y24ZMt9KE6CxP4IeoPbs4y_HrtDFylxWFDGvpzUXTA3HruoK-L1XKA6GtDHQUwnddM4eAEVaxCXXJY17xvL9pxI3ztwiRVASOVhRQXmzDoXUjr96ThI_Sj6k0IRZl2Vsu0o3_9RfT4n919jB6WWBUPgnLtoi2bP0GtUSC7XrfxuDm7VbRxC48aGuz1UzTxwaXV2jpbY7dhGrwohabQIqiIfSoeDNAZj_uskyTv8QCe5XM9cz4Chom_vP19c3wy8MV0btbP0MXwZHx8Gpd5HGLNKTipwsA6QjJhFaU-NZJQNlMGsJTgLBN9xqxQhqq-4VobZY3pGvBLuWbpUY9qRp-j7Xye25cIJyqlsCBraplgjNKjrulrlZoM7pRNbIQOqhmVuiQ5d7k2ZjLQMxMJ4yj9OEbobS26CMwem4TalVrIEpIEqCFhhjaJt7zq1C9UV1MXOSe4_H7-WdIh6X4cfaJSRGj_jm7VFQBRgQ_MSIRwpWwSDN79xVG5na8KKSjlsDMkvQi9CErYNN-B-YTD2w-8Kt3fL3k2-uYLr_5d9DV6EEInXADeHtpeXq3sG0Bky3Tfm94fv5wx8g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKe4AL78fyKBZCUQ_ZNPFjvUVcQtsQShtFkKq5IMtreyVItImaRCKc-An8Rn4JY-9LRamEuKy8q7G1tmfsb3bH3yD0OmKpjhIrQkK0CBklPARUxNwl4VpwkhJ3dvhsEPXP2cmYj7fQ2_IsTM4PUX1wc5bh12tn4O6D9H7NGvptvmiBvXXiG2jHZfR2-QuOPtXkUQDUecUVDm5QySvUJvtV1et2ox03xt9doKRawFileZKLTSj0Kqj1u1LvDvpS9icPRpm0VsukpX_8RfX4vx2-i24XcBV3c_26h7Zsdh81hjnf9bqJR_XxrUUTN_CwZsJeP0BjH19aLq_TNXZ7psHzQmgCrwQVsc_GgwE941HMWlH0BnfhWTbTU-cmYJj7r79__jo87vpiMjPrh-i8dzw67IdFKodQcwp-qjCwlJBUWEWpz44klE2VATglOEtFzJgVylAVG661UdaYtgHXlGuWHHSoZvQR2s5mmX2CcKQSCmuyppYJxig9aJtYq8SkcKdsZAO0V06p1AXPuUu3MZU5QzORMI7Sj2OAXlWi85zcY5NQs9QLWaCSHG1ImKJN4g2vO1WD6nLigucElxeD95L2SPvd8IhKEaDdK8pVVQBQBW4wIwHCpbZJsHn3I0dldrZaSEEph80h6gToca6F9es7PB9xaH3P69L1_ZInw8--8PTfRV-im_3R2ak8_TD4-AzdyiMpXDzec7S9vFzZFwDQlsmut8M_swA2DA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiFeuF_CZVgIVXtoutaXOIOnsq2MAVUEndYHJMuxHQlapdXaSpQnfgK_kV_CsXPTUCchXiInOo58Ocf-TnL8HYReRizTUWpFSIgWIaOEh4CKmLukXAtOMuLODn8cRidn7HTMx1vodXUWpuCHqD-4Ocvw67Uz8LnJ9hvS0G_zRQfMrRdfQzssAmNxiOhTwx0FOJ3XVOHgBVW0Ql2yX1e9ajPacUP83cVJqgUMVVbkuNgEQi9jWr8pDW6hL1V3iliUSWe1TDv6x19Mj__Z39voZglWcb_Qrjtoy-Z3USsp2K7XbTxqDm8t2riFk4YHe30PjX10abW4TtfY7ZgGz0uhCbQIKmKfiwcDdsajmHWi6BXuw7N8pqfOScAw819___x1eNz3xXRm1vfR2eB4dHgSlokcQs0peKnCwEJCMmEVpT43klA2UwbAlOAsEzFjVihDVWy41kZZY7oGHFOuWXrQo5rRB2g7n-X2EcKRSimsyJpaJhij9KBrYq1Sk8GdspEN0F41o1KXLOcu2cZUFvzMRMI4Sj-OAXpRi84Lao9NQu1KLWSJSQqsIWGGNom3vOrUL1QXExc6J7g8H76VdEC6b5IjKkWAdi_pVl0BIBU4wYwECFfKJsHi3W8cldvZaiEFpRy2hqgXoIeFEjbNd2g-4vD2Pa9KV_dLniaffeHxv4s-R9eTo4H88G74_gm6UYRRuGC8p2h7ebGyzwCdLdNdb4V_AA6hNMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiologically+based+pharmacokinetic+model+for+T84.66%3A+a+monoclonal+anti-CEA+antibody&rft.jtitle=Journal+of+pharmaceutical+sciences&rft.au=Urva%2C+Shweta+R&rft.au=Yang%2C+Victor+C&rft.au=Balthasar%2C+Joseph+P&rft.date=2010-03-01&rft.eissn=1520-6017&rft.volume=99&rft.issue=3&rft.spage=1582&rft_id=info:doi/10.1002%2Fjps.21918&rft_id=info%3Apmid%2F19774657&rft.externalDocID=19774657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3549&client=summon