Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors
NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐sup...
Saved in:
Published in | Advanced functional materials Vol. 24; no. 40; pp. 6372 - 6380 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
29.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g−1 at a current density of 3 A g−1 (the theoretical capacitance of NiO is 2584 F g−1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg−1 at a power density of 5.25 kW kg−1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle.
Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3‐electrode pseudocapacitors and 2‐electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors. |
---|---|
AbstractList | NiO nanoflakes are created with a simple hydrothermal method on 3D (three-dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as-grown NiO-3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo-supercapacitor application without needing binders or metal-based current collectors. Electrochemical measurements impart that the hierarchical NiO-3D graphene composite delivers a high specific capacitance of approximately 1829 F g super(-1) at a current density of 3 A g super(-1) (the theoretical capacitance of NiO is 2584 F g super(-1)). Furthermore, a full-cell is realized with an energy density of 138 Wh kg super(-1) at a power density of 5.25 kW kg super(-1), which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1 super(st) cycle. Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3-electrode pseudocapacitors and 2-electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors. NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g −1 at a current density of 3 A g −1 (the theoretical capacitance of NiO is 2584 F g −1 ). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg −1 at a power density of 5.25 kW kg −1 , which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1 st cycle. NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g−1 at a current density of 3 A g−1 (the theoretical capacitance of NiO is 2584 F g−1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg−1 at a power density of 5.25 kW kg−1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle. Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3‐electrode pseudocapacitors and 2‐electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors. |
Author | Yuen, Muk-Fung Chen, Xianfeng Xu, Junling Li, Yangyang Zhang, Jie Zhang, Wenjun Wang, Chundong |
Author_xml | – sequence: 1 givenname: Chundong surname: Wang fullname: Wang, Chundong organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China – sequence: 2 givenname: Junling surname: Xu fullname: Xu, Junling organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China – sequence: 3 givenname: Muk-Fung surname: Yuen fullname: Yuen, Muk-Fung organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China – sequence: 4 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China – sequence: 5 givenname: Yangyang surname: Li fullname: Li, Yangyang organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China – sequence: 6 givenname: Xianfeng surname: Chen fullname: Chen, Xianfeng email: xianfeng.chen@cityu.edu.hk organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China – sequence: 7 givenname: Wenjun surname: Zhang fullname: Zhang, Wenjun email: xianfeng.chen@cityu.edu.hk organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China |
BookMark | eNqF0MFr2zAUBnAxOljb7bqzjr04lSxbso8lbZNBmmZsI2MX8Sw_LVpky5Uc1v73TckIY1B2eu_w_R6P74yc9KFHQj5yNuGM5ZfQ2m6SM14wnnP5hpxyyWUmWF6dHHf-_R05S-kXY1wpUZySbu4wQjQbZ8DTaeiGkNyI9MajGWNoMdFg6dKZLXp6_-hapEvog_WwRSqu6SzCsMEeqQ2Rzt3PTbbCuN876A3SVcJdGwwMYNwYYnpP3lrwCT_8mefk2-3N1-k8W9zPPk2vFpkphZKZNHWLiokCa1OAgFza0palaZgCYywWoq0bNG3TVKWtWQEV8kq1CmTR1LZi4pxcHO4OMTzsMI26c8mg99Bj2CXNZV6LUnEl9tHiEDUxpBTR6v2rMLrQjxGc15zpl3b1S7v62O6eTf5hQ3QdxKfXQX0Av53Hp_-k9dX17d3fNjtYl0Z8PFqIWy2VUKVeL2f6xzRfr9ZfFvqzeAYjcaCn |
CitedBy_id | crossref_primary_10_1002_asia_202100216 crossref_primary_10_1039_C5RA04400F crossref_primary_10_1016_j_carbon_2015_07_087 crossref_primary_10_1016_j_compstruct_2024_118149 crossref_primary_10_1016_j_nanoen_2016_11_024 crossref_primary_10_3390_en14102908 crossref_primary_10_1016_j_electacta_2020_137082 crossref_primary_10_1016_j_bios_2016_05_065 crossref_primary_10_1039_C5NR00030K crossref_primary_10_3390_nano8060431 crossref_primary_10_1002_adma_201503390 crossref_primary_10_1039_C5RA05231A crossref_primary_10_1002_admi_201900889 crossref_primary_10_1016_j_microc_2021_105979 crossref_primary_10_1038_srep20021 crossref_primary_10_1007_s11356_021_15276_5 crossref_primary_10_1016_j_electacta_2023_143496 crossref_primary_10_1098_rsos_180842 crossref_primary_10_1002_asia_201800220 crossref_primary_10_1002_adfm_201905454 crossref_primary_10_1007_s10854_019_01403_z crossref_primary_10_1016_j_jallcom_2017_08_260 crossref_primary_10_1039_C8RA04492A crossref_primary_10_1016_j_electacta_2016_01_071 crossref_primary_10_1002_adfm_201404019 crossref_primary_10_1016_j_jallcom_2020_158296 crossref_primary_10_1088_1361_6528_ab4530 crossref_primary_10_1007_s10008_015_3022_5 crossref_primary_10_1021_acs_chemrev_8b00252 crossref_primary_10_1016_j_electacta_2018_12_053 crossref_primary_10_1039_D0MA00871K crossref_primary_10_1039_D2NJ04762D crossref_primary_10_1016_j_jcis_2017_01_020 crossref_primary_10_1016_j_cattod_2014_12_016 crossref_primary_10_1016_S1003_6326_18_64825_3 crossref_primary_10_1021_acsanm_8b00606 crossref_primary_10_1016_j_jmst_2021_05_025 crossref_primary_10_1002_admi_201500191 crossref_primary_10_4028_www_scientific_net_MSF_937_25 crossref_primary_10_1016_j_microc_2019_103977 crossref_primary_10_1039_C5TA04851F crossref_primary_10_1007_s10854_019_00796_1 crossref_primary_10_1002_aenm_201601034 crossref_primary_10_1021_acsaem_8b00120 crossref_primary_10_1016_j_est_2022_105212 crossref_primary_10_1002_jctb_6166 crossref_primary_10_1016_j_energy_2020_118950 crossref_primary_10_1016_j_mattod_2018_11_002 crossref_primary_10_1002_aenm_201700678 crossref_primary_10_1002_ppsc_201700484 crossref_primary_10_1016_j_est_2024_111134 crossref_primary_10_1039_C5TB00324E crossref_primary_10_1007_s10854_015_4085_x crossref_primary_10_1007_s12274_017_1953_0 crossref_primary_10_3390_cryst10090751 crossref_primary_10_1007_s11581_018_2700_6 crossref_primary_10_1149_2_0101511jes crossref_primary_10_1007_s10854_018_9817_2 crossref_primary_10_1016_j_carbon_2017_06_076 crossref_primary_10_1155_2024_8654961 crossref_primary_10_1039_C5RA17478C crossref_primary_10_1039_C6TA02582J crossref_primary_10_1039_D3QI02264A crossref_primary_10_1007_s44246_022_00015_3 crossref_primary_10_1039_C6RA01250G crossref_primary_10_1016_j_jallcom_2020_154447 crossref_primary_10_1016_j_jelechem_2019_02_022 crossref_primary_10_1002_aenm_201502159 crossref_primary_10_1016_S1003_6326_18_64843_5 crossref_primary_10_1039_C5TA05441A crossref_primary_10_1016_j_ceramint_2018_11_104 crossref_primary_10_1007_s11051_025_06246_w crossref_primary_10_1016_j_jallcom_2023_168711 crossref_primary_10_1016_j_apsusc_2018_08_262 crossref_primary_10_1016_j_cej_2016_04_069 crossref_primary_10_1016_j_jpowsour_2016_03_041 crossref_primary_10_1016_j_matlet_2022_132613 crossref_primary_10_1016_j_cej_2018_10_220 crossref_primary_10_1016_j_cej_2017_05_048 crossref_primary_10_1039_C7TA08852C crossref_primary_10_1016_j_snb_2018_09_040 crossref_primary_10_1016_j_electacta_2017_08_114 crossref_primary_10_1016_j_pmatsci_2017_07_001 crossref_primary_10_1016_j_jcis_2019_10_032 crossref_primary_10_1016_j_jallcom_2017_06_170 crossref_primary_10_1049_nbt2_12045 crossref_primary_10_1002_celc_201901420 crossref_primary_10_1016_j_jpowsour_2016_10_091 crossref_primary_10_1039_C5TA09615D crossref_primary_10_1016_j_jcis_2019_08_055 crossref_primary_10_1002_adfm_201502711 crossref_primary_10_1016_j_jechem_2016_03_002 crossref_primary_10_1007_s10854_024_12767_2 crossref_primary_10_1002_ente_201900923 crossref_primary_10_1016_j_cej_2017_09_157 crossref_primary_10_1039_D0MA00323A crossref_primary_10_1016_S1875_5372_18_30038_9 crossref_primary_10_1016_j_jallcom_2018_10_085 crossref_primary_10_1016_j_est_2021_103171 crossref_primary_10_1002_chem_201504569 crossref_primary_10_3390_app10113814 crossref_primary_10_1016_j_measen_2024_101273 crossref_primary_10_1039_C5TA04005A crossref_primary_10_1016_j_jallcom_2022_166490 crossref_primary_10_1016_j_jsamd_2023_100591 crossref_primary_10_1007_s11706_018_0432_1 crossref_primary_10_1039_C4TA07009G crossref_primary_10_1007_s12039_020_01806_0 crossref_primary_10_1038_ncomms13949 crossref_primary_10_1002_slct_201803340 crossref_primary_10_1007_s10800_020_01471_8 crossref_primary_10_1039_C6EE00158K crossref_primary_10_1002_adma_202108750 crossref_primary_10_1007_s10854_017_6487_4 crossref_primary_10_20964_2017_04_39 crossref_primary_10_1039_C5NR03633J crossref_primary_10_1016_j_colsurfa_2021_127017 crossref_primary_10_1080_10408436_2021_1886040 crossref_primary_10_1038_srep13696 crossref_primary_10_1016_j_jelechem_2022_116065 crossref_primary_10_1016_j_microc_2019_104527 crossref_primary_10_1039_C5TA05295E crossref_primary_10_1039_C7CS00871F crossref_primary_10_1007_s10904_024_03391_y crossref_primary_10_1016_j_jallcom_2020_154085 crossref_primary_10_1039_C8TA05050C crossref_primary_10_1016_j_jallcom_2020_155293 crossref_primary_10_1002_adma_201501493 crossref_primary_10_1002_celc_201500089 crossref_primary_10_1016_j_electacta_2019_04_048 crossref_primary_10_1016_j_est_2019_100955 crossref_primary_10_1016_j_jpowsour_2015_03_106 crossref_primary_10_1039_C6TA03336A crossref_primary_10_1002_asia_201501072 crossref_primary_10_1166_jno_2022_3326 crossref_primary_10_1016_j_electacta_2018_09_149 crossref_primary_10_1021_acsami_6b12370 crossref_primary_10_1039_C6TA02005D crossref_primary_10_20964_2018_09_35 crossref_primary_10_1016_j_inoche_2022_109661 crossref_primary_10_1016_j_jpowsour_2016_03_085 crossref_primary_10_1039_C5TA05313G crossref_primary_10_1016_j_jallcom_2018_12_247 crossref_primary_10_1016_j_electacta_2018_02_141 crossref_primary_10_1039_C6TA00397D crossref_primary_10_1039_C5RA14568F crossref_primary_10_20517_microstructures_2023_86 crossref_primary_10_1016_j_mtener_2017_07_004 crossref_primary_10_1038_s41598_017_17899_6 crossref_primary_10_1515_revic_2020_0022 crossref_primary_10_1016_j_electacta_2019_03_212 crossref_primary_10_1002_celc_201600830 crossref_primary_10_1016_j_electacta_2017_11_011 crossref_primary_10_1002_celc_201700525 crossref_primary_10_1002_slct_202002801 crossref_primary_10_1016_j_carbon_2018_11_053 crossref_primary_10_1002_adem_201700475 crossref_primary_10_1002_pssa_201800595 crossref_primary_10_1007_s10854_019_02027_z crossref_primary_10_1016_j_nanoso_2017_07_003 crossref_primary_10_1016_j_matchemphys_2022_126718 crossref_primary_10_1039_C5GC02938D crossref_primary_10_1007_s11696_023_02964_4 crossref_primary_10_1016_j_tws_2025_113050 crossref_primary_10_1016_j_cej_2016_08_132 crossref_primary_10_1016_j_compscitech_2018_07_045 crossref_primary_10_1016_j_ceramint_2018_08_058 crossref_primary_10_3390_en13184943 crossref_primary_10_1007_s11696_023_03287_0 crossref_primary_10_1557_s43578_021_00349_5 crossref_primary_10_1039_C5TA01071C crossref_primary_10_1016_j_cej_2019_122326 crossref_primary_10_1016_j_est_2020_102037 crossref_primary_10_1039_C5TA02795K crossref_primary_10_1002_slct_201702780 crossref_primary_10_1016_j_jcis_2019_02_089 crossref_primary_10_34133_2019_8013285 crossref_primary_10_1039_C8NJ00652K crossref_primary_10_1039_C6TA01369D crossref_primary_10_1002_adfm_201503662 crossref_primary_10_1007_s40843_020_1562_1 crossref_primary_10_1016_j_est_2024_114546 crossref_primary_10_3390_nano10020345 crossref_primary_10_1016_j_cej_2018_02_117 crossref_primary_10_3390_coatings12091312 crossref_primary_10_1002_smll_201704203 crossref_primary_10_1007_s40820_017_0148_2 crossref_primary_10_1039_C4NR05895J crossref_primary_10_1039_C8TA12200H crossref_primary_10_1002_aenm_201600278 crossref_primary_10_1007_s12274_016_1013_1 crossref_primary_10_1016_j_electacta_2016_01_161 crossref_primary_10_1016_j_est_2023_110118 crossref_primary_10_1002_admt_201800258 crossref_primary_10_1016_j_jsamd_2020_05_002 crossref_primary_10_20964_2019_05_53 crossref_primary_10_3390_cryst10090846 crossref_primary_10_1039_C5TA00328H crossref_primary_10_1002_admt_201700168 crossref_primary_10_1002_slct_201600151 crossref_primary_10_1016_j_energy_2024_133593 crossref_primary_10_1016_j_colsurfa_2017_09_008 crossref_primary_10_1021_acssuschemeng_6b00362 crossref_primary_10_1021_acsami_1c23072 crossref_primary_10_1016_j_mssp_2018_10_031 crossref_primary_10_1016_j_jelechem_2017_01_047 crossref_primary_10_1016_j_cej_2015_10_068 crossref_primary_10_1002_adfm_202305978 crossref_primary_10_1039_C6SE00085A crossref_primary_10_1016_j_jpowsour_2016_04_010 crossref_primary_10_1002_smll_201801009 |
Cites_doi | 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G 10.1016/j.jssc.2011.01.019 10.1021/nl201432g 10.1039/C2NR11479H 10.1021/am200479d 10.1021/nl061576a 10.1039/c1ee01338f 10.1021/nl2026635 10.1149/1.1449951 10.1038/nmat1368 10.1088/0957-4484/19/30/305604 10.1039/C2NR32897F 10.1007/s12274-010-0024-6 10.1002/anie.201101083 10.1021/ja102267j 10.1002/smll.201100990 10.1038/ncomms2932 10.1021/am3000165 10.1002/anie.201004718 10.1063/1.3005599 10.1149/1.1836396 10.1149/2.025210jes 10.1039/C3TA15046A 10.1039/c2jm31526b 10.1002/chem.201100727 10.1126/science.1200770 10.1039/c3ee40829a 10.1021/nn4021955 10.1021/am9009154 10.1002/anie.200351691 10.1038/nmat2297 10.1021/am400012h 10.1088/1742-6596/93/1/012039 10.1021/am3021894 10.1038/nmat1672 10.1039/c3ta11740e 10.1023/A:1012995703754 10.1007/s10853-013-7471-x 10.1103/PhysRevLett.97.187401 10.1038/nmat2612 10.1063/1.4729823 10.1126/science.1239089 10.1039/C0JM02784G 10.1039/C1NR11542A 10.1039/c3nr02710d 10.1038/srep01408 10.1021/am404691w 10.1002/adfm.200800951 10.1007/s12274-010-0063-z 10.1039/c0ee00004c 10.1039/c3nr02872k |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201401216 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 6380 |
ExternalDocumentID | 10_1002_adfm_201401216 ADFM201401216 ark_67375_WNG_ZC2WPWSL_Q |
Genre | article |
GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China funderid: 104911 – fundername: National Natural Science Foundation of China funderid: 61176007; 51372213 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 1OB AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5376-6c9de7034e9c4a3a26f5f55cb07accfe43d9becdbb85f904a8e187d7a64b9f803 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 07:04:07 EDT 2025 Tue Jul 01 01:30:15 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Aug 20 07:27:53 EDT 2025 Wed Oct 30 09:51:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5376-6c9de7034e9c4a3a26f5f55cb07accfe43d9becdbb85f904a8e187d7a64b9f803 |
Notes | Research Grants Council of the Hong Kong Special Administrative Region, China - No. 104911 ark:/67375/WNG-ZC2WPWSL-Q National Natural Science Foundation of China - No. 61176007; No. 51372213 istex:883D099091BC97CCE1CA689099B11B8CFC7456DD ArticleID:ADFM201401216 C.D.W. and J.L.X. contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1629357173 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1629357173 crossref_citationtrail_10_1002_adfm_201401216 crossref_primary_10_1002_adfm_201401216 wiley_primary_10_1002_adfm_201401216_ADFM201401216 istex_primary_ark_67375_WNG_ZC2WPWSL_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 29, 2014 |
PublicationDateYYYYMMDD | 2014-10-29 |
PublicationDate_xml | – month: 10 year: 2014 text: October 29, 2014 day: 29 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T. K. Sham, X. Sun, Energy Environ. Sci. 2013, 6, 2900. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala, J Mater. Sci. 2013, 48, 6707. N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater. 2008, 18, 3506. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 2003, 42, 4092. C. Wu, S. Deng, H. Wang, Y. Sun, J. Liu, H. Yan, ACS Appl. Mater. Interfaces 2014, 6, 1106. P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 2010, 3, 1238. C. D. Wang, Y. G. Zhou, L. F. He, T. W. Ng, G. Hong, Q. H. Wu, F. Gao, C. S. Lee, W. J. Zhang, Nanoscale 2013, 5, 600. M. P. Yeager, D. Su, N. S. Marinković, X. Teng, J. Electrochem. Soc. 2012, 159, A1598. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng, Q. Yan, Nano Res. 2010, 3, 643. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. Van Haesendonck, Nanotechnology 2008, 19, 305604. K. C. Liu, M. A. Anderson, J. Electrochem. Soc. 1996, 143, 124. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conference Series 2007, 93, 012039. G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 4438. J. Zhu, J. He, ACS Appl. Mater. Interfaces 2012, 4, 1770. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 2011, 4, 2915. T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146. K. Liang, X. Tang, W. Hu, J. Mater. Chem. 2012, 22, 11062. V. Biju, M. Abdul Khadar, J. Mater. Sci. 2001, 36, 5779. L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190. W. Qian, X. Cui, R. Hao, Y. L. Hou, Z. Y. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 2259. H. Jiang, C. Z. Li, T. Sun, J. Ma, Nanoscale 2012, 4, 807. K. W. Nam, K. B. Kim, Electrochem. Soc. 2002, 149, 346. J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, J Solid State Chem. 2011, 184, 578. C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, W. J. Zhang, Appl. Phys. Lett 2012, 100, 253107. X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534. X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. C. D. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. F. Chen, W. J. Zhang, Nanoscale 2013, 5, 10599. R. Vellacheri, V. K. Pillai, S. Kurungot, Nanoscale 2012, 4, 890. K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387. Y. You, Z. Ni, T. Yu, Z. Shen, Appl. Phys. Lett. 2008, 93, 163112. H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2014, 2, 3223. T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J. Hu, V. S. Bhadram, C. Narayana, T. S. Fisher, ACS Appl. Mater. Interfaces 2010, 2, 644. S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Appl. Mater. Interfaces 2013, 5, 1596. P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567. C. CHu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett. 2006, 6, 2690. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 2013, 5, 2188. X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 2011, 17, 10898. H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. Zhang, Y. Y. Li, Nano Res. 2010, 3, 895. Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, J. Q. Xiao, Angew. Chem. Int. Ed. 2011, 50, 6847. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, ACS Nano 2013, 7, 6237. A. K. Shukla, S. Sampath, K. Vijayamohan, Curr. Sci. 2000, 79, 1656. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894. L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408. A. S. Aric, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366. C. D. Wang, Y. S. Chui, R. G. Ma, T. L. Wong, J. G. Ren, Q. H. Wu, X. F. Chen, W. J. Zhang, J. Mater. Chem. A 2013, 1, 10092. D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem. Int. Ed. 2010, 49, 9859. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401. X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gu, X. B. Zhao, J. Mater. Chem. 2011, 21, 671. H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 2010, 132, 7472. F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Li, Nanoscale 2013, 5, 7984. 2013; 3 2013; 48 2012; 100 2006; 97 2013; 4 2013; 1 2008; 18 2008; 19 2008; 7 2011; 11 2006; 5 2006; 6 2007; 93 1996; 143 2013; 341 2013; 7 2011; 17 2011; 4 2011; 3 2013; 5 2008; 93 2013; 6 2011; 332 2011; 7 2010; 49 2014; 2 2000; 79 2011; 50 2010; 132 2005; 4 2011; 21 2002; 149 2010; 3 2001; 11 2011; 184 2010; 2 2012; 159 2012; 4 2001; 36 2014; 6 2012; 22 2003; 42 2010; 9 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Shukla A. K. (e_1_2_6_8_1) 2000; 79 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, J Solid State Chem. 2011, 184, 578. – reference: K. W. Nam, K. B. Kim, Electrochem. Soc. 2002, 149, 346. – reference: D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem. Int. Ed. 2010, 49, 9859. – reference: R. Vellacheri, V. K. Pillai, S. Kurungot, Nanoscale 2012, 4, 890. – reference: L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190. – reference: X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 2011, 4, 2915. – reference: H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2014, 2, 3223. – reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. – reference: K. Liang, X. Tang, W. Hu, J. Mater. Chem. 2012, 22, 11062. – reference: X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 2011, 17, 10898. – reference: H. Jiang, C. Z. Li, T. Sun, J. Ma, Nanoscale 2012, 4, 807. – reference: D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T. K. Sham, X. Sun, Energy Environ. Sci. 2013, 6, 2900. – reference: P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567. – reference: A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. Van Haesendonck, Nanotechnology 2008, 19, 305604. – reference: X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gu, X. B. Zhao, J. Mater. Chem. 2011, 21, 671. – reference: A. K. Shukla, S. Sampath, K. Vijayamohan, Curr. Sci. 2000, 79, 1656. – reference: M. P. Yeager, D. Su, N. S. Marinković, X. Teng, J. Electrochem. Soc. 2012, 159, A1598. – reference: C. Wu, S. Deng, H. Wang, Y. Sun, J. Liu, H. Yan, ACS Appl. Mater. Interfaces 2014, 6, 1106. – reference: C. D. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. F. Chen, W. J. Zhang, Nanoscale 2013, 5, 10599. – reference: C. D. Wang, Y. G. Zhou, L. F. He, T. W. Ng, G. Hong, Q. H. Wu, F. Gao, C. S. Lee, W. J. Zhang, Nanoscale 2013, 5, 600. – reference: K. C. Liu, M. A. Anderson, J. Electrochem. Soc. 1996, 143, 124. – reference: X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534. – reference: L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408. – reference: C. D. Wang, Y. S. Chui, R. G. Ma, T. L. Wong, J. G. Ren, Q. H. Wu, X. F. Chen, W. J. Zhang, J. Mater. Chem. A 2013, 1, 10092. – reference: T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J. Hu, V. S. Bhadram, C. Narayana, T. S. Fisher, ACS Appl. Mater. Interfaces 2010, 2, 644. – reference: N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conference Series 2007, 93, 012039. – reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. – reference: Y. You, Z. Ni, T. Yu, Z. Shen, Appl. Phys. Lett. 2008, 93, 163112. – reference: J. Zhu, J. He, ACS Appl. Mater. Interfaces 2012, 4, 1770. – reference: W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 2003, 42, 4092. – reference: H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. Zhang, Y. Y. Li, Nano Res. 2010, 3, 895. – reference: A. S. Aric, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366. – reference: G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 4438. – reference: A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala, J Mater. Sci. 2013, 48, 6707. – reference: W. Qian, X. Cui, R. Hao, Y. L. Hou, Z. Y. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 2259. – reference: C. CHu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett. 2006, 6, 2690. – reference: S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 2013, 5, 2188. – reference: J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, ACS Nano 2013, 7, 6237. – reference: S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Appl. Mater. Interfaces 2013, 5, 1596. – reference: H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 2010, 132, 7472. – reference: A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401. – reference: P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 2010, 3, 1238. – reference: N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater. 2008, 18, 3506. – reference: V. Biju, M. Abdul Khadar, J. Mater. Sci. 2001, 36, 5779. – reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. – reference: T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146. – reference: K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387. – reference: F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Li, Nanoscale 2013, 5, 7984. – reference: X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng, Q. Yan, Nano Res. 2010, 3, 643. – reference: Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, J. Q. Xiao, Angew. Chem. Int. Ed. 2011, 50, 6847. – reference: H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894. – reference: C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, W. J. Zhang, Appl. Phys. Lett 2012, 100, 253107. – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 4 start-page: 890 year: 2012 publication-title: Nanoscale – volume: 49 start-page: 9859 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 97 start-page: 187401 year: 2006 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 1238 year: 2010 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1596 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1770 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 341 start-page: 534 year: 2013 publication-title: Science – volume: 4 start-page: 807 year: 2012 publication-title: Nanoscale – volume: 6 start-page: 2900 year: 2013 publication-title: Energy Environ. Sci. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 19 start-page: 305604 year: 2008 publication-title: Nanotechnology – volume: 11 start-page: 4438 year: 2011 publication-title: Nano Lett. – volume: 36 start-page: 5779 year: 2001 publication-title: J. Mater. Sci. – volume: 18 start-page: 3506 year: 2008 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1106 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 895 year: 2010 publication-title: Nano Res. – volume: 149 start-page: 346 year: 2002 publication-title: Electrochem. Soc. – volume: 7 start-page: 3163 year: 2011 publication-title: Small – volume: 4 start-page: 1894 year: 2013 publication-title: Nat. Commun. – volume: 159 start-page: A1598 year: 2012 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 2259 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 7984 year: 2013 publication-title: Nanoscale – volume: 1 start-page: 10092 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 10599 year: 2013 publication-title: Nanoscale – volume: 143 start-page: 124 year: 1996 publication-title: J. Electrochem. Soc. – volume: 21 start-page: 671 year: 2011 publication-title: J. Mater. Chem. – volume: 2 start-page: 644 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2915 year: 2011 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2188 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 93 start-page: 012039 year: 2007 publication-title: J. Phys. Conference Series – volume: 79 start-page: 1656 year: 2000 publication-title: Curr. Sci. – volume: 9 start-page: 146 year: 2010 publication-title: Nat. Mater. – volume: 5 start-page: 567 year: 2006 publication-title: Nat. Mater. – volume: 5 start-page: 600 year: 2013 publication-title: Nanoscale – volume: 11 start-page: 3190 year: 2011 publication-title: Nano Lett. – volume: 3 start-page: 643 year: 2010 publication-title: Nano Res. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 100 start-page: 253107 year: 2012 publication-title: Appl. Phys. Lett – volume: 11 start-page: 387 year: 2001 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 11062 year: 2012 publication-title: J. Mater. Chem. – volume: 50 start-page: 6847 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 10898 year: 2011 publication-title: Chem. Eur. J. – volume: 7 start-page: 6237 year: 2013 publication-title: ACS Nano – volume: 2 start-page: 3223 year: 2014 publication-title: J. Mater. Chem. A – volume: 93 start-page: 163112 year: 2008 publication-title: Appl. Phys. Lett. – volume: 184 start-page: 578 year: 2011 publication-title: J Solid State Chem. – volume: 6 start-page: 2690 year: 2006 publication-title: Nano Lett. – volume: 42 start-page: 4092 year: 2003 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1408 year: 2013 publication-title: Sci. Rep. – volume: 132 start-page: 7472 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 6707 year: 2013 publication-title: J Mater. Sci. – ident: e_1_2_6_7_1 doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G – ident: e_1_2_6_23_1 doi: 10.1016/j.jssc.2011.01.019 – ident: e_1_2_6_36_1 doi: 10.1021/nl201432g – ident: e_1_2_6_12_1 doi: 10.1039/C2NR11479H – ident: e_1_2_6_33_1 doi: 10.1021/am200479d – ident: e_1_2_6_11_1 doi: 10.1021/nl061576a – ident: e_1_2_6_51_1 doi: 10.1039/c1ee01338f – ident: e_1_2_6_6_1 doi: 10.1021/nl2026635 – ident: e_1_2_6_18_1 doi: 10.1149/1.1449951 – ident: e_1_2_6_2_1 doi: 10.1038/nmat1368 – ident: e_1_2_6_31_1 doi: 10.1088/0957-4484/19/30/305604 – ident: e_1_2_6_35_1 doi: 10.1039/C2NR32897F – ident: e_1_2_6_45_1 doi: 10.1007/s12274-010-0024-6 – ident: e_1_2_6_17_1 doi: 10.1002/anie.201101083 – ident: e_1_2_6_5_1 doi: 10.1021/ja102267j – ident: e_1_2_6_26_1 doi: 10.1002/smll.201100990 – ident: e_1_2_6_50_1 doi: 10.1038/ncomms2932 – ident: e_1_2_6_14_1 doi: 10.1021/am3000165 – ident: e_1_2_6_1_1 doi: 10.1002/anie.201004718 – ident: e_1_2_6_37_1 doi: 10.1063/1.3005599 – ident: e_1_2_6_16_1 doi: 10.1149/1.1836396 – ident: e_1_2_6_40_1 doi: 10.1149/2.025210jes – ident: e_1_2_6_25_1 doi: 10.1039/C3TA15046A – ident: e_1_2_6_46_1 doi: 10.1039/c2jm31526b – ident: e_1_2_6_43_1 doi: 10.1002/chem.201100727 – ident: e_1_2_6_39_1 doi: 10.1126/science.1200770 – ident: e_1_2_6_49_1 doi: 10.1039/c3ee40829a – ident: e_1_2_6_42_1 doi: 10.1021/nn4021955 – ident: e_1_2_6_30_1 doi: 10.1021/am9009154 – ident: e_1_2_6_21_1 doi: 10.1002/anie.200351691 – ident: e_1_2_6_3_1 doi: 10.1038/nmat2297 – ident: e_1_2_6_47_1 doi: 10.1021/am400012h – ident: e_1_2_6_38_1 doi: 10.1088/1742-6596/93/1/012039 – ident: e_1_2_6_41_1 doi: 10.1021/am3021894 – ident: e_1_2_6_48_1 doi: 10.1038/nmat1672 – ident: e_1_2_6_28_1 doi: 10.1039/c3ta11740e – ident: e_1_2_6_20_1 doi: 10.1023/A:1012995703754 – ident: e_1_2_6_24_1 doi: 10.1007/s10853-013-7471-x – ident: e_1_2_6_34_1 doi: 10.1103/PhysRevLett.97.187401 – ident: e_1_2_6_13_1 doi: 10.1038/nmat2612 – ident: e_1_2_6_32_1 doi: 10.1063/1.4729823 – ident: e_1_2_6_52_1 doi: 10.1126/science.1239089 – volume: 79 start-page: 1656 year: 2000 ident: e_1_2_6_8_1 publication-title: Curr. Sci. – ident: e_1_2_6_10_1 doi: 10.1039/C0JM02784G – ident: e_1_2_6_9_1 doi: 10.1039/C1NR11542A – ident: e_1_2_6_19_1 doi: 10.1039/c3nr02710d – ident: e_1_2_6_22_1 doi: 10.1038/srep01408 – ident: e_1_2_6_44_1 doi: 10.1021/am404691w – ident: e_1_2_6_29_1 doi: 10.1002/adfm.200800951 – ident: e_1_2_6_15_1 doi: 10.1007/s12274-010-0063-z – ident: e_1_2_6_4_1 doi: 10.1039/c0ee00004c – ident: e_1_2_6_27_1 doi: 10.1039/c3nr02872k |
SSID | ssj0017734 |
Score | 2.5591917 |
Snippet | NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced... NiO nanoflakes are created with a simple hydrothermal method on 3D (three-dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6372 |
SubjectTerms | Asymmetry Capacitance Capacitors Density Electrodes Graphene hierarchical composite electrodes Nanostructure nickel oxide nanoflakes pseudocapacitors Three dimensional |
Title | Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors |
URI | https://api.istex.fr/ark:/67375/WNG-ZC2WPWSL-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201401216 https://www.proquest.com/docview/1629357173 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcIEDLbQVgYIWCcHJ4LXXr2NECBEikPJQol5W-5SiRHFFEglx6k_ob-wv6Y6dmKQSQio3W9qV7d15fOOd-QbgME0VM4H2Pcki32NOgzwhwtjLrJFaaGWpj7XD7eu49cAue1FvoYq_5IeofrihZhT2GhVcyPHpC2mo0BYryTFACChybmPCFqKi24o_iiZJeawcU0zwor05a6MfnC5PX_JKq7jAT0uQcxG4Fp6n-RHE_J3LhJPByXQiT9TzP3SO7_moT7Axg6WkXsrRJnwwoy1YXyAr_Ax5q4_FykXvlCFBO4L5Xoacl410tBmT3BInWQMzJDdPfW2IM925HYqBIWGDXCA1trOsxMFkguklf3797ryULZDO2Ey186wuiO9jC6Av8NA8vz9rebN2DZ5CThgvVpk2zoAwkykmQhHENrJRpKSfCKWsYaHOnMRoKdPIZj4TqaFpohMRM5nZ1A-_wsooH5ltIFQrGjpkpkMMD2M3g4qUUe3iG-uEKqyBN98urmZc5thSY8hLFuaA40LyaiFrcFyN_1myeLw68qjY_WqYeBxg7lsS8e71Bf9xFnQ73bsr_r0GB3Px4E4j8ZhFjEw-HXMaOwgVYXZDDYJis994Jq83mu3qbud_Ju3CGl6jUw2yb7AyeZyaPYeWJnIfVuuN9tXdfqEZfwGXkQ_T |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL0q7QJYQHlUDdAySAhWbj32eGwvq7ZpgCQEaJWqm9E8pShRjJpEqlj1E_qNfAlz7dhtkBASLG3NyPbMfY7PPRfgbZZpZiMTBoolYcC8BgVSxjzInVVGGu1oiLXDvT7vnLGP50mNJsRamIofojlwQ80o7TUqOB5I79-yhkrjsJQcM4SI8nuwgW29y6zqa8MgRdO0-rHMKUK86HnN2xhG-6vzV_zSBi7x1UrQeTd0LX1P-zGo-q0ryMl4bzFXe_rHb4SO__VZm_BoGZmSg0qUnsCanT6Fh3f4Cp9B0RlhvXLZPmVC0JQg5MuS46qXjrEzUjjihWtsJ-Tz1chY4q134SZybEl8RE6QHdsbV-IjZYIIk5_XN4PbygUymNmF8c7V5_Ej7AL0HM7ax6eHnWDZsSHQSAsTcJ0b620Is7lmMpYRd4lLEq3CVGrtLItN7oXGKJUlLg-ZzCzNUpNKzlTusjDegvVpMbXbQKjRNPbBmYkxQ-R-BpUZo8anOM7LVdyCoN4voZd05thVYyIqIuZI4EKKZiFb8L4Z_70i8vjjyHfl9jfD5OUY4W9pIob9E3FxGA0Hw29d8aUFb2r5EF4p8U-LnNpiMROU-ygqQYBDC6Jyt__yTHFw1O41Vy_-ZdJruN857XVF90P_00t4gPfRx0b5K1ifXy7sjg-e5mq3VI9f-D8SWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VkBA90AKtmtKWrVSVk8Frr9f2ERFCeKUBihJxWa33IUWJYkQSCfXUn9Df2F_SHTsxSSVUqRxt7cr27jy-8c58A_AlSRQzgfa9jEW-x5wGeVKG3EutybTUylIfa4cvWrx5w067UXeuir_kh6h-uKFmFPYaFfxO2_1H0lCpLVaSY4AQUL4EK4z7Ccp1_aoikKJxXJ4rc4oZXrQ7o230g_3F-QtuaQVX-GEBc84j18L1NF6BnL10mXHS35uMsz314y8-x-d81WtYn-JSclAK0ga8MMNNeDnHVrgFebOH1cpF85QBQUOCCV-GHJWddLQZkdwSJ1p9MyDfHnraEGe7czuQfUPCOjlGbmxnWonDyQTzS37__NV-rFsg7ZGZaOdaXRTfwx5Ab-CmcfT9sOlN-zV4CklhPK5SbZwFYSZVTIYy4DayUaQyP5ZKWcNCnTqR0VmWRDb1mUwMTWIdS86y1CZ--BaWh_nQvANCtaKhg2Y6xPiQuxlUJoxqF-BYJ1VhDbzZdgk1JTPHnhoDUdIwBwIXUlQLWYPdavxdSePx5Mivxe5Xw-R9H5Pf4kh0Wsfi9jDotDvX5-KyBp9n4iGcSuI5ixyafDISlDsMFWF6Qw2CYrP_8UxxUG9cVFfv_2fSDqy26w1xftI624Y1vI0ONkg_wPL4fmI-OuQ0zj4VyvEHzfAREg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Composite+Electrodes+of+Nickel+Oxide+Nanoflake+3D+Graphene+for+High%E2%80%90Performance+Pseudocapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chundong&rft.au=Xu%2C+Junling&rft.au=Yuen%2C+Muk%E2%80%90Fung&rft.au=Zhang%2C+Jie&rft.date=2014-10-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=40&rft.spage=6372&rft.epage=6380&rft_id=info:doi/10.1002%2Fadfm.201401216&rft.externalDBID=10.1002%252Fadfm.201401216&rft.externalDocID=ADFM201401216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |