Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors

NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐sup...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 40; pp. 6372 - 6380
Main Authors Wang, Chundong, Xu, Junling, Yuen, Muk-Fung, Zhang, Jie, Li, Yangyang, Chen, Xianfeng, Zhang, Wenjun
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 29.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g−1 at a current density of 3 A g−1 (the theoretical capacitance of NiO is 2584 F g−1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg−1 at a power density of 5.25 kW kg−1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle. Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3‐electrode pseudocapacitors and 2‐electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors.
AbstractList NiO nanoflakes are created with a simple hydrothermal method on 3D (three-dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as-grown NiO-3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo-supercapacitor application without needing binders or metal-based current collectors. Electrochemical measurements impart that the hierarchical NiO-3D graphene composite delivers a high specific capacitance of approximately 1829 F g super(-1) at a current density of 3 A g super(-1) (the theoretical capacitance of NiO is 2584 F g super(-1)). Furthermore, a full-cell is realized with an energy density of 138 Wh kg super(-1) at a power density of 5.25 kW kg super(-1), which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1 super(st) cycle. Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3-electrode pseudocapacitors and 2-electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors.
NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g −1 at a current density of 3 A g −1 (the theoretical capacitance of NiO is 2584 F g −1 ). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg −1 at a power density of 5.25 kW kg −1 , which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1 st cycle.
NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced chemical vapor deposition (MPCVD). Such as‐grown NiO‐3D graphene hierarchical composites are then applied as monolithic electrodes for a pseudo‐supercapacitor application without needing binders or metal‐based current collectors. Electrochemical measurements impart that the hierarchical NiO‐3D graphene composite delivers a high specific capacitance of ≈1829 F g−1 at a current density of 3 A g−1 (the theoretical capacitance of NiO is 2584 F g−1). Furthermore, a full‐cell is realized with an energy density of 138 Wh kg−1 at a power density of 5.25 kW kg−1, which is much superior to commercial ones as well as reported devices in asymmetric capacitors of NiO. More attractively, this asymmetric supercapacitor exhibits capacitance retention of 85% after 5000 cycles relative to the initial value of the 1st cycle. Hierarchical nickel oxide nanoflake 3D graphene electrodes are developed by growing NiO nanoflakes atop 3D architecture of graphene on Ni foam. The optimum structure enables the 3‐electrode pseudocapacitors and 2‐electrode full cells to deliver outstanding electrochemical performance. In a full cell configuration, the achieved power density is much higher than that of commercially available asymmetric capacitors.
Author Yuen, Muk-Fung
Chen, Xianfeng
Xu, Junling
Li, Yangyang
Zhang, Jie
Zhang, Wenjun
Wang, Chundong
Author_xml – sequence: 1
  givenname: Chundong
  surname: Wang
  fullname: Wang, Chundong
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
– sequence: 2
  givenname: Junling
  surname: Xu
  fullname: Xu, Junling
  organization: Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
– sequence: 3
  givenname: Muk-Fung
  surname: Yuen
  fullname: Yuen, Muk-Fung
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
– sequence: 4
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
– sequence: 5
  givenname: Yangyang
  surname: Li
  fullname: Li, Yangyang
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
– sequence: 6
  givenname: Xianfeng
  surname: Chen
  fullname: Chen, Xianfeng
  email: xianfeng.chen@cityu.edu.hk
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
– sequence: 7
  givenname: Wenjun
  surname: Zhang
  fullname: Zhang, Wenjun
  email: xianfeng.chen@cityu.edu.hk
  organization: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
BookMark eNqF0MFr2zAUBnAxOljb7bqzjr04lSxbso8lbZNBmmZsI2MX8Sw_LVpky5Uc1v73TckIY1B2eu_w_R6P74yc9KFHQj5yNuGM5ZfQ2m6SM14wnnP5hpxyyWUmWF6dHHf-_R05S-kXY1wpUZySbu4wQjQbZ8DTaeiGkNyI9MajGWNoMdFg6dKZLXp6_-hapEvog_WwRSqu6SzCsMEeqQ2Rzt3PTbbCuN876A3SVcJdGwwMYNwYYnpP3lrwCT_8mefk2-3N1-k8W9zPPk2vFpkphZKZNHWLiokCa1OAgFza0palaZgCYywWoq0bNG3TVKWtWQEV8kq1CmTR1LZi4pxcHO4OMTzsMI26c8mg99Bj2CXNZV6LUnEl9tHiEDUxpBTR6v2rMLrQjxGc15zpl3b1S7v62O6eTf5hQ3QdxKfXQX0Av53Hp_-k9dX17d3fNjtYl0Z8PFqIWy2VUKVeL2f6xzRfr9ZfFvqzeAYjcaCn
CitedBy_id crossref_primary_10_1002_asia_202100216
crossref_primary_10_1039_C5RA04400F
crossref_primary_10_1016_j_carbon_2015_07_087
crossref_primary_10_1016_j_compstruct_2024_118149
crossref_primary_10_1016_j_nanoen_2016_11_024
crossref_primary_10_3390_en14102908
crossref_primary_10_1016_j_electacta_2020_137082
crossref_primary_10_1016_j_bios_2016_05_065
crossref_primary_10_1039_C5NR00030K
crossref_primary_10_3390_nano8060431
crossref_primary_10_1002_adma_201503390
crossref_primary_10_1039_C5RA05231A
crossref_primary_10_1002_admi_201900889
crossref_primary_10_1016_j_microc_2021_105979
crossref_primary_10_1038_srep20021
crossref_primary_10_1007_s11356_021_15276_5
crossref_primary_10_1016_j_electacta_2023_143496
crossref_primary_10_1098_rsos_180842
crossref_primary_10_1002_asia_201800220
crossref_primary_10_1002_adfm_201905454
crossref_primary_10_1007_s10854_019_01403_z
crossref_primary_10_1016_j_jallcom_2017_08_260
crossref_primary_10_1039_C8RA04492A
crossref_primary_10_1016_j_electacta_2016_01_071
crossref_primary_10_1002_adfm_201404019
crossref_primary_10_1016_j_jallcom_2020_158296
crossref_primary_10_1088_1361_6528_ab4530
crossref_primary_10_1007_s10008_015_3022_5
crossref_primary_10_1021_acs_chemrev_8b00252
crossref_primary_10_1016_j_electacta_2018_12_053
crossref_primary_10_1039_D0MA00871K
crossref_primary_10_1039_D2NJ04762D
crossref_primary_10_1016_j_jcis_2017_01_020
crossref_primary_10_1016_j_cattod_2014_12_016
crossref_primary_10_1016_S1003_6326_18_64825_3
crossref_primary_10_1021_acsanm_8b00606
crossref_primary_10_1016_j_jmst_2021_05_025
crossref_primary_10_1002_admi_201500191
crossref_primary_10_4028_www_scientific_net_MSF_937_25
crossref_primary_10_1016_j_microc_2019_103977
crossref_primary_10_1039_C5TA04851F
crossref_primary_10_1007_s10854_019_00796_1
crossref_primary_10_1002_aenm_201601034
crossref_primary_10_1021_acsaem_8b00120
crossref_primary_10_1016_j_est_2022_105212
crossref_primary_10_1002_jctb_6166
crossref_primary_10_1016_j_energy_2020_118950
crossref_primary_10_1016_j_mattod_2018_11_002
crossref_primary_10_1002_aenm_201700678
crossref_primary_10_1002_ppsc_201700484
crossref_primary_10_1016_j_est_2024_111134
crossref_primary_10_1039_C5TB00324E
crossref_primary_10_1007_s10854_015_4085_x
crossref_primary_10_1007_s12274_017_1953_0
crossref_primary_10_3390_cryst10090751
crossref_primary_10_1007_s11581_018_2700_6
crossref_primary_10_1149_2_0101511jes
crossref_primary_10_1007_s10854_018_9817_2
crossref_primary_10_1016_j_carbon_2017_06_076
crossref_primary_10_1155_2024_8654961
crossref_primary_10_1039_C5RA17478C
crossref_primary_10_1039_C6TA02582J
crossref_primary_10_1039_D3QI02264A
crossref_primary_10_1007_s44246_022_00015_3
crossref_primary_10_1039_C6RA01250G
crossref_primary_10_1016_j_jallcom_2020_154447
crossref_primary_10_1016_j_jelechem_2019_02_022
crossref_primary_10_1002_aenm_201502159
crossref_primary_10_1016_S1003_6326_18_64843_5
crossref_primary_10_1039_C5TA05441A
crossref_primary_10_1016_j_ceramint_2018_11_104
crossref_primary_10_1007_s11051_025_06246_w
crossref_primary_10_1016_j_jallcom_2023_168711
crossref_primary_10_1016_j_apsusc_2018_08_262
crossref_primary_10_1016_j_cej_2016_04_069
crossref_primary_10_1016_j_jpowsour_2016_03_041
crossref_primary_10_1016_j_matlet_2022_132613
crossref_primary_10_1016_j_cej_2018_10_220
crossref_primary_10_1016_j_cej_2017_05_048
crossref_primary_10_1039_C7TA08852C
crossref_primary_10_1016_j_snb_2018_09_040
crossref_primary_10_1016_j_electacta_2017_08_114
crossref_primary_10_1016_j_pmatsci_2017_07_001
crossref_primary_10_1016_j_jcis_2019_10_032
crossref_primary_10_1016_j_jallcom_2017_06_170
crossref_primary_10_1049_nbt2_12045
crossref_primary_10_1002_celc_201901420
crossref_primary_10_1016_j_jpowsour_2016_10_091
crossref_primary_10_1039_C5TA09615D
crossref_primary_10_1016_j_jcis_2019_08_055
crossref_primary_10_1002_adfm_201502711
crossref_primary_10_1016_j_jechem_2016_03_002
crossref_primary_10_1007_s10854_024_12767_2
crossref_primary_10_1002_ente_201900923
crossref_primary_10_1016_j_cej_2017_09_157
crossref_primary_10_1039_D0MA00323A
crossref_primary_10_1016_S1875_5372_18_30038_9
crossref_primary_10_1016_j_jallcom_2018_10_085
crossref_primary_10_1016_j_est_2021_103171
crossref_primary_10_1002_chem_201504569
crossref_primary_10_3390_app10113814
crossref_primary_10_1016_j_measen_2024_101273
crossref_primary_10_1039_C5TA04005A
crossref_primary_10_1016_j_jallcom_2022_166490
crossref_primary_10_1016_j_jsamd_2023_100591
crossref_primary_10_1007_s11706_018_0432_1
crossref_primary_10_1039_C4TA07009G
crossref_primary_10_1007_s12039_020_01806_0
crossref_primary_10_1038_ncomms13949
crossref_primary_10_1002_slct_201803340
crossref_primary_10_1007_s10800_020_01471_8
crossref_primary_10_1039_C6EE00158K
crossref_primary_10_1002_adma_202108750
crossref_primary_10_1007_s10854_017_6487_4
crossref_primary_10_20964_2017_04_39
crossref_primary_10_1039_C5NR03633J
crossref_primary_10_1016_j_colsurfa_2021_127017
crossref_primary_10_1080_10408436_2021_1886040
crossref_primary_10_1038_srep13696
crossref_primary_10_1016_j_jelechem_2022_116065
crossref_primary_10_1016_j_microc_2019_104527
crossref_primary_10_1039_C5TA05295E
crossref_primary_10_1039_C7CS00871F
crossref_primary_10_1007_s10904_024_03391_y
crossref_primary_10_1016_j_jallcom_2020_154085
crossref_primary_10_1039_C8TA05050C
crossref_primary_10_1016_j_jallcom_2020_155293
crossref_primary_10_1002_adma_201501493
crossref_primary_10_1002_celc_201500089
crossref_primary_10_1016_j_electacta_2019_04_048
crossref_primary_10_1016_j_est_2019_100955
crossref_primary_10_1016_j_jpowsour_2015_03_106
crossref_primary_10_1039_C6TA03336A
crossref_primary_10_1002_asia_201501072
crossref_primary_10_1166_jno_2022_3326
crossref_primary_10_1016_j_electacta_2018_09_149
crossref_primary_10_1021_acsami_6b12370
crossref_primary_10_1039_C6TA02005D
crossref_primary_10_20964_2018_09_35
crossref_primary_10_1016_j_inoche_2022_109661
crossref_primary_10_1016_j_jpowsour_2016_03_085
crossref_primary_10_1039_C5TA05313G
crossref_primary_10_1016_j_jallcom_2018_12_247
crossref_primary_10_1016_j_electacta_2018_02_141
crossref_primary_10_1039_C6TA00397D
crossref_primary_10_1039_C5RA14568F
crossref_primary_10_20517_microstructures_2023_86
crossref_primary_10_1016_j_mtener_2017_07_004
crossref_primary_10_1038_s41598_017_17899_6
crossref_primary_10_1515_revic_2020_0022
crossref_primary_10_1016_j_electacta_2019_03_212
crossref_primary_10_1002_celc_201600830
crossref_primary_10_1016_j_electacta_2017_11_011
crossref_primary_10_1002_celc_201700525
crossref_primary_10_1002_slct_202002801
crossref_primary_10_1016_j_carbon_2018_11_053
crossref_primary_10_1002_adem_201700475
crossref_primary_10_1002_pssa_201800595
crossref_primary_10_1007_s10854_019_02027_z
crossref_primary_10_1016_j_nanoso_2017_07_003
crossref_primary_10_1016_j_matchemphys_2022_126718
crossref_primary_10_1039_C5GC02938D
crossref_primary_10_1007_s11696_023_02964_4
crossref_primary_10_1016_j_tws_2025_113050
crossref_primary_10_1016_j_cej_2016_08_132
crossref_primary_10_1016_j_compscitech_2018_07_045
crossref_primary_10_1016_j_ceramint_2018_08_058
crossref_primary_10_3390_en13184943
crossref_primary_10_1007_s11696_023_03287_0
crossref_primary_10_1557_s43578_021_00349_5
crossref_primary_10_1039_C5TA01071C
crossref_primary_10_1016_j_cej_2019_122326
crossref_primary_10_1016_j_est_2020_102037
crossref_primary_10_1039_C5TA02795K
crossref_primary_10_1002_slct_201702780
crossref_primary_10_1016_j_jcis_2019_02_089
crossref_primary_10_34133_2019_8013285
crossref_primary_10_1039_C8NJ00652K
crossref_primary_10_1039_C6TA01369D
crossref_primary_10_1002_adfm_201503662
crossref_primary_10_1007_s40843_020_1562_1
crossref_primary_10_1016_j_est_2024_114546
crossref_primary_10_3390_nano10020345
crossref_primary_10_1016_j_cej_2018_02_117
crossref_primary_10_3390_coatings12091312
crossref_primary_10_1002_smll_201704203
crossref_primary_10_1007_s40820_017_0148_2
crossref_primary_10_1039_C4NR05895J
crossref_primary_10_1039_C8TA12200H
crossref_primary_10_1002_aenm_201600278
crossref_primary_10_1007_s12274_016_1013_1
crossref_primary_10_1016_j_electacta_2016_01_161
crossref_primary_10_1016_j_est_2023_110118
crossref_primary_10_1002_admt_201800258
crossref_primary_10_1016_j_jsamd_2020_05_002
crossref_primary_10_20964_2019_05_53
crossref_primary_10_3390_cryst10090846
crossref_primary_10_1039_C5TA00328H
crossref_primary_10_1002_admt_201700168
crossref_primary_10_1002_slct_201600151
crossref_primary_10_1016_j_energy_2024_133593
crossref_primary_10_1016_j_colsurfa_2017_09_008
crossref_primary_10_1021_acssuschemeng_6b00362
crossref_primary_10_1021_acsami_1c23072
crossref_primary_10_1016_j_mssp_2018_10_031
crossref_primary_10_1016_j_jelechem_2017_01_047
crossref_primary_10_1016_j_cej_2015_10_068
crossref_primary_10_1002_adfm_202305978
crossref_primary_10_1039_C6SE00085A
crossref_primary_10_1016_j_jpowsour_2016_04_010
crossref_primary_10_1002_smll_201801009
Cites_doi 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
10.1016/j.jssc.2011.01.019
10.1021/nl201432g
10.1039/C2NR11479H
10.1021/am200479d
10.1021/nl061576a
10.1039/c1ee01338f
10.1021/nl2026635
10.1149/1.1449951
10.1038/nmat1368
10.1088/0957-4484/19/30/305604
10.1039/C2NR32897F
10.1007/s12274-010-0024-6
10.1002/anie.201101083
10.1021/ja102267j
10.1002/smll.201100990
10.1038/ncomms2932
10.1021/am3000165
10.1002/anie.201004718
10.1063/1.3005599
10.1149/1.1836396
10.1149/2.025210jes
10.1039/C3TA15046A
10.1039/c2jm31526b
10.1002/chem.201100727
10.1126/science.1200770
10.1039/c3ee40829a
10.1021/nn4021955
10.1021/am9009154
10.1002/anie.200351691
10.1038/nmat2297
10.1021/am400012h
10.1088/1742-6596/93/1/012039
10.1021/am3021894
10.1038/nmat1672
10.1039/c3ta11740e
10.1023/A:1012995703754
10.1007/s10853-013-7471-x
10.1103/PhysRevLett.97.187401
10.1038/nmat2612
10.1063/1.4729823
10.1126/science.1239089
10.1039/C0JM02784G
10.1039/C1NR11542A
10.1039/c3nr02710d
10.1038/srep01408
10.1021/am404691w
10.1002/adfm.200800951
10.1007/s12274-010-0063-z
10.1039/c0ee00004c
10.1039/c3nr02872k
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201401216
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 6380
ExternalDocumentID 10_1002_adfm_201401216
ADFM201401216
ark_67375_WNG_ZC2WPWSL_Q
Genre article
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  funderid: 104911
– fundername: National Natural Science Foundation of China
  funderid: 61176007; 51372213
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
1OB
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5376-6c9de7034e9c4a3a26f5f55cb07accfe43d9becdbb85f904a8e187d7a64b9f803
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 07:04:07 EDT 2025
Tue Jul 01 01:30:15 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Aug 20 07:27:53 EDT 2025
Wed Oct 30 09:51:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5376-6c9de7034e9c4a3a26f5f55cb07accfe43d9becdbb85f904a8e187d7a64b9f803
Notes Research Grants Council of the Hong Kong Special Administrative Region, China - No. 104911
ark:/67375/WNG-ZC2WPWSL-Q
National Natural Science Foundation of China - No. 61176007; No. 51372213
istex:883D099091BC97CCE1CA689099B11B8CFC7456DD
ArticleID:ADFM201401216
C.D.W. and J.L.X. contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629357173
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1629357173
crossref_citationtrail_10_1002_adfm_201401216
crossref_primary_10_1002_adfm_201401216
wiley_primary_10_1002_adfm_201401216_ADFM201401216
istex_primary_ark_67375_WNG_ZC2WPWSL_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 29, 2014
PublicationDateYYYYMMDD 2014-10-29
PublicationDate_xml – month: 10
  year: 2014
  text: October 29, 2014
  day: 29
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T. K. Sham, X. Sun, Energy Environ. Sci. 2013, 6, 2900.
A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala, J Mater. Sci. 2013, 48, 6707.
N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater. 2008, 18, 3506.
W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 2003, 42, 4092.
C. Wu, S. Deng, H. Wang, Y. Sun, J. Liu, H. Yan, ACS Appl. Mater. Interfaces 2014, 6, 1106.
P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 2010, 3, 1238.
C. D. Wang, Y. G. Zhou, L. F. He, T. W. Ng, G. Hong, Q. H. Wu, F. Gao, C. S. Lee, W. J. Zhang, Nanoscale 2013, 5, 600.
M. P. Yeager, D. Su, N. S. Marinković, X. Teng, J. Electrochem. Soc. 2012, 159, A1598.
X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng, Q. Yan, Nano Res. 2010, 3, 643.
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. Van Haesendonck, Nanotechnology 2008, 19, 305604.
K. C. Liu, M. A. Anderson, J. Electrochem. Soc. 1996, 143, 124.
N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conference Series 2007, 93, 012039.
G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 4438.
J. Zhu, J. He, ACS Appl. Mater. Interfaces 2012, 4, 1770.
X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 2011, 4, 2915.
T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
K. Liang, X. Tang, W. Hu, J. Mater. Chem. 2012, 22, 11062.
V. Biju, M. Abdul Khadar, J. Mater. Sci. 2001, 36, 5779.
L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190.
W. Qian, X. Cui, R. Hao, Y. L. Hou, Z. Y. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 2259.
H. Jiang, C. Z. Li, T. Sun, J. Ma, Nanoscale 2012, 4, 807.
K. W. Nam, K. B. Kim, Electrochem. Soc. 2002, 149, 346.
J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, J Solid State Chem. 2011, 184, 578.
C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, W. J. Zhang, Appl. Phys. Lett 2012, 100, 253107.
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534.
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
C. D. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. F. Chen, W. J. Zhang, Nanoscale 2013, 5, 10599.
R. Vellacheri, V. K. Pillai, S. Kurungot, Nanoscale 2012, 4, 890.
K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387.
Y. You, Z. Ni, T. Yu, Z. Shen, Appl. Phys. Lett. 2008, 93, 163112.
H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2014, 2, 3223.
T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J. Hu, V. S. Bhadram, C. Narayana, T. S. Fisher, ACS Appl. Mater. Interfaces 2010, 2, 644.
S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Appl. Mater. Interfaces 2013, 5, 1596.
P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567.
C. CHu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett. 2006, 6, 2690.
S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 2013, 5, 2188.
X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 2011, 17, 10898.
H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. Zhang, Y. Y. Li, Nano Res. 2010, 3, 895.
Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, J. Q. Xiao, Angew. Chem. Int. Ed. 2011, 50, 6847.
Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, ACS Nano 2013, 7, 6237.
A. K. Shukla, S. Sampath, K. Vijayamohan, Curr. Sci. 2000, 79, 1656.
H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894.
L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408.
A. S. Aric, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.
C. D. Wang, Y. S. Chui, R. G. Ma, T. L. Wong, J. G. Ren, Q. H. Wu, X. F. Chen, W. J. Zhang, J. Mater. Chem. A 2013, 1, 10092.
D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem. Int. Ed. 2010, 49, 9859.
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gu, X. B. Zhao, J. Mater. Chem. 2011, 21, 671.
H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 2010, 132, 7472.
F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Li, Nanoscale 2013, 5, 7984.
2013; 3
2013; 48
2012; 100
2006; 97
2013; 4
2013; 1
2008; 18
2008; 19
2008; 7
2011; 11
2006; 5
2006; 6
2007; 93
1996; 143
2013; 341
2013; 7
2011; 17
2011; 4
2011; 3
2013; 5
2008; 93
2013; 6
2011; 332
2011; 7
2010; 49
2014; 2
2000; 79
2011; 50
2010; 132
2005; 4
2011; 21
2002; 149
2010; 3
2001; 11
2011; 184
2010; 2
2012; 159
2012; 4
2001; 36
2014; 6
2012; 22
2003; 42
2010; 9
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Shukla A. K. (e_1_2_6_8_1) 2000; 79
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei, X. Huang, J Solid State Chem. 2011, 184, 578.
– reference: K. W. Nam, K. B. Kim, Electrochem. Soc. 2002, 149, 346.
– reference: D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, J. G. Chen, Angew. Chem. Int. Ed. 2010, 49, 9859.
– reference: R. Vellacheri, V. K. Pillai, S. Kurungot, Nanoscale 2012, 4, 890.
– reference: L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190.
– reference: X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Energy Environ. Sci. 2011, 4, 2915.
– reference: H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2014, 2, 3223.
– reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
– reference: K. Liang, X. Tang, W. Hu, J. Mater. Chem. 2012, 22, 11062.
– reference: X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 2011, 17, 10898.
– reference: H. Jiang, C. Z. Li, T. Sun, J. Ma, Nanoscale 2012, 4, 807.
– reference: D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T. K. Sham, X. Sun, Energy Environ. Sci. 2013, 6, 2900.
– reference: P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon, Nat. Mater. 2006, 5, 567.
– reference: A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, C. Van Haesendonck, Nanotechnology 2008, 19, 305604.
– reference: X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gu, X. B. Zhao, J. Mater. Chem. 2011, 21, 671.
– reference: A. K. Shukla, S. Sampath, K. Vijayamohan, Curr. Sci. 2000, 79, 1656.
– reference: M. P. Yeager, D. Su, N. S. Marinković, X. Teng, J. Electrochem. Soc. 2012, 159, A1598.
– reference: C. Wu, S. Deng, H. Wang, Y. Sun, J. Liu, H. Yan, ACS Appl. Mater. Interfaces 2014, 6, 1106.
– reference: C. D. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. F. Chen, W. J. Zhang, Nanoscale 2013, 5, 10599.
– reference: C. D. Wang, Y. G. Zhou, L. F. He, T. W. Ng, G. Hong, Q. H. Wu, F. Gao, C. S. Lee, W. J. Zhang, Nanoscale 2013, 5, 600.
– reference: K. C. Liu, M. A. Anderson, J. Electrochem. Soc. 1996, 143, 124.
– reference: X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534.
– reference: L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408.
– reference: C. D. Wang, Y. S. Chui, R. G. Ma, T. L. Wong, J. G. Ren, Q. H. Wu, X. F. Chen, W. J. Zhang, J. Mater. Chem. A 2013, 1, 10092.
– reference: T. Bhuvana, A. Kumar, A. Sood, R. H. Gerzeski, J. Hu, V. S. Bhadram, C. Narayana, T. S. Fisher, ACS Appl. Mater. Interfaces 2010, 2, 644.
– reference: N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, J. Phys. Conference Series 2007, 93, 012039.
– reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
– reference: Y. You, Z. Ni, T. Yu, Z. Shen, Appl. Phys. Lett. 2008, 93, 163112.
– reference: J. Zhu, J. He, ACS Appl. Mater. Interfaces 2012, 4, 1770.
– reference: W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem. Int. Ed. 2003, 42, 4092.
– reference: H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. Zhang, Y. Y. Li, Nano Res. 2010, 3, 895.
– reference: A. S. Aric, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.
– reference: G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Lett. 2011, 11, 4438.
– reference: A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala, J Mater. Sci. 2013, 48, 6707.
– reference: W. Qian, X. Cui, R. Hao, Y. L. Hou, Z. Y. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 2259.
– reference: C. CHu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Lett. 2006, 6, 2690.
– reference: S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 2013, 5, 2188.
– reference: J. Ji, L. L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R. S. Ruoff, ACS Nano 2013, 7, 6237.
– reference: S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Appl. Mater. Interfaces 2013, 5, 1596.
– reference: H. Wang, H. S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 2010, 132, 7472.
– reference: A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
– reference: P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 2010, 3, 1238.
– reference: N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater. 2008, 18, 3506.
– reference: V. Biju, M. Abdul Khadar, J. Mater. Sci. 2001, 36, 5779.
– reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
– reference: T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater. 2010, 9, 146.
– reference: K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387.
– reference: F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Li, Nanoscale 2013, 5, 7984.
– reference: X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng, Q. Yan, Nano Res. 2010, 3, 643.
– reference: Q. Lu, M. W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K. M. Unruh, J. G. Chen, J. Q. Xiao, Angew. Chem. Int. Ed. 2011, 50, 6847.
– reference: H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nat. Commun. 2013, 4, 1894.
– reference: C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, W. J. Zhang, Appl. Phys. Lett 2012, 100, 253107.
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 4
  start-page: 890
  year: 2012
  publication-title: Nanoscale
– volume: 49
  start-page: 9859
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 97
  start-page: 187401
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 1238
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1596
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1770
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 341
  start-page: 534
  year: 2013
  publication-title: Science
– volume: 4
  start-page: 807
  year: 2012
  publication-title: Nanoscale
– volume: 6
  start-page: 2900
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 19
  start-page: 305604
  year: 2008
  publication-title: Nanotechnology
– volume: 11
  start-page: 4438
  year: 2011
  publication-title: Nano Lett.
– volume: 36
  start-page: 5779
  year: 2001
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 3506
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1106
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 895
  year: 2010
  publication-title: Nano Res.
– volume: 149
  start-page: 346
  year: 2002
  publication-title: Electrochem. Soc.
– volume: 7
  start-page: 3163
  year: 2011
  publication-title: Small
– volume: 4
  start-page: 1894
  year: 2013
  publication-title: Nat. Commun.
– volume: 159
  start-page: A1598
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 2259
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 7984
  year: 2013
  publication-title: Nanoscale
– volume: 1
  start-page: 10092
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 10599
  year: 2013
  publication-title: Nanoscale
– volume: 143
  start-page: 124
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 21
  start-page: 671
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 644
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2915
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2188
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 93
  start-page: 012039
  year: 2007
  publication-title: J. Phys. Conference Series
– volume: 79
  start-page: 1656
  year: 2000
  publication-title: Curr. Sci.
– volume: 9
  start-page: 146
  year: 2010
  publication-title: Nat. Mater.
– volume: 5
  start-page: 567
  year: 2006
  publication-title: Nat. Mater.
– volume: 5
  start-page: 600
  year: 2013
  publication-title: Nanoscale
– volume: 11
  start-page: 3190
  year: 2011
  publication-title: Nano Lett.
– volume: 3
  start-page: 643
  year: 2010
  publication-title: Nano Res.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 100
  start-page: 253107
  year: 2012
  publication-title: Appl. Phys. Lett
– volume: 11
  start-page: 387
  year: 2001
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 11062
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 50
  start-page: 6847
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 10898
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 6237
  year: 2013
  publication-title: ACS Nano
– volume: 2
  start-page: 3223
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 93
  start-page: 163112
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 184
  start-page: 578
  year: 2011
  publication-title: J Solid State Chem.
– volume: 6
  start-page: 2690
  year: 2006
  publication-title: Nano Lett.
– volume: 42
  start-page: 4092
  year: 2003
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1408
  year: 2013
  publication-title: Sci. Rep.
– volume: 132
  start-page: 7472
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 6707
  year: 2013
  publication-title: J Mater. Sci.
– ident: e_1_2_6_7_1
  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– ident: e_1_2_6_23_1
  doi: 10.1016/j.jssc.2011.01.019
– ident: e_1_2_6_36_1
  doi: 10.1021/nl201432g
– ident: e_1_2_6_12_1
  doi: 10.1039/C2NR11479H
– ident: e_1_2_6_33_1
  doi: 10.1021/am200479d
– ident: e_1_2_6_11_1
  doi: 10.1021/nl061576a
– ident: e_1_2_6_51_1
  doi: 10.1039/c1ee01338f
– ident: e_1_2_6_6_1
  doi: 10.1021/nl2026635
– ident: e_1_2_6_18_1
  doi: 10.1149/1.1449951
– ident: e_1_2_6_2_1
  doi: 10.1038/nmat1368
– ident: e_1_2_6_31_1
  doi: 10.1088/0957-4484/19/30/305604
– ident: e_1_2_6_35_1
  doi: 10.1039/C2NR32897F
– ident: e_1_2_6_45_1
  doi: 10.1007/s12274-010-0024-6
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201101083
– ident: e_1_2_6_5_1
  doi: 10.1021/ja102267j
– ident: e_1_2_6_26_1
  doi: 10.1002/smll.201100990
– ident: e_1_2_6_50_1
  doi: 10.1038/ncomms2932
– ident: e_1_2_6_14_1
  doi: 10.1021/am3000165
– ident: e_1_2_6_1_1
  doi: 10.1002/anie.201004718
– ident: e_1_2_6_37_1
  doi: 10.1063/1.3005599
– ident: e_1_2_6_16_1
  doi: 10.1149/1.1836396
– ident: e_1_2_6_40_1
  doi: 10.1149/2.025210jes
– ident: e_1_2_6_25_1
  doi: 10.1039/C3TA15046A
– ident: e_1_2_6_46_1
  doi: 10.1039/c2jm31526b
– ident: e_1_2_6_43_1
  doi: 10.1002/chem.201100727
– ident: e_1_2_6_39_1
  doi: 10.1126/science.1200770
– ident: e_1_2_6_49_1
  doi: 10.1039/c3ee40829a
– ident: e_1_2_6_42_1
  doi: 10.1021/nn4021955
– ident: e_1_2_6_30_1
  doi: 10.1021/am9009154
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.200351691
– ident: e_1_2_6_3_1
  doi: 10.1038/nmat2297
– ident: e_1_2_6_47_1
  doi: 10.1021/am400012h
– ident: e_1_2_6_38_1
  doi: 10.1088/1742-6596/93/1/012039
– ident: e_1_2_6_41_1
  doi: 10.1021/am3021894
– ident: e_1_2_6_48_1
  doi: 10.1038/nmat1672
– ident: e_1_2_6_28_1
  doi: 10.1039/c3ta11740e
– ident: e_1_2_6_20_1
  doi: 10.1023/A:1012995703754
– ident: e_1_2_6_24_1
  doi: 10.1007/s10853-013-7471-x
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevLett.97.187401
– ident: e_1_2_6_13_1
  doi: 10.1038/nmat2612
– ident: e_1_2_6_32_1
  doi: 10.1063/1.4729823
– ident: e_1_2_6_52_1
  doi: 10.1126/science.1239089
– volume: 79
  start-page: 1656
  year: 2000
  ident: e_1_2_6_8_1
  publication-title: Curr. Sci.
– ident: e_1_2_6_10_1
  doi: 10.1039/C0JM02784G
– ident: e_1_2_6_9_1
  doi: 10.1039/C1NR11542A
– ident: e_1_2_6_19_1
  doi: 10.1039/c3nr02710d
– ident: e_1_2_6_22_1
  doi: 10.1038/srep01408
– ident: e_1_2_6_44_1
  doi: 10.1021/am404691w
– ident: e_1_2_6_29_1
  doi: 10.1002/adfm.200800951
– ident: e_1_2_6_15_1
  doi: 10.1007/s12274-010-0063-z
– ident: e_1_2_6_4_1
  doi: 10.1039/c0ee00004c
– ident: e_1_2_6_27_1
  doi: 10.1039/c3nr02872k
SSID ssj0017734
Score 2.5591917
Snippet NiO nanoflakes are created with a simple hydrothermal method on 3D (three‐dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced...
NiO nanoflakes are created with a simple hydrothermal method on 3D (three-dimensional) graphene scaffolds grown on Ni foams by microwave plasma enhanced...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6372
SubjectTerms Asymmetry
Capacitance
Capacitors
Density
Electrodes
Graphene
hierarchical composite electrodes
Nanostructure
nickel oxide nanoflakes
pseudocapacitors
Three dimensional
Title Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for High-Performance Pseudocapacitors
URI https://api.istex.fr/ark:/67375/WNG-ZC2WPWSL-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201401216
https://www.proquest.com/docview/1629357173
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcIEDLbQVgYIWCcHJ4LXXr2NECBEikPJQol5W-5SiRHFFEglx6k_ob-wv6Y6dmKQSQio3W9qV7d15fOOd-QbgME0VM4H2Pcki32NOgzwhwtjLrJFaaGWpj7XD7eu49cAue1FvoYq_5IeofrihZhT2GhVcyPHpC2mo0BYryTFACChybmPCFqKi24o_iiZJeawcU0zwor05a6MfnC5PX_JKq7jAT0uQcxG4Fp6n-RHE_J3LhJPByXQiT9TzP3SO7_moT7Axg6WkXsrRJnwwoy1YXyAr_Ax5q4_FykXvlCFBO4L5Xoacl410tBmT3BInWQMzJDdPfW2IM925HYqBIWGDXCA1trOsxMFkguklf3797ryULZDO2Ey186wuiO9jC6Av8NA8vz9rebN2DZ5CThgvVpk2zoAwkykmQhHENrJRpKSfCKWsYaHOnMRoKdPIZj4TqaFpohMRM5nZ1A-_wsooH5ltIFQrGjpkpkMMD2M3g4qUUe3iG-uEKqyBN98urmZc5thSY8hLFuaA40LyaiFrcFyN_1myeLw68qjY_WqYeBxg7lsS8e71Bf9xFnQ73bsr_r0GB3Px4E4j8ZhFjEw-HXMaOwgVYXZDDYJis994Jq83mu3qbud_Ju3CGl6jUw2yb7AyeZyaPYeWJnIfVuuN9tXdfqEZfwGXkQ_T
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFL0q7QJYQHlUDdAySAhWbj32eGwvq7ZpgCQEaJWqm9E8pShRjJpEqlj1E_qNfAlz7dhtkBASLG3NyPbMfY7PPRfgbZZpZiMTBoolYcC8BgVSxjzInVVGGu1oiLXDvT7vnLGP50mNJsRamIofojlwQ80o7TUqOB5I79-yhkrjsJQcM4SI8nuwgW29y6zqa8MgRdO0-rHMKUK86HnN2xhG-6vzV_zSBi7x1UrQeTd0LX1P-zGo-q0ryMl4bzFXe_rHb4SO__VZm_BoGZmSg0qUnsCanT6Fh3f4Cp9B0RlhvXLZPmVC0JQg5MuS46qXjrEzUjjihWtsJ-Tz1chY4q134SZybEl8RE6QHdsbV-IjZYIIk5_XN4PbygUymNmF8c7V5_Ej7AL0HM7ax6eHnWDZsSHQSAsTcJ0b620Is7lmMpYRd4lLEq3CVGrtLItN7oXGKJUlLg-ZzCzNUpNKzlTusjDegvVpMbXbQKjRNPbBmYkxQ-R-BpUZo8anOM7LVdyCoN4voZd05thVYyIqIuZI4EKKZiFb8L4Z_70i8vjjyHfl9jfD5OUY4W9pIob9E3FxGA0Hw29d8aUFb2r5EF4p8U-LnNpiMROU-ygqQYBDC6Jyt__yTHFw1O41Vy_-ZdJruN857XVF90P_00t4gPfRx0b5K1ifXy7sjg-e5mq3VI9f-D8SWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VkBA90AKtmtKWrVSVk8Frr9f2ERFCeKUBihJxWa33IUWJYkQSCfXUn9Df2F_SHTsxSSVUqRxt7cr27jy-8c58A_AlSRQzgfa9jEW-x5wGeVKG3EutybTUylIfa4cvWrx5w067UXeuir_kh6h-uKFmFPYaFfxO2_1H0lCpLVaSY4AQUL4EK4z7Ccp1_aoikKJxXJ4rc4oZXrQ7o230g_3F-QtuaQVX-GEBc84j18L1NF6BnL10mXHS35uMsz314y8-x-d81WtYn-JSclAK0ga8MMNNeDnHVrgFebOH1cpF85QBQUOCCV-GHJWddLQZkdwSJ1p9MyDfHnraEGe7czuQfUPCOjlGbmxnWonDyQTzS37__NV-rFsg7ZGZaOdaXRTfwx5Ab-CmcfT9sOlN-zV4CklhPK5SbZwFYSZVTIYy4DayUaQyP5ZKWcNCnTqR0VmWRDb1mUwMTWIdS86y1CZ--BaWh_nQvANCtaKhg2Y6xPiQuxlUJoxqF-BYJ1VhDbzZdgk1JTPHnhoDUdIwBwIXUlQLWYPdavxdSePx5Mivxe5Xw-R9H5Pf4kh0Wsfi9jDotDvX5-KyBp9n4iGcSuI5ixyafDISlDsMFWF6Qw2CYrP_8UxxUG9cVFfv_2fSDqy26w1xftI624Y1vI0ONkg_wPL4fmI-OuQ0zj4VyvEHzfAREg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Composite+Electrodes+of+Nickel+Oxide+Nanoflake+3D+Graphene+for+High%E2%80%90Performance+Pseudocapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chundong&rft.au=Xu%2C+Junling&rft.au=Yuen%2C+Muk%E2%80%90Fung&rft.au=Zhang%2C+Jie&rft.date=2014-10-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=40&rft.spage=6372&rft.epage=6380&rft_id=info:doi/10.1002%2Fadfm.201401216&rft.externalDBID=10.1002%252Fadfm.201401216&rft.externalDocID=ADFM201401216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon