Olfactory loss and brain connectivity after COVID‐19

To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ± SD 4...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 5; pp. 1548 - 1560
Main Authors Esposito, Fabrizio, Cirillo, Mario, De Micco, Rosa, Caiazzo, Giuseppina, Siciliano, Mattia, Russo, Andrea Gerardo, Monari, Caterina, Coppola, Nicola, Tedeschi, Gioacchino, Tessitore, Alessandro
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25741

Cover

Loading…
Abstract To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID‐19 related hyposmia, and eighteen healthy, never SARS‐CoV‐2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting‐state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph‐theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus‐free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS‐CoV‐2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection when the olfactory loss was a residual COVID‐19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter‐individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia. A structural and functional neural connectivity analysis of the central olfactory system was performed in previously SARS‐CoV‐2 infected subjects with persisting olfactory impairment. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection. The functional connectivity of the anterior piriform cortex accounted for the inter‐individual variability in the sensory impairment, suggesting a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia.
AbstractList To address the impact of COVID-19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS-CoV-2 infected subjects with persisting olfactory impairment (hyposmia). Twenty-seven previously SARS-CoV-2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID-19 related hyposmia, and eighteen healthy, never SARS-CoV-2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting-state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph-theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus-free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS-CoV-2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS-CoV-2 infection when the olfactory loss was a residual COVID-19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter-individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID-19 related residual hyposmia.
To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ±  SD 40.0 ± 7.6 years) with clinically confirmed COVID‐19 related hyposmia, and eighteen healthy, never SARS‐CoV‐2 infected, normosmic subjects (6 males, mean age ±  SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting‐state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph‐theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus‐free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS‐CoV‐2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection when the olfactory loss was a residual COVID‐19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter‐individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia.
To address the impact of COVID-19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS-CoV-2 infected subjects with persisting olfactory impairment (hyposmia). Twenty-seven previously SARS-CoV-2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID-19 related hyposmia, and eighteen healthy, never SARS-CoV-2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting-state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph-theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus-free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS-CoV-2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS-CoV-2 infection when the olfactory loss was a residual COVID-19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter-individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID-19 related residual hyposmia.To address the impact of COVID-19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS-CoV-2 infected subjects with persisting olfactory impairment (hyposmia). Twenty-seven previously SARS-CoV-2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID-19 related hyposmia, and eighteen healthy, never SARS-CoV-2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting-state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph-theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus-free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS-CoV-2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS-CoV-2 infection when the olfactory loss was a residual COVID-19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter-individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID-19 related residual hyposmia.
To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ±  SD 40.0 ± 7.6 years) with clinically confirmed COVID‐19 related hyposmia, and eighteen healthy, never SARS‐CoV‐2 infected, normosmic subjects (6 males, mean age ±  SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting‐state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph‐theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus‐free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS‐CoV‐2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection when the olfactory loss was a residual COVID‐19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter‐individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia. A structural and functional neural connectivity analysis of the central olfactory system was performed in previously SARS‐CoV‐2 infected subjects with persisting olfactory impairment. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection. The functional connectivity of the anterior piriform cortex accounted for the inter‐individual variability in the sensory impairment, suggesting a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia.
To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2 infected subjects with persisting olfactory impairment (hyposmia). Twenty‐seven previously SARS‐CoV‐2 infected subjects (10 males, mean age ± SD 40.0 ± 7.6 years) with clinically confirmed COVID‐19 related hyposmia, and eighteen healthy, never SARS‐CoV‐2 infected, normosmic subjects (6 males, mean age ± SD 36.0 ± 7.1 years), were recruited in a 3 Tesla MRI study including high angular resolution diffusion and resting‐state functional MRI acquisitions. Specialized metrics of structural and functional connectivity were derived from a standard parcellation of olfactory brain areas and a previously validated graph‐theoretic model of the human olfactory functional network. These metrics were compared between groups and correlated to a clinical index of olfactory impairment. On the scanning day, all subjects were virus‐free and cognitively unimpaired. Compared to control, both structural and functional connectivity metrics were found significantly increased in previously SARS‐CoV‐2 infected subjects. Greater residual olfactory impairment was associated with more segregated processing within regions more functionally connected to the anterior piriform cortex. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection when the olfactory loss was a residual COVID‐19 symptom. The functional connectivity of the anterior piriform cortex, the largest cortical recipient of afferent fibers from the olfactory bulb, accounted for the inter‐individual variability in the sensory impairment. Albeit preliminary, these findings could feature a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia. A structural and functional neural connectivity analysis of the central olfactory system was performed in previously SARS‐CoV‐2 infected subjects with persisting olfactory impairment. An increased neural connectivity within the olfactory cortex was associated with a recent SARS‐CoV‐2 infection. The functional connectivity of the anterior piriform cortex accounted for the inter‐individual variability in the sensory impairment, suggesting a characteristic brain connectivity response in the presence of COVID‐19 related residual hyposmia.
Author Tedeschi, Gioacchino
De Micco, Rosa
Monari, Caterina
Siciliano, Mattia
Cirillo, Mario
Coppola, Nicola
Caiazzo, Giuseppina
Russo, Andrea Gerardo
Tessitore, Alessandro
Esposito, Fabrizio
AuthorAffiliation 3 Department of Mental and Physical Health and Public Medicine University of Campania “Luigi Vanvitelli” Naples Italy
1 Department of Advanced Medical and Surgical Sciences University of Campania “Luigi Vanvitelli” Naples Italy
2 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno Baronissi (Salerno) Italy
AuthorAffiliation_xml – name: 1 Department of Advanced Medical and Surgical Sciences University of Campania “Luigi Vanvitelli” Naples Italy
– name: 2 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana,” University of Salerno Baronissi (Salerno) Italy
– name: 3 Department of Mental and Physical Health and Public Medicine University of Campania “Luigi Vanvitelli” Naples Italy
Author_xml – sequence: 1
  givenname: Fabrizio
  orcidid: 0000-0002-5099-9786
  surname: Esposito
  fullname: Esposito, Fabrizio
  email: fabrizio.esposito@unicampania.it
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 2
  givenname: Mario
  surname: Cirillo
  fullname: Cirillo, Mario
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 3
  givenname: Rosa
  surname: De Micco
  fullname: De Micco, Rosa
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 4
  givenname: Giuseppina
  surname: Caiazzo
  fullname: Caiazzo, Giuseppina
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 5
  givenname: Mattia
  surname: Siciliano
  fullname: Siciliano, Mattia
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 6
  givenname: Andrea Gerardo
  surname: Russo
  fullname: Russo, Andrea Gerardo
  organization: “Scuola Medica Salernitana,” University of Salerno
– sequence: 7
  givenname: Caterina
  surname: Monari
  fullname: Monari, Caterina
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 8
  givenname: Nicola
  surname: Coppola
  fullname: Coppola, Nicola
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 9
  givenname: Gioacchino
  surname: Tedeschi
  fullname: Tedeschi, Gioacchino
  organization: University of Campania “Luigi Vanvitelli”
– sequence: 10
  givenname: Alessandro
  orcidid: 0000-0002-2913-6548
  surname: Tessitore
  fullname: Tessitore, Alessandro
  organization: University of Campania “Luigi Vanvitelli”
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35083823$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUhS1ExV9Z8AIoEpuyCNxrx7GzQYJp6SBRzabt1nIcB4wyNjgZqtn1EXjGPgmezkwFiK6upfudo-N7dsmmD94ScoBwggD09LaenlAuCtwgOwiVyAErtrl4lzyvCoHbZLfv7wAQOeAW2WYcJJOU7ZBy0rXaDCHOsy70faZ9k9VRO5-Z4L01g3t0wzzT7WBjNpr8vPr85_cTVh_Jh1Z3vd1fzT3y4_LL99E4v558vRqdX-eGM4E5E4xbLTQYJrm0QlBR12UtbQ1YSi4qzijyBqkUUDRF3UrWJKhAgS0Hi2yPnC1972f11DbG-iHqTt1HN9VxroJ26vXGu1t1Ex6VlLIsOSSDTyuDGB5mth_U1PXGdp32Nsx6RUvKGJUoi4QevUHvwiz69L1EsaIAUcGCOnyZ6F-U9UkTcLoETEwHjbZVxg16cGER0HUKQS1KU6k09be0pDh-o1ibvseu3H-5zs7_D6rxxbel4hm446Oj
CitedBy_id crossref_primary_10_1007_s40136_022_00433_2
crossref_primary_10_1093_brain_awac384
crossref_primary_10_3390_life13010226
crossref_primary_10_1002_brb3_3212
crossref_primary_10_1002_hbm_26322
crossref_primary_10_1002_acn3_51680
crossref_primary_10_1016_j_nicl_2022_103218
crossref_primary_10_1002_hbm_26163
crossref_primary_10_1007_s00259_024_06937_x
crossref_primary_10_1016_j_nicl_2024_103589
crossref_primary_10_1016_j_bbr_2023_114662
crossref_primary_10_1111_ane_13627
crossref_primary_10_1038_s41467_024_52650_6
crossref_primary_10_1111_cns_70198
crossref_primary_10_1038_s41598_024_54554_3
crossref_primary_10_1155_2023_6496539
crossref_primary_10_3174_ajnr_A7713
crossref_primary_10_3389_fpsyg_2023_1076743
crossref_primary_10_1038_s41598_023_40115_7
crossref_primary_10_61186_nl_3_1_27
crossref_primary_10_1111_nan_12960
crossref_primary_10_1523_ENEURO_0106_24_2024
crossref_primary_10_3389_fneur_2023_1136408
crossref_primary_10_1093_braincomms_fcad177
crossref_primary_10_36425_rehab109952
crossref_primary_10_1053_j_sult_2024_03_003
crossref_primary_10_1002_acn3_51710
crossref_primary_10_3389_fpubh_2024_1386721
crossref_primary_10_3389_fnsys_2022_885304
crossref_primary_10_7759_cureus_36413
crossref_primary_10_1111_ene_16378
crossref_primary_10_3390_brainsci12040449
crossref_primary_10_1016_j_nicl_2024_103631
crossref_primary_10_3390_brainsci12060714
crossref_primary_10_3390_brainsci12040511
crossref_primary_10_1016_j_neuro_2024_07_003
crossref_primary_10_1016_j_nicl_2023_103410
crossref_primary_10_1007_s10072_024_07427_6
crossref_primary_10_1007_s10072_024_07429_4
crossref_primary_10_1007_s11682_024_00935_1
crossref_primary_10_1055_s_0044_1786046
crossref_primary_10_1038_s41598_024_64367_z
crossref_primary_10_1002_neo2_70001
crossref_primary_10_1016_j_bbi_2022_12_017
crossref_primary_10_3389_fneur_2024_1426881
crossref_primary_10_1097_MS9_0000000000001808
crossref_primary_10_3390_anatomia3020007
Cites_doi 10.1002/mrm.1910350312
10.1016/j.eclinm.2020.100484
10.1016/j.neuroimage.2018.12.004
10.1016/j.neuron.2019.10.006
10.1093/cercor/bhk009
10.1212/WNL.0000000000010806
10.31887/DCNS.2018.20.2/osporns
10.1007/s10548-019-00729-5
10.1016/j.neuroimage.2006.02.043
10.1016/j.neuroimage.2013.06.045
10.1016/j.neuroimage.2009.10.003
10.1006/nimg.2002.1136
10.1111/j.1469-8986.2011.01273.x
10.1038/s41593-020-00758-5
10.1177/0194599820926464
10.1016/j.neuroimage.2013.08.048
10.1371/journal.pone.0068910
10.1523/ENEURO.0551-19.2020
10.1016/j.neuroimage.2017.02.005
10.1016/j.neuroimage.2012.01.083
10.1007/s10072-014-1995-y
10.1007/s00405-020-06267-2
10.1093/cercor/bhaa217
10.2214/ajr.149.2.351
10.1016/j.nicl.2017.09.009
10.1093/chemse/bjab006
10.1016/j.neuroimage.2012.08.052
10.1006/nimg.2001.0978
10.1161/01.STR.32.6.1318
10.1016/j.neuroimage.2017.12.073
10.1017/S1355617702813248
10.1016/j.neuroimage.2015.05.046
10.1093/brain/awaa240
10.1016/j.cmi.2020.05.017
10.1016/j.neuroimage.2019.116189
10.1097/WNR.0000000000000579
10.1016/S1053-8119(03)00073-9
10.3949/ccjm.87a.ccc013
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2011.12.063
10.1007/s00405-018-5210-2
10.1007/s00259-020-05154-6
10.1016/j.neuroimage.2010.12.047
10.1016/j.neuroimage.2008.05.004
10.1038/s41598-021-95968-7
10.1007/s00429-017-1539-3
10.1016/j.cell.2020.08.028
10.1016/j.neuroimage.2012.10.030
10.1002/ana.25807
10.1007/s00405-020-05965-1
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25741
DatabaseName Wiley Online Library Open Access (Freely Accessible)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Technology Research Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Freely Accessible)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Esposito et al
EISSN 1097-0193
EndPage 1560
ExternalDocumentID PMC8886650
35083823
10_1002_hbm_25741
HBM25741
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5371-3735ea7a0c3858e7727bb6b8eb016857953215d128704d4bf83d7724171f50e13
IEDL.DBID 24P
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:28:07 EDT 2025
Fri Jul 11 10:42:07 EDT 2025
Sat Jul 26 02:22:28 EDT 2025
Wed Feb 19 02:27:13 EST 2025
Tue Jul 01 01:11:06 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Wed Jan 22 16:27:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
brain connectivity
olfactory network
anosmia
hyposmia
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5371-3735ea7a0c3858e7727bb6b8eb016857953215d128704d4bf83d7724171f50e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2913-6548
0000-0002-5099-9786
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25741
PMID 35083823
PQID 2634407904
PQPubID 996345
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8886650
proquest_miscellaneous_2623328184
proquest_journals_2634407904
pubmed_primary_35083823
crossref_citationtrail_10_1002_hbm_25741
crossref_primary_10_1002_hbm_25741
wiley_primary_10_1002_hbm_25741_HBM25741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2002; 17
2021; 24
2012; 60
2015; 36
2002; 15
1987; 149
2013; 66
2020; 163
2006; 32
2013; 64
2020; 206
2011; 55
2019; 1435–18
2017; 152
2003; 19
1996; 35
2013; 8
1996; 34
2005; 25
2020; 7
2018; 171
2021; 31
2021; 278
2020; 95
2020; 88
2020; 87
2019; 276
2012; 62
2021; 46
2021; 48
2019; 32
2020; 143
2018; 223
2006; 17
2013; 83
2020; 183
2002; 8
2020; 105
2005
2014; 84
2018; 20
2019; 188
2021; 11
2021
2017; 16
2020
2020; 26
2020; 25
2020; 277
2011; 48
2008; 42
2015; 118
2016; 27
2010; 52
2001; 32
e_1_2_8_28_1
e_1_2_8_47_1
Tschentscher N. (e_1_2_8_51_1) 2019; 1435
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Kobal G. (e_1_2_8_24_1) 1996; 34
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Good P. (e_1_2_8_14_1) 2005
Eibenstein A. (e_1_2_8_7_1) 2005; 25
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 32
  start-page: 1318
  issue: 6
  year: 2001
  end-page: 1322
  article-title: A new rating scale for age‐related white matter changes applicable to MRI and CT
  publication-title: Stroke
– volume: 26
  start-page: 1426
  issue: 10
  year: 2020
  end-page: 1427
  article-title: Anosmia in COVID‐19 patients
  publication-title: Clinical Microbiology and Infection
– volume: 55
  start-page: 1132
  issue: 3
  year: 2011
  end-page: 1146
  article-title: Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data
  publication-title: NeuroImage
– year: 2005
– volume: 34
  start-page: 222
  issue: 4
  year: 1996
  end-page: 226
  article-title: ‘Sniffin’ sticks': Screening of olfactory performance
  publication-title: Rhinology
– volume: 16
  start-page: 557
  year: 2017
  end-page: 563
  article-title: Evaluation of striatonigral connectivity using probabilistic tractography in Parkinson's disease
  publication-title: NeuroImage: Clinical
– volume: 152
  start-page: 437
  year: 2017
  end-page: 449
  article-title: Proportional thresholding in resting‐state fMRI functional connectivity networks and consequences for patient‐control connectome studies: Issues and recommendations
  publication-title: NeuroImage
– year: 2021
– volume: 24
  start-page: 168
  issue: 2
  year: 2021
  end-page: 175
  article-title: Olfactory transmucosal SARS‐CoV‐2 invasion as a port of central nervous system entry in individuals with COVID‐19
  publication-title: Nature Neuroscience
– volume: 105
  start-page: 35
  issue: 1
  year: 2020
  end-page: 45.e5
  article-title: Human olfaction without apparent olfactory bulbs
  publication-title: Neuron
– volume: 223
  start-page: 1091
  issue: 3
  year: 2018
  end-page: 1106
  article-title: Structure‐function relationships during segregated and integrated network states of human brain functional connectivity
  publication-title: Brain Structure & Function
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: NeuroImage
– volume: 25
  year: 2020
  article-title: Cerebral micro‐structural changes in COVID‐19 patients—An MRI‐based 3‐month follow‐up study
  publication-title: EClinicalMedicine
– volume: 163
  start-page: 12
  issue: 1
  year: 2020
  end-page: 15
  article-title: Olfactory dysfunction: A highly prevalent symptom of COVID‐19 with public health significance
  publication-title: Otolaryngology—Head and Neck Surgery: Official Journal of American Academy of Otolaryngology‐Head and Neck Surgery
– volume: 32
  start-page: 987
  issue: 6
  year: 2019
  end-page: 997
  article-title: Magnetic resonance imaging of human olfactory dysfunction
  publication-title: Brain Topography
– volume: 143
  start-page: 3104
  issue: 10
  year: 2020
  end-page: 3120
  article-title: The emerging spectrum of COVID‐19 neurology: Clinical, radiological and laboratory findings
  publication-title: Brain: A Journal of Neurology
– volume: 277
  start-page: 2251
  issue: 8
  year: 2020
  end-page: 2261
  article-title: Olfactory and gustatory dysfunctions as a clinical presentation of mild‐to‐moderate forms of the coronavirus disease (COVID‐19): A multicenter European study
  publication-title: European Archives of Oto‐Rhino‐Laryngology
– volume: 25
  start-page: 18
  issue: 1
  year: 2005
  end-page: 22
  article-title: Olfactory screening test: Experience in 102 Italian subjects
  publication-title: Acta Otorhinolaryngologica Italica: Organo Ufficiale Della Societa Italiana Di Otorinolaringologia E Chirurgia Cervico‐Facciale
– volume: 206
  year: 2020
  article-title: Automated anatomical labelling atlas 3
  publication-title: NeuroImage
– volume: 17
  start-page: 643
  issue: 3
  year: 2006
  end-page: 652
  article-title: Associative encoding in anterior Piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning
  publication-title: Cerebral Cortex
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  end-page: 632
  article-title: Impact of in‐scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth
  publication-title: NeuroImage
– volume: 95
  start-page: e3145
  issue: 23
  year: 2020
  end-page: e3152
  article-title: Loss of smell in patients with COVID‐19: MRI data reveal a transient edema of the olfactory clefts
  publication-title: Neurology
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: NeuroImage
– volume: 87
  start-page: 384
  issue: 7
  year: 2020
  end-page: 388
  article-title: Clinical presentation and course of COVID‐19
  publication-title: Cleveland Clinic Journal of Medicine
– volume: 278
  start-page: 101
  issue: 1
  year: 2021
  end-page: 108
  article-title: Psychophysical evaluation of chemosensory functions 5 weeks after olfactory loss due to COVID‐19: A prospective cohort study on 72 patients
  publication-title: European Archives of Oto‐Rhino‐Laryngology
– volume: 46
  year: 2021
  article-title: Six‐month psychophysical evaluation of olfactory dysfunction in patients with COVID‐19
  publication-title: Chemical Senses
– volume: 31
  start-page: 159
  issue: 1
  year: 2021
  end-page: 168
  article-title: Normal olfactory functional connectivity despite lifelong absence of olfactory experiences
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– volume: 66
  start-page: 333
  year: 2013
  end-page: 342
  article-title: Statistical localization of human olfactory cortex
  publication-title: NeuroImage
– volume: 27
  start-page: 527
  issue: 7
  year: 2016
  end-page: 531
  article-title: Intrinsic intranasal chemosensory brain networks shown by resting‐state functional MRI
  publication-title: Neuroreport
– volume: 62
  start-page: 748
  issue: 2
  year: 2012
  end-page: 756
  article-title: BrainVoyager—Past, present, future
  publication-title: NeuroImage
– volume: 42
  start-page: 498
  issue: 2
  year: 2008
  end-page: 502
  article-title: Correlation between olfactory bulb volume and olfactory function
  publication-title: NeuroImage
– volume: 36
  start-page: 585
  issue: 4
  year: 2015
  end-page: 591
  article-title: Normative data for the Montreal cognitive assessment in an Italian population sample
  publication-title: Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
– volume: 11
  start-page: 16422
  issue: 1
  year: 2021
  article-title: Acquired olfactory loss alters functional connectivity and morphology
  publication-title: Scientific Reports
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
– volume: 17
  start-page: 77
  issue: 1
  year: 2002
  end-page: 94
  article-title: Virtual in vivo interactive dissection of White matter fasciculi in the human brain
  publication-title: NeuroImage
– volume: 48
  start-page: 1890
  year: 2021
  end-page: 1901
  article-title: Structural and metabolic brain abnormalities in COVID‐19 patients with sudden loss of smell
  publication-title: European Journal of Nuclear Medicine and Molecular Imaging
– volume: 8
  start-page: 448
  year: 2002
  end-page: 460
  article-title: What is cognitive reserve? Theory and research application of the reserve concept
  publication-title: Journal of the International Neuropsychological Society
– volume: 83
  start-page: 45
  year: 2013
  end-page: 57
  article-title: Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth
  publication-title: NeuroImage
– volume: 149
  start-page: 351
  issue: 2
  year: 1987
  end-page: 356
  article-title: MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging
  publication-title: American Journal of Roentgenology
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 35
  start-page: 346
  issue: 3
  year: 1996
  end-page: 355
  article-title: Movement‐related effects in fMRI time‐series
  publication-title: Magnetic Resonance in Medicine
– volume: 7
  start-page: 1
  issue: 4
  year: 2020
  end-page: 14
  article-title: Functional connectome analyses reveal the human olfactory network organization
  publication-title: ENeuro
– volume: 276
  start-page: 389
  issue: 2
  year: 2019
  end-page: 395
  article-title: Olfactory dysfunction: Properties of the Sniffin' sticks screening 12 test and associations with quality of life
  publication-title: European Archives of Oto‐Rhino‐Laryngology
– volume: 171
  start-page: 415
  year: 2018
  end-page: 436
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting‐state functional MRI
  publication-title: NeuroImage
– volume: 8
  issue: 7
  year: 2013
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PLoS One
– volume: 118
  start-page: 651
  year: 2015
  end-page: 661
  article-title: The (in)stability of functional brain network measures across thresholds
  publication-title: NeuroImage
– volume: 1435–18
  start-page: 1435
  year: 2019
  end-page: 1418
  article-title: Reduced structural connectivity between left auditory thalamus and the motion‐sensitive planum temporale in developmental dyslexia
  publication-title: The Journal of Neuroscience
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  article-title: FSL
  publication-title: NeuroImage
– volume: 48
  start-page: 1711
  issue: 12
  year: 2011
  end-page: 1725
  article-title: Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review
  publication-title: Psychophysiology
– volume: 88
  start-page: 1
  issue: 1
  year: 2020
  end-page: 11
  article-title: COVID‐19: A global threat to the nervous system
  publication-title: Annals of Neurology
– volume: 19
  start-page: 430
  year: 2003
  end-page: 441
  article-title: Optimized EPI for fMRI studies of the orbitofrontal cortex
  publication-title: NeuroImage
– volume: 32
  start-page: 665
  issue: 2
  year: 2006
  end-page: 675
  article-title: Fibertract segmentation in position orientation space from high angular resolution diffusion MRI
  publication-title: NeuroImage
– volume: 183
  start-page: 16
  issue: 1
  year: 2020
  end-page: 27.e1
  article-title: Effects of COVID‐19 on the nervous system
  publication-title: Cell
– year: 2020
– volume: 188
  start-page: 84
  year: 2019
  end-page: 91
  article-title: Olfactory loss is associated with reduced hippocampal activation in response to emotional pictures
  publication-title: NeuroImage
– volume: 20
  start-page: 111
  issue: 2
  year: 2018
  end-page: 120
  article-title: Graph theory methods: Applications in brain networks
  publication-title: Dialogues in Clinical Neuroscience
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.1910350312
– ident: e_1_2_8_29_1
  doi: 10.1016/j.eclinm.2020.100484
– volume-title: Permutation, parametric and bootstrap tests of hypotheses
  year: 2005
  ident: e_1_2_8_14_1
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2018.12.004
– ident: e_1_2_8_55_1
  doi: 10.1016/j.neuron.2019.10.006
– ident: e_1_2_8_37_1
  doi: 10.1093/cercor/bhk009
– ident: e_1_2_8_8_1
  doi: 10.1212/WNL.0000000000010806
– ident: e_1_2_8_47_1
  doi: 10.31887/DCNS.2018.20.2/osporns
– ident: e_1_2_8_18_1
  doi: 10.1007/s10548-019-00729-5
– volume: 1435
  start-page: 1435
  year: 2019
  ident: e_1_2_8_51_1
  article-title: Reduced structural connectivity between left auditory thalamus and the motion‐sensitive planum temporale in developmental dyslexia
  publication-title: The Journal of Neuroscience
– ident: e_1_2_8_16_1
  doi: 10.1016/j.neuroimage.2006.02.043
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuroimage.2013.06.045
– ident: e_1_2_8_39_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_8_5_1
  doi: 10.1006/nimg.2002.1136
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1469-8986.2011.01273.x
– ident: e_1_2_8_30_1
  doi: 10.1038/s41593-020-00758-5
– ident: e_1_2_8_45_1
  doi: 10.1177/0194599820926464
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_2_8_57_1
  doi: 10.1371/journal.pone.0068910
– ident: e_1_2_8_2_1
  doi: 10.1523/ENEURO.0551-19.2020
– ident: e_1_2_8_53_1
  doi: 10.1016/j.neuroimage.2017.02.005
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2012.01.083
– ident: e_1_2_8_40_1
  doi: 10.1007/s10072-014-1995-y
– ident: e_1_2_8_27_1
  doi: 10.1007/s00405-020-06267-2
– ident: e_1_2_8_35_1
  doi: 10.1093/cercor/bhaa217
– ident: e_1_2_8_9_1
  doi: 10.2214/ajr.149.2.351
– ident: e_1_2_8_26_1
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nicl.2017.09.009
– ident: e_1_2_8_3_1
  doi: 10.1093/chemse/bjab006
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: e_1_2_8_52_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_8_54_1
  doi: 10.1161/01.STR.32.6.1318
– ident: e_1_2_8_56_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2017.12.073
– volume: 34
  start-page: 222
  issue: 4
  year: 1996
  ident: e_1_2_8_24_1
  article-title: ‘Sniffin’ sticks': Screening of olfactory performance
  publication-title: Rhinology
– ident: e_1_2_8_48_1
  doi: 10.1017/S1355617702813248
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neuroimage.2015.05.046
– ident: e_1_2_8_34_1
  doi: 10.1093/brain/awaa240
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cmi.2020.05.017
– volume: 25
  start-page: 18
  issue: 1
  year: 2005
  ident: e_1_2_8_7_1
  article-title: Olfactory screening test: Experience in 102 Italian subjects
  publication-title: Acta Otorhinolaryngologica Italica: Organo Ufficiale Della Societa Italiana Di Otorinolaringologia E Chirurgia Cervico‐Facciale
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2019.116189
– ident: e_1_2_8_50_1
  doi: 10.1097/WNR.0000000000000579
– ident: e_1_2_8_6_1
  doi: 10.1016/S1053-8119(03)00073-9
– ident: e_1_2_8_31_1
  doi: 10.3949/ccjm.87a.ccc013
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: e_1_2_8_19_1
  doi: 10.1007/s00405-018-5210-2
– ident: e_1_2_8_32_1
  doi: 10.1007/s00259-020-05154-6
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2010.12.047
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2008.05.004
– ident: e_1_2_8_22_1
  doi: 10.1038/s41598-021-95968-7
– ident: e_1_2_8_11_1
  doi: 10.1007/s00429-017-1539-3
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2020.08.028
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2012.10.030
– ident: e_1_2_8_25_1
  doi: 10.1002/ana.25807
– ident: e_1_2_8_28_1
  doi: 10.1007/s00405-020-05965-1
SSID ssj0011501
Score 2.5600863
Snippet To address the impact of COVID‐19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS‐CoV‐2...
To address the impact of COVID-19 olfactory loss on the brain, we analyzed the neural connectivity of the central olfactory system in recently SARS-CoV-2...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1548
SubjectTerms Adult
Age
Angular resolution
anosmia
Anosmia - diagnostic imaging
Anosmia - etiology
Brain
Brain - diagnostic imaging
brain connectivity
Contraindications
Coronaviruses
Cortex (olfactory)
Cortex (piriform)
Cortex (somatosensory)
COVID-19
COVID-19 - complications
COVID-19 - diagnostic imaging
Disease transmission
Female
Fibers
Functional magnetic resonance imaging
Humans
hyposmia
Impairment
Infections
Magnetic Resonance Imaging
Male
Males
Mental disorders
Nerve Net - diagnostic imaging
Neural networks
Olfaction disorders
Olfactory bulb
olfactory network
Olfactory system
Sensory neurons
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Smell - physiology
Structure-function relationships
Viral diseases
Viruses
Title Olfactory loss and brain connectivity after COVID‐19
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25741
https://www.ncbi.nlm.nih.gov/pubmed/35083823
https://www.proquest.com/docview/2634407904
https://www.proquest.com/docview/2623328184
https://pubmed.ncbi.nlm.nih.gov/PMC8886650
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEC5CAuJFNPGxJi6tiHgZM_2ansFTEhNWYZMQjOxt6NcQYTORPA65-RP8jf4Sq3pmR5coeGkGuobpqarurq7q-grgdTAoVS7J4x50poK2WeV0lVmro_NFafNUDmh6WExO1aeZnq3A-0UuTIcPMTjcaGak9ZomuHVX279BQ8_c-TvUN0paX6PUWlJyoY6HEAJaOum0hXtsVuESvIAVysX28OryZnTHwrx7UfJPAzbtQAcP4UFvOrKdTtaPYCW267Cx0-Kx-fyWvWHpMmfykq_DvWkfM9-A4mjeFdW5ZXMcBLNtYI4KQzBPl1x8Vz6CpWLhbO_oy8cPP7__4NVjOD3Y_7w3yfpqCZnX0nBcKaSO1tjcU6wvotVsnCtcGR1adaU2lZa4vQdOkU0VlGtKGZBIccMbnUcun8Bqe9HGZ8C4F6EsogsuBCVNY6VVnPuGo_RU4ZsRvF2wrfY9lDhVtJjXHQiyqJHDdeLwCF4NpN86_Iy_EW0teF_3U-iqFoVUeNqscjWCl0M3Kj9FNGwbL26IRkhJeFZI87QT1fAVSUD3pZAjMEtCHAgIWHu5p_16lgC2y5JQAHP8zSTufw-8nuxO08Pz_yfdhPuCUijS7Z8tWL2-vIkv0LC5duOkwNiamRnD2u7-4fHJODkJqD0RvwBea_Zw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEJ4QSNQXg6ByBHU1xvhS6d66bcILouSgHPABDG_N3hpMDsUoPPDGT_A3-kuY2fZUT9DEtyY7Tbcze5mdmf0-gFfBoFW5pIh70JkK2maV01VmrY7OF6XNEx3Q5KAYH6uPJ_pkAbZmd2E6fIgh4EYzI63XNMEpIL35GzX01J29xQFHt9aXVCEMETcI9XnIIaCrk45buMlmFa7BM1yhXGwOr87vRrdczNuVkn96sGkL2l2G-73vyLY7Yz-AhdiuwOp2i-fmsyv2mqVqzhQmX4E7kz5pvgrF4bRj1bliU-wEs21gjpghmKcqF9_xR7DEFs52Dr_svf91_ZNXD-F498PRzjjr6RIyr6XhuFRIHa2xuadkX0S32ThXuDI6dOtKbSotcX8PnFKbKijXlDKgkOKGNzqPXD6Cxfa8jWvAuBehLKILLgQlTWOlVZz7hqP5VOGbEbyZqa32PZY4UVpM6w4FWdSo4TppeAQvB9FvHYDG34Q2Zrqv-zn0oxaFVHjcrHI1ghdDM45-SmnYNp5fkoyQkgCtUOZxZ6rhK5KQ7kshR2DmjDgIELL2fEv79TQhbJclwQDm-JvJ3P_ueD1-N0kPT_5f9DncHR9N9uv9vYNP63BP0H2KVAq0AYsX3y_jU_RyLtyzNJhvAKV79X0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hkFAvFa_SBdq6CKFeUuLYzkOcKHS1tF3gUCpukV8RSEtAwB721p_Q39hfwoyTTbuCSr1F8kRxZsae8cz4G4Adl6FUuaCIu1ORdEpHhVFFpLXyxqa5jkM7oOFJOjiXXy7UxRzsT-_CNPgQXcCNVkbYr2mB37pq7w9o6KW5_oj6RpfWFyjZR-qdyLMuhYCeTjhtoY2NCtyCp7BCcbLXvTprjJ54mE8LJf92YIMF6i_By9Z1ZAeNrJdhztcrsHpQ47H5esJ2WSjmDFHyFVgctjnzVUhPR01TnQkb4SSYrh0z1BiCWSpysU37CBaahbPD0x_HR79__uLFGpz3P38_HERtt4TIKpFx3CmE8jrTsaVcn0evOTMmNbk36NXlKiuUQPPuOGU2pZOmyoVDIskzXqnYc_EK5uub2r8Gxm3i8tQbZ5yTIqu00JJzW3GUnkxt1YMPU7aVtoUSp44Wo7IBQU5K5HAZONyD7Y70tsHPeI5oa8r7sl1C92WSComnzSKWPXjfDaPyU0ZD1_5mTDSJEIRnhTTrjai6rwgCus8T0YNsRogdAQFrz47UV5cBYDvPCQUwxt8M4v73xMvBp2F42Ph_0neweHbUL78dn3zdhBcJ3aYIhUBbMP9wN_Zv0Md5MG-DLj8CP1v0rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Olfactory+loss+and+brain+connectivity+after+COVID-19&rft.jtitle=Human+brain+mapping&rft.au=Esposito%2C+Fabrizio&rft.au=Cirillo%2C+Mario&rft.au=De+Micco%2C+Rosa&rft.au=Caiazzo%2C+Giuseppina&rft.date=2022-04-01&rft.eissn=1097-0193&rft.volume=43&rft.issue=5&rft.spage=1548&rft_id=info:doi/10.1002%2Fhbm.25741&rft_id=info%3Apmid%2F35083823&rft.externalDocID=35083823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon