Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function

The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 14; no. 10; p. 2215
Main Authors Lokareddy, Ravi K., Hou, Chun-Feng David, Li, Fenglin, Yang, Ruoyu, Cingolani, Gino
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
AbstractList The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.
Audience Academic
Author Cingolani, Gino
Li, Fenglin
Lokareddy, Ravi K.
Yang, Ruoyu
Hou, Chun-Feng David
AuthorAffiliation Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
AuthorAffiliation_xml – name: Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
Author_xml – sequence: 1
  givenname: Ravi K.
  orcidid: 0000-0002-5357-1857
  surname: Lokareddy
  fullname: Lokareddy, Ravi K.
– sequence: 2
  givenname: Chun-Feng David
  orcidid: 0000-0002-1820-9588
  surname: Hou
  fullname: Hou, Chun-Feng David
– sequence: 3
  givenname: Fenglin
  orcidid: 0000-0001-7932-0071
  surname: Li
  fullname: Li, Fenglin
– sequence: 4
  givenname: Ruoyu
  surname: Yang
  fullname: Yang, Ruoyu
– sequence: 5
  givenname: Gino
  surname: Cingolani
  fullname: Cingolani, Gino
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36298770$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAURi1URB-w4A-gSGxgMa2dxHbMAmkYKFSqxKIjNiysGz-Ch8QudjKIf4_DtKVTUBaJbs499mffY3TggzcIPSf4tKoEPtuSmuCyJPQROiJCiEUtCD24932IjlPaYMyYwPwJOqxYKRrO8RH6-sVF6IurAfq-WJs4OA_JvCmWxXu3NbEzfiyuxjipcZq58wiD-Rni98KGWECxCj6ZuDW6eOdCHzqnZmjyanTBP0WPLfTJPLt5n6D1-Yf16tPi8vPHi9XycqFoxcaFbRSnTAhrSEtqBhQUxxWwWoDmhCtGMRcW6qaEvOvMtUwzpXGtjcaVqU7QxU6rA2zkdXQDxF8ygJN_CiF2EuLoVG-kskw1pQajmqZuSwArgAHmbYuJ0IJn19ud63pqB6NVjp9j70n3_3j3TXZhKwUjBFORBa9uBDH8mEwa5eCSMn0P3oQpyZKXghLBaJnRlw_QTZiizyc1Uw3NF9fgv1QHOYDzNuR11SyVS16zfEAUN5k6_Q-VH20Gp_K0WJfrew0v7ge9S3g7GRk42wEqhpSisVK5EeZrzWbXS4LlPHvybvZyx-sHHbfSf9nfGS_XYg
CitedBy_id crossref_primary_10_3389_fmars_2023_1201434
crossref_primary_10_1016_j_tim_2024_05_002
crossref_primary_10_1128_msystems_00197_23
crossref_primary_10_3390_v15061315
crossref_primary_10_1111_mmi_15251
crossref_primary_10_3390_v16020192
crossref_primary_10_1016_j_marenvres_2023_106168
crossref_primary_10_1007_s11262_024_02052_z
crossref_primary_10_1073_pnas_2406138121
crossref_primary_10_1111_mmi_15306
crossref_primary_10_3390_v15020307
crossref_primary_10_3390_v15020527
crossref_primary_10_1016_j_lwt_2025_117645
crossref_primary_10_1128_aem_00367_24
crossref_primary_10_3390_pathogens13121066
crossref_primary_10_3389_frmbi_2024_1408203
crossref_primary_10_1016_j_sbi_2024_102945
crossref_primary_10_1093_nar_gkae675
Cites_doi 10.1128/JVI.01048-09
10.1016/j.virusres.2013.01.021
10.1101/2022.05.10.491410
10.1073/pnas.80.4.955
10.1073/pnas.1813204116
10.1146/annurev.biochem.76.052705.161529
10.1128/JVI.05265-11
10.1016/j.str.2012.05.014
10.1016/j.molcel.2007.02.013
10.1016/j.jmb.2022.167537
10.1107/S1744309113004399
10.1007/0-387-28521-0
10.1099/0022-1317-81-9-2231
10.1038/nsmb.2023
10.1016/j.jmb.2012.07.016
10.1007/s13238-020-00710-0
10.1016/j.biotechadv.2014.01.006
10.1016/j.jmb.2015.08.013
10.1093/sysbio/syq010
10.1016/j.jmb.2007.08.070
10.1038/embor.2009.53
10.1016/S0092-8674(01)00315-4
10.1177/135965350801300504
10.3390/v10020067
10.1093/nar/gkab372
10.1073/pnas.0908569107
10.1128/JVI.72.3.2259-2264.1998
10.1074/jbc.M109.025007
10.1016/j.celrep.2016.01.058
10.1016/0022-2836(85)90215-3
10.1073/pnas.1320952111
10.1006/jmbi.1995.0505
10.1073/pnas.1506951112
10.1021/bi300890y
10.1016/j.sbi.2009.12.006
10.1038/msb.2011.75
10.1073/pnas.1007144107
10.1111/j.1365-2958.2008.06344.x
10.1016/j.jmb.2005.01.016
10.1038/s41467-021-26800-z
10.1126/science.1251652
10.1074/jbc.M208574200
10.1007/978-3-319-53168-7_6
10.1007/BF00332755
10.1093/nar/gkaa866
10.1128/JVI.02632-13
10.1093/nar/gkab301
10.1016/j.sbi.2013.10.005
10.1126/sciadv.abc1955
10.1146/annurev-virology-092818-015819
10.1128/AAC.01596-09
10.1111/j.1365-2958.1995.tb02333.x
10.1074/jbc.M116.724393
10.1073/pnas.1110224109
10.1093/nar/gkaa205
10.1093/nar/gkac240
10.1074/jbc.M004309200
10.1186/1743-422X-3-30
10.1016/j.jmb.2006.08.054
10.1128/JVI.00311-13
10.1016/j.jmb.2005.08.063
10.1016/j.bpj.2015.08.037
10.1016/0042-6822(86)90109-1
10.1021/bi0615036
10.1038/ncomms14310
10.1016/S0022-2836(84)80021-2
10.1073/pnas.1110270109
10.1046/j.1365-2958.2002.03114.x
10.1128/AAC.01794-13
10.1073/pnas.1301133110
10.1128/jvi.62.2.387-392.1988
10.1016/0022-2836(92)91027-M
10.1007/978-1-60327-565-1_7
10.4161/bact.23829
10.1038/nrmicro2632
10.1074/jbc.M112.349894
10.1038/ncomms8548
10.1073/pnas.93.23.13429
10.1016/j.virol.2010.12.046
10.1006/jmbi.1993.1166
10.1016/0042-6822(79)90509-9
10.1371/journal.pbio.1000592
10.1016/j.coviro.2011.05.023
10.1074/jbc.M003357200
10.1146/annurev.genet.42.110807.091545
10.1016/S0968-0004(00)01667-4
10.1006/viro.1994.1415
10.3390/v11030219
10.1016/S1097-2765(02)00537-3
10.1016/j.jmb.2022.167799
10.1016/S0022-2836(82)80014-4
10.1074/jbc.RA119.012224
10.1016/j.virol.2019.07.021
10.1074/jbc.272.6.3495
10.1016/S0014-5793(04)00283-2
10.1016/j.jmb.2008.08.050
10.1093/nar/gkv1467
10.1107/S1744309113017016
10.2144/00286ir01
10.1016/0022-2836(92)90523-M
10.1038/35099581
10.1073/pnas.0704008104
10.1074/jbc.M110.196907
10.1107/S174430911004697X
10.1074/jbc.M112.448951
10.1021/bi991408f
10.1002/rmv.344
10.1016/0022-2836(88)90537-2
10.1074/jbc.M602093200
10.1016/j.cell.2008.11.015
10.1016/S0014-5793(00)01407-1
10.1074/jbc.270.34.20059
10.1159/000150011
10.1016/j.cell.2008.08.027
10.1093/nar/gkw184
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/v14102215
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_cf6c82daec884b2aaf9a6a07bb019d97
PMC9611059
A746717508
36298770
10_3390_v14102215
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM140733
– fundername: NIH HHS
  grantid: R35 GM140733
– fundername: NIH HHS
  grantid: R01 GM100888
– fundername: NIH
  grantid: R01 GM100888; R35 GM140733
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7U9
7XB
8FK
AZQEC
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-f8c75699fe1b146a5ac703a649ad717c65079fa482a29899fb6d6cd04ded03e3
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:30:34 EDT 2025
Thu Aug 21 18:38:49 EDT 2025
Wed Jul 30 11:17:20 EDT 2025
Fri Jul 25 11:57:24 EDT 2025
Tue Jun 17 22:13:42 EDT 2025
Tue Jun 10 21:10:30 EDT 2025
Thu Apr 03 07:07:05 EDT 2025
Tue Jul 01 02:48:40 EDT 2025
Thu Apr 24 23:09:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords X-ray crystallography
TerS
bacteriophages
herpesviruses
terminase subunits
viral genome packaging
cryo-EM
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-f8c75699fe1b146a5ac703a649ad717c65079fa482a29899fb6d6cd04ded03e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1820-9588
0000-0001-7932-0071
0000-0002-5357-1857
OpenAccessLink https://www.proquest.com/docview/2728549180?pq-origsite=%requestingapplication%
PMID 36298770
PQID 2728549180
PQPubID 2032319
ParticipantIDs doaj_primary_oai_doaj_org_article_cf6c82daec884b2aaf9a6a07bb019d97
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611059
proquest_miscellaneous_2729519652
proquest_journals_2728549180
gale_infotracmisc_A746717508
gale_infotracacademiconefile_A746717508
pubmed_primary_36298770
crossref_citationtrail_10_3390_v14102215
crossref_primary_10_3390_v14102215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bogner (ref_107) 1998; 72
Roy (ref_73) 2012; 287
ref_91
Chai (ref_48) 1994; 202
Chechik (ref_69) 2013; 69
Sun (ref_3) 2010; 20
Lander (ref_66) 2008; 383
Oliveira (ref_93) 2013; 173
Hayes (ref_70) 2020; 295
Schmieger (ref_38) 1987; 28
Giesen (ref_108) 2000; 471
Fang (ref_58) 2002; 9
Kobe (ref_112) 2000; 25
Gao (ref_99) 2011; 286
Yang (ref_72) 2020; 11
Smith (ref_7) 2011; 1
Andrews (ref_14) 2012; 51
Lokareddy (ref_28) 2022; 434
Champier (ref_115) 2008; 13
McNulty (ref_16) 2015; 427
Hilbert (ref_82) 2017; 45
Feiss (ref_90) 1983; 80
Giesen (ref_109) 2000; 81
Kala (ref_12) 2014; 111
Roy (ref_64) 2011; 67
Niazi (ref_68) 2020; 48
Zhao (ref_61) 2012; 423
Savva (ref_111) 2004; 563
ref_29
Heming (ref_51) 2017; 223
Leffers (ref_80) 2000; 275
Kondabagil (ref_39) 2009; 284
Maluf (ref_18) 2006; 45
Casjens (ref_5) 2011; 9
Dai (ref_32) 2021; 12
Bogner (ref_114) 2002; 12
Heming (ref_19) 2014; 88
Chai (ref_94) 1995; 252
Sankhala (ref_106) 2016; 291
Alam (ref_84) 2008; 69
Chechik (ref_67) 2012; 109
Black (ref_41) 2006; 281
Smits (ref_105) 2009; 10
Letunic (ref_56) 2021; 49
Sigamani (ref_104) 2013; 87
Zhao (ref_25) 2013; 110
Rao (ref_34) 1988; 200
Casjens (ref_87) 2009; Volume 502
Casjens (ref_47) 1992; 227
Sun (ref_21) 2015; 6
Tavares (ref_95) 1992; 225
Cook (ref_113) 2007; 76
Nadal (ref_103) 2010; 107
Fuller (ref_2) 2007; 104
ref_88
Lin (ref_46) 1997; 272
Guo (ref_6) 2014; 32
Oliveira (ref_42) 2005; 353
Yang (ref_75) 1999; 38
Wu (ref_92) 2002; 45
Sun (ref_20) 2008; 135
(ref_71) 2014; 343
Rubinchik (ref_36) 1995; 270
Hamada (ref_35) 1986; 151
Gao (ref_97) 2016; 44
Pajak (ref_33) 2021; 49
ref_52
Strauss (ref_24) 1984; 172
Shinder (ref_45) 1988; 62
Sievers (ref_53) 2011; 7
Benini (ref_74) 2013; 69
Berger (ref_110) 2008; 134
Catalano (ref_89) 1995; 16
Efron (ref_49) 1996; 93
Lischka (ref_116) 2010; 54
Lokareddy (ref_10) 2017; 8
ref_60
Alam (ref_83) 2010; 39
Goldner (ref_117) 2011; 85
Beilstein (ref_78) 2009; 83
Poteete (ref_15) 1979; 95
Casjens (ref_50) 2011; 411
Mao (ref_23) 2016; 14
Yang (ref_85) 2020; 48
Dauden (ref_22) 2013; 288
Bhardwaj (ref_30) 2014; 25
Madeira (ref_54) 2022; 50
Goldner (ref_118) 2014; 58
Baumann (ref_79) 2003; 278
Kondabagil (ref_40) 2006; 363
Dedeo (ref_100) 2019; 6
Sun (ref_26) 2007; 25
Hilbert (ref_27) 2015; 112
Renault (ref_86) 2001; 105
Sun (ref_59) 2012; 109
Hou (ref_101) 2022; 434
Schmieger (ref_37) 1984; 195
Roy (ref_63) 2012; 20
Dixit (ref_102) 2019; 536
Serwer (ref_8) 2012; 2
Maluf (ref_17) 2005; 347
Frackman (ref_76) 1985; 183
Zhao (ref_62) 2010; 107
Gual (ref_81) 2000; 275
Xin (ref_13) 1993; 230
Nolan (ref_98) 2006; 3
Rao (ref_4) 2008; 42
Jackson (ref_44) 1982; 154
Guindon (ref_55) 2010; 59
Greive (ref_96) 2015; 44
ref_43
Bayfield (ref_11) 2019; 116
Yang (ref_77) 2015; 109
Gilcrease (ref_65) 2007; 374
Woodson (ref_31) 2021; 7
Smith (ref_1) 2001; 413
Stothard (ref_57) 2000; 28
Olia (ref_9) 2011; 18
References_xml – volume: 83
  start-page: 8938
  year: 2009
  ident: ref_78
  article-title: Mutational Analysis of the Herpes Simplex Virus Type 1 DNA Packaging Protein UL
  publication-title: J. Virol.
  doi: 10.1128/JVI.01048-09
– volume: 173
  start-page: 247
  year: 2013
  ident: ref_93
  article-title: Headful DNA packaging: Bacteriophage SPP1 as a model system
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.01.021
– ident: ref_60
  doi: 10.1101/2022.05.10.491410
– volume: 80
  start-page: 955
  year: 1983
  ident: ref_90
  article-title: Separate sites for binding and nicking of bacteriophage lambda DNA by terminase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.80.4.955
– volume: 116
  start-page: 3556
  year: 2019
  ident: ref_11
  article-title: Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1813204116
– volume: 76
  start-page: 647
  year: 2007
  ident: ref_113
  article-title: Structural Biology of Nucleocytoplasmic Transport
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052705.161529
– volume: 85
  start-page: 10884
  year: 2011
  ident: ref_117
  article-title: The Novel Anticytomegalovirus Compound AIC246 (Letermovir) Inhibits Human Cytomegalovirus Replication through a Specific Antiviral Mechanism That Involves the Viral Terminase
  publication-title: J. Virol.
  doi: 10.1128/JVI.05265-11
– volume: 20
  start-page: 1403
  year: 2012
  ident: ref_63
  article-title: Small Terminase Couples Viral DNA Binding to Genome-Packaging ATPase Activity
  publication-title: Structure
  doi: 10.1016/j.str.2012.05.014
– volume: 25
  start-page: 943
  year: 2007
  ident: ref_26
  article-title: The Structure of the ATPase that Powers DNA Packaging into Bacteriophage T4 Procapsids
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.02.013
– volume: 434
  start-page: 167537
  year: 2022
  ident: ref_101
  article-title: Cryo-EM Structure of a Kinetically Trapped Dodecameric Portal Protein from the Pseudomonas-phage PaP3
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2022.167537
– volume: 69
  start-page: 376
  year: 2013
  ident: ref_74
  article-title: The 1.58 Å resolution structure of the DNA-binding domain of bacteriophage SF6 small terminase provides new hints on DNA binding
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309113004399
– ident: ref_91
  doi: 10.1007/0-387-28521-0
– volume: 81
  start-page: 2231
  year: 2000
  ident: ref_109
  article-title: The potential terminase subunit of human cytomegalovirus, pUL56, is translocated into the nucleus by its own nuclear localization signal and interacts with importin α
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-81-9-2231
– volume: 18
  start-page: 597
  year: 2011
  ident: ref_9
  article-title: Three-dimensional structure of a viral genome-delivery portal vertex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2023
– volume: 423
  start-page: 413
  year: 2012
  ident: ref_61
  article-title: Structural and Functional Studies of the Phage Sf6 Terminase Small Subunit Reveal a DNA-Spooling Device Facilitated by Structural Plasticity
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.07.016
– volume: 11
  start-page: 339
  year: 2020
  ident: ref_72
  article-title: Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00710-0
– volume: 32
  start-page: 853
  year: 2014
  ident: ref_6
  article-title: Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.01.006
– volume: 427
  start-page: 3285
  year: 2015
  ident: ref_16
  article-title: Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.08.013
– volume: 59
  start-page: 307
  year: 2010
  ident: ref_55
  article-title: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syq010
– volume: 374
  start-page: 817
  year: 2007
  ident: ref_65
  article-title: Subunit Conformations and Assembly States of a DNA-translocating Motor: The Terminase of Bacteriophage P
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.08.070
– volume: 10
  start-page: 592
  year: 2009
  ident: ref_105
  article-title: Structural basis for the nuclease activity of a bacteriophage large terminase
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.53
– volume: 105
  start-page: 245
  year: 2001
  ident: ref_86
  article-title: Structural Basis for Guanine Nucleotide Exchange on Ran by the Regulator of Chromosome Condensation (RCC1)
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00315-4
– volume: 13
  start-page: 643
  year: 2008
  ident: ref_115
  article-title: Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity
  publication-title: Antivir. Ther.
  doi: 10.1177/135965350801300504
– ident: ref_29
  doi: 10.3390/v10020067
– volume: 49
  start-page: 6474
  year: 2021
  ident: ref_33
  article-title: Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab372
– volume: 107
  start-page: 1971
  year: 2010
  ident: ref_62
  article-title: Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908569107
– volume: 72
  start-page: 2259
  year: 1998
  ident: ref_107
  article-title: The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.3.2259-2264.1998
– volume: 284
  start-page: 24490
  year: 2009
  ident: ref_39
  article-title: The Small Terminase, gp16, of Bacteriophage T4 Is a Regulator of the DNA Packaging Motor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.025007
– volume: 14
  start-page: 2017
  year: 2016
  ident: ref_23
  article-title: Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.058
– volume: 183
  start-page: 225
  year: 1985
  ident: ref_76
  article-title: The terminase of bacteriophage λ: Functional domains for cosB binding and multimer assembly
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(85)90215-3
– volume: 111
  start-page: 6022
  year: 2014
  ident: ref_12
  article-title: HNH proteins are a widespread component of phage DNA packaging machines
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1320952111
– volume: 252
  start-page: 386
  year: 1995
  ident: ref_94
  article-title: The Small Subunit of the Terminase Enzyme ofBacillus subtilisBacteriophage SPP1 forms a Specialized Nucleoprotein Complex with the Packaging Initiation Region
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0505
– volume: 112
  start-page: E3792
  year: 2015
  ident: ref_27
  article-title: Structure and mechanism of the ATPase that powers viral genome packaging
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1506951112
– volume: 51
  start-page: 9342
  year: 2012
  ident: ref_14
  article-title: The Enzymology of a Viral Genome Packaging Motor Is Influenced by the Assembly State of the Motor Subunits
  publication-title: Biochemistry
  doi: 10.1021/bi300890y
– volume: 39
  start-page: 2742
  year: 2010
  ident: ref_83
  article-title: Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 114
  year: 2010
  ident: ref_3
  article-title: Genome packaging in viruses
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.12.006
– volume: 7
  start-page: 539
  year: 2011
  ident: ref_53
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 107
  start-page: 16078
  year: 2010
  ident: ref_103
  article-title: Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007144107
– volume: 69
  start-page: 1180
  year: 2008
  ident: ref_84
  article-title: The Headful Packaging Nuclease of Bacteriophage T4
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06344.x
– volume: 347
  start-page: 523
  year: 2005
  ident: ref_17
  article-title: Self-association Properties of the Bacteriophage λ Terminase Holoenzyme: Implications for the DNA Packaging Motor
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.01.016
– volume: 12
  start-page: 6548
  year: 2021
  ident: ref_32
  article-title: A viral genome packaging ring-ATPase is a flexibly coordinated pentamer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26800-z
– volume: 343
  start-page: 1443
  year: 2014
  ident: ref_71
  article-title: The Resolution Revolution
  publication-title: Science
  doi: 10.1126/science.1251652
– volume: 278
  start-page: 4618
  year: 2003
  ident: ref_79
  article-title: Isolation and Characterization of T4 Bacteriophage gp17 Terminase, a Large Subunit Multimer with Enhanced ATPase Activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208574200
– volume: 223
  start-page: 119
  year: 2017
  ident: ref_51
  article-title: Herpesvirus Capsid Assembly and DNA Packaging
  publication-title: Adv. Anat. Embryol. Cell Biol.
  doi: 10.1007/978-3-319-53168-7_6
– volume: 195
  start-page: 252
  year: 1984
  ident: ref_37
  article-title: Pac sites are indispensable for in vivo packaging of DNA by phage P22
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00332755
– volume: 48
  start-page: 11721
  year: 2020
  ident: ref_68
  article-title: Biophysical analysis of Pseudomonas-phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa866
– volume: 88
  start-page: 225
  year: 2014
  ident: ref_19
  article-title: Isolation and Characterization of the Herpes Simplex Virus 1 Terminase Complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.02632-13
– volume: 49
  start-page: W293
  year: 2021
  ident: ref_56
  article-title: Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab301
– volume: 25
  start-page: 1
  year: 2014
  ident: ref_30
  article-title: Architecture of viral genome-delivery molecular machines
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2013.10.005
– volume: 7
  start-page: eabc1955
  year: 2021
  ident: ref_31
  article-title: A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc1955
– volume: 6
  start-page: 141
  year: 2019
  ident: ref_100
  article-title: Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-092818-015819
– volume: 54
  start-page: 1290
  year: 2010
  ident: ref_116
  article-title: In Vitro and In Vivo Activities of the Novel Anticytomegalovirus Compound AIC
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01596-09
– volume: 16
  start-page: 1075
  year: 1995
  ident: ref_89
  article-title: Virus DNA packaging: The strategy used by phage?
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02333.x
– volume: 291
  start-page: 11420
  year: 2016
  ident: ref_106
  article-title: Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.724393
– volume: 109
  start-page: 817
  year: 2012
  ident: ref_59
  article-title: Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1110224109
– volume: 48
  start-page: 5006
  year: 2020
  ident: ref_85
  article-title: ATP serves as a nucleotide switch coupling the genome maturation and packaging motor complexes of a virus assembly machine
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa205
– volume: 50
  start-page: W276
  year: 2022
  ident: ref_54
  article-title: Search and sequence analysis tools services from EMBL-EBI in 2022
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac240
– volume: 275
  start-page: 35311
  year: 2000
  ident: ref_81
  article-title: Functional Analysis of the Terminase Large Subunit, G2P, of Bacillus subtilis Bacteriophage SPP1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004309200
– volume: 3
  start-page: 30
  year: 2006
  ident: ref_98
  article-title: Genetic diversity among five T4-like bacteriophages
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-3-30
– volume: 363
  start-page: 786
  year: 2006
  ident: ref_40
  article-title: The DNA Translocating ATPase of Bacteriophage T4 Packaging Motor
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.08.054
– volume: 87
  start-page: 7140
  year: 2013
  ident: ref_104
  article-title: The Structure of the Herpes Simplex Virus DNA-Packaging Terminase pUL15 Nuclease Domain Suggests an Evolutionary Lineage among Eukaryotic and Prokaryotic Viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.00311-13
– volume: 353
  start-page: 529
  year: 2005
  ident: ref_42
  article-title: A Defined in Vitro System for DNA Packaging by the Bacteriophage SPP1: Insights into the Headful Packaging Mechanism
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.08.063
– volume: 109
  start-page: 1663
  year: 2015
  ident: ref_77
  article-title: Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.08.037
– volume: 151
  start-page: 119
  year: 1986
  ident: ref_35
  article-title: A defined in vitro system for packaging of bacteriophage T3 DNA
  publication-title: Virology
  doi: 10.1016/0042-6822(86)90109-1
– volume: 45
  start-page: 15259
  year: 2006
  ident: ref_18
  article-title: Assembly of Bacteriophage Lambda Terminase into a Viral DNA Maturation and Packaging Machine
  publication-title: Biochemistry
  doi: 10.1021/bi0615036
– volume: 8
  start-page: 14310
  year: 2017
  ident: ref_10
  article-title: Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14310
– volume: 172
  start-page: 523
  year: 1984
  ident: ref_24
  article-title: Steps in the stabilization of newly packaged DNA during phage P22 Morphogenesis
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(84)80021-2
– volume: 109
  start-page: 811
  year: 2012
  ident: ref_67
  article-title: Structural basis for DNA recognition and loading into a viral packaging motor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1110270109
– volume: 45
  start-page: 1631
  year: 2002
  ident: ref_92
  article-title: The DNA site utilized by bacteriophage P22 for initiation of DNA packaging
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.03114.x
– volume: 58
  start-page: 610
  year: 2014
  ident: ref_118
  article-title: Geno- and Phenotypic Characterization of Human Cytomegalovirus Mutants Selected In Vitro after Letermovir (AIC246) Exposure
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01794-13
– volume: 110
  start-page: 8075
  year: 2013
  ident: ref_25
  article-title: Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1301133110
– volume: 62
  start-page: 387
  year: 1988
  ident: ref_45
  article-title: The Nul subunit of bacteriophage lambda terminase binds to specific sites in cos DNA
  publication-title: J. Virol.
  doi: 10.1128/jvi.62.2.387-392.1988
– volume: 225
  start-page: 81
  year: 1992
  ident: ref_95
  article-title: Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)91027-M
– volume: Volume 502
  start-page: 91
  year: 2009
  ident: ref_87
  article-title: Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-60327-565-1_7
– volume: 2
  start-page: 239
  year: 2012
  ident: ref_8
  article-title: Dualities in the analysis of phage DNA packaging motors
  publication-title: Bacteriophage
  doi: 10.4161/bact.23829
– volume: 9
  start-page: 647
  year: 2011
  ident: ref_5
  article-title: The DNA-packaging nanomotor of tailed bacteriophages
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrmicro2632
– volume: 287
  start-page: 28196
  year: 2012
  ident: ref_73
  article-title: Structure of P22 Headful Packaging Nuclease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.349894
– volume: 6
  start-page: 7548
  year: 2015
  ident: ref_21
  article-title: Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8548
– volume: 93
  start-page: 13429
  year: 1996
  ident: ref_49
  article-title: Bootstrap confidence levels for phylogenetic trees
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.23.13429
– volume: 411
  start-page: 393
  year: 2011
  ident: ref_50
  article-title: Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly
  publication-title: Virology
  doi: 10.1016/j.virol.2010.12.046
– volume: 230
  start-page: 492
  year: 1993
  ident: ref_13
  article-title: Function of IHF in λ DNA Packaging: I. Identification of the Strong Binding Site for Integration Host Factor and the Locus for Intrinsic Bending in cosB
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1166
– volume: 95
  start-page: 565
  year: 1979
  ident: ref_15
  article-title: Purification and properties of proteins essential to DNA encapsulation by phage P
  publication-title: Virology
  doi: 10.1016/0042-6822(79)90509-9
– ident: ref_43
  doi: 10.1371/journal.pbio.1000592
– volume: 1
  start-page: 134
  year: 2011
  ident: ref_7
  article-title: Single-molecule studies of viral DNA packaging
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2011.05.023
– volume: 275
  start-page: 37127
  year: 2000
  ident: ref_80
  article-title: Biochemical Characterization of an ATPase Activity Associated with the Large Packaging Subunit gp17 from Bacteriophage T
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003357200
– volume: 42
  start-page: 647
  year: 2008
  ident: ref_4
  article-title: The Bacteriophage DNA Packaging Motor
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.42.110807.091545
– volume: 25
  start-page: 509
  year: 2000
  ident: ref_112
  article-title: When protein folding is simplified to protein coiling: The continuum of solenoid protein structures
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(00)01667-4
– volume: 202
  start-page: 930
  year: 1994
  ident: ref_48
  article-title: Analysis of the Bacillus subtilis Bacteriophages SPP1 and SF6 Gene 1 Product: A Protein Involved in the Initiation of Headful Packaging
  publication-title: Virology
  doi: 10.1006/viro.1994.1415
– ident: ref_52
  doi: 10.3390/v11030219
– volume: 9
  start-page: 981
  year: 2002
  ident: ref_58
  article-title: Insights into specific DNA recognition during the assembly of a viral genome packaging machine
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(02)00537-3
– volume: 434
  start-page: 167799
  year: 2022
  ident: ref_28
  article-title: Terminase Subunits from the Pseudomonas-Phage E217
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2022.167799
– volume: 154
  start-page: 551
  year: 1982
  ident: ref_44
  article-title: Bacteriophage P22 mutants that alter the specificity of DNA packaging
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(82)80014-4
– volume: 295
  start-page: 3783
  year: 2020
  ident: ref_70
  article-title: A thermophilic phage uses a small terminase protein with a fixed helix–turn–helix geometry
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.012224
– volume: 536
  start-page: 39
  year: 2019
  ident: ref_102
  article-title: A viral small terminase subunit (TerS) twin ring pac synapsis DNA packaging model is supported by fluorescent fusion proteins
  publication-title: Virology
  doi: 10.1016/j.virol.2019.07.021
– volume: 272
  start-page: 3495
  year: 1997
  ident: ref_46
  article-title: Purification and Characterization of the Small Subunit of Phage T4 Terminase, gp16, Required for DNA Packaging
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.6.3495
– volume: 563
  start-page: 135
  year: 2004
  ident: ref_111
  article-title: Insights into the structure of human cytomegalovirus large terminase subunit pUL56
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(04)00283-2
– volume: 383
  start-page: 494
  year: 2008
  ident: ref_66
  article-title: Assembly Architecture and DNA Binding of the Bacteriophage P22 Terminase Small Subunit
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.08.050
– volume: 44
  start-page: 776
  year: 2015
  ident: ref_96
  article-title: DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1467
– volume: 69
  start-page: 876
  year: 2013
  ident: ref_69
  article-title: The putative small terminase from the thermophilic dsDNA bacteriophage G20C is a nine-subunit oligomer
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S1744309113017016
– volume: 28
  start-page: 1102
  year: 2000
  ident: ref_57
  article-title: The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences
  publication-title: Biotechniques
  doi: 10.2144/00286ir01
– volume: 227
  start-page: 1086
  year: 1992
  ident: ref_47
  article-title: Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90523-M
– volume: 413
  start-page: 748
  year: 2001
  ident: ref_1
  article-title: The bacteriophage straight phi29 portal motor can package DNA against a large internal force
  publication-title: Nature
  doi: 10.1038/35099581
– volume: 104
  start-page: 16868
  year: 2007
  ident: ref_2
  article-title: Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704008104
– volume: 286
  start-page: 3944
  year: 2011
  ident: ref_99
  article-title: Specificity of Interactions among the DNA-packaging Machine Components of T4-related Bacteriophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.196907
– volume: 67
  start-page: 104
  year: 2011
  ident: ref_64
  article-title: Crystallization of the nonameric small terminase subunit of bacteriophage P22
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S174430911004697X
– volume: 288
  start-page: 16998
  year: 2013
  ident: ref_22
  article-title: Large Terminase Conformational Change Induced by Connector Binding in Bacteriophage T
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.448951
– volume: 38
  start-page: 14238
  year: 1999
  ident: ref_75
  article-title: Domain Structure of gpNu1, a Phage Lambda DNA Packaging Protein
  publication-title: Biochemistry
  doi: 10.1021/bi991408f
– volume: 12
  start-page: 115
  year: 2002
  ident: ref_114
  article-title: Human cytomegalovirus terminase as a target for antiviral chemotherapy
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.344
– ident: ref_88
  doi: 10.1007/0-387-28521-0
– volume: 200
  start-page: 475
  year: 1988
  ident: ref_34
  article-title: Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4: Construction of a defined in-vitro DNA packaging system using purified terminase proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(88)90537-2
– volume: 281
  start-page: 25635
  year: 2006
  ident: ref_41
  article-title: Mechanistic Coupling of Bacteriophage T4 DNA Packaging to Components of the Replication-dependent Late Transcription Machinery
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602093200
– volume: 135
  start-page: 1251
  year: 2008
  ident: ref_20
  article-title: The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces
  publication-title: Cell
  doi: 10.1016/j.cell.2008.11.015
– volume: 471
  start-page: 215
  year: 2000
  ident: ref_108
  article-title: Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01407-1
– volume: 270
  start-page: 20059
  year: 1995
  ident: ref_36
  article-title: The in Vitro Translocase Activity of λ Terminase and Its Subunits. Kinetic and biochemical analysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.34.20059
– volume: 28
  start-page: 157
  year: 1987
  ident: ref_38
  article-title: In vitro assay of packaging protein gp3 of Salmonella phage P22
  publication-title: Intervirology
  doi: 10.1159/000150011
– volume: 134
  start-page: 888
  year: 2008
  ident: ref_110
  article-title: SnapShot: Nucleic Acid Helicases and Translocases
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.027
– volume: 45
  start-page: 3591
  year: 2017
  ident: ref_82
  article-title: The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 4425
  year: 2016
  ident: ref_97
  article-title: Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw184
SSID ssj0066907
Score 2.4062767
SecondaryResourceType review_article
Snippet The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2215
SubjectTerms Adenosine Triphosphate
Amino acids
bacteriophages
Bacteriophages - chemistry
Bacteriophages - genetics
Conserved sequence
cryo-EM
Cryoelectron Microscopy
DNA Packaging
DNA, Viral - chemistry
E coli
Electron microscopy
Endodeoxyribonucleases - genetics
Environmental conditions
Genomes
Herpes viruses
Mechanical properties
Phages
Phylogenetics
Physiological aspects
Protein structure
Proteins
Quaternary structure
Review
Salmonella
Structure
Symmetry
Terminase
terminase subunits
TerS
viral genome packaging
Viral proteins
Viral Proteins - genetics
Virus Assembly - genetics
Virus research
X-ray crystallography
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIOQiPqJOjNIRQS9DZnr6Me1t1SxB0Es2IeCh6ScGNpNAouC_t6p7dthBwYvX7epluh5dX0PVV4S8Ebb1Wra-5onJmnNta626UAsbk-AuppSplL58lSdn_POFuNga9YU1YYUeuCjuyCfpexZs9H3PHbM2aStto5wDcBJ07iOHnLd5TJU7WOKbr_AIdfCoP_qJ1YyM4ezbreyTSfr_vIq3ctG8TnIr8SwfkgcjYqSL8qWPyL04PCb3ywzJX0_It_NL2ERPr-x6TVeltOU2vqcL-glLLrBzip5mklgk2KDLTTEWBbRKLcWBnVj0GGj5R7QZXUKyQ4PtkdXyePXxpB4nJtRedPKuTr1XQmqdYuvgCrTCeohoK8EEAd5tHuCY0snynllkXtfJySB9aHiIoeli95TsDNdDfE6oS46xJgmvATHpBEmrtS5pphwgnshdRd5tFGn8yCaOQy3WBl4VqHMz6bwiryfRm0Kh8TehD2iNSQBZr_MP4Atm9AXzL1-oyFu0pcHYhI_xdmwxgCMhy5VZ4GwVwEtNX5GDmSTElJ8vb7zBjDF9a5jCblPd9k1FDqdl3Il1akO8_pFlALJqKVhFnhXnmY4EUEH3SsFuNXOr2ZnnK8Pl98z4DdGEOHj_fyjpBdll2MKRCxIPyA54YHwJwOrOvcox9BsbzSM0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYqgL-XaNB_Nvcj6sRyCvtwqCz6EfOrB2j3duwP_-5tJu3WL4utmsjSZmcxv2slvCHkhbO21rH3JE5Ml59qWWjWhFDYmwV1MKVMpffwkjz7zD0uxHF64bYayyu2ZmA_qsPb4jvyAKbzrp-u2en36s8SuUfh1dWihcZVcQ-oytGq1HBMuiZlfzybUQGp_cIE1jYxhB9ydGJSp-v8-kHci0rRacif8zG-RmwNupLNe0bfJldjdIdf7TpK_75KvX05gEj3-YVcruugLXDbxkM7oOyy8wPtT9DhTxSLNBp1vS7IoYFZqKbbtxNLHQPt_RM3ROYQ8VNs9spi_X7w9Koe-CaUXjTwrU-uVkFqnWDs4CK2wHvzaSlBEgOzNAyhTOlneMov86zo5GaQPFQ8xVE1s7pO9bt3Fh4S65BirkvAacJNOELpq65JmygHuidwV5NV2I40fOMWxtcXKQG6Be27GPS_I81H0tCfS-JfQG9TGKIDc1_mH9a9vZnAl45P0LQs2-rbljlmbtJW2Us4BXA1aFeQl6tKgh8LDeDtcNIAlIdeVmWGHFUBNVVuQ_YkkeJafDm-twQyevTF_7LAgz8ZhnInVal1cn2cZAK5aClaQB73xjEsCwKBbpWC2mpjVZM3Tke7ke-b9Bp9CNPzo_4_1mNxgeEUjFxzukz2wrfgEgNOZe5q94xLFMBkm
  priority: 102
  providerName: ProQuest
Title Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function
URI https://www.ncbi.nlm.nih.gov/pubmed/36298770
https://www.proquest.com/docview/2728549180
https://www.proquest.com/docview/2729519652
https://pubmed.ncbi.nlm.nih.gov/PMC9611059
https://doaj.org/article/cf6c82daec884b2aaf9a6a07bb019d97
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qi-CL-G20HqsI-hJN9vYjK4hctWcRWsRe5cCHsLvZ1cKZ07aK_e-dyRcN9sGXe8jO5m7nIzNzmfkNwFNpc29U7lMRuUqFMDY1elql0oYohQsxNlBK-wdq70h8WMrlBvQzNjsGnl6a2tE8qaOT1Ys_P8_foMG_powTU_aXv6lWkXNqNd9Ch6RpkMG-GF4mKEoAm5fLhgaq5bIFGBpvHbmlBr3_32f0BSc1LqC84JHmN-B6F0qyWSv7m7AR6ltwtR0ueX4bvnw-xk3s8LtdrdiirXk5Da_YjL2jWgxqqWKHDXosIW-weV-lxTCMZZbRJE-qhqxYe0cSJpujFyRJ3oHFfHfxdi_tRimkXk7VWRoLr6UyJobc4bPRSuvR1K1C2VSY0HmM07SJVhTcEiS7iU5VyleZqEKVTcP0LmzW6zrcB-ai4zyL0hsMpUxEb5ZbFw3XDhkfhEvgec_I0ncw4zTtYlViukE8LweeJ_BkIP3RYmtcRrRD0hgICA67ubA--Vp21lX6qHzBKxt8UQjHrY3GKptp5zCCrYxO4BnJsiQ1wh_jbdd7gEci-KtyRkNXMJDKigS2R5RobH683GtD2etqyTW1oZq8yBJ4PCzTTipgq8P6V0ODsaxRkidwr1We4UgYQ5hCa9ytR2o1OvN4pT7-1kCBo5lRgPzgP773IVzj1LrRFCJuwyYqWHiEAdWZm8AVvdQT2NrZPfj4adL8LYGf75f5pDGkv0pVIt0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAAYNA8BI16yR2jITQQllt6fHSBa3UB8t2bFppu1vYAuqP4j8yk4uNQLz1NR5HPub4JpkD4HluBk6JgYuzwEWcZcrESqZlnBsf8sz6EKpSSnv7Yvwp-zjNp2vwq82FobDKVidWirpcOPpGvskl5fqpQZG8Pf0aU9co-rvattCo2WLHn_9El235ZnsL7_cF56MPk_fjuOkqELs8FWdxKJzMhVLBDyyqCZMbh1xvBC6zRN_GIWSRKpis4Iaqk6tgRSlcmWSlL5PUp_jaS3AZ7W5Cvp6cdv6dIEezLl6UpirZ_EEhlJxTw90Vk1d1Bvhb_68YwH5w5oq1G92A6w1MZcOar27Cmp_fgit148rz23D4-RgnsYMTM5uxSR1Ps_Sv2ZBtUZwHpWuxg6oyLVX1YKM2AowhRGaGUZdQirQsWf1GYhQ2QgtLXHIHJhdxoHdhfb6Y-_vAbLCcJyF3CmGaCmgpB8YGxaVFmOUzG8Gr9iC1a0qYUyeNmUZXhs5cd2cewbOO9LSu2_Evond0Gx0BldquHiy-fdGN5GoXhCt4abwrisxyY4IywiTSWkTHpZIRvKS71KQQcDHONHkNuCUqraWH1NAFQVpSRLDRo0RBdv3hlht0o0iW-g_bR_C0G6aZFBw394vvFQ3iZCVyHsG9mnm6LSE-UYWUOFv22Kq35_7I_PioKjOOIkzg-8H_l_UEro4ne7t6d3t_5yFc45QdUsU6bsA68pl_hJjtzD6uJIWBvmDJ_A3wllWT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO4EBhgEgpdoqZPYMRJCHV21Magm1qFJPFi2Y8Ok0g46QPtp_DvOyaU0AvG21_g48uVcvpOcC8CT3PSdEn0XZ4GLOMuUiZVMyzg3PuSZ9SFUpZTejcXOYfbmKD9ag19tLgyFVbY6sVLU5dzRN_JNLinXT1FmcmjCIvaHo1cnX2PqIEV_Wtt2GjWL7Pmzn-i-LV7uDvGun3I-2p683ombDgOxy1NxGofCyVwoFXzfosowuXEoAUbgkkv0cxzCF6mCyQpuqFK5ClaUwpVJVvoySX2Kr70A65Kcoh6sb22P99-3ZkCQ21mXMkpTlWz-oIBKzqn97ooBrPoE_G0NVsxhN1RzxfaNrsKVBrSyQc1l12DNz67DxbqN5dkN-PjhGCexgy9mOmWTOrpm4V-wARtS1Aclb7GDqk4t1fhgozYejCFgZoZRz1CKuyxZ_UZiGzZCe0s8cxMm53Gkt6A3m8_8HWA2WM6TkDuFoE0FtJt9Y4Pi0iLo8pmN4Hl7kNo1Bc2pr8ZUo2NDZ66XZx7B4yXpSV3F419EW3QbSwIqvF09mH_7pBs51i4IV_DSeFcUmeXGBGWESaS1iJVLJSN4RnepST3gYpxpshxwS1RoSw-ovQtCtqSIYKNDiWLtusMtN-hGrSz0HyGI4NFymGZSqNzMz79XNIialch5BLdr5lluCdGKKqTE2bLDVp09d0dmx5-rouMo0ATF7_5_WQ_hEkqlfrs73rsHlzmlilSBjxvQQzbz9xHAndoHjagw0OcsnL8BkN5bLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+Small+Terminase%3A+A+Divergent+Structural+Framework+for+a+Conserved+Biological+Function&rft.jtitle=Viruses&rft.au=Lokareddy%2C+Ravi+K&rft.au=Hou%2C+Chun-Feng+David&rft.au=Li%2C+Fenglin&rft.au=Yang%2C+Ruoyu&rft.date=2022-10-01&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fv14102215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon