Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function
The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging...
Saved in:
Published in | Viruses Vol. 14; no. 10; p. 2215 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions. |
---|---|
AbstractList | The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions. The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions.The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for viral genome packaging. TerL structure, composition, and assembly to an empty capsid, as well as the mechanisms of ATP-dependent DNA packaging, have been studied in depth, shedding light on the chemo-mechanical coupling between ATP hydrolysis and DNA translocation. Instead, significantly less is known about the small terminase subunit, TerS, which is dispensable or even inhibitory in vitro, but essential in vivo. By taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of phage TerSs, in this review, we take an inventory of known TerSs studied to date. Our analysis suggests that TerS evolved and diversified into a flexible molecular framework that can conserve biological function with minimal sequence and quaternary structure conservation to fit different packaging strategies and environmental conditions. |
Audience | Academic |
Author | Cingolani, Gino Li, Fenglin Lokareddy, Ravi K. Yang, Ruoyu Hou, Chun-Feng David |
AuthorAffiliation | Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA |
AuthorAffiliation_xml | – name: Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA |
Author_xml | – sequence: 1 givenname: Ravi K. orcidid: 0000-0002-5357-1857 surname: Lokareddy fullname: Lokareddy, Ravi K. – sequence: 2 givenname: Chun-Feng David orcidid: 0000-0002-1820-9588 surname: Hou fullname: Hou, Chun-Feng David – sequence: 3 givenname: Fenglin orcidid: 0000-0001-7932-0071 surname: Li fullname: Li, Fenglin – sequence: 4 givenname: Ruoyu surname: Yang fullname: Yang, Ruoyu – sequence: 5 givenname: Gino surname: Cingolani fullname: Cingolani, Gino |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36298770$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAURi1URB-w4A-gSGxgMa2dxHbMAmkYKFSqxKIjNiysGz-Ch8QudjKIf4_DtKVTUBaJbs499mffY3TggzcIPSf4tKoEPtuSmuCyJPQROiJCiEUtCD24932IjlPaYMyYwPwJOqxYKRrO8RH6-sVF6IurAfq-WJs4OA_JvCmWxXu3NbEzfiyuxjipcZq58wiD-Rni98KGWECxCj6ZuDW6eOdCHzqnZmjyanTBP0WPLfTJPLt5n6D1-Yf16tPi8vPHi9XycqFoxcaFbRSnTAhrSEtqBhQUxxWwWoDmhCtGMRcW6qaEvOvMtUwzpXGtjcaVqU7QxU6rA2zkdXQDxF8ygJN_CiF2EuLoVG-kskw1pQajmqZuSwArgAHmbYuJ0IJn19ud63pqB6NVjp9j70n3_3j3TXZhKwUjBFORBa9uBDH8mEwa5eCSMn0P3oQpyZKXghLBaJnRlw_QTZiizyc1Uw3NF9fgv1QHOYDzNuR11SyVS16zfEAUN5k6_Q-VH20Gp_K0WJfrew0v7ge9S3g7GRk42wEqhpSisVK5EeZrzWbXS4LlPHvybvZyx-sHHbfSf9nfGS_XYg |
CitedBy_id | crossref_primary_10_3389_fmars_2023_1201434 crossref_primary_10_1016_j_tim_2024_05_002 crossref_primary_10_1128_msystems_00197_23 crossref_primary_10_3390_v15061315 crossref_primary_10_1111_mmi_15251 crossref_primary_10_3390_v16020192 crossref_primary_10_1016_j_marenvres_2023_106168 crossref_primary_10_1007_s11262_024_02052_z crossref_primary_10_1073_pnas_2406138121 crossref_primary_10_1111_mmi_15306 crossref_primary_10_3390_v15020307 crossref_primary_10_3390_v15020527 crossref_primary_10_1016_j_lwt_2025_117645 crossref_primary_10_1128_aem_00367_24 crossref_primary_10_3390_pathogens13121066 crossref_primary_10_3389_frmbi_2024_1408203 crossref_primary_10_1016_j_sbi_2024_102945 crossref_primary_10_1093_nar_gkae675 |
Cites_doi | 10.1128/JVI.01048-09 10.1016/j.virusres.2013.01.021 10.1101/2022.05.10.491410 10.1073/pnas.80.4.955 10.1073/pnas.1813204116 10.1146/annurev.biochem.76.052705.161529 10.1128/JVI.05265-11 10.1016/j.str.2012.05.014 10.1016/j.molcel.2007.02.013 10.1016/j.jmb.2022.167537 10.1107/S1744309113004399 10.1007/0-387-28521-0 10.1099/0022-1317-81-9-2231 10.1038/nsmb.2023 10.1016/j.jmb.2012.07.016 10.1007/s13238-020-00710-0 10.1016/j.biotechadv.2014.01.006 10.1016/j.jmb.2015.08.013 10.1093/sysbio/syq010 10.1016/j.jmb.2007.08.070 10.1038/embor.2009.53 10.1016/S0092-8674(01)00315-4 10.1177/135965350801300504 10.3390/v10020067 10.1093/nar/gkab372 10.1073/pnas.0908569107 10.1128/JVI.72.3.2259-2264.1998 10.1074/jbc.M109.025007 10.1016/j.celrep.2016.01.058 10.1016/0022-2836(85)90215-3 10.1073/pnas.1320952111 10.1006/jmbi.1995.0505 10.1073/pnas.1506951112 10.1021/bi300890y 10.1016/j.sbi.2009.12.006 10.1038/msb.2011.75 10.1073/pnas.1007144107 10.1111/j.1365-2958.2008.06344.x 10.1016/j.jmb.2005.01.016 10.1038/s41467-021-26800-z 10.1126/science.1251652 10.1074/jbc.M208574200 10.1007/978-3-319-53168-7_6 10.1007/BF00332755 10.1093/nar/gkaa866 10.1128/JVI.02632-13 10.1093/nar/gkab301 10.1016/j.sbi.2013.10.005 10.1126/sciadv.abc1955 10.1146/annurev-virology-092818-015819 10.1128/AAC.01596-09 10.1111/j.1365-2958.1995.tb02333.x 10.1074/jbc.M116.724393 10.1073/pnas.1110224109 10.1093/nar/gkaa205 10.1093/nar/gkac240 10.1074/jbc.M004309200 10.1186/1743-422X-3-30 10.1016/j.jmb.2006.08.054 10.1128/JVI.00311-13 10.1016/j.jmb.2005.08.063 10.1016/j.bpj.2015.08.037 10.1016/0042-6822(86)90109-1 10.1021/bi0615036 10.1038/ncomms14310 10.1016/S0022-2836(84)80021-2 10.1073/pnas.1110270109 10.1046/j.1365-2958.2002.03114.x 10.1128/AAC.01794-13 10.1073/pnas.1301133110 10.1128/jvi.62.2.387-392.1988 10.1016/0022-2836(92)91027-M 10.1007/978-1-60327-565-1_7 10.4161/bact.23829 10.1038/nrmicro2632 10.1074/jbc.M112.349894 10.1038/ncomms8548 10.1073/pnas.93.23.13429 10.1016/j.virol.2010.12.046 10.1006/jmbi.1993.1166 10.1016/0042-6822(79)90509-9 10.1371/journal.pbio.1000592 10.1016/j.coviro.2011.05.023 10.1074/jbc.M003357200 10.1146/annurev.genet.42.110807.091545 10.1016/S0968-0004(00)01667-4 10.1006/viro.1994.1415 10.3390/v11030219 10.1016/S1097-2765(02)00537-3 10.1016/j.jmb.2022.167799 10.1016/S0022-2836(82)80014-4 10.1074/jbc.RA119.012224 10.1016/j.virol.2019.07.021 10.1074/jbc.272.6.3495 10.1016/S0014-5793(04)00283-2 10.1016/j.jmb.2008.08.050 10.1093/nar/gkv1467 10.1107/S1744309113017016 10.2144/00286ir01 10.1016/0022-2836(92)90523-M 10.1038/35099581 10.1073/pnas.0704008104 10.1074/jbc.M110.196907 10.1107/S174430911004697X 10.1074/jbc.M112.448951 10.1021/bi991408f 10.1002/rmv.344 10.1016/0022-2836(88)90537-2 10.1074/jbc.M602093200 10.1016/j.cell.2008.11.015 10.1016/S0014-5793(00)01407-1 10.1074/jbc.270.34.20059 10.1159/000150011 10.1016/j.cell.2008.08.027 10.1093/nar/gkw184 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/v14102215 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_cf6c82daec884b2aaf9a6a07bb019d97 PMC9611059 A746717508 36298770 10_3390_v14102215 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM140733 – fundername: NIH HHS grantid: R35 GM140733 – fundername: NIH HHS grantid: R01 GM100888 – fundername: NIH grantid: R01 GM100888; R35 GM140733 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7U9 7XB 8FK AZQEC DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-f8c75699fe1b146a5ac703a649ad717c65079fa482a29899fb6d6cd04ded03e3 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Thu Aug 21 18:38:49 EDT 2025 Wed Jul 30 11:17:20 EDT 2025 Fri Jul 25 11:57:24 EDT 2025 Tue Jun 17 22:13:42 EDT 2025 Tue Jun 10 21:10:30 EDT 2025 Thu Apr 03 07:07:05 EDT 2025 Tue Jul 01 02:48:40 EDT 2025 Thu Apr 24 23:09:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | X-ray crystallography TerS bacteriophages herpesviruses terminase subunits viral genome packaging cryo-EM |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-f8c75699fe1b146a5ac703a649ad717c65079fa482a29899fb6d6cd04ded03e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1820-9588 0000-0001-7932-0071 0000-0002-5357-1857 |
OpenAccessLink | https://www.proquest.com/docview/2728549180?pq-origsite=%requestingapplication% |
PMID | 36298770 |
PQID | 2728549180 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf6c82daec884b2aaf9a6a07bb019d97 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611059 proquest_miscellaneous_2729519652 proquest_journals_2728549180 gale_infotracmisc_A746717508 gale_infotracacademiconefile_A746717508 pubmed_primary_36298770 crossref_citationtrail_10_3390_v14102215 crossref_primary_10_3390_v14102215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bogner (ref_107) 1998; 72 Roy (ref_73) 2012; 287 ref_91 Chai (ref_48) 1994; 202 Chechik (ref_69) 2013; 69 Sun (ref_3) 2010; 20 Lander (ref_66) 2008; 383 Oliveira (ref_93) 2013; 173 Hayes (ref_70) 2020; 295 Schmieger (ref_38) 1987; 28 Giesen (ref_108) 2000; 471 Fang (ref_58) 2002; 9 Kobe (ref_112) 2000; 25 Gao (ref_99) 2011; 286 Yang (ref_72) 2020; 11 Smith (ref_7) 2011; 1 Andrews (ref_14) 2012; 51 Lokareddy (ref_28) 2022; 434 Champier (ref_115) 2008; 13 McNulty (ref_16) 2015; 427 Hilbert (ref_82) 2017; 45 Feiss (ref_90) 1983; 80 Giesen (ref_109) 2000; 81 Kala (ref_12) 2014; 111 Roy (ref_64) 2011; 67 Niazi (ref_68) 2020; 48 Zhao (ref_61) 2012; 423 Savva (ref_111) 2004; 563 ref_29 Heming (ref_51) 2017; 223 Leffers (ref_80) 2000; 275 Kondabagil (ref_39) 2009; 284 Maluf (ref_18) 2006; 45 Casjens (ref_5) 2011; 9 Dai (ref_32) 2021; 12 Bogner (ref_114) 2002; 12 Heming (ref_19) 2014; 88 Chai (ref_94) 1995; 252 Sankhala (ref_106) 2016; 291 Alam (ref_84) 2008; 69 Chechik (ref_67) 2012; 109 Black (ref_41) 2006; 281 Smits (ref_105) 2009; 10 Letunic (ref_56) 2021; 49 Sigamani (ref_104) 2013; 87 Zhao (ref_25) 2013; 110 Rao (ref_34) 1988; 200 Casjens (ref_87) 2009; Volume 502 Casjens (ref_47) 1992; 227 Sun (ref_21) 2015; 6 Tavares (ref_95) 1992; 225 Cook (ref_113) 2007; 76 Nadal (ref_103) 2010; 107 Fuller (ref_2) 2007; 104 ref_88 Lin (ref_46) 1997; 272 Guo (ref_6) 2014; 32 Oliveira (ref_42) 2005; 353 Yang (ref_75) 1999; 38 Wu (ref_92) 2002; 45 Sun (ref_20) 2008; 135 (ref_71) 2014; 343 Rubinchik (ref_36) 1995; 270 Hamada (ref_35) 1986; 151 Gao (ref_97) 2016; 44 Pajak (ref_33) 2021; 49 ref_52 Strauss (ref_24) 1984; 172 Shinder (ref_45) 1988; 62 Sievers (ref_53) 2011; 7 Benini (ref_74) 2013; 69 Berger (ref_110) 2008; 134 Catalano (ref_89) 1995; 16 Efron (ref_49) 1996; 93 Lischka (ref_116) 2010; 54 Lokareddy (ref_10) 2017; 8 ref_60 Alam (ref_83) 2010; 39 Goldner (ref_117) 2011; 85 Beilstein (ref_78) 2009; 83 Poteete (ref_15) 1979; 95 Casjens (ref_50) 2011; 411 Mao (ref_23) 2016; 14 Yang (ref_85) 2020; 48 Dauden (ref_22) 2013; 288 Bhardwaj (ref_30) 2014; 25 Madeira (ref_54) 2022; 50 Goldner (ref_118) 2014; 58 Baumann (ref_79) 2003; 278 Kondabagil (ref_40) 2006; 363 Dedeo (ref_100) 2019; 6 Sun (ref_26) 2007; 25 Hilbert (ref_27) 2015; 112 Renault (ref_86) 2001; 105 Sun (ref_59) 2012; 109 Hou (ref_101) 2022; 434 Schmieger (ref_37) 1984; 195 Roy (ref_63) 2012; 20 Dixit (ref_102) 2019; 536 Serwer (ref_8) 2012; 2 Maluf (ref_17) 2005; 347 Frackman (ref_76) 1985; 183 Zhao (ref_62) 2010; 107 Gual (ref_81) 2000; 275 Xin (ref_13) 1993; 230 Nolan (ref_98) 2006; 3 Rao (ref_4) 2008; 42 Jackson (ref_44) 1982; 154 Guindon (ref_55) 2010; 59 Greive (ref_96) 2015; 44 ref_43 Bayfield (ref_11) 2019; 116 Yang (ref_77) 2015; 109 Gilcrease (ref_65) 2007; 374 Woodson (ref_31) 2021; 7 Smith (ref_1) 2001; 413 Stothard (ref_57) 2000; 28 Olia (ref_9) 2011; 18 |
References_xml | – volume: 83 start-page: 8938 year: 2009 ident: ref_78 article-title: Mutational Analysis of the Herpes Simplex Virus Type 1 DNA Packaging Protein UL publication-title: J. Virol. doi: 10.1128/JVI.01048-09 – volume: 173 start-page: 247 year: 2013 ident: ref_93 article-title: Headful DNA packaging: Bacteriophage SPP1 as a model system publication-title: Virus Res. doi: 10.1016/j.virusres.2013.01.021 – ident: ref_60 doi: 10.1101/2022.05.10.491410 – volume: 80 start-page: 955 year: 1983 ident: ref_90 article-title: Separate sites for binding and nicking of bacteriophage lambda DNA by terminase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.80.4.955 – volume: 116 start-page: 3556 year: 2019 ident: ref_11 article-title: Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1813204116 – volume: 76 start-page: 647 year: 2007 ident: ref_113 article-title: Structural Biology of Nucleocytoplasmic Transport publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052705.161529 – volume: 85 start-page: 10884 year: 2011 ident: ref_117 article-title: The Novel Anticytomegalovirus Compound AIC246 (Letermovir) Inhibits Human Cytomegalovirus Replication through a Specific Antiviral Mechanism That Involves the Viral Terminase publication-title: J. Virol. doi: 10.1128/JVI.05265-11 – volume: 20 start-page: 1403 year: 2012 ident: ref_63 article-title: Small Terminase Couples Viral DNA Binding to Genome-Packaging ATPase Activity publication-title: Structure doi: 10.1016/j.str.2012.05.014 – volume: 25 start-page: 943 year: 2007 ident: ref_26 article-title: The Structure of the ATPase that Powers DNA Packaging into Bacteriophage T4 Procapsids publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.02.013 – volume: 434 start-page: 167537 year: 2022 ident: ref_101 article-title: Cryo-EM Structure of a Kinetically Trapped Dodecameric Portal Protein from the Pseudomonas-phage PaP3 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2022.167537 – volume: 69 start-page: 376 year: 2013 ident: ref_74 article-title: The 1.58 Å resolution structure of the DNA-binding domain of bacteriophage SF6 small terminase provides new hints on DNA binding publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S1744309113004399 – ident: ref_91 doi: 10.1007/0-387-28521-0 – volume: 81 start-page: 2231 year: 2000 ident: ref_109 article-title: The potential terminase subunit of human cytomegalovirus, pUL56, is translocated into the nucleus by its own nuclear localization signal and interacts with importin α publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-81-9-2231 – volume: 18 start-page: 597 year: 2011 ident: ref_9 article-title: Three-dimensional structure of a viral genome-delivery portal vertex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2023 – volume: 423 start-page: 413 year: 2012 ident: ref_61 article-title: Structural and Functional Studies of the Phage Sf6 Terminase Small Subunit Reveal a DNA-Spooling Device Facilitated by Structural Plasticity publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.07.016 – volume: 11 start-page: 339 year: 2020 ident: ref_72 article-title: Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation publication-title: Protein Cell doi: 10.1007/s13238-020-00710-0 – volume: 32 start-page: 853 year: 2014 ident: ref_6 article-title: Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.01.006 – volume: 427 start-page: 3285 year: 2015 ident: ref_16 article-title: Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.08.013 – volume: 59 start-page: 307 year: 2010 ident: ref_55 article-title: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3 publication-title: Syst. Biol. doi: 10.1093/sysbio/syq010 – volume: 374 start-page: 817 year: 2007 ident: ref_65 article-title: Subunit Conformations and Assembly States of a DNA-translocating Motor: The Terminase of Bacteriophage P publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.08.070 – volume: 10 start-page: 592 year: 2009 ident: ref_105 article-title: Structural basis for the nuclease activity of a bacteriophage large terminase publication-title: EMBO Rep. doi: 10.1038/embor.2009.53 – volume: 105 start-page: 245 year: 2001 ident: ref_86 article-title: Structural Basis for Guanine Nucleotide Exchange on Ran by the Regulator of Chromosome Condensation (RCC1) publication-title: Cell doi: 10.1016/S0092-8674(01)00315-4 – volume: 13 start-page: 643 year: 2008 ident: ref_115 article-title: Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity publication-title: Antivir. Ther. doi: 10.1177/135965350801300504 – ident: ref_29 doi: 10.3390/v10020067 – volume: 49 start-page: 6474 year: 2021 ident: ref_33 article-title: Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab372 – volume: 107 start-page: 1971 year: 2010 ident: ref_62 article-title: Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908569107 – volume: 72 start-page: 2259 year: 1998 ident: ref_107 article-title: The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity publication-title: J. Virol. doi: 10.1128/JVI.72.3.2259-2264.1998 – volume: 284 start-page: 24490 year: 2009 ident: ref_39 article-title: The Small Terminase, gp16, of Bacteriophage T4 Is a Regulator of the DNA Packaging Motor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.025007 – volume: 14 start-page: 2017 year: 2016 ident: ref_23 article-title: Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.058 – volume: 183 start-page: 225 year: 1985 ident: ref_76 article-title: The terminase of bacteriophage λ: Functional domains for cosB binding and multimer assembly publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(85)90215-3 – volume: 111 start-page: 6022 year: 2014 ident: ref_12 article-title: HNH proteins are a widespread component of phage DNA packaging machines publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320952111 – volume: 252 start-page: 386 year: 1995 ident: ref_94 article-title: The Small Subunit of the Terminase Enzyme ofBacillus subtilisBacteriophage SPP1 forms a Specialized Nucleoprotein Complex with the Packaging Initiation Region publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0505 – volume: 112 start-page: E3792 year: 2015 ident: ref_27 article-title: Structure and mechanism of the ATPase that powers viral genome packaging publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1506951112 – volume: 51 start-page: 9342 year: 2012 ident: ref_14 article-title: The Enzymology of a Viral Genome Packaging Motor Is Influenced by the Assembly State of the Motor Subunits publication-title: Biochemistry doi: 10.1021/bi300890y – volume: 39 start-page: 2742 year: 2010 ident: ref_83 article-title: Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4 publication-title: Nucleic Acids Res. – volume: 20 start-page: 114 year: 2010 ident: ref_3 article-title: Genome packaging in viruses publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.12.006 – volume: 7 start-page: 539 year: 2011 ident: ref_53 article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.75 – volume: 107 start-page: 16078 year: 2010 ident: ref_103 article-title: Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007144107 – volume: 69 start-page: 1180 year: 2008 ident: ref_84 article-title: The Headful Packaging Nuclease of Bacteriophage T4 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06344.x – volume: 347 start-page: 523 year: 2005 ident: ref_17 article-title: Self-association Properties of the Bacteriophage λ Terminase Holoenzyme: Implications for the DNA Packaging Motor publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.01.016 – volume: 12 start-page: 6548 year: 2021 ident: ref_32 article-title: A viral genome packaging ring-ATPase is a flexibly coordinated pentamer publication-title: Nat. Commun. doi: 10.1038/s41467-021-26800-z – volume: 343 start-page: 1443 year: 2014 ident: ref_71 article-title: The Resolution Revolution publication-title: Science doi: 10.1126/science.1251652 – volume: 278 start-page: 4618 year: 2003 ident: ref_79 article-title: Isolation and Characterization of T4 Bacteriophage gp17 Terminase, a Large Subunit Multimer with Enhanced ATPase Activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208574200 – volume: 223 start-page: 119 year: 2017 ident: ref_51 article-title: Herpesvirus Capsid Assembly and DNA Packaging publication-title: Adv. Anat. Embryol. Cell Biol. doi: 10.1007/978-3-319-53168-7_6 – volume: 195 start-page: 252 year: 1984 ident: ref_37 article-title: Pac sites are indispensable for in vivo packaging of DNA by phage P22 publication-title: Mol. Gen. Genet. doi: 10.1007/BF00332755 – volume: 48 start-page: 11721 year: 2020 ident: ref_68 article-title: Biophysical analysis of Pseudomonas-phage PaP3 small terminase suggests a mechanism for sequence-specific DNA-binding by lateral interdigitation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa866 – volume: 88 start-page: 225 year: 2014 ident: ref_19 article-title: Isolation and Characterization of the Herpes Simplex Virus 1 Terminase Complex publication-title: J. Virol. doi: 10.1128/JVI.02632-13 – volume: 49 start-page: W293 year: 2021 ident: ref_56 article-title: Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab301 – volume: 25 start-page: 1 year: 2014 ident: ref_30 article-title: Architecture of viral genome-delivery molecular machines publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2013.10.005 – volume: 7 start-page: eabc1955 year: 2021 ident: ref_31 article-title: A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA publication-title: Sci. Adv. doi: 10.1126/sciadv.abc1955 – volume: 6 start-page: 141 year: 2019 ident: ref_100 article-title: Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-092818-015819 – volume: 54 start-page: 1290 year: 2010 ident: ref_116 article-title: In Vitro and In Vivo Activities of the Novel Anticytomegalovirus Compound AIC publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01596-09 – volume: 16 start-page: 1075 year: 1995 ident: ref_89 article-title: Virus DNA packaging: The strategy used by phage? publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02333.x – volume: 291 start-page: 11420 year: 2016 ident: ref_106 article-title: Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.724393 – volume: 109 start-page: 817 year: 2012 ident: ref_59 article-title: Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110224109 – volume: 48 start-page: 5006 year: 2020 ident: ref_85 article-title: ATP serves as a nucleotide switch coupling the genome maturation and packaging motor complexes of a virus assembly machine publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa205 – volume: 50 start-page: W276 year: 2022 ident: ref_54 article-title: Search and sequence analysis tools services from EMBL-EBI in 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac240 – volume: 275 start-page: 35311 year: 2000 ident: ref_81 article-title: Functional Analysis of the Terminase Large Subunit, G2P, of Bacillus subtilis Bacteriophage SPP1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004309200 – volume: 3 start-page: 30 year: 2006 ident: ref_98 article-title: Genetic diversity among five T4-like bacteriophages publication-title: Virol. J. doi: 10.1186/1743-422X-3-30 – volume: 363 start-page: 786 year: 2006 ident: ref_40 article-title: The DNA Translocating ATPase of Bacteriophage T4 Packaging Motor publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.08.054 – volume: 87 start-page: 7140 year: 2013 ident: ref_104 article-title: The Structure of the Herpes Simplex Virus DNA-Packaging Terminase pUL15 Nuclease Domain Suggests an Evolutionary Lineage among Eukaryotic and Prokaryotic Viruses publication-title: J. Virol. doi: 10.1128/JVI.00311-13 – volume: 353 start-page: 529 year: 2005 ident: ref_42 article-title: A Defined in Vitro System for DNA Packaging by the Bacteriophage SPP1: Insights into the Headful Packaging Mechanism publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.08.063 – volume: 109 start-page: 1663 year: 2015 ident: ref_77 article-title: Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.08.037 – volume: 151 start-page: 119 year: 1986 ident: ref_35 article-title: A defined in vitro system for packaging of bacteriophage T3 DNA publication-title: Virology doi: 10.1016/0042-6822(86)90109-1 – volume: 45 start-page: 15259 year: 2006 ident: ref_18 article-title: Assembly of Bacteriophage Lambda Terminase into a Viral DNA Maturation and Packaging Machine publication-title: Biochemistry doi: 10.1021/bi0615036 – volume: 8 start-page: 14310 year: 2017 ident: ref_10 article-title: Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation publication-title: Nat. Commun. doi: 10.1038/ncomms14310 – volume: 172 start-page: 523 year: 1984 ident: ref_24 article-title: Steps in the stabilization of newly packaged DNA during phage P22 Morphogenesis publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(84)80021-2 – volume: 109 start-page: 811 year: 2012 ident: ref_67 article-title: Structural basis for DNA recognition and loading into a viral packaging motor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110270109 – volume: 45 start-page: 1631 year: 2002 ident: ref_92 article-title: The DNA site utilized by bacteriophage P22 for initiation of DNA packaging publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.03114.x – volume: 58 start-page: 610 year: 2014 ident: ref_118 article-title: Geno- and Phenotypic Characterization of Human Cytomegalovirus Mutants Selected In Vitro after Letermovir (AIC246) Exposure publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01794-13 – volume: 110 start-page: 8075 year: 2013 ident: ref_25 article-title: Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1301133110 – volume: 62 start-page: 387 year: 1988 ident: ref_45 article-title: The Nul subunit of bacteriophage lambda terminase binds to specific sites in cos DNA publication-title: J. Virol. doi: 10.1128/jvi.62.2.387-392.1988 – volume: 225 start-page: 81 year: 1992 ident: ref_95 article-title: Identification of a gene in Bacillus subtilis bacteriophage SPP1 determining the amount of packaged DNA publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)91027-M – volume: Volume 502 start-page: 91 year: 2009 ident: ref_87 article-title: Determining DNA Packaging Strategy by Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions publication-title: Methods in Molecular Biology doi: 10.1007/978-1-60327-565-1_7 – volume: 2 start-page: 239 year: 2012 ident: ref_8 article-title: Dualities in the analysis of phage DNA packaging motors publication-title: Bacteriophage doi: 10.4161/bact.23829 – volume: 9 start-page: 647 year: 2011 ident: ref_5 article-title: The DNA-packaging nanomotor of tailed bacteriophages publication-title: Nat. Rev. Genet. doi: 10.1038/nrmicro2632 – volume: 287 start-page: 28196 year: 2012 ident: ref_73 article-title: Structure of P22 Headful Packaging Nuclease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.349894 – volume: 6 start-page: 7548 year: 2015 ident: ref_21 article-title: Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution publication-title: Nat. Commun. doi: 10.1038/ncomms8548 – volume: 93 start-page: 13429 year: 1996 ident: ref_49 article-title: Bootstrap confidence levels for phylogenetic trees publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.23.13429 – volume: 411 start-page: 393 year: 2011 ident: ref_50 article-title: Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly publication-title: Virology doi: 10.1016/j.virol.2010.12.046 – volume: 230 start-page: 492 year: 1993 ident: ref_13 article-title: Function of IHF in λ DNA Packaging: I. Identification of the Strong Binding Site for Integration Host Factor and the Locus for Intrinsic Bending in cosB publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1166 – volume: 95 start-page: 565 year: 1979 ident: ref_15 article-title: Purification and properties of proteins essential to DNA encapsulation by phage P publication-title: Virology doi: 10.1016/0042-6822(79)90509-9 – ident: ref_43 doi: 10.1371/journal.pbio.1000592 – volume: 1 start-page: 134 year: 2011 ident: ref_7 article-title: Single-molecule studies of viral DNA packaging publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.05.023 – volume: 275 start-page: 37127 year: 2000 ident: ref_80 article-title: Biochemical Characterization of an ATPase Activity Associated with the Large Packaging Subunit gp17 from Bacteriophage T publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003357200 – volume: 42 start-page: 647 year: 2008 ident: ref_4 article-title: The Bacteriophage DNA Packaging Motor publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091545 – volume: 25 start-page: 509 year: 2000 ident: ref_112 article-title: When protein folding is simplified to protein coiling: The continuum of solenoid protein structures publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)01667-4 – volume: 202 start-page: 930 year: 1994 ident: ref_48 article-title: Analysis of the Bacillus subtilis Bacteriophages SPP1 and SF6 Gene 1 Product: A Protein Involved in the Initiation of Headful Packaging publication-title: Virology doi: 10.1006/viro.1994.1415 – ident: ref_52 doi: 10.3390/v11030219 – volume: 9 start-page: 981 year: 2002 ident: ref_58 article-title: Insights into specific DNA recognition during the assembly of a viral genome packaging machine publication-title: Mol. Cell. doi: 10.1016/S1097-2765(02)00537-3 – volume: 434 start-page: 167799 year: 2022 ident: ref_28 article-title: Terminase Subunits from the Pseudomonas-Phage E217 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2022.167799 – volume: 154 start-page: 551 year: 1982 ident: ref_44 article-title: Bacteriophage P22 mutants that alter the specificity of DNA packaging publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(82)80014-4 – volume: 295 start-page: 3783 year: 2020 ident: ref_70 article-title: A thermophilic phage uses a small terminase protein with a fixed helix–turn–helix geometry publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.012224 – volume: 536 start-page: 39 year: 2019 ident: ref_102 article-title: A viral small terminase subunit (TerS) twin ring pac synapsis DNA packaging model is supported by fluorescent fusion proteins publication-title: Virology doi: 10.1016/j.virol.2019.07.021 – volume: 272 start-page: 3495 year: 1997 ident: ref_46 article-title: Purification and Characterization of the Small Subunit of Phage T4 Terminase, gp16, Required for DNA Packaging publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.6.3495 – volume: 563 start-page: 135 year: 2004 ident: ref_111 article-title: Insights into the structure of human cytomegalovirus large terminase subunit pUL56 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(04)00283-2 – volume: 383 start-page: 494 year: 2008 ident: ref_66 article-title: Assembly Architecture and DNA Binding of the Bacteriophage P22 Terminase Small Subunit publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.08.050 – volume: 44 start-page: 776 year: 2015 ident: ref_96 article-title: DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1467 – volume: 69 start-page: 876 year: 2013 ident: ref_69 article-title: The putative small terminase from the thermophilic dsDNA bacteriophage G20C is a nine-subunit oligomer publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S1744309113017016 – volume: 28 start-page: 1102 year: 2000 ident: ref_57 article-title: The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences publication-title: Biotechniques doi: 10.2144/00286ir01 – volume: 227 start-page: 1086 year: 1992 ident: ref_47 article-title: Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90523-M – volume: 413 start-page: 748 year: 2001 ident: ref_1 article-title: The bacteriophage straight phi29 portal motor can package DNA against a large internal force publication-title: Nature doi: 10.1038/35099581 – volume: 104 start-page: 16868 year: 2007 ident: ref_2 article-title: Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0704008104 – volume: 286 start-page: 3944 year: 2011 ident: ref_99 article-title: Specificity of Interactions among the DNA-packaging Machine Components of T4-related Bacteriophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.196907 – volume: 67 start-page: 104 year: 2011 ident: ref_64 article-title: Crystallization of the nonameric small terminase subunit of bacteriophage P22 publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S174430911004697X – volume: 288 start-page: 16998 year: 2013 ident: ref_22 article-title: Large Terminase Conformational Change Induced by Connector Binding in Bacteriophage T publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.448951 – volume: 38 start-page: 14238 year: 1999 ident: ref_75 article-title: Domain Structure of gpNu1, a Phage Lambda DNA Packaging Protein publication-title: Biochemistry doi: 10.1021/bi991408f – volume: 12 start-page: 115 year: 2002 ident: ref_114 article-title: Human cytomegalovirus terminase as a target for antiviral chemotherapy publication-title: Rev. Med. Virol. doi: 10.1002/rmv.344 – ident: ref_88 doi: 10.1007/0-387-28521-0 – volume: 200 start-page: 475 year: 1988 ident: ref_34 article-title: Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4: Construction of a defined in-vitro DNA packaging system using purified terminase proteins publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(88)90537-2 – volume: 281 start-page: 25635 year: 2006 ident: ref_41 article-title: Mechanistic Coupling of Bacteriophage T4 DNA Packaging to Components of the Replication-dependent Late Transcription Machinery publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602093200 – volume: 135 start-page: 1251 year: 2008 ident: ref_20 article-title: The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces publication-title: Cell doi: 10.1016/j.cell.2008.11.015 – volume: 471 start-page: 215 year: 2000 ident: ref_108 article-title: Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)01407-1 – volume: 270 start-page: 20059 year: 1995 ident: ref_36 article-title: The in Vitro Translocase Activity of λ Terminase and Its Subunits. Kinetic and biochemical analysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.34.20059 – volume: 28 start-page: 157 year: 1987 ident: ref_38 article-title: In vitro assay of packaging protein gp3 of Salmonella phage P22 publication-title: Intervirology doi: 10.1159/000150011 – volume: 134 start-page: 888 year: 2008 ident: ref_110 article-title: SnapShot: Nucleic Acid Helicases and Translocases publication-title: Cell doi: 10.1016/j.cell.2008.08.027 – volume: 45 start-page: 3591 year: 2017 ident: ref_82 article-title: The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain publication-title: Nucleic Acids Res. – volume: 44 start-page: 4425 year: 2016 ident: ref_97 article-title: Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw184 |
SSID | ssj0066907 |
Score | 2.4062767 |
SecondaryResourceType | review_article |
Snippet | The genome packaging motor of bacteriophages and herpesviruses is built by two terminase subunits, known as large (TerL) and small (TerS), both essential for... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2215 |
SubjectTerms | Adenosine Triphosphate Amino acids bacteriophages Bacteriophages - chemistry Bacteriophages - genetics Conserved sequence cryo-EM Cryoelectron Microscopy DNA Packaging DNA, Viral - chemistry E coli Electron microscopy Endodeoxyribonucleases - genetics Environmental conditions Genomes Herpes viruses Mechanical properties Phages Phylogenetics Physiological aspects Protein structure Proteins Quaternary structure Review Salmonella Structure Symmetry Terminase terminase subunits TerS viral genome packaging Viral proteins Viral Proteins - genetics Virus Assembly - genetics Virus research X-ray crystallography |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIOQiPqJOjNIRQS9DZnr6Me1t1SxB0Es2IeCh6ScGNpNAouC_t6p7dthBwYvX7epluh5dX0PVV4S8Ebb1Wra-5onJmnNta626UAsbk-AuppSplL58lSdn_POFuNga9YU1YYUeuCjuyCfpexZs9H3PHbM2aStto5wDcBJ07iOHnLd5TJU7WOKbr_AIdfCoP_qJ1YyM4ezbreyTSfr_vIq3ctG8TnIr8SwfkgcjYqSL8qWPyL04PCb3ywzJX0_It_NL2ERPr-x6TVeltOU2vqcL-glLLrBzip5mklgk2KDLTTEWBbRKLcWBnVj0GGj5R7QZXUKyQ4PtkdXyePXxpB4nJtRedPKuTr1XQmqdYuvgCrTCeohoK8EEAd5tHuCY0snynllkXtfJySB9aHiIoeli95TsDNdDfE6oS46xJgmvATHpBEmrtS5pphwgnshdRd5tFGn8yCaOQy3WBl4VqHMz6bwiryfRm0Kh8TehD2iNSQBZr_MP4Atm9AXzL1-oyFu0pcHYhI_xdmwxgCMhy5VZ4GwVwEtNX5GDmSTElJ8vb7zBjDF9a5jCblPd9k1FDqdl3Il1akO8_pFlALJqKVhFnhXnmY4EUEH3SsFuNXOr2ZnnK8Pl98z4DdGEOHj_fyjpBdll2MKRCxIPyA54YHwJwOrOvcox9BsbzSM0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYqgL-XaNB_Nvcj6sRyCvtwqCz6EfOrB2j3duwP_-5tJu3WL4utmsjSZmcxv2slvCHkhbO21rH3JE5Ml59qWWjWhFDYmwV1MKVMpffwkjz7zD0uxHF64bYayyu2ZmA_qsPb4jvyAKbzrp-u2en36s8SuUfh1dWihcZVcQ-oytGq1HBMuiZlfzybUQGp_cIE1jYxhB9ydGJSp-v8-kHci0rRacif8zG-RmwNupLNe0bfJldjdIdf7TpK_75KvX05gEj3-YVcruugLXDbxkM7oOyy8wPtT9DhTxSLNBp1vS7IoYFZqKbbtxNLHQPt_RM3ROYQ8VNs9spi_X7w9Koe-CaUXjTwrU-uVkFqnWDs4CK2wHvzaSlBEgOzNAyhTOlneMov86zo5GaQPFQ8xVE1s7pO9bt3Fh4S65BirkvAacJNOELpq65JmygHuidwV5NV2I40fOMWxtcXKQG6Be27GPS_I81H0tCfS-JfQG9TGKIDc1_mH9a9vZnAl45P0LQs2-rbljlmbtJW2Us4BXA1aFeQl6tKgh8LDeDtcNIAlIdeVmWGHFUBNVVuQ_YkkeJafDm-twQyevTF_7LAgz8ZhnInVal1cn2cZAK5aClaQB73xjEsCwKBbpWC2mpjVZM3Tke7ke-b9Bp9CNPzo_4_1mNxgeEUjFxzukz2wrfgEgNOZe5q94xLFMBkm priority: 102 providerName: ProQuest |
Title | Viral Small Terminase: A Divergent Structural Framework for a Conserved Biological Function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36298770 https://www.proquest.com/docview/2728549180 https://www.proquest.com/docview/2729519652 https://pubmed.ncbi.nlm.nih.gov/PMC9611059 https://doaj.org/article/cf6c82daec884b2aaf9a6a07bb019d97 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qi-CL-G20HqsI-hJN9vYjK4hctWcRWsRe5cCHsLvZ1cKZ07aK_e-dyRcN9sGXe8jO5m7nIzNzmfkNwFNpc29U7lMRuUqFMDY1elql0oYohQsxNlBK-wdq70h8WMrlBvQzNjsGnl6a2tE8qaOT1Ys_P8_foMG_powTU_aXv6lWkXNqNd9Ch6RpkMG-GF4mKEoAm5fLhgaq5bIFGBpvHbmlBr3_32f0BSc1LqC84JHmN-B6F0qyWSv7m7AR6ltwtR0ueX4bvnw-xk3s8LtdrdiirXk5Da_YjL2jWgxqqWKHDXosIW-weV-lxTCMZZbRJE-qhqxYe0cSJpujFyRJ3oHFfHfxdi_tRimkXk7VWRoLr6UyJobc4bPRSuvR1K1C2VSY0HmM07SJVhTcEiS7iU5VyleZqEKVTcP0LmzW6zrcB-ai4zyL0hsMpUxEb5ZbFw3XDhkfhEvgec_I0ncw4zTtYlViukE8LweeJ_BkIP3RYmtcRrRD0hgICA67ubA--Vp21lX6qHzBKxt8UQjHrY3GKptp5zCCrYxO4BnJsiQ1wh_jbdd7gEci-KtyRkNXMJDKigS2R5RobH683GtD2etqyTW1oZq8yBJ4PCzTTipgq8P6V0ODsaxRkidwr1We4UgYQ5hCa9ytR2o1OvN4pT7-1kCBo5lRgPzgP773IVzj1LrRFCJuwyYqWHiEAdWZm8AVvdQT2NrZPfj4adL8LYGf75f5pDGkv0pVIt0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAAYNA8BI16yR2jITQQllt6fHSBa3UB8t2bFppu1vYAuqP4j8yk4uNQLz1NR5HPub4JpkD4HluBk6JgYuzwEWcZcrESqZlnBsf8sz6EKpSSnv7Yvwp-zjNp2vwq82FobDKVidWirpcOPpGvskl5fqpQZG8Pf0aU9co-rvattCo2WLHn_9El235ZnsL7_cF56MPk_fjuOkqELs8FWdxKJzMhVLBDyyqCZMbh1xvBC6zRN_GIWSRKpis4Iaqk6tgRSlcmWSlL5PUp_jaS3AZ7W5Cvp6cdv6dIEezLl6UpirZ_EEhlJxTw90Vk1d1Bvhb_68YwH5w5oq1G92A6w1MZcOar27Cmp_fgit148rz23D4-RgnsYMTM5uxSR1Ps_Sv2ZBtUZwHpWuxg6oyLVX1YKM2AowhRGaGUZdQirQsWf1GYhQ2QgtLXHIHJhdxoHdhfb6Y-_vAbLCcJyF3CmGaCmgpB8YGxaVFmOUzG8Gr9iC1a0qYUyeNmUZXhs5cd2cewbOO9LSu2_Evond0Gx0BldquHiy-fdGN5GoXhCt4abwrisxyY4IywiTSWkTHpZIRvKS71KQQcDHONHkNuCUqraWH1NAFQVpSRLDRo0RBdv3hlht0o0iW-g_bR_C0G6aZFBw394vvFQ3iZCVyHsG9mnm6LSE-UYWUOFv22Kq35_7I_PioKjOOIkzg-8H_l_UEro4ne7t6d3t_5yFc45QdUsU6bsA68pl_hJjtzD6uJIWBvmDJ_A3wllWT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO4EBhgEgpdoqZPYMRJCHV21Magm1qFJPFi2Y8Ok0g46QPtp_DvOyaU0AvG21_g48uVcvpOcC8CT3PSdEn0XZ4GLOMuUiZVMyzg3PuSZ9SFUpZTejcXOYfbmKD9ag19tLgyFVbY6sVLU5dzRN_JNLinXT1FmcmjCIvaHo1cnX2PqIEV_Wtt2GjWL7Pmzn-i-LV7uDvGun3I-2p683ombDgOxy1NxGofCyVwoFXzfosowuXEoAUbgkkv0cxzCF6mCyQpuqFK5ClaUwpVJVvoySX2Kr70A65Kcoh6sb22P99-3ZkCQ21mXMkpTlWz-oIBKzqn97ooBrPoE_G0NVsxhN1RzxfaNrsKVBrSyQc1l12DNz67DxbqN5dkN-PjhGCexgy9mOmWTOrpm4V-wARtS1Aclb7GDqk4t1fhgozYejCFgZoZRz1CKuyxZ_UZiGzZCe0s8cxMm53Gkt6A3m8_8HWA2WM6TkDuFoE0FtJt9Y4Pi0iLo8pmN4Hl7kNo1Bc2pr8ZUo2NDZ66XZx7B4yXpSV3F419EW3QbSwIqvF09mH_7pBs51i4IV_DSeFcUmeXGBGWESaS1iJVLJSN4RnepST3gYpxpshxwS1RoSw-ovQtCtqSIYKNDiWLtusMtN-hGrSz0HyGI4NFymGZSqNzMz79XNIialch5BLdr5lluCdGKKqTE2bLDVp09d0dmx5-rouMo0ATF7_5_WQ_hEkqlfrs73rsHlzmlilSBjxvQQzbz9xHAndoHjagw0OcsnL8BkN5bLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+Small+Terminase%3A+A+Divergent+Structural+Framework+for+a+Conserved+Biological+Function&rft.jtitle=Viruses&rft.au=Lokareddy%2C+Ravi+K&rft.au=Hou%2C+Chun-Feng+David&rft.au=Li%2C+Fenglin&rft.au=Yang%2C+Ruoyu&rft.date=2022-10-01&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fv14102215&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |