Text feature extraction based on deep learning: a review

Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquir...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2017; no. 1; pp. 211 - 12
Main Authors Liang, Hong, Sun, Xiao, Sun, Yunlei, Gao, Yuan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 15.12.2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1499
1687-1472
1687-1499
DOI10.1186/s13638-017-0993-1

Cover

Loading…
Abstract Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
AbstractList Abstract Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
ArticleNumber 211
Author Gao, Yuan
Liang, Hong
Sun, Yunlei
Sun, Xiao
Author_xml – sequence: 1
  givenname: Hong
  surname: Liang
  fullname: Liang, Hong
  organization: College of Computer and Communication Engineering, China University of Petroleum (East China)
– sequence: 2
  givenname: Xiao
  surname: Sun
  fullname: Sun, Xiao
  organization: College of Computer and Communication Engineering, China University of Petroleum (East China)
– sequence: 3
  givenname: Yunlei
  orcidid: 0000-0003-3745-6899
  surname: Sun
  fullname: Sun, Yunlei
  email: sunyunlei@upc.edu.cn
  organization: College of Computer and Communication Engineering, China University of Petroleum (East China)
– sequence: 4
  givenname: Yuan
  surname: Gao
  fullname: Gao, Yuan
  organization: College of Computer and Communication Engineering, China University of Petroleum (East China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29263717$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsR_6A9yYSdx0M8oBZgAXJqbxo0kTN3VNmOHMlZu5cIWZqv--jFOb2ya64gSe9-U9cE7JUYgBCXkJ9A2Aat9m4C1XNQVZU615DU_ICbRK1iC0Pjqoj8lpzltKOReaPSPHTLOWS5AnRF3jr6ka0E5zwqrUyfaTj6HqbEZXlcIh7qsRbQo-bN5Vtkp44_Hnc_J0sGPGF3frGfn26eP1xZf66uvny4sPV3Xf8HaqByEb3XPomQUUzjKhKDg5KHA9OilaRN51otEOZKOEFS23tKWUNW5gXFN-Ri5XXxft1uyT39n020TrzZ-NmDbGpsn3IxrHWuawo1phJxA6BVpQQE4tQ9EIXbzer177udthCRBKu-MD04cnwX83m3hjGskZp4vB-Z1Bij9mzJPZ-dzjONqAcc4GtNQNZVqpgr5-hG7jnEJ5qkKpQglKoVCvDhPdR_n7QQWAFehTzDnhcI8ANcsQmHUITBkCswyBWUzlI03vJ7v8amnKj_9VslWZyy1hg-kg9D9Ft_krw5g
CitedBy_id crossref_primary_10_3390_ai5030081
crossref_primary_10_1002_spe_3158
crossref_primary_10_1016_j_jksuci_2021_07_011
crossref_primary_10_3390_info10040150
crossref_primary_10_1103_PhysRevE_107_054104
crossref_primary_10_1364_OPTCON_530560
crossref_primary_10_1016_j_bspc_2022_104152
crossref_primary_10_1016_j_techfore_2021_121127
crossref_primary_10_1016_j_eswa_2022_118667
crossref_primary_10_1109_ACCESS_2021_3102087
crossref_primary_10_1016_j_procs_2019_09_212
crossref_primary_10_1007_s40192_024_00374_2
crossref_primary_10_3390_s21227582
crossref_primary_10_18502_kss_v9i6_15254
crossref_primary_10_1016_j_heliyon_2024_e34685
crossref_primary_10_1007_s11227_023_05139_w
crossref_primary_10_1007_s11042_019_7505_8
crossref_primary_10_1016_j_procs_2024_08_015
crossref_primary_10_1016_j_ipm_2024_103810
crossref_primary_10_1155_2021_9935900
crossref_primary_10_1007_s12145_022_00914_4
crossref_primary_10_1016_j_lwt_2023_114861
crossref_primary_10_1007_s11042_022_12709_2
crossref_primary_10_1016_j_jksuci_2022_07_001
crossref_primary_10_1109_ACCESS_2023_3327897
crossref_primary_10_1186_s12302_021_00582_z
crossref_primary_10_1016_j_knosys_2021_107134
crossref_primary_10_1109_ACCESS_2019_2938854
crossref_primary_10_1109_ACCESS_2024_3366802
crossref_primary_10_1016_j_asoc_2024_111599
crossref_primary_10_1186_s13638_018_1056_y
crossref_primary_10_1088_1361_6501_abf3fb
crossref_primary_10_1109_ACCESS_2023_3323214
crossref_primary_10_1017_pcm_2022_10
crossref_primary_10_1016_j_aej_2024_06_059
crossref_primary_10_1109_JSTARS_2020_2969245
crossref_primary_10_1109_TIM_2021_3115211
crossref_primary_10_1002_pol_20230649
crossref_primary_10_1007_s11036_023_02205_8
crossref_primary_10_1080_09296174_2024_2417448
crossref_primary_10_1016_j_joi_2022_101354
crossref_primary_10_1038_s41598_023_48751_9
crossref_primary_10_1016_j_envsoft_2021_104992
crossref_primary_10_3390_app13127266
crossref_primary_10_1007_s13755_022_00183_x
crossref_primary_10_1145_3477578
crossref_primary_10_1093_mnras_stac2210
crossref_primary_10_1155_2022_7996195
crossref_primary_10_29109_gujsc_1111884
crossref_primary_10_1080_08839514_2022_2151180
crossref_primary_10_1002_cpe_6149
crossref_primary_10_3390_app13137682
crossref_primary_10_1109_ACCESS_2024_3441489
crossref_primary_10_1016_j_aei_2023_101879
crossref_primary_10_1016_j_eswa_2021_115632
crossref_primary_10_2196_38936
crossref_primary_10_1109_TLT_2023_3320877
crossref_primary_10_1109_ACCESS_2024_3423783
crossref_primary_10_1007_s40622_024_00378_z
crossref_primary_10_1016_j_asoc_2019_105663
crossref_primary_10_3390_info11060318
crossref_primary_10_1016_j_eswa_2022_116616
crossref_primary_10_18267_j_aip_210
crossref_primary_10_3390_info15060343
crossref_primary_10_1016_j_wasman_2024_11_031
crossref_primary_10_1109_TCBB_2020_3034313
crossref_primary_10_1016_j_ces_2024_121147
crossref_primary_10_3390_app13010569
crossref_primary_10_3389_fbioe_2019_00485
crossref_primary_10_1016_j_ijpvp_2024_105364
crossref_primary_10_3390_app14031078
crossref_primary_10_1016_j_eswa_2022_116600
crossref_primary_10_1177_0959651820953679
crossref_primary_10_1016_j_compbiolchem_2023_108012
crossref_primary_10_1186_s12859_020_03579_2
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_3390_info15100593
crossref_primary_10_1002_spe_2934
crossref_primary_10_1007_s11063_023_11275_4
crossref_primary_10_1017_pan_2019_46
crossref_primary_10_1016_j_ins_2024_120447
crossref_primary_10_1016_j_ipm_2024_104039
crossref_primary_10_1007_s00500_020_05410_9
crossref_primary_10_3390_su12010320
crossref_primary_10_1016_j_jmsy_2022_02_004
crossref_primary_10_1007_s10853_024_09866_0
crossref_primary_10_1016_j_ipm_2022_103060
crossref_primary_10_3390_math9080807
crossref_primary_10_1109_ACCESS_2020_2976744
crossref_primary_10_2174_2666145416666230111113534
crossref_primary_10_1016_j_neucom_2019_01_029
crossref_primary_10_1016_j_apacoust_2022_108813
crossref_primary_10_1016_j_compag_2020_105802
crossref_primary_10_3390_atmos15101176
crossref_primary_10_1109_JBHI_2022_3212684
crossref_primary_10_1109_JSTARS_2021_3091389
crossref_primary_10_1109_ACCESS_2020_2997937
crossref_primary_10_1121_10_0007284
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_2478_amns_2025_0623
crossref_primary_10_1007_s10115_025_02365_x
crossref_primary_10_3390_s23010418
crossref_primary_10_1177_0022243719866690
crossref_primary_10_7717_peerj_cs_2669
crossref_primary_10_1016_j_cogsys_2018_05_002
crossref_primary_10_1109_TNNLS_2022_3153134
crossref_primary_10_2308_acch_52455
crossref_primary_10_1007_s11042_023_14697_3
crossref_primary_10_7717_peerj_cs_2263
crossref_primary_10_1007_s11390_021_0851_9
crossref_primary_10_4018_IJTEM_2018010102
crossref_primary_10_1016_j_rinma_2023_100455
crossref_primary_10_1155_2022_8898100
crossref_primary_10_1007_s11042_023_15357_2
crossref_primary_10_3390_diagnostics13050918
crossref_primary_10_3390_app122312116
crossref_primary_10_1109_TCBB_2022_3140873
crossref_primary_10_1109_ACCESS_2024_3442930
crossref_primary_10_1007_s10699_019_09589_5
crossref_primary_10_1007_s11042_024_18359_w
crossref_primary_10_1007_s11227_021_03864_8
crossref_primary_10_1007_s12652_019_01647_x
crossref_primary_10_3390_mi14101925
crossref_primary_10_33225_jbse_23_22_1011
crossref_primary_10_3390_aerospace8040112
crossref_primary_10_1016_j_eswa_2020_113198
crossref_primary_10_1109_ACCESS_2018_2881832
crossref_primary_10_1155_2022_6486570
crossref_primary_10_3390_math10183225
crossref_primary_10_1007_s40789_023_00579_4
crossref_primary_10_1186_s42774_022_00113_1
crossref_primary_10_1111_coin_12345
Cites_doi 10.18653/v1/W16-0103
10.18653/v1/N16-1101
10.18653/v1/P16-1105
10.18653/v1/D16-1082
10.1186/s13638-016-0745-7
10.1126/science.1127647
10.1016/0378-1119(78)90028-8
10.1016/j.neucom.2015.12.091
10.1016/j.eswa.2014.11.038
10.1038/nature14539
10.1093/ietisy/e90-d.6.923
10.1145/505282.505283
10.1109/72.279181
10.1162/neco.2006.18.7.1527
10.1016/0031-3203(95)00118-2
10.1007/BF00344251
10.1186/s13638-016-0623-3
10.1113/jphysiol.1962.sp006837
10.1037/h0042519
10.1561/2200000006
10.1016/j.knosys.2015.11.005
10.1162/089976603321780272
10.1016/j.knosys.2012.06.005
10.1007/978-3-540-24672-5_47
10.4304/jcp.4.3.230-237
10.1016/j.neunet.2014.09.005
10.1007/3-540-45357-1_9
10.1007/978-94-011-2854-4_9
10.1109/IWCI.2016.7860340
10.1007/978-3-642-17537-4_39
10.21236/ADA439629
10.1109/MASS.2014.74
10.1109/CIT.2014.144
10.1145/2766462.2767830
10.3115/v1/D14-1181
10.1109/PCCC.2016.7820658
10.1109/ICDMW.2014.101
10.1109/PCCC.2016.7820650
10.1016/j.amc.2014.02.076
10.21437/Interspeech.2004-376
10.1109/CSAE.2012.6272913
10.3115/v1/P15-1001
10.1145/2766462.2767738
10.1109/BIBM.2015.7359756
10.1146/annurev.cs.04.060190.002221
10.1145/2837689.2837706
10.1109/CVPR.2016.376
10.1002/asi.21023
10.1109/IJCNN.2016.7727602
10.1109/ICSMC.2007.4414216
10.1007/s00521-016-2594-z
10.3115/v1/D14-1179
10.1109/PCCC.2016.7820648
10.1109/ISCAS.2010.5537907
10.1109/CloudCom.2016.0049
10.1109/PCCC.2016.7820664
10.1016/j.patcog.2011.09.021
10.1007/11550822_86
10.3115/v1/D14-1067
10.1109/ICCIAS.2006.294269
10.1109/CLOUD.2017.53
10.1109/ICDAR.2003.1227801
10.1145/312624.312647
10.1016/B978-1-4832-1446-7.50035-2
10.1007/s00521-016-2401-x
ContentType Journal Article
Copyright The Author(s). 2017
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s). 2017
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s13638-017-0993-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 12
ExternalDocumentID oai_doaj_org_article_d262deb098eb4e1b819401e30a2e4549
PMC5732309
29263717
10_1186_s13638_017_0993_1
Genre Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: Grant No.18CX02019A
– fundername: ;
  grantid: Grant No.18CX02019A
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
2VQ
AHSBF
C1A
H13
IL9
IPNFZ
NPM
O9-
RIG
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-f4759c31c2a1e4da24801d7f81dced746ee3bb459d17584a463a060025df23903
IEDL.DBID U2A
ISSN 1687-1499
1687-1472
IngestDate Wed Aug 27 01:06:52 EDT 2025
Thu Aug 21 13:33:57 EDT 2025
Fri Jul 11 09:45:00 EDT 2025
Fri Jul 25 06:59:42 EDT 2025
Wed Feb 19 02:42:45 EST 2025
Thu Jul 03 08:25:48 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Fri Feb 21 02:35:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Text mining
Feature extraction
Natural language processing
Text characteristic
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-f4759c31c2a1e4da24801d7f81dced746ee3bb459d17584a463a060025df23903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3745-6899
OpenAccessLink https://link.springer.com/10.1186/s13638-017-0993-1
PMID 29263717
PQID 1989504001
PQPubID 237293
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d262deb098eb4e1b819401e30a2e4549
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5732309
proquest_miscellaneous_1979502988
proquest_journals_1989504001
pubmed_primary_29263717
crossref_primary_10_1186_s13638_017_0993_1
crossref_citationtrail_10_1186_s13638_017_0993_1
springer_journals_10_1186_s13638_017_0993_1
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationTitleAlternate EURASIP J Wirel Commun Netw
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Dasigi, Hovy (CR68) 2014
Chen, Xu, Liu (CR70) 2015
Vincent, Larochelle, Bengio (CR94) 2008
Lecun, Bengio, Hinton (CR1) 2015; 521
Ganapathy, Kulothungan, Muthurajkumar (CR21) 1997; 29
CR39
CR36
Singh, Kumar, Patnaik (CR3) 2013; 3
CR34
CR32
CR31
CR30
Paninski (CR13) 2003; 15
Jagannatha, Yu (CR110) 2016
Qin, Xu, Guo (CR67) 2016; 190
Lu, Li (CR93) 2016
CR48
CR47
CR45
Trier, Jain, Taxt (CR5) 1996; 29
Bengio, Simard, Frasconi (CR109) 2002; 5
Rosenblatt (CR92) 1958; 65
Marujo, Ling, Ribeiro (CR59) 2015; 94
Fukushima (CR89) 1980; 36
Sebastiani (CR20) 2001; 34
Osanaiye, Cai, Choo (CR26) 2016; 2016
Yin, Ebert, Schütze (CR52) 2016
CR58
Bhattacharya, Das (CR40) 2010; 49
CR54
Liu, Qiu, Chen (CR57) 2015
CR53
Luo (CR38) 2002; 38
CR51
CR50
Ueki, Kobayashi (CR28) 2007; E90D
Gao, Yang, Bhimani (CR121) 2017
Wang, Wang, Nguyen (CR122) 2017
Nguyen, Grishman (CR69) 2015
Zhou, Xu (CR46) 2015
Qin, Lu (CR77) 2013; 13
Schroeder, Blattner (CR33) 1978; 4
CR64
CR63
CR61
CR60
Yih, He, Meek (CR43) 2014
Wen, Zhang, Luo (CR106) 2016
Huang, Lecun (CR95) 2006
CR79
Gravelines (CR74) 2014
CR78
CR115
Uysal, Gunal (CR15) 2012; 36
CR76
CR116
CR113
CR114
CR73
CR111
CR72
CR112
Zhou, Sun, Liu (CR104) 2015; 1
Kim, Howland, Park (CR37) 2005; 6
CR119
CR117
Feng, Liu, Li (CR56) 2016
Bharti, Singh (CR35) 2015; 42
Iyyer, Boyd-Graber, Claudino (CR49) 2014
CR8
Mengle, Goharian (CR16) 2009; 60
CR7
CR9
CR87
CR86
CR85
Hinton, Salakhutdinov (CR41) 2006; 313
CR84
CR123
Nguyen, Sil, Dinu (CR62) 2016
CR82
CR120
CR81
CR80
Vincent, Larochelle, Lajoie (CR75) 2010; 11
Tai, Liu, Yang (CR118) 2015; PP
CR19
Lai, Xu, Liu, Zhao (CR105) 2015
Liu, Chen, Jagannatha (CR71) 2016
CR14
CR12
Collobert, Weston, Bottou (CR6) 2011; 12
CR11
CR99
CR10
CR98
CR97
CR96
CR91
Hinton, Osindero, Teh (CR83) 2014; 18
CR90
Miwa, Bansal (CR65) 2016
Ji, Xu, Yang (CR101) 2013
Lehman, Ghassemi, Snoek (CR107) 2015
CR29
Wang, Cui, Gao (CR4) 2016; 2016
CR27
CR25
CR24
Liu, He, Zhao (CR18) 2004; 18
CR23
CR22
Firat, Cho, Bengio (CR55) 2016
Bengio (CR42) 2009; 2
Xu, Jia, Mou (CR66) 2016
CR102
CR103
CR100
Shen, He, Gao (CR44) 2014
Evangelopoulos (CR17) 2013; 4
Hubel, Wiesel (CR88) 1962; 160
CR108
Wang, Raj, Xing (CR2) 2017
Rosenblatt (993_CR92) 1958; 65
993_CR120
993_CR39
993_CR123
Z Lu (993_CR93) 2016
C Zhou (993_CR104) 2015; 1
Y Xu (993_CR66) 2016
P Liu (993_CR57) 2015
993_CR48
Z Wang (993_CR4) 2016; 2016
993_CR47
993_CR45
S Qin (993_CR77) 2013; 13
M Miwa (993_CR65) 2016
T Wang (993_CR122) 2017
Y Bengio (993_CR109) 2002; 5
D Liu (993_CR18) 2004; 18
P Qin (993_CR67) 2016; 190
993_CR111
993_CR112
993_CR113
993_CR114
993_CR115
993_CR116
TH Nguyen (993_CR69) 2015
993_CR117
993_CR119
993_CR51
993_CR50
J Zhou (993_CR46) 2015
993_CR58
DH Hubel (993_CR88) 1962; 160
993_CR54
993_CR53
GE Hinton (993_CR83) 2014; 18
F Liu (993_CR71) 2016
993_CR19
K Bharti (993_CR35) 2015; 42
P Vincent (993_CR75) 2010; 11
LW Lehman (993_CR107) 2015
W Yin (993_CR52) 2016
993_CR25
993_CR24
993_CR23
993_CR22
GE Hinton (993_CR41) 2006; 313
K Ueki (993_CR28) 2007; E90D
993_CR29
O Firat (993_CR55) 2016
993_CR27
L Marujo (993_CR59) 2015; 94
S Luo (993_CR38) 2002; 38
S Feng (993_CR56) 2016
Y Lecun (993_CR1) 2015; 521
Y Bengio (993_CR42) 2009; 2
Y Wen (993_CR106) 2016
993_CR36
R Collobert (993_CR6) 2011; 12
993_CR34
993_CR32
993_CR31
JL Schroeder (993_CR33) 1978; 4
993_CR30
P Vincent (993_CR94) 2008
S Lai (993_CR105) 2015
993_CR84
J Tai (993_CR118) 2015; PP
993_CR82
993_CR81
993_CR80
L Paninski (993_CR13) 2003; 15
WT Yih (993_CR43) 2014
Y Chen (993_CR70) 2015
993_CR87
S Ji (993_CR101) 2013
993_CR86
993_CR85
H Gao (993_CR121) 2017
M Iyyer (993_CR49) 2014
V Singh (993_CR3) 2013; 3
C Gravelines (993_CR74) 2014
993_CR91
A Jagannatha (993_CR110) 2016
993_CR90
993_CR14
TH Nguyen (993_CR62) 2016
993_CR12
S Ganapathy (993_CR21) 1997; 29
993_CR11
993_CR99
993_CR10
993_CR98
993_CR97
NE Evangelopoulos (993_CR17) 2013; 4
M Bhattacharya (993_CR40) 2010; 49
993_CR96
H Wang (993_CR2) 2017
Y Shen (993_CR44) 2014
H Kim (993_CR37) 2005; 6
P Dasigi (993_CR68) 2014
993_CR100
F Sebastiani (993_CR20) 2001; 34
993_CR102
993_CR103
993_CR108
993_CR61
993_CR60
ØD Trier (993_CR5) 1996; 29
993_CR64
993_CR63
SR Mengle (993_CR16) 2009; 60
K Fukushima (993_CR89) 1980; 36
AK Uysal (993_CR15) 2012; 36
FJ Huang (993_CR95) 2006
993_CR73
993_CR72
O Osanaiye (993_CR26) 2016; 2016
993_CR79
993_CR78
993_CR9
993_CR76
993_CR7
993_CR8
References_xml – ident: CR45
– ident: CR22
– ident: CR97
– year: 2015
  ident: CR70
  article-title: Event extraction via dynamic multi-pooling convolutional neural networks
  publication-title: The meeting of the association for computational linguistics
– ident: CR39
– ident: CR51
– ident: CR115
– year: 2016
  ident: CR52
  publication-title: Attention-based convolutional neural network for machine comprehension
  doi: 10.18653/v1/W16-0103
– year: 2017
  ident: CR2
  publication-title: On the origin of deep learning
– year: 2016
  ident: CR55
  publication-title: Multi-way, multilingual neural machine translation with a shared attention mechanism
  doi: 10.18653/v1/N16-1101
– ident: CR54
– ident: CR80
– volume: 3
  start-page: 238
  issue: 1
  year: 2013
  end-page: 241
  ident: CR3
  article-title: Feature extraction techniques for handwritten text in various scripts: a survey
  publication-title: International Journal of Soft Computing and Engineering
– ident: CR8
– year: 2017
  ident: CR121
  article-title: AutoPath: harnessing parallel execution paths for efficient resource allocation in multi-stage big data frameworks
  publication-title: International Conference on Computer Communications and Networks
– year: 2016
  ident: CR65
  publication-title: End-to-end relation extraction using lstms on sequences and tree structures
  doi: 10.18653/v1/P16-1105
– ident: CR25
– year: 2016
  ident: CR66
  publication-title: Improved relation classification by deep recurrent neural networks with data augmentation
– ident: CR19
– volume: 29
  start-page: 294
  issue: 1–2
  year: 1997
  ident: CR21
  article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: a survey
  publication-title: Eurasip Journal on Wireless Communications & Networking
– start-page: 643
  year: 2014
  end-page: 648
  ident: CR43
  publication-title: Semantic parsing for single-relation question answering
– year: 2016
  ident: CR110
  publication-title: Structured prediction models for RNN based sequence labeling in clinical text
  doi: 10.18653/v1/D16-1082
– ident: CR11
– ident: CR60
– ident: CR112
– ident: CR36
– ident: CR85
– volume: 2016
  start-page: 253
  issue: 1
  year: 2016
  ident: CR4
  article-title: A hybrid model of sentimental entity recognition on mobile social media
  publication-title: Eurasip Journal on Wireless Communications and Networking
  doi: 10.1186/s13638-016-0745-7
– year: 2015
  ident: CR105
  article-title: Recurrent convolutional neural networks for text classification
  publication-title: Twenty-Ninth AAAI Conference on Artificial Intelligence
– year: 2016
  ident: CR71
  publication-title: Learning for biomedical information extraction: methodological review of recent advances
– ident: CR100
– year: 2016
  ident: CR56
  publication-title: Implicit distortion and fertility models for attention-based encoder-decoder NMT model
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR41
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: CR91
– ident: CR47
– ident: CR72
– volume: 49
  start-page: 1421
  issue: 8
  year: 2010
  end-page: 1422
  ident: CR40
  article-title: Genetic algorithm based feature selection in a recognition scheme using adaptive neuro fuzzy techniques
  publication-title: International Journal of Computers Communications and Control
– ident: CR30
– ident: CR117
– ident: CR10
– volume: 4
  start-page: 167
  issue: 2
  year: 1978
  end-page: 174
  ident: CR33
  article-title: Least-squares method for restriction mapping
  publication-title: Gene
  doi: 10.1016/0378-1119(78)90028-8
– start-page: 124
  year: 2014
  end-page: 128
  ident: CR68
  article-title: Modeling newswire events using neural networks for anomaly detection
  publication-title: Conference on Computational Linguistics. Academia Praha
– volume: 190
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR67
  article-title: An empirical convolutional neural network approach for semantic relation classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.091
– volume: 18
  start-page: 26
  issue: 1
  year: 2004
  end-page: 32
  ident: CR18
  article-title: A comparative study on feature selection in Chinese text categorization
  publication-title: Journal of Chinese Information Processing
– volume: 6
  start-page: 37
  issue: 1
  year: 2005
  end-page: 53
  ident: CR37
  article-title: Dimension reduction in text classification with support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: CR86
– ident: CR63
– ident: CR27
– year: 2016
  ident: CR62
  publication-title: Toward mention detection robustness with recurrent neural networks
– ident: CR123
– start-page: 2326
  year: 2015
  end-page: 2335
  ident: CR57
  article-title: Multi-timescale long short-term memory neural network for modelling sentences and documents
  publication-title: Conference on Empirical Methods in Natural Language Processing
– ident: CR108
– start-page: 633
  year: 2014
  end-page: 644
  ident: CR49
  article-title: A neural network for factoid question answering over paragraphs
  publication-title: Conference on Empirical Methods in Natural Language Processing
– ident: CR103
– ident: CR114
– volume: 42
  start-page: 3105
  issue: 6
  year: 2015
  end-page: 3114
  ident: CR35
  article-title: Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.038
– ident: CR120
– ident: CR24
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 11
  year: 2016
  end-page: 13
  ident: CR93
  article-title: Recent progress in deep learning for NLP
  publication-title: Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial
– volume: E90D
  start-page: 923
  issue: 6
  year: 2007
  end-page: 934
  ident: CR28
  article-title: Fusion-based age-group classification method using multiple two-dimensional feature extraction algorithms
  publication-title: Ieice Transactions on Information and Systems
  doi: 10.1093/ietisy/e90-d.6.923
– ident: CR102
– volume: 34
  start-page: 1
  issue: 1
  year: 2001
  end-page: 47
  ident: CR20
  article-title: Machine learning in automated text categorization
  publication-title: ACM Comput. Surv.
  doi: 10.1145/505282.505283
– volume: 13
  start-page: 9422
  issue: 31
  year: 2013
  end-page: 9426
  ident: CR77
  article-title: Sparse automatic encoder application in text categorization research
  publication-title: Sciencetechnology and engineering
– start-page: 373
  year: 2014
  end-page: 374
  ident: CR44
  article-title: Learning semantic representations using convolutional neural networks for web search
  publication-title: Companion Publication of the, International Conference on World Wide Web Companion
– ident: CR87
– ident: CR12
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  end-page: 1
  ident: CR118
  article-title: Improving flash resource utilization at minimal management cost in virtualized flash-based storage systems
  publication-title: IEEE Transactions on Cloud Computing
– ident: CR119
– start-page: 1069
  year: 2015
  end-page: 1072
  ident: CR107
  article-title: Patient prognosis from vital sign time series: combining convolutional neural networks with a dynamical systems approach
  publication-title: Computing in Cardiology Conference
– volume: 5
  start-page: 157
  issue: 2
  year: 2002
  end-page: 166
  ident: CR109
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: CR111
– ident: CR29
– ident: CR61
– year: 2014
  ident: CR74
  publication-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity
– ident: CR58
– ident: CR84
– start-page: 1127
  year: 2015
  end-page: 1137
  ident: CR46
  article-title: End-to-end learning of semantic role labeling using recurrent neural networks
  publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics
– volume: 18
  start-page: 1527
  issue: 7
  year: 2014
  end-page: 1554
  ident: CR83
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: CR96
– year: 2017
  ident: CR122
  article-title: EA2S2: an efficient application-aware storage system for big data processing in heterogeneous clusters
  publication-title: International Conference on Computer Communications and Networks
– volume: 60
  start-page: 1037
  issue: 5
  year: 2009
  end-page: 1050
  ident: CR16
  article-title: Ambiguity measure feature-selection algorithm
  publication-title: Journal of the Association for Information Science and Technology
– volume: 29
  start-page: 641
  issue: 4
  year: 1996
  end-page: 662
  ident: CR5
  article-title: Feature extraction methods for character recognition—a survey
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(95)00118-2
– ident: CR50
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  end-page: 202
  ident: CR89
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– ident: CR116
– volume: 2016
  start-page: 130
  issue: 1
  year: 2016
  ident: CR26
  article-title: Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing
  publication-title: Eurasip Journal on Wireless Communications and Networking
  doi: 10.1186/s13638-016-0623-3
– start-page: 221
  year: 2013
  ident: CR101
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: CR9
– ident: CR32
– ident: CR78
– ident: CR81
– volume: 12
  start-page: 2493
  issue: 1
  year: 2011
  end-page: 2537
  ident: CR6
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Mach. Learn. Res.
– ident: CR64
– ident: CR99
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: CR88
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  ident: CR75
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 97
  issue: 16
  year: 2002
  end-page: 98
  ident: CR38
  article-title: The feature extraction of text category and text fuzzy matching based on concept
  publication-title: Computer Engineering and Applications
– start-page: 365
  year: 2015
  end-page: 371
  ident: CR69
  article-title: Event detection and domain adaptation with convolutional neural networks
  publication-title: Proceedings of ACL
– ident: CR14
– ident: CR53
– volume: 1
  start-page: 39
  issue: 4
  year: 2015
  end-page: 44
  ident: CR104
  article-title: A C-LSTM neural network for text classification
  publication-title: Computer Science
– ident: CR82
– ident: CR113
– volume: 4
  start-page: 683
  issue: 6
  year: 2013
  end-page: 692
  ident: CR17
  article-title: Latent semantic analysis
  publication-title: Annual Review of Information Science and Technology
– ident: CR79
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: CR92
  article-title: The perception: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– ident: CR98
– ident: CR23
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  ident: CR42
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000006
– ident: CR48
– ident: CR73
– ident: CR90
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: CR94
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: International Conference
– ident: CR31
– year: 2016
  ident: CR106
  publication-title: Learning text representation using recurrent convolutional neural network with highway layers
– ident: CR34
– volume: 94
  start-page: 33
  year: 2015
  end-page: 42
  ident: CR59
  article-title: Exploring events and distributed representations of text in multi-document summarization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.11.005
– volume: 15
  start-page: 1191
  issue: 6
  year: 2003
  end-page: 1253
  ident: CR13
  article-title: Estimation of entropy and mutual information
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780272
– start-page: 284
  year: 2006
  end-page: 291
  ident: CR95
  article-title: Large-scale learning with SVM and convolutional for generic object categorization
  publication-title: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE Xplore
– ident: CR7
– ident: CR76
– volume: 36
  start-page: 226
  issue: 6
  year: 2012
  end-page: 235
  ident: CR15
  article-title: A novel probabilistic feature selection method for text classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.06.005
– ident: 993_CR14
  doi: 10.1007/978-3-540-24672-5_47
– start-page: 124
  volume-title: Conference on Computational Linguistics. Academia Praha
  year: 2014
  ident: 993_CR68
– ident: 993_CR29
  doi: 10.4304/jcp.4.3.230-237
– ident: 993_CR50
– volume-title: Implicit distortion and fertility models for attention-based encoder-decoder NMT model
  year: 2016
  ident: 993_CR56
– ident: 993_CR123
  doi: 10.1016/j.neunet.2014.09.005
– volume: 3
  start-page: 238
  issue: 1
  year: 2013
  ident: 993_CR3
  publication-title: International Journal of Soft Computing and Engineering
– volume: 2016
  start-page: 253
  issue: 1
  year: 2016
  ident: 993_CR4
  publication-title: Eurasip Journal on Wireless Communications and Networking
  doi: 10.1186/s13638-016-0745-7
– start-page: 373
  volume-title: Companion Publication of the, International Conference on World Wide Web Companion
  year: 2014
  ident: 993_CR44
– volume: 6
  start-page: 37
  issue: 1
  year: 2005
  ident: 993_CR37
  publication-title: J. Mach. Learn. Res.
– start-page: 643
  volume-title: Semantic parsing for single-relation question answering
  year: 2014
  ident: 993_CR43
– volume-title: On the origin of deep learning
  year: 2017
  ident: 993_CR2
– ident: 993_CR30
  doi: 10.1007/3-540-45357-1_9
– start-page: 2326
  volume-title: Conference on Empirical Methods in Natural Language Processing
  year: 2015
  ident: 993_CR57
– ident: 993_CR12
  doi: 10.1007/978-94-011-2854-4_9
– ident: 993_CR78
  doi: 10.1109/IWCI.2016.7860340
– ident: 993_CR85
  doi: 10.1007/978-3-642-17537-4_39
– ident: 993_CR76
– ident: 993_CR32
  doi: 10.21236/ADA439629
– volume-title: End-to-end relation extraction using lstms on sequences and tree structures
  year: 2016
  ident: 993_CR65
– volume: 49
  start-page: 1421
  issue: 8
  year: 2010
  ident: 993_CR40
  publication-title: International Journal of Computers Communications and Control
– volume-title: Multi-way, multilingual neural machine translation with a shared attention mechanism
  year: 2016
  ident: 993_CR55
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 993_CR89
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– ident: 993_CR117
  doi: 10.1109/MASS.2014.74
– volume-title: Improved relation classification by deep recurrent neural networks with data augmentation
  year: 2016
  ident: 993_CR66
– ident: 993_CR24
– ident: 993_CR79
  doi: 10.1109/CIT.2014.144
– volume: 38
  start-page: 97
  issue: 16
  year: 2002
  ident: 993_CR38
  publication-title: Computer Engineering and Applications
– ident: 993_CR34
  doi: 10.1016/j.knosys.2012.06.005
– ident: 993_CR48
  doi: 10.1145/2766462.2767830
– ident: 993_CR102
  doi: 10.3115/v1/D14-1181
– volume: 18
  start-page: 26
  issue: 1
  year: 2004
  ident: 993_CR18
  publication-title: Journal of Chinese Information Processing
– volume: 2016
  start-page: 130
  issue: 1
  year: 2016
  ident: 993_CR26
  publication-title: Eurasip Journal on Wireless Communications and Networking
  doi: 10.1186/s13638-016-0623-3
– volume: 18
  start-page: 1527
  issue: 7
  year: 2014
  ident: 993_CR83
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 993_CR10
– volume-title: Structured prediction models for RNN based sequence labeling in clinical text
  year: 2016
  ident: 993_CR110
– volume: 4
  start-page: 683
  issue: 6
  year: 2013
  ident: 993_CR17
  publication-title: Annual Review of Information Science and Technology
– ident: 993_CR116
  doi: 10.1109/PCCC.2016.7820658
– start-page: 11
  volume-title: Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial
  year: 2016
  ident: 993_CR93
– ident: 993_CR82
  doi: 10.1109/ICDMW.2014.101
– ident: 993_CR113
  doi: 10.1109/PCCC.2016.7820650
– ident: 993_CR25
  doi: 10.1016/j.amc.2014.02.076
– ident: 993_CR80
– ident: 993_CR98
  doi: 10.21437/Interspeech.2004-376
– volume: 12
  start-page: 2493
  issue: 1
  year: 2011
  ident: 993_CR6
  publication-title: J. Mach. Learn. Res.
– ident: 993_CR81
  doi: 10.1109/CSAE.2012.6272913
– volume: 29
  start-page: 641
  issue: 4
  year: 1996
  ident: 993_CR5
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(95)00118-2
– ident: 993_CR8
  doi: 10.3115/v1/P15-1001
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 993_CR42
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000006
– start-page: 365
  volume-title: Proceedings of ACL
  year: 2015
  ident: 993_CR69
– ident: 993_CR45
  doi: 10.1145/2766462.2767738
– start-page: 633
  volume-title: Conference on Empirical Methods in Natural Language Processing
  year: 2014
  ident: 993_CR49
– ident: 993_CR86
  doi: 10.1109/BIBM.2015.7359756
– ident: 993_CR60
– ident: 993_CR73
  doi: 10.1146/annurev.cs.04.060190.002221
– ident: 993_CR47
  doi: 10.1145/2837689.2837706
– ident: 993_CR99
– volume-title: Twenty-Ninth AAAI Conference on Artificial Intelligence
  year: 2015
  ident: 993_CR105
– volume-title: The meeting of the association for computational linguistics
  year: 2015
  ident: 993_CR70
– ident: 993_CR96
  doi: 10.1109/CVPR.2016.376
– volume-title: Attention-based convolutional neural network for machine comprehension
  year: 2016
  ident: 993_CR52
– ident: 993_CR54
– volume: 60
  start-page: 1037
  issue: 5
  year: 2009
  ident: 993_CR16
  publication-title: Journal of the Association for Information Science and Technology
  doi: 10.1002/asi.21023
– start-page: 1127
  volume-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics
  year: 2015
  ident: 993_CR46
– ident: 993_CR58
  doi: 10.1109/IJCNN.2016.7727602
– volume: 5
  start-page: 157
  issue: 2
  year: 2002
  ident: 993_CR109
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: 993_CR9
– ident: 993_CR63
– ident: 993_CR39
– ident: 993_CR23
  doi: 10.1109/ICSMC.2007.4414216
– ident: 993_CR27
  doi: 10.1007/s00521-016-2594-z
– volume-title: Learning text representation using recurrent convolutional neural network with highway layers
  year: 2016
  ident: 993_CR106
– ident: 993_CR51
– ident: 993_CR53
  doi: 10.3115/v1/D14-1179
– ident: 993_CR119
  doi: 10.1109/PCCC.2016.7820648
– volume: 190
  start-page: 1
  year: 2016
  ident: 993_CR67
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.091
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  ident: 993_CR118
  publication-title: IEEE Transactions on Cloud Computing
– volume: 29
  start-page: 294
  issue: 1–2
  year: 1997
  ident: 993_CR21
  publication-title: Eurasip Journal on Wireless Communications & Networking
– ident: 993_CR36
  doi: 10.1016/j.eswa.2014.11.038
– ident: 993_CR90
  doi: 10.1109/ISCAS.2010.5537907
– ident: 993_CR112
  doi: 10.1109/CloudCom.2016.0049
– ident: 993_CR114
  doi: 10.1109/PCCC.2016.7820664
– ident: 993_CR108
– ident: 993_CR100
  doi: 10.1016/j.patcog.2011.09.021
– ident: 993_CR91
  doi: 10.1007/11550822_86
– start-page: 284
  volume-title: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE Xplore
  year: 2006
  ident: 993_CR95
– volume-title: International Conference on Computer Communications and Networks
  year: 2017
  ident: 993_CR122
– volume: 36
  start-page: 226
  issue: 6
  year: 2012
  ident: 993_CR15
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.06.005
– volume: 160
  start-page: 106
  issue: 1
  year: 1962
  ident: 993_CR88
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– start-page: 1096
  volume-title: International Conference
  year: 2008
  ident: 993_CR94
– start-page: 221
  volume-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  year: 2013
  ident: 993_CR101
– volume: 94
  start-page: 33
  year: 2015
  ident: 993_CR59
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.11.005
– ident: 993_CR7
  doi: 10.3115/v1/D14-1067
– ident: 993_CR103
– ident: 993_CR111
  doi: 10.1109/ICCIAS.2006.294269
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 993_CR75
  publication-title: J. Mach. Learn. Res.
– ident: 993_CR61
– volume: 15
  start-page: 1191
  issue: 6
  year: 2003
  ident: 993_CR13
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780272
– volume: 34
  start-page: 1
  issue: 1
  year: 2001
  ident: 993_CR20
  publication-title: ACM Comput. Surv.
  doi: 10.1145/505282.505283
– ident: 993_CR115
  doi: 10.1109/CLOUD.2017.53
– volume-title: International Conference on Computer Communications and Networks
  year: 2017
  ident: 993_CR121
– volume: 4
  start-page: 167
  issue: 2
  year: 1978
  ident: 993_CR33
  publication-title: Gene
  doi: 10.1016/0378-1119(78)90028-8
– volume-title: Toward mention detection robustness with recurrent neural networks
  year: 2016
  ident: 993_CR62
– ident: 993_CR120
– ident: 993_CR11
– ident: 993_CR84
– volume-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity
  year: 2014
  ident: 993_CR74
– volume: 13
  start-page: 9422
  issue: 31
  year: 2013
  ident: 993_CR77
  publication-title: Sciencetechnology and engineering
– volume-title: Learning for biomedical information extraction: methodological review of recent advances
  year: 2016
  ident: 993_CR71
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 993_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 1
  start-page: 39
  issue: 4
  year: 2015
  ident: 993_CR104
  publication-title: Computer Science
– volume: 42
  start-page: 3105
  issue: 6
  year: 2015
  ident: 993_CR35
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.038
– ident: 993_CR97
  doi: 10.1109/ICDAR.2003.1227801
– ident: 993_CR19
– ident: 993_CR31
  doi: 10.1145/312624.312647
– ident: 993_CR64
– start-page: 1069
  volume-title: Computing in Cardiology Conference
  year: 2015
  ident: 993_CR107
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 993_CR41
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 993_CR72
  doi: 10.1016/B978-1-4832-1446-7.50035-2
– volume: E90D
  start-page: 923
  issue: 6
  year: 2007
  ident: 993_CR28
  publication-title: Ieice Transactions on Information and Systems
  doi: 10.1093/ietisy/e90-d.6.923
– ident: 993_CR22
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 993_CR92
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– ident: 993_CR87
  doi: 10.1007/s00521-016-2401-x
SSID ssj0033492
Score 2.5669398
SecondaryResourceType review_article
Snippet Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require...
Abstract Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 211
SubjectTerms Big Data
Communications Engineering
Data mining
Deep learning
Engineering
Feature extraction
Information retrieval
Information Systems Applications (incl.Internet)
Natural language processing
Networks
Representations
Review
Signal,Image and Speech Processing
Text characteristic
Text mining
Texts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3CoKFBIaZGROFFFjZ-xeyuI1YoDp1bqzbLjSVsJpVW7_f_MxNnVLn1w4RbFE2U0Hs9DM_6GsS-tTqlVNNBEZlWjwdN1AhNrl_qcO-u1hrHL95edn-mf5-Z8bdQX9YQVeOAiuKMsrcyQGu8gaRAJPRimBKCaKEFjckPWF33eMpkqNlgR5t5UwxTOHt0JhXpWk0VuqGFNbHihEaz_sQjzYaPkX9XS0QnNXrPtKXrkJ4XrHfYChjfs1Rqm4FvmTtHc8h5GwE6Oz7fl6gInf5U5PmSAGz5Ni7g45pGX6yvv2Nnsx-n3eT2NR6g7o-yi7gmqr1Oik1GAzlESEkxue4xAO8ittgAqJW18xhDB6aitig2V4UzupfKN2mVbw_UAHxj3ndEqoYiS9zoDZkEudlLZ6DFiMElVrFmKK3QTdjiNsPgdxhzC2VAkHFDCgSQcRMW-rj65KcAZzxF_oz1YERLm9fgCNSFMmhD-pQkV21_uYJgO4l2gljBDhgr_8Xm1jEeI6iJxgOt7ommRRnrnKva-bPiKE-mlVZjyVqzdUIUNVjdXhqvLEabbtArzO2TrcKk0a2w9JYm9_yGJj-ylJF0XshZmn20tbu_hAGOnRfo0HpM_HbUSBg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gucAB8aawoCJxAlXbPJtwQYAYVhw47Up7i_JwF6RVZ5iZ_f_YbTrs8Nhb1bhS6tiOHTufGXvdqRg7SQ1NRJYNGjzVRNChsbHPORmnFIxVvt_M8an6eqbPyoHbppRVzjZxNNR5meiM_IhqezRJHH-_-tlQ1yjKrpYWGjfZLY47DUm4XXyZLbEk5D0KuAwqEledKFlNbs3RhkuUvIZsdEslbHxvXxrh-__lc_5dOvlH_nTclhb32N3iT9YfJgG4z27A8IDduYIy-JDZEzTAdQ8jhGeNz-vpMkNNO1iu8SEDrOrSP-L8XR3q6ULLI3a6-Hzy6bgpDROapKXZNj2B9yXJkwgcVA6CsGFy16NPmiB3ygDIGJV2GZ0Gq4IyMrSUmNO5F9K18jE7GJYDPGW1S1rJiCyKzqkMGBfZkIQ0waEPoaOsWDuzy6eCJk5NLS78GFVY4ycOe-SwJw57XrE3u09WE5TGdcQfaQ12hISCPb5Yrs99USqfhREZYussRAU8oneD4SLINghQGPhW7HBeQV9Uc-N_C1LFXu2GUakoUxIGWF4STYc0wllbsSfTgu9mIpwwEoPginV7orA31f2R4cf3EbhbdxIjPpzW21lorkzrf5x4dv1PPGe3BUkxFw3Xh-xgu76EF-gnbePLURl-ATvxC7I
  priority: 102
  providerName: ProQuest
Title Text feature extraction based on deep learning: a review
URI https://link.springer.com/article/10.1186/s13638-017-0993-1
https://www.ncbi.nlm.nih.gov/pubmed/29263717
https://www.proquest.com/docview/1989504001
https://www.proquest.com/docview/1979502988
https://pubmed.ncbi.nlm.nih.gov/PMC5732309
https://doaj.org/article/d262deb098eb4e1b819401e30a2e4549
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxDeBUQWJJ1BE4q_YvHXVytSHCcEq7c2y48uGhNKp7f5_7pykWmEg8eJEzkWxznfnu9z5Z8be1zKEWtCBJjyKAg2eLAIoX5jQxthoKyWkKt8zfbqUiwt1Mezj3ozV7mNKMlnqpNZGf9pUAmWlIKtaUtEZhjyHCkN3Eusln47mVxDc3pC-vPO1vQUo4fTf5Vz-WSP5W6I0rT_zx-zR4Djm036mn7B70D1lD2_BCT5j5hwtbd5CwurM8X7d71rIaamKOd5EgOt8OCji8nPu837nynO2nJ-cz06L4WSEolFCb4uWUPoaUTXcVyCj5wQCE-sWnc8GYi01gAhBKhvROzDSSy18SRk4FVsubClesINu1cErlttGSRGQRcFaGQEDIOMbLrS36CyoIDJWjuxyzQAbTqdX_HQpfDDa9Rx2yGFHHHZVxj7sXrnuMTP-RXxMc7AjJLjr1LFaX7pBe1zkmkcIpTUQJFQB3RiMC0GUnoPECDdjR-MMukEHN46qwRTZKPzGu91j1B5KifgOVjdEUyMNt8Zk7GU_4buRcMu1wGg3Y_WeKOwNdf9J9-MqIXSrWmBoh8P6OArNrWH9jROv_4v6DXvASagrXlTqiB1s1zfwFv2jbZiw-7L8gq2ZY3s4nS6-L_B6fHL29Rv2zrikVs8m6f_DJGnPL9gCDfU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCCyhq_IhjIyHEa9nS0tNW6s2NY6cgoeyyuxXiT_Ebmclj6fLorbcodiJnPM_M-BuAJ4XyvpDU0EQEmaLCU6mPeZkaX4dQaatUbKt89_X4QH08zA834OdwFobKKged2CrqMK3oH_k21fbkxHH81exbSl2jKLs6tNDo2GI3_viOIdvi5c473N-nQozeT96O076rQFrlUi_TmhDuKskrUfKoQikIQCUUNTpuVQyF0jFK71VuA1pWo0qlZZlR9ioPtZA2k_jeC3BRSWmphNCMPgyaXxLSHwV4GgWXq0L0WVRu9PaCS-T0lGxCRiVzfM0Otu0C_uXj_l2q-Ue-tjWDo2twtfdf2euO4a7DRmxuwJVTqIY3wUxQ4bM6tpChDK_n3eEJRhYzMLwIMc5Y36_i-AUrWXeA5hYcnAspb8NmM23iXWC2ypX0SCJvrQoR4zBTVkLq0qLPknuZQDaQy1U9ejk10fjq2ijGaNdR2CGFHVHY8QSerR6ZddAdZ01-Q3uwmkio2-2N6fzY9ULsgtAiRJ9ZE72K3KM3heFplFkposJAO4GtYQddrwoW7jfjJvB4NYxCTJmZsonTE5pT4BxhjUngTrfhq5UIK7TEoDuBYo0V1pa6PtJ8-dwCheeFxAgTl_V8YJpTy_ofJe6d_RGP4NJ48mnP7e3s796Hy4I4mouU51uwuZyfxAfooy39w1YwGBydtyT-AgazR4o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJLqBo40ccGwkhoCwtRRWHVurNtWOnVKqyy-5WiL_Gr2Mmj6XLo7feongSOeMZz0xm_A3As1J6XwpqaMKDyHDDk5mPhcu0r0OolJEytlW-u2prX346KA7W4OdwFobKKoc9sd2ow6Sif-Qjqu0pSOLYqO7LIr5sjt9Mv2XUQYoyrUM7jU5EduKP7xi-zV9vb-JaP-d8_GHv_VbWdxjIqkKoRVYT2l0lWMUdizI4TmAqoazRiatiKKWKUXgvCxPQymrppBIup0xWEWouTC7wvZfgcil0Tt0T9PjjYAUEof5RsKdQiZkseZ9RZVqN5kyg1GdkH3Iqn2MrNrFtHfAvf_fvss0_cretSRzfgOu9L5u-7YTvJqzF5hZcO4NweBv0HnIwrWMLH5ri9aw7SJGS9QwpXoQYp2nfu-LoVerS7jDNHdi_EFbehfVm0sT7kJqqkMIji7wxMkSMybSruFDOoP9SeJFAPrDLVj2SOTXUOLFtRKOV7ThskcOWOGxZAi-Wj0w7GI_ziN_RGiwJCYG7vTGZHdleoW3giofoc6Ojl5F59KwwVI0idzxKDLoT2BhW0Pbbwtz-FuIEni6HUaEpS-OaODklmhJpuNE6gXvdgi9nwg1XAgPwBMoVUViZ6upIc_y1BQ0vSoHRJk7r5SA0Z6b1P048OP8jnsAV1EH7eXt35yFc5STQjGes2ID1xew0PkJ3beEft3qRwuFFK-Ivex1Ltw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+feature+extraction+based+on+deep+learning%3A+a+review&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Liang%2C+Hong&rft.au=Sun%2C+Xiao&rft.au=Sun%2C+Yunlei&rft.au=Gao%2C+Yuan&rft.date=2017-12-15&rft.pub=Springer+International+Publishing&rft.eissn=1687-1499&rft.volume=2017&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-017-0993-1&rft.externalDocID=10_1186_s13638_017_0993_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon