Text feature extraction based on deep learning: a review
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquir...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2017; no. 1; pp. 211 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
15.12.2017
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-1499 1687-1472 1687-1499 |
DOI | 10.1186/s13638-017-0993-1 |
Cover
Loading…
Abstract | Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction. |
---|---|
AbstractList | Abstract Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction. Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction. Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction. |
ArticleNumber | 211 |
Author | Gao, Yuan Liang, Hong Sun, Yunlei Sun, Xiao |
Author_xml | – sequence: 1 givenname: Hong surname: Liang fullname: Liang, Hong organization: College of Computer and Communication Engineering, China University of Petroleum (East China) – sequence: 2 givenname: Xiao surname: Sun fullname: Sun, Xiao organization: College of Computer and Communication Engineering, China University of Petroleum (East China) – sequence: 3 givenname: Yunlei orcidid: 0000-0003-3745-6899 surname: Sun fullname: Sun, Yunlei email: sunyunlei@upc.edu.cn organization: College of Computer and Communication Engineering, China University of Petroleum (East China) – sequence: 4 givenname: Yuan surname: Gao fullname: Gao, Yuan organization: College of Computer and Communication Engineering, China University of Petroleum (East China) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29263717$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompsR_6A9yYSdx0M8oBZgAXJqbxo0kTN3VNmOHMlZu5cIWZqv--jFOb2ya64gSe9-U9cE7JUYgBCXkJ9A2Aat9m4C1XNQVZU615DU_ICbRK1iC0Pjqoj8lpzltKOReaPSPHTLOWS5AnRF3jr6ka0E5zwqrUyfaTj6HqbEZXlcIh7qsRbQo-bN5Vtkp44_Hnc_J0sGPGF3frGfn26eP1xZf66uvny4sPV3Xf8HaqByEb3XPomQUUzjKhKDg5KHA9OilaRN51otEOZKOEFS23tKWUNW5gXFN-Ri5XXxft1uyT39n020TrzZ-NmDbGpsn3IxrHWuawo1phJxA6BVpQQE4tQ9EIXbzer177udthCRBKu-MD04cnwX83m3hjGskZp4vB-Z1Bij9mzJPZ-dzjONqAcc4GtNQNZVqpgr5-hG7jnEJ5qkKpQglKoVCvDhPdR_n7QQWAFehTzDnhcI8ANcsQmHUITBkCswyBWUzlI03vJ7v8amnKj_9VslWZyy1hg-kg9D9Ft_krw5g |
CitedBy_id | crossref_primary_10_3390_ai5030081 crossref_primary_10_1002_spe_3158 crossref_primary_10_1016_j_jksuci_2021_07_011 crossref_primary_10_3390_info10040150 crossref_primary_10_1103_PhysRevE_107_054104 crossref_primary_10_1364_OPTCON_530560 crossref_primary_10_1016_j_bspc_2022_104152 crossref_primary_10_1016_j_techfore_2021_121127 crossref_primary_10_1016_j_eswa_2022_118667 crossref_primary_10_1109_ACCESS_2021_3102087 crossref_primary_10_1016_j_procs_2019_09_212 crossref_primary_10_1007_s40192_024_00374_2 crossref_primary_10_3390_s21227582 crossref_primary_10_18502_kss_v9i6_15254 crossref_primary_10_1016_j_heliyon_2024_e34685 crossref_primary_10_1007_s11227_023_05139_w crossref_primary_10_1007_s11042_019_7505_8 crossref_primary_10_1016_j_procs_2024_08_015 crossref_primary_10_1016_j_ipm_2024_103810 crossref_primary_10_1155_2021_9935900 crossref_primary_10_1007_s12145_022_00914_4 crossref_primary_10_1016_j_lwt_2023_114861 crossref_primary_10_1007_s11042_022_12709_2 crossref_primary_10_1016_j_jksuci_2022_07_001 crossref_primary_10_1109_ACCESS_2023_3327897 crossref_primary_10_1186_s12302_021_00582_z crossref_primary_10_1016_j_knosys_2021_107134 crossref_primary_10_1109_ACCESS_2019_2938854 crossref_primary_10_1109_ACCESS_2024_3366802 crossref_primary_10_1016_j_asoc_2024_111599 crossref_primary_10_1186_s13638_018_1056_y crossref_primary_10_1088_1361_6501_abf3fb crossref_primary_10_1109_ACCESS_2023_3323214 crossref_primary_10_1017_pcm_2022_10 crossref_primary_10_1016_j_aej_2024_06_059 crossref_primary_10_1109_JSTARS_2020_2969245 crossref_primary_10_1109_TIM_2021_3115211 crossref_primary_10_1002_pol_20230649 crossref_primary_10_1007_s11036_023_02205_8 crossref_primary_10_1080_09296174_2024_2417448 crossref_primary_10_1016_j_joi_2022_101354 crossref_primary_10_1038_s41598_023_48751_9 crossref_primary_10_1016_j_envsoft_2021_104992 crossref_primary_10_3390_app13127266 crossref_primary_10_1007_s13755_022_00183_x crossref_primary_10_1145_3477578 crossref_primary_10_1093_mnras_stac2210 crossref_primary_10_1155_2022_7996195 crossref_primary_10_29109_gujsc_1111884 crossref_primary_10_1080_08839514_2022_2151180 crossref_primary_10_1002_cpe_6149 crossref_primary_10_3390_app13137682 crossref_primary_10_1109_ACCESS_2024_3441489 crossref_primary_10_1016_j_aei_2023_101879 crossref_primary_10_1016_j_eswa_2021_115632 crossref_primary_10_2196_38936 crossref_primary_10_1109_TLT_2023_3320877 crossref_primary_10_1109_ACCESS_2024_3423783 crossref_primary_10_1007_s40622_024_00378_z crossref_primary_10_1016_j_asoc_2019_105663 crossref_primary_10_3390_info11060318 crossref_primary_10_1016_j_eswa_2022_116616 crossref_primary_10_18267_j_aip_210 crossref_primary_10_3390_info15060343 crossref_primary_10_1016_j_wasman_2024_11_031 crossref_primary_10_1109_TCBB_2020_3034313 crossref_primary_10_1016_j_ces_2024_121147 crossref_primary_10_3390_app13010569 crossref_primary_10_3389_fbioe_2019_00485 crossref_primary_10_1016_j_ijpvp_2024_105364 crossref_primary_10_3390_app14031078 crossref_primary_10_1016_j_eswa_2022_116600 crossref_primary_10_1177_0959651820953679 crossref_primary_10_1016_j_compbiolchem_2023_108012 crossref_primary_10_1186_s12859_020_03579_2 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_3390_info15100593 crossref_primary_10_1002_spe_2934 crossref_primary_10_1007_s11063_023_11275_4 crossref_primary_10_1017_pan_2019_46 crossref_primary_10_1016_j_ins_2024_120447 crossref_primary_10_1016_j_ipm_2024_104039 crossref_primary_10_1007_s00500_020_05410_9 crossref_primary_10_3390_su12010320 crossref_primary_10_1016_j_jmsy_2022_02_004 crossref_primary_10_1007_s10853_024_09866_0 crossref_primary_10_1016_j_ipm_2022_103060 crossref_primary_10_3390_math9080807 crossref_primary_10_1109_ACCESS_2020_2976744 crossref_primary_10_2174_2666145416666230111113534 crossref_primary_10_1016_j_neucom_2019_01_029 crossref_primary_10_1016_j_apacoust_2022_108813 crossref_primary_10_1016_j_compag_2020_105802 crossref_primary_10_3390_atmos15101176 crossref_primary_10_1109_JBHI_2022_3212684 crossref_primary_10_1109_JSTARS_2021_3091389 crossref_primary_10_1109_ACCESS_2020_2997937 crossref_primary_10_1121_10_0007284 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_2478_amns_2025_0623 crossref_primary_10_1007_s10115_025_02365_x crossref_primary_10_3390_s23010418 crossref_primary_10_1177_0022243719866690 crossref_primary_10_7717_peerj_cs_2669 crossref_primary_10_1016_j_cogsys_2018_05_002 crossref_primary_10_1109_TNNLS_2022_3153134 crossref_primary_10_2308_acch_52455 crossref_primary_10_1007_s11042_023_14697_3 crossref_primary_10_7717_peerj_cs_2263 crossref_primary_10_1007_s11390_021_0851_9 crossref_primary_10_4018_IJTEM_2018010102 crossref_primary_10_1016_j_rinma_2023_100455 crossref_primary_10_1155_2022_8898100 crossref_primary_10_1007_s11042_023_15357_2 crossref_primary_10_3390_diagnostics13050918 crossref_primary_10_3390_app122312116 crossref_primary_10_1109_TCBB_2022_3140873 crossref_primary_10_1109_ACCESS_2024_3442930 crossref_primary_10_1007_s10699_019_09589_5 crossref_primary_10_1007_s11042_024_18359_w crossref_primary_10_1007_s11227_021_03864_8 crossref_primary_10_1007_s12652_019_01647_x crossref_primary_10_3390_mi14101925 crossref_primary_10_33225_jbse_23_22_1011 crossref_primary_10_3390_aerospace8040112 crossref_primary_10_1016_j_eswa_2020_113198 crossref_primary_10_1109_ACCESS_2018_2881832 crossref_primary_10_1155_2022_6486570 crossref_primary_10_3390_math10183225 crossref_primary_10_1007_s40789_023_00579_4 crossref_primary_10_1186_s42774_022_00113_1 crossref_primary_10_1111_coin_12345 |
Cites_doi | 10.18653/v1/W16-0103 10.18653/v1/N16-1101 10.18653/v1/P16-1105 10.18653/v1/D16-1082 10.1186/s13638-016-0745-7 10.1126/science.1127647 10.1016/0378-1119(78)90028-8 10.1016/j.neucom.2015.12.091 10.1016/j.eswa.2014.11.038 10.1038/nature14539 10.1093/ietisy/e90-d.6.923 10.1145/505282.505283 10.1109/72.279181 10.1162/neco.2006.18.7.1527 10.1016/0031-3203(95)00118-2 10.1007/BF00344251 10.1186/s13638-016-0623-3 10.1113/jphysiol.1962.sp006837 10.1037/h0042519 10.1561/2200000006 10.1016/j.knosys.2015.11.005 10.1162/089976603321780272 10.1016/j.knosys.2012.06.005 10.1007/978-3-540-24672-5_47 10.4304/jcp.4.3.230-237 10.1016/j.neunet.2014.09.005 10.1007/3-540-45357-1_9 10.1007/978-94-011-2854-4_9 10.1109/IWCI.2016.7860340 10.1007/978-3-642-17537-4_39 10.21236/ADA439629 10.1109/MASS.2014.74 10.1109/CIT.2014.144 10.1145/2766462.2767830 10.3115/v1/D14-1181 10.1109/PCCC.2016.7820658 10.1109/ICDMW.2014.101 10.1109/PCCC.2016.7820650 10.1016/j.amc.2014.02.076 10.21437/Interspeech.2004-376 10.1109/CSAE.2012.6272913 10.3115/v1/P15-1001 10.1145/2766462.2767738 10.1109/BIBM.2015.7359756 10.1146/annurev.cs.04.060190.002221 10.1145/2837689.2837706 10.1109/CVPR.2016.376 10.1002/asi.21023 10.1109/IJCNN.2016.7727602 10.1109/ICSMC.2007.4414216 10.1007/s00521-016-2594-z 10.3115/v1/D14-1179 10.1109/PCCC.2016.7820648 10.1109/ISCAS.2010.5537907 10.1109/CloudCom.2016.0049 10.1109/PCCC.2016.7820664 10.1016/j.patcog.2011.09.021 10.1007/11550822_86 10.3115/v1/D14-1067 10.1109/ICCIAS.2006.294269 10.1109/CLOUD.2017.53 10.1109/ICDAR.2003.1227801 10.1145/312624.312647 10.1016/B978-1-4832-1446-7.50035-2 10.1007/s00521-016-2401-x |
ContentType | Journal Article |
Copyright | The Author(s). 2017 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: The Author(s). 2017 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2017). All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s13638-017-0993-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_d262deb098eb4e1b819401e30a2e4549 PMC5732309 29263717 10_1186_s13638_017_0993_1 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: Grant No.18CX02019A – fundername: ; grantid: Grant No.18CX02019A |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT 2VQ AHSBF C1A H13 IL9 IPNFZ NPM O9- RIG 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-f4759c31c2a1e4da24801d7f81dced746ee3bb459d17584a463a060025df23903 |
IEDL.DBID | U2A |
ISSN | 1687-1499 1687-1472 |
IngestDate | Wed Aug 27 01:06:52 EDT 2025 Thu Aug 21 13:33:57 EDT 2025 Fri Jul 11 09:45:00 EDT 2025 Fri Jul 25 06:59:42 EDT 2025 Wed Feb 19 02:42:45 EST 2025 Thu Jul 03 08:25:48 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Fri Feb 21 02:35:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Text mining Feature extraction Natural language processing Text characteristic |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-f4759c31c2a1e4da24801d7f81dced746ee3bb459d17584a463a060025df23903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-3 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3745-6899 |
OpenAccessLink | https://link.springer.com/10.1186/s13638-017-0993-1 |
PMID | 29263717 |
PQID | 1989504001 |
PQPubID | 237293 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d262deb098eb4e1b819401e30a2e4549 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5732309 proquest_miscellaneous_1979502988 proquest_journals_1989504001 pubmed_primary_29263717 crossref_primary_10_1186_s13638_017_0993_1 crossref_citationtrail_10_1186_s13638_017_0993_1 springer_journals_10_1186_s13638_017_0993_1 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany – name: New York |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationTitleAlternate | EURASIP J Wirel Commun Netw |
PublicationYear | 2017 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Dasigi, Hovy (CR68) 2014 Chen, Xu, Liu (CR70) 2015 Vincent, Larochelle, Bengio (CR94) 2008 Lecun, Bengio, Hinton (CR1) 2015; 521 Ganapathy, Kulothungan, Muthurajkumar (CR21) 1997; 29 CR39 CR36 Singh, Kumar, Patnaik (CR3) 2013; 3 CR34 CR32 CR31 CR30 Paninski (CR13) 2003; 15 Jagannatha, Yu (CR110) 2016 Qin, Xu, Guo (CR67) 2016; 190 Lu, Li (CR93) 2016 CR48 CR47 CR45 Trier, Jain, Taxt (CR5) 1996; 29 Bengio, Simard, Frasconi (CR109) 2002; 5 Rosenblatt (CR92) 1958; 65 Marujo, Ling, Ribeiro (CR59) 2015; 94 Fukushima (CR89) 1980; 36 Sebastiani (CR20) 2001; 34 Osanaiye, Cai, Choo (CR26) 2016; 2016 Yin, Ebert, Schütze (CR52) 2016 CR58 Bhattacharya, Das (CR40) 2010; 49 CR54 Liu, Qiu, Chen (CR57) 2015 CR53 Luo (CR38) 2002; 38 CR51 CR50 Ueki, Kobayashi (CR28) 2007; E90D Gao, Yang, Bhimani (CR121) 2017 Wang, Wang, Nguyen (CR122) 2017 Nguyen, Grishman (CR69) 2015 Zhou, Xu (CR46) 2015 Qin, Lu (CR77) 2013; 13 Schroeder, Blattner (CR33) 1978; 4 CR64 CR63 CR61 CR60 Yih, He, Meek (CR43) 2014 Wen, Zhang, Luo (CR106) 2016 Huang, Lecun (CR95) 2006 CR79 Gravelines (CR74) 2014 CR78 CR115 Uysal, Gunal (CR15) 2012; 36 CR76 CR116 CR113 CR114 CR73 CR111 CR72 CR112 Zhou, Sun, Liu (CR104) 2015; 1 Kim, Howland, Park (CR37) 2005; 6 CR119 CR117 Feng, Liu, Li (CR56) 2016 Bharti, Singh (CR35) 2015; 42 Iyyer, Boyd-Graber, Claudino (CR49) 2014 CR8 Mengle, Goharian (CR16) 2009; 60 CR7 CR9 CR87 CR86 CR85 Hinton, Salakhutdinov (CR41) 2006; 313 CR84 CR123 Nguyen, Sil, Dinu (CR62) 2016 CR82 CR120 CR81 CR80 Vincent, Larochelle, Lajoie (CR75) 2010; 11 Tai, Liu, Yang (CR118) 2015; PP CR19 Lai, Xu, Liu, Zhao (CR105) 2015 Liu, Chen, Jagannatha (CR71) 2016 CR14 CR12 Collobert, Weston, Bottou (CR6) 2011; 12 CR11 CR99 CR10 CR98 CR97 CR96 CR91 Hinton, Osindero, Teh (CR83) 2014; 18 CR90 Miwa, Bansal (CR65) 2016 Ji, Xu, Yang (CR101) 2013 Lehman, Ghassemi, Snoek (CR107) 2015 CR29 Wang, Cui, Gao (CR4) 2016; 2016 CR27 CR25 CR24 Liu, He, Zhao (CR18) 2004; 18 CR23 CR22 Firat, Cho, Bengio (CR55) 2016 Bengio (CR42) 2009; 2 Xu, Jia, Mou (CR66) 2016 CR102 CR103 CR100 Shen, He, Gao (CR44) 2014 Evangelopoulos (CR17) 2013; 4 Hubel, Wiesel (CR88) 1962; 160 CR108 Wang, Raj, Xing (CR2) 2017 Rosenblatt (993_CR92) 1958; 65 993_CR120 993_CR39 993_CR123 Z Lu (993_CR93) 2016 C Zhou (993_CR104) 2015; 1 Y Xu (993_CR66) 2016 P Liu (993_CR57) 2015 993_CR48 Z Wang (993_CR4) 2016; 2016 993_CR47 993_CR45 S Qin (993_CR77) 2013; 13 M Miwa (993_CR65) 2016 T Wang (993_CR122) 2017 Y Bengio (993_CR109) 2002; 5 D Liu (993_CR18) 2004; 18 P Qin (993_CR67) 2016; 190 993_CR111 993_CR112 993_CR113 993_CR114 993_CR115 993_CR116 TH Nguyen (993_CR69) 2015 993_CR117 993_CR119 993_CR51 993_CR50 J Zhou (993_CR46) 2015 993_CR58 DH Hubel (993_CR88) 1962; 160 993_CR54 993_CR53 GE Hinton (993_CR83) 2014; 18 F Liu (993_CR71) 2016 993_CR19 K Bharti (993_CR35) 2015; 42 P Vincent (993_CR75) 2010; 11 LW Lehman (993_CR107) 2015 W Yin (993_CR52) 2016 993_CR25 993_CR24 993_CR23 993_CR22 GE Hinton (993_CR41) 2006; 313 K Ueki (993_CR28) 2007; E90D 993_CR29 O Firat (993_CR55) 2016 993_CR27 L Marujo (993_CR59) 2015; 94 S Luo (993_CR38) 2002; 38 S Feng (993_CR56) 2016 Y Lecun (993_CR1) 2015; 521 Y Bengio (993_CR42) 2009; 2 Y Wen (993_CR106) 2016 993_CR36 R Collobert (993_CR6) 2011; 12 993_CR34 993_CR32 993_CR31 JL Schroeder (993_CR33) 1978; 4 993_CR30 P Vincent (993_CR94) 2008 S Lai (993_CR105) 2015 993_CR84 J Tai (993_CR118) 2015; PP 993_CR82 993_CR81 993_CR80 L Paninski (993_CR13) 2003; 15 WT Yih (993_CR43) 2014 Y Chen (993_CR70) 2015 993_CR87 S Ji (993_CR101) 2013 993_CR86 993_CR85 H Gao (993_CR121) 2017 M Iyyer (993_CR49) 2014 V Singh (993_CR3) 2013; 3 C Gravelines (993_CR74) 2014 993_CR91 A Jagannatha (993_CR110) 2016 993_CR90 993_CR14 TH Nguyen (993_CR62) 2016 993_CR12 S Ganapathy (993_CR21) 1997; 29 993_CR11 993_CR99 993_CR10 993_CR98 993_CR97 NE Evangelopoulos (993_CR17) 2013; 4 M Bhattacharya (993_CR40) 2010; 49 993_CR96 H Wang (993_CR2) 2017 Y Shen (993_CR44) 2014 H Kim (993_CR37) 2005; 6 P Dasigi (993_CR68) 2014 993_CR100 F Sebastiani (993_CR20) 2001; 34 993_CR102 993_CR103 993_CR108 993_CR61 993_CR60 ØD Trier (993_CR5) 1996; 29 993_CR64 993_CR63 SR Mengle (993_CR16) 2009; 60 K Fukushima (993_CR89) 1980; 36 AK Uysal (993_CR15) 2012; 36 FJ Huang (993_CR95) 2006 993_CR73 993_CR72 O Osanaiye (993_CR26) 2016; 2016 993_CR79 993_CR78 993_CR9 993_CR76 993_CR7 993_CR8 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR97 – year: 2015 ident: CR70 article-title: Event extraction via dynamic multi-pooling convolutional neural networks publication-title: The meeting of the association for computational linguistics – ident: CR39 – ident: CR51 – ident: CR115 – year: 2016 ident: CR52 publication-title: Attention-based convolutional neural network for machine comprehension doi: 10.18653/v1/W16-0103 – year: 2017 ident: CR2 publication-title: On the origin of deep learning – year: 2016 ident: CR55 publication-title: Multi-way, multilingual neural machine translation with a shared attention mechanism doi: 10.18653/v1/N16-1101 – ident: CR54 – ident: CR80 – volume: 3 start-page: 238 issue: 1 year: 2013 end-page: 241 ident: CR3 article-title: Feature extraction techniques for handwritten text in various scripts: a survey publication-title: International Journal of Soft Computing and Engineering – ident: CR8 – year: 2017 ident: CR121 article-title: AutoPath: harnessing parallel execution paths for efficient resource allocation in multi-stage big data frameworks publication-title: International Conference on Computer Communications and Networks – year: 2016 ident: CR65 publication-title: End-to-end relation extraction using lstms on sequences and tree structures doi: 10.18653/v1/P16-1105 – ident: CR25 – year: 2016 ident: CR66 publication-title: Improved relation classification by deep recurrent neural networks with data augmentation – ident: CR19 – volume: 29 start-page: 294 issue: 1–2 year: 1997 ident: CR21 article-title: Intelligent feature selection and classification techniques for intrusion detection in networks: a survey publication-title: Eurasip Journal on Wireless Communications & Networking – start-page: 643 year: 2014 end-page: 648 ident: CR43 publication-title: Semantic parsing for single-relation question answering – year: 2016 ident: CR110 publication-title: Structured prediction models for RNN based sequence labeling in clinical text doi: 10.18653/v1/D16-1082 – ident: CR11 – ident: CR60 – ident: CR112 – ident: CR36 – ident: CR85 – volume: 2016 start-page: 253 issue: 1 year: 2016 ident: CR4 article-title: A hybrid model of sentimental entity recognition on mobile social media publication-title: Eurasip Journal on Wireless Communications and Networking doi: 10.1186/s13638-016-0745-7 – year: 2015 ident: CR105 article-title: Recurrent convolutional neural networks for text classification publication-title: Twenty-Ninth AAAI Conference on Artificial Intelligence – year: 2016 ident: CR71 publication-title: Learning for biomedical information extraction: methodological review of recent advances – ident: CR100 – year: 2016 ident: CR56 publication-title: Implicit distortion and fertility models for attention-based encoder-decoder NMT model – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: CR41 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: CR91 – ident: CR47 – ident: CR72 – volume: 49 start-page: 1421 issue: 8 year: 2010 end-page: 1422 ident: CR40 article-title: Genetic algorithm based feature selection in a recognition scheme using adaptive neuro fuzzy techniques publication-title: International Journal of Computers Communications and Control – ident: CR30 – ident: CR117 – ident: CR10 – volume: 4 start-page: 167 issue: 2 year: 1978 end-page: 174 ident: CR33 article-title: Least-squares method for restriction mapping publication-title: Gene doi: 10.1016/0378-1119(78)90028-8 – start-page: 124 year: 2014 end-page: 128 ident: CR68 article-title: Modeling newswire events using neural networks for anomaly detection publication-title: Conference on Computational Linguistics. Academia Praha – volume: 190 start-page: 1 year: 2016 end-page: 9 ident: CR67 article-title: An empirical convolutional neural network approach for semantic relation classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.091 – volume: 18 start-page: 26 issue: 1 year: 2004 end-page: 32 ident: CR18 article-title: A comparative study on feature selection in Chinese text categorization publication-title: Journal of Chinese Information Processing – volume: 6 start-page: 37 issue: 1 year: 2005 end-page: 53 ident: CR37 article-title: Dimension reduction in text classification with support vector machines publication-title: J. Mach. Learn. Res. – ident: CR86 – ident: CR63 – ident: CR27 – year: 2016 ident: CR62 publication-title: Toward mention detection robustness with recurrent neural networks – ident: CR123 – start-page: 2326 year: 2015 end-page: 2335 ident: CR57 article-title: Multi-timescale long short-term memory neural network for modelling sentences and documents publication-title: Conference on Empirical Methods in Natural Language Processing – ident: CR108 – start-page: 633 year: 2014 end-page: 644 ident: CR49 article-title: A neural network for factoid question answering over paragraphs publication-title: Conference on Empirical Methods in Natural Language Processing – ident: CR103 – ident: CR114 – volume: 42 start-page: 3105 issue: 6 year: 2015 end-page: 3114 ident: CR35 article-title: Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.038 – ident: CR120 – ident: CR24 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 11 year: 2016 end-page: 13 ident: CR93 article-title: Recent progress in deep learning for NLP publication-title: Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial – volume: E90D start-page: 923 issue: 6 year: 2007 end-page: 934 ident: CR28 article-title: Fusion-based age-group classification method using multiple two-dimensional feature extraction algorithms publication-title: Ieice Transactions on Information and Systems doi: 10.1093/ietisy/e90-d.6.923 – ident: CR102 – volume: 34 start-page: 1 issue: 1 year: 2001 end-page: 47 ident: CR20 article-title: Machine learning in automated text categorization publication-title: ACM Comput. Surv. doi: 10.1145/505282.505283 – volume: 13 start-page: 9422 issue: 31 year: 2013 end-page: 9426 ident: CR77 article-title: Sparse automatic encoder application in text categorization research publication-title: Sciencetechnology and engineering – start-page: 373 year: 2014 end-page: 374 ident: CR44 article-title: Learning semantic representations using convolutional neural networks for web search publication-title: Companion Publication of the, International Conference on World Wide Web Companion – ident: CR87 – ident: CR12 – volume: PP start-page: 1 issue: 99 year: 2015 end-page: 1 ident: CR118 article-title: Improving flash resource utilization at minimal management cost in virtualized flash-based storage systems publication-title: IEEE Transactions on Cloud Computing – ident: CR119 – start-page: 1069 year: 2015 end-page: 1072 ident: CR107 article-title: Patient prognosis from vital sign time series: combining convolutional neural networks with a dynamical systems approach publication-title: Computing in Cardiology Conference – volume: 5 start-page: 157 issue: 2 year: 2002 end-page: 166 ident: CR109 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – ident: CR111 – ident: CR29 – ident: CR61 – year: 2014 ident: CR74 publication-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity – ident: CR58 – ident: CR84 – start-page: 1127 year: 2015 end-page: 1137 ident: CR46 article-title: End-to-end learning of semantic role labeling using recurrent neural networks publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics – volume: 18 start-page: 1527 issue: 7 year: 2014 end-page: 1554 ident: CR83 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: CR96 – year: 2017 ident: CR122 article-title: EA2S2: an efficient application-aware storage system for big data processing in heterogeneous clusters publication-title: International Conference on Computer Communications and Networks – volume: 60 start-page: 1037 issue: 5 year: 2009 end-page: 1050 ident: CR16 article-title: Ambiguity measure feature-selection algorithm publication-title: Journal of the Association for Information Science and Technology – volume: 29 start-page: 641 issue: 4 year: 1996 end-page: 662 ident: CR5 article-title: Feature extraction methods for character recognition—a survey publication-title: Pattern Recogn. doi: 10.1016/0031-3203(95)00118-2 – ident: CR50 – volume: 36 start-page: 193 issue: 4 year: 1980 end-page: 202 ident: CR89 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – ident: CR116 – volume: 2016 start-page: 130 issue: 1 year: 2016 ident: CR26 article-title: Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing publication-title: Eurasip Journal on Wireless Communications and Networking doi: 10.1186/s13638-016-0623-3 – start-page: 221 year: 2013 ident: CR101 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: CR9 – ident: CR32 – ident: CR78 – ident: CR81 – volume: 12 start-page: 2493 issue: 1 year: 2011 end-page: 2537 ident: CR6 article-title: Natural language processing (almost) from scratch publication-title: J. Mach. Learn. Res. – ident: CR64 – ident: CR99 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: CR88 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 11 start-page: 3371 issue: 12 year: 2010 end-page: 3408 ident: CR75 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 97 issue: 16 year: 2002 end-page: 98 ident: CR38 article-title: The feature extraction of text category and text fuzzy matching based on concept publication-title: Computer Engineering and Applications – start-page: 365 year: 2015 end-page: 371 ident: CR69 article-title: Event detection and domain adaptation with convolutional neural networks publication-title: Proceedings of ACL – ident: CR14 – ident: CR53 – volume: 1 start-page: 39 issue: 4 year: 2015 end-page: 44 ident: CR104 article-title: A C-LSTM neural network for text classification publication-title: Computer Science – ident: CR82 – ident: CR113 – volume: 4 start-page: 683 issue: 6 year: 2013 end-page: 692 ident: CR17 article-title: Latent semantic analysis publication-title: Annual Review of Information Science and Technology – ident: CR79 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: CR92 article-title: The perception: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – ident: CR98 – ident: CR23 – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 127 ident: CR42 article-title: Learning deep architectures for AI publication-title: Foundations and Trends® in Machine Learning doi: 10.1561/2200000006 – ident: CR48 – ident: CR73 – ident: CR90 – start-page: 1096 year: 2008 end-page: 1103 ident: CR94 article-title: Extracting and composing robust features with denoising autoencoders publication-title: International Conference – ident: CR31 – year: 2016 ident: CR106 publication-title: Learning text representation using recurrent convolutional neural network with highway layers – ident: CR34 – volume: 94 start-page: 33 year: 2015 end-page: 42 ident: CR59 article-title: Exploring events and distributed representations of text in multi-document summarization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.11.005 – volume: 15 start-page: 1191 issue: 6 year: 2003 end-page: 1253 ident: CR13 article-title: Estimation of entropy and mutual information publication-title: Neural Comput. doi: 10.1162/089976603321780272 – start-page: 284 year: 2006 end-page: 291 ident: CR95 article-title: Large-scale learning with SVM and convolutional for generic object categorization publication-title: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE Xplore – ident: CR7 – ident: CR76 – volume: 36 start-page: 226 issue: 6 year: 2012 end-page: 235 ident: CR15 article-title: A novel probabilistic feature selection method for text classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.005 – ident: 993_CR14 doi: 10.1007/978-3-540-24672-5_47 – start-page: 124 volume-title: Conference on Computational Linguistics. Academia Praha year: 2014 ident: 993_CR68 – ident: 993_CR29 doi: 10.4304/jcp.4.3.230-237 – ident: 993_CR50 – volume-title: Implicit distortion and fertility models for attention-based encoder-decoder NMT model year: 2016 ident: 993_CR56 – ident: 993_CR123 doi: 10.1016/j.neunet.2014.09.005 – volume: 3 start-page: 238 issue: 1 year: 2013 ident: 993_CR3 publication-title: International Journal of Soft Computing and Engineering – volume: 2016 start-page: 253 issue: 1 year: 2016 ident: 993_CR4 publication-title: Eurasip Journal on Wireless Communications and Networking doi: 10.1186/s13638-016-0745-7 – start-page: 373 volume-title: Companion Publication of the, International Conference on World Wide Web Companion year: 2014 ident: 993_CR44 – volume: 6 start-page: 37 issue: 1 year: 2005 ident: 993_CR37 publication-title: J. Mach. Learn. Res. – start-page: 643 volume-title: Semantic parsing for single-relation question answering year: 2014 ident: 993_CR43 – volume-title: On the origin of deep learning year: 2017 ident: 993_CR2 – ident: 993_CR30 doi: 10.1007/3-540-45357-1_9 – start-page: 2326 volume-title: Conference on Empirical Methods in Natural Language Processing year: 2015 ident: 993_CR57 – ident: 993_CR12 doi: 10.1007/978-94-011-2854-4_9 – ident: 993_CR78 doi: 10.1109/IWCI.2016.7860340 – ident: 993_CR85 doi: 10.1007/978-3-642-17537-4_39 – ident: 993_CR76 – ident: 993_CR32 doi: 10.21236/ADA439629 – volume-title: End-to-end relation extraction using lstms on sequences and tree structures year: 2016 ident: 993_CR65 – volume: 49 start-page: 1421 issue: 8 year: 2010 ident: 993_CR40 publication-title: International Journal of Computers Communications and Control – volume-title: Multi-way, multilingual neural machine translation with a shared attention mechanism year: 2016 ident: 993_CR55 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 993_CR89 publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – ident: 993_CR117 doi: 10.1109/MASS.2014.74 – volume-title: Improved relation classification by deep recurrent neural networks with data augmentation year: 2016 ident: 993_CR66 – ident: 993_CR24 – ident: 993_CR79 doi: 10.1109/CIT.2014.144 – volume: 38 start-page: 97 issue: 16 year: 2002 ident: 993_CR38 publication-title: Computer Engineering and Applications – ident: 993_CR34 doi: 10.1016/j.knosys.2012.06.005 – ident: 993_CR48 doi: 10.1145/2766462.2767830 – ident: 993_CR102 doi: 10.3115/v1/D14-1181 – volume: 18 start-page: 26 issue: 1 year: 2004 ident: 993_CR18 publication-title: Journal of Chinese Information Processing – volume: 2016 start-page: 130 issue: 1 year: 2016 ident: 993_CR26 publication-title: Eurasip Journal on Wireless Communications and Networking doi: 10.1186/s13638-016-0623-3 – volume: 18 start-page: 1527 issue: 7 year: 2014 ident: 993_CR83 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 993_CR10 – volume-title: Structured prediction models for RNN based sequence labeling in clinical text year: 2016 ident: 993_CR110 – volume: 4 start-page: 683 issue: 6 year: 2013 ident: 993_CR17 publication-title: Annual Review of Information Science and Technology – ident: 993_CR116 doi: 10.1109/PCCC.2016.7820658 – start-page: 11 volume-title: Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial year: 2016 ident: 993_CR93 – ident: 993_CR82 doi: 10.1109/ICDMW.2014.101 – ident: 993_CR113 doi: 10.1109/PCCC.2016.7820650 – ident: 993_CR25 doi: 10.1016/j.amc.2014.02.076 – ident: 993_CR80 – ident: 993_CR98 doi: 10.21437/Interspeech.2004-376 – volume: 12 start-page: 2493 issue: 1 year: 2011 ident: 993_CR6 publication-title: J. Mach. Learn. Res. – ident: 993_CR81 doi: 10.1109/CSAE.2012.6272913 – volume: 29 start-page: 641 issue: 4 year: 1996 ident: 993_CR5 publication-title: Pattern Recogn. doi: 10.1016/0031-3203(95)00118-2 – ident: 993_CR8 doi: 10.3115/v1/P15-1001 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 993_CR42 publication-title: Foundations and Trends® in Machine Learning doi: 10.1561/2200000006 – start-page: 365 volume-title: Proceedings of ACL year: 2015 ident: 993_CR69 – ident: 993_CR45 doi: 10.1145/2766462.2767738 – start-page: 633 volume-title: Conference on Empirical Methods in Natural Language Processing year: 2014 ident: 993_CR49 – ident: 993_CR86 doi: 10.1109/BIBM.2015.7359756 – ident: 993_CR60 – ident: 993_CR73 doi: 10.1146/annurev.cs.04.060190.002221 – ident: 993_CR47 doi: 10.1145/2837689.2837706 – ident: 993_CR99 – volume-title: Twenty-Ninth AAAI Conference on Artificial Intelligence year: 2015 ident: 993_CR105 – volume-title: The meeting of the association for computational linguistics year: 2015 ident: 993_CR70 – ident: 993_CR96 doi: 10.1109/CVPR.2016.376 – volume-title: Attention-based convolutional neural network for machine comprehension year: 2016 ident: 993_CR52 – ident: 993_CR54 – volume: 60 start-page: 1037 issue: 5 year: 2009 ident: 993_CR16 publication-title: Journal of the Association for Information Science and Technology doi: 10.1002/asi.21023 – start-page: 1127 volume-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics year: 2015 ident: 993_CR46 – ident: 993_CR58 doi: 10.1109/IJCNN.2016.7727602 – volume: 5 start-page: 157 issue: 2 year: 2002 ident: 993_CR109 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – ident: 993_CR9 – ident: 993_CR63 – ident: 993_CR39 – ident: 993_CR23 doi: 10.1109/ICSMC.2007.4414216 – ident: 993_CR27 doi: 10.1007/s00521-016-2594-z – volume-title: Learning text representation using recurrent convolutional neural network with highway layers year: 2016 ident: 993_CR106 – ident: 993_CR51 – ident: 993_CR53 doi: 10.3115/v1/D14-1179 – ident: 993_CR119 doi: 10.1109/PCCC.2016.7820648 – volume: 190 start-page: 1 year: 2016 ident: 993_CR67 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.091 – volume: PP start-page: 1 issue: 99 year: 2015 ident: 993_CR118 publication-title: IEEE Transactions on Cloud Computing – volume: 29 start-page: 294 issue: 1–2 year: 1997 ident: 993_CR21 publication-title: Eurasip Journal on Wireless Communications & Networking – ident: 993_CR36 doi: 10.1016/j.eswa.2014.11.038 – ident: 993_CR90 doi: 10.1109/ISCAS.2010.5537907 – ident: 993_CR112 doi: 10.1109/CloudCom.2016.0049 – ident: 993_CR114 doi: 10.1109/PCCC.2016.7820664 – ident: 993_CR108 – ident: 993_CR100 doi: 10.1016/j.patcog.2011.09.021 – ident: 993_CR91 doi: 10.1007/11550822_86 – start-page: 284 volume-title: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE Xplore year: 2006 ident: 993_CR95 – volume-title: International Conference on Computer Communications and Networks year: 2017 ident: 993_CR122 – volume: 36 start-page: 226 issue: 6 year: 2012 ident: 993_CR15 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.005 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 993_CR88 publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – start-page: 1096 volume-title: International Conference year: 2008 ident: 993_CR94 – start-page: 221 volume-title: IEEE Transactions on Pattern Analysis and Machine Intelligence year: 2013 ident: 993_CR101 – volume: 94 start-page: 33 year: 2015 ident: 993_CR59 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.11.005 – ident: 993_CR7 doi: 10.3115/v1/D14-1067 – ident: 993_CR103 – ident: 993_CR111 doi: 10.1109/ICCIAS.2006.294269 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: 993_CR75 publication-title: J. Mach. Learn. Res. – ident: 993_CR61 – volume: 15 start-page: 1191 issue: 6 year: 2003 ident: 993_CR13 publication-title: Neural Comput. doi: 10.1162/089976603321780272 – volume: 34 start-page: 1 issue: 1 year: 2001 ident: 993_CR20 publication-title: ACM Comput. Surv. doi: 10.1145/505282.505283 – ident: 993_CR115 doi: 10.1109/CLOUD.2017.53 – volume-title: International Conference on Computer Communications and Networks year: 2017 ident: 993_CR121 – volume: 4 start-page: 167 issue: 2 year: 1978 ident: 993_CR33 publication-title: Gene doi: 10.1016/0378-1119(78)90028-8 – volume-title: Toward mention detection robustness with recurrent neural networks year: 2016 ident: 993_CR62 – ident: 993_CR120 – ident: 993_CR11 – ident: 993_CR84 – volume-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity year: 2014 ident: 993_CR74 – volume: 13 start-page: 9422 issue: 31 year: 2013 ident: 993_CR77 publication-title: Sciencetechnology and engineering – volume-title: Learning for biomedical information extraction: methodological review of recent advances year: 2016 ident: 993_CR71 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 993_CR1 publication-title: Nature doi: 10.1038/nature14539 – volume: 1 start-page: 39 issue: 4 year: 2015 ident: 993_CR104 publication-title: Computer Science – volume: 42 start-page: 3105 issue: 6 year: 2015 ident: 993_CR35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.038 – ident: 993_CR97 doi: 10.1109/ICDAR.2003.1227801 – ident: 993_CR19 – ident: 993_CR31 doi: 10.1145/312624.312647 – ident: 993_CR64 – start-page: 1069 volume-title: Computing in Cardiology Conference year: 2015 ident: 993_CR107 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 993_CR41 publication-title: Science doi: 10.1126/science.1127647 – ident: 993_CR72 doi: 10.1016/B978-1-4832-1446-7.50035-2 – volume: E90D start-page: 923 issue: 6 year: 2007 ident: 993_CR28 publication-title: Ieice Transactions on Information and Systems doi: 10.1093/ietisy/e90-d.6.923 – ident: 993_CR22 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 993_CR92 publication-title: Psychol. Rev. doi: 10.1037/h0042519 – ident: 993_CR87 doi: 10.1007/s00521-016-2401-x |
SSID | ssj0033492 |
Score | 2.5669398 |
SecondaryResourceType | review_article |
Snippet | Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require... Abstract Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | Big Data Communications Engineering Data mining Deep learning Engineering Feature extraction Information retrieval Information Systems Applications (incl.Internet) Natural language processing Networks Representations Review Signal,Image and Speech Processing Text characteristic Text mining Texts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3CoKFBIaZGROFFFjZ-xeyuI1YoDp1bqzbLjSVsJpVW7_f_MxNnVLn1w4RbFE2U0Hs9DM_6GsS-tTqlVNNBEZlWjwdN1AhNrl_qcO-u1hrHL95edn-mf5-Z8bdQX9YQVeOAiuKMsrcyQGu8gaRAJPRimBKCaKEFjckPWF33eMpkqNlgR5t5UwxTOHt0JhXpWk0VuqGFNbHihEaz_sQjzYaPkX9XS0QnNXrPtKXrkJ4XrHfYChjfs1Rqm4FvmTtHc8h5GwE6Oz7fl6gInf5U5PmSAGz5Ni7g45pGX6yvv2Nnsx-n3eT2NR6g7o-yi7gmqr1Oik1GAzlESEkxue4xAO8ittgAqJW18xhDB6aitig2V4UzupfKN2mVbw_UAHxj3ndEqoYiS9zoDZkEudlLZ6DFiMElVrFmKK3QTdjiNsPgdxhzC2VAkHFDCgSQcRMW-rj65KcAZzxF_oz1YERLm9fgCNSFMmhD-pQkV21_uYJgO4l2gljBDhgr_8Xm1jEeI6iJxgOt7ommRRnrnKva-bPiKE-mlVZjyVqzdUIUNVjdXhqvLEabbtArzO2TrcKk0a2w9JYm9_yGJj-ylJF0XshZmn20tbu_hAGOnRfo0HpM_HbUSBg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDI5gucAB8aawoCJxAlXbPJtwQYAYVhw47Up7i_JwF6RVZ5iZ_f_YbTrs8Nhb1bhS6tiOHTufGXvdqRg7SQ1NRJYNGjzVRNChsbHPORmnFIxVvt_M8an6eqbPyoHbppRVzjZxNNR5meiM_IhqezRJHH-_-tlQ1yjKrpYWGjfZLY47DUm4XXyZLbEk5D0KuAwqEledKFlNbs3RhkuUvIZsdEslbHxvXxrh-__lc_5dOvlH_nTclhb32N3iT9YfJgG4z27A8IDduYIy-JDZEzTAdQ8jhGeNz-vpMkNNO1iu8SEDrOrSP-L8XR3q6ULLI3a6-Hzy6bgpDROapKXZNj2B9yXJkwgcVA6CsGFy16NPmiB3ygDIGJV2GZ0Gq4IyMrSUmNO5F9K18jE7GJYDPGW1S1rJiCyKzqkMGBfZkIQ0waEPoaOsWDuzy6eCJk5NLS78GFVY4ycOe-SwJw57XrE3u09WE5TGdcQfaQ12hISCPb5Yrs99USqfhREZYussRAU8oneD4SLINghQGPhW7HBeQV9Uc-N_C1LFXu2GUakoUxIGWF4STYc0wllbsSfTgu9mIpwwEoPginV7orA31f2R4cf3EbhbdxIjPpzW21lorkzrf5x4dv1PPGe3BUkxFw3Xh-xgu76EF-gnbePLURl-ATvxC7I priority: 102 providerName: ProQuest |
Title | Text feature extraction based on deep learning: a review |
URI | https://link.springer.com/article/10.1186/s13638-017-0993-1 https://www.ncbi.nlm.nih.gov/pubmed/29263717 https://www.proquest.com/docview/1989504001 https://www.proquest.com/docview/1979502988 https://pubmed.ncbi.nlm.nih.gov/PMC5732309 https://doaj.org/article/d262deb098eb4e1b819401e30a2e4549 |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge4EHxDeBUQWJJ1BE4q_YvHXVytSHCcEq7c2y48uGhNKp7f5_7pykWmEg8eJEzkWxznfnu9z5Z8be1zKEWtCBJjyKAg2eLAIoX5jQxthoKyWkKt8zfbqUiwt1Mezj3ozV7mNKMlnqpNZGf9pUAmWlIKtaUtEZhjyHCkN3Eusln47mVxDc3pC-vPO1vQUo4fTf5Vz-WSP5W6I0rT_zx-zR4Djm036mn7B70D1lD2_BCT5j5hwtbd5CwurM8X7d71rIaamKOd5EgOt8OCji8nPu837nynO2nJ-cz06L4WSEolFCb4uWUPoaUTXcVyCj5wQCE-sWnc8GYi01gAhBKhvROzDSSy18SRk4FVsubClesINu1cErlttGSRGQRcFaGQEDIOMbLrS36CyoIDJWjuxyzQAbTqdX_HQpfDDa9Rx2yGFHHHZVxj7sXrnuMTP-RXxMc7AjJLjr1LFaX7pBe1zkmkcIpTUQJFQB3RiMC0GUnoPECDdjR-MMukEHN46qwRTZKPzGu91j1B5KifgOVjdEUyMNt8Zk7GU_4buRcMu1wGg3Y_WeKOwNdf9J9-MqIXSrWmBoh8P6OArNrWH9jROv_4v6DXvASagrXlTqiB1s1zfwFv2jbZiw-7L8gq2ZY3s4nS6-L_B6fHL29Rv2zrikVs8m6f_DJGnPL9gCDfU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCCyhq_IhjIyHEa9nS0tNW6s2NY6cgoeyyuxXiT_Ebmclj6fLorbcodiJnPM_M-BuAJ4XyvpDU0EQEmaLCU6mPeZkaX4dQaatUbKt89_X4QH08zA834OdwFobKKged2CrqMK3oH_k21fbkxHH81exbSl2jKLs6tNDo2GI3_viOIdvi5c473N-nQozeT96O076rQFrlUi_TmhDuKskrUfKoQikIQCUUNTpuVQyF0jFK71VuA1pWo0qlZZlR9ioPtZA2k_jeC3BRSWmphNCMPgyaXxLSHwV4GgWXq0L0WVRu9PaCS-T0lGxCRiVzfM0Otu0C_uXj_l2q-Ue-tjWDo2twtfdf2euO4a7DRmxuwJVTqIY3wUxQ4bM6tpChDK_n3eEJRhYzMLwIMc5Y36_i-AUrWXeA5hYcnAspb8NmM23iXWC2ypX0SCJvrQoR4zBTVkLq0qLPknuZQDaQy1U9ejk10fjq2ijGaNdR2CGFHVHY8QSerR6ZddAdZ01-Q3uwmkio2-2N6fzY9ULsgtAiRJ9ZE72K3KM3heFplFkposJAO4GtYQddrwoW7jfjJvB4NYxCTJmZsonTE5pT4BxhjUngTrfhq5UIK7TEoDuBYo0V1pa6PtJ8-dwCheeFxAgTl_V8YJpTy_ofJe6d_RGP4NJ48mnP7e3s796Hy4I4mouU51uwuZyfxAfooy39w1YwGBydtyT-AgazR4o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJLqBo40ccGwkhoCwtRRWHVurNtWOnVKqyy-5WiL_Gr2Mmj6XLo7feongSOeMZz0xm_A3As1J6XwpqaMKDyHDDk5mPhcu0r0OolJEytlW-u2prX346KA7W4OdwFobKKoc9sd2ow6Sif-Qjqu0pSOLYqO7LIr5sjt9Mv2XUQYoyrUM7jU5EduKP7xi-zV9vb-JaP-d8_GHv_VbWdxjIqkKoRVYT2l0lWMUdizI4TmAqoazRiatiKKWKUXgvCxPQymrppBIup0xWEWouTC7wvZfgcil0Tt0T9PjjYAUEof5RsKdQiZkseZ9RZVqN5kyg1GdkH3Iqn2MrNrFtHfAvf_fvss0_cretSRzfgOu9L5u-7YTvJqzF5hZcO4NweBv0HnIwrWMLH5ri9aw7SJGS9QwpXoQYp2nfu-LoVerS7jDNHdi_EFbehfVm0sT7kJqqkMIji7wxMkSMybSruFDOoP9SeJFAPrDLVj2SOTXUOLFtRKOV7ThskcOWOGxZAi-Wj0w7GI_ziN_RGiwJCYG7vTGZHdleoW3giofoc6Ojl5F59KwwVI0idzxKDLoT2BhW0Pbbwtz-FuIEni6HUaEpS-OaODklmhJpuNE6gXvdgi9nwg1XAgPwBMoVUViZ6upIc_y1BQ0vSoHRJk7r5SA0Z6b1P048OP8jnsAV1EH7eXt35yFc5STQjGes2ID1xew0PkJ3beEft3qRwuFFK-Ivex1Ltw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+feature+extraction+based+on+deep+learning%3A+a+review&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Liang%2C+Hong&rft.au=Sun%2C+Xiao&rft.au=Sun%2C+Yunlei&rft.au=Gao%2C+Yuan&rft.date=2017-12-15&rft.pub=Springer+International+Publishing&rft.eissn=1687-1499&rft.volume=2017&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-017-0993-1&rft.externalDocID=10_1186_s13638_017_0993_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |