NanoSIMS imaging reveals metabolic stratification within current-producing biofilms

Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick con...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 41; pp. 20716 - 20724
Main Authors Chadwick, Grayson L., Otero, Fernanda Jiménez, Gralnick, Jeffrey A., Bond, Daniel R., Orphan, Victoria J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.10.2019
Proceedings of the National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 μm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-μm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 μm) and fully grown biofilms (>20 μm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
AbstractList Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 μm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-μm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 μm) and fully grown biofilms (>20 μm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Electricity-producing bacteria are potential power sources, fermentation platforms, and desalination systems, if current densities could be increased. These organisms form conductive biofilms on electrodes, allowing new cell layers to contribute to current production until a limit is reached, but the biological underpinning of this limit is not well-understood. We investigated the limitation behind this phenomenon using stable isotope probing and nanoscale secondary ion mass spectrometry, showing active cells are restricted to layers closest to the electrode. This metabolic observation fundamentally changes our understanding of electron flow and cell growth within current-producing biofilms and provides constraints on the physical structure of natural communities reliant on this process for growth. We predict improvements in biofilm conductivity will yield higher current-producing systems. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration.Geobacter sulfurreducensis a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity ofG. sulfurreducensbiofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
Author Chadwick, Grayson L.
Bond, Daniel R.
Orphan, Victoria J.
Otero, Fernanda Jiménez
Gralnick, Jeffrey A.
Author_xml – sequence: 1
  givenname: Grayson L.
  surname: Chadwick
  fullname: Chadwick, Grayson L.
– sequence: 2
  givenname: Fernanda Jiménez
  surname: Otero
  fullname: Otero, Fernanda Jiménez
– sequence: 3
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
– sequence: 4
  givenname: Daniel R.
  surname: Bond
  fullname: Bond, Daniel R.
– sequence: 5
  givenname: Victoria J.
  surname: Orphan
  fullname: Orphan, Victoria J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31548422$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1565965$$D View this record in Osti.gov
BookMark eNp9Uk1vEzEUtFARTQtnTqAVXLhs6-9dX5BQxUelAofA2fK-tRNHGzvY3iL-PQ4pAXrAB1t6npk3z-MzdBJisAg9JfiC4I5d7oLJF0QRylVPiHyAFgQr0kqu8AlaYEy7tueUn6KznDcYYyV6_AidMiJ4rdMFWn4yIS6vPy4bvzUrH1ZNsrfWTLnZ2mKGOHlockmmeOeh7jE0331Z-9DAnJINpd2lOM6wZw4-Oj9t82P00FUF--TuPEdf3739cvWhvfn8_vrqzU0LgsnSOjwY6yznHBit1ngnBzlA9eZG10vbCzAwjqxXQIkD6Vg3WoMx4RQcYYqdo9cH3d08bO0I1U0yk96lOkr6oaPx-t-b4Nd6FW-17HolOlwFXhwEYi5eZ_DFwhpiCBaKJkIKJUUFvbrrkuK32eaitz6DnSYTbJyzplTJupjYQ1_eg27inEJ9A00ZZj3FksuKev637aPf36FUwOUBACnmnKw7QgjW-9j1Pnb9J_bKEPcYdZZfadW5_fQf3rMDb5NLTMc2VPb1n1DOfgLDubzN
CitedBy_id crossref_primary_10_1021_acs_est_2c01388
crossref_primary_10_1093_ismejo_wrae118
crossref_primary_10_3389_fmicb_2023_1079000
crossref_primary_10_1093_femsre_fuae008
crossref_primary_10_1016_j_jclepro_2024_142142
crossref_primary_10_3390_molecules25143141
crossref_primary_10_1038_s41557_023_01285_z
crossref_primary_10_1088_1478_3975_abdc0e
crossref_primary_10_34133_research_0081
crossref_primary_10_1016_j_bioelechem_2023_108581
crossref_primary_10_1016_j_mib_2023_102292
crossref_primary_10_1016_j_chemosphere_2021_132196
crossref_primary_10_1016_j_scitotenv_2023_165448
crossref_primary_10_3390_microorganisms8111841
crossref_primary_10_1021_acs_est_2c08094
crossref_primary_10_1016_j_bios_2020_112236
crossref_primary_10_1016_j_copbio_2019_12_013
crossref_primary_10_1016_j_watres_2020_116589
crossref_primary_10_3389_fbioe_2021_786416
crossref_primary_10_1002_celc_202200907
crossref_primary_10_1016_j_isci_2021_102068
crossref_primary_10_1016_j_electacta_2021_139771
crossref_primary_10_1016_j_trac_2025_118227
crossref_primary_10_1016_j_ese_2023_100375
crossref_primary_10_1016_j_bioelechem_2024_108836
crossref_primary_10_1016_j_joule_2020_03_001
crossref_primary_10_1073_pnas_2025211118
crossref_primary_10_1038_s41564_022_01315_5
crossref_primary_10_1111_1462_2920_15264
crossref_primary_10_1111_1751_7915_70035
crossref_primary_10_1021_acs_est_1c06596
crossref_primary_10_1016_j_envres_2021_111572
crossref_primary_10_1371_journal_pone_0234077
crossref_primary_10_1038_s41564_022_01145_5
crossref_primary_10_1126_science_abi4882
crossref_primary_10_1016_j_copbio_2022_102701
crossref_primary_10_1128_AEM_00706_21
crossref_primary_10_1128_mbio_01041_22
crossref_primary_10_1039_C9CS00496C
crossref_primary_10_1016_j_scitotenv_2023_163698
crossref_primary_10_1038_s41579_022_00692_2
crossref_primary_10_1016_j_cobme_2021_100289
crossref_primary_10_1016_j_jece_2021_106221
crossref_primary_10_1038_s41598_021_83523_3
crossref_primary_10_1016_j_bios_2025_117232
crossref_primary_10_1016_j_biotechadv_2022_108011
crossref_primary_10_1073_pnas_2206527120
crossref_primary_10_1021_acs_est_2c08443
crossref_primary_10_1016_j_biosx_2023_100370
crossref_primary_10_1021_jasms_0c00232
crossref_primary_10_1016_j_tibtech_2021_10_002
crossref_primary_10_1016_j_joule_2020_08_010
crossref_primary_10_1016_j_ymeth_2024_01_014
crossref_primary_10_1039_D0EE01281E
crossref_primary_10_1021_acs_est_0c01343
crossref_primary_10_1128_AEM_01676_21
crossref_primary_10_1007_s13205_025_04252_2
crossref_primary_10_1016_j_scitotenv_2021_148724
crossref_primary_10_1186_s12866_022_02552_8
crossref_primary_10_1016_j_joule_2020_09_016
crossref_primary_10_1016_j_bioelechem_2021_108043
crossref_primary_10_1038_s41589_020_0623_9
crossref_primary_10_1093_mtomcs_mfac011
crossref_primary_10_1016_j_biortech_2020_124141
crossref_primary_10_1021_acs_est_2c07588
crossref_primary_10_1021_acs_analchem_0c03869
crossref_primary_10_1111_mmi_14801
crossref_primary_10_1021_acsbiomaterials_4c01183
crossref_primary_10_1002_celc_202201135
crossref_primary_10_1128_aem_02073_22
crossref_primary_10_1016_j_cbpa_2022_102155
crossref_primary_10_1021_acssynbio_0c00278
crossref_primary_10_1016_j_trac_2022_116902
crossref_primary_10_1002_advs_202403067
crossref_primary_10_1002_celc_202100111
crossref_primary_10_1021_acs_est_0c02664
crossref_primary_10_1128_spectrum_02593_22
crossref_primary_10_1128_mbio_00690_24
crossref_primary_10_1016_j_scitotenv_2020_143537
crossref_primary_10_1016_j_bios_2020_112700
crossref_primary_10_1016_j_rser_2020_110184
crossref_primary_10_1128_mbio_03822_21
crossref_primary_10_3389_fmicb_2021_640734
crossref_primary_10_7554_eLife_81551
crossref_primary_10_1007_s10800_021_01586_6
crossref_primary_10_1128_mBio_03620_20
crossref_primary_10_1016_j_bioflm_2022_100092
Cites_doi 10.1016/j.mimet.2017.09.011
10.1111/1462-2920.12752
10.1038/nrmicro.2016.94
10.1007/s00248-007-9253-y
10.1038/nature15512
10.1002/cssc.201300605
10.1128/JB.00347-18
10.1039/B816445B
10.1007/s00248-003-0004-4
10.1038/ismej.2009.137
10.1111/j.1462-2920.2008.01675.x
10.1128/aem.59.11.3840-3849.1993
10.1002/cphc.201100246
10.1128/mBio.02034-14
10.1128/AEM.00177-08
10.1128/AEM.01163-06
10.1111/j.1758-2229.2010.00210.x
10.1002/elan.200800007
10.1146/annurev.micro.56.012302.160705
10.1016/j.electacta.2011.02.073
10.1039/c3ee40203g
10.1038/nbt716
10.1111/j.1462-2920.2011.02681.x
10.3389/fmicb.2018.00378
10.1002/cssc.201200671
10.1038/ncomms12217
10.1002/anie.201205440
10.1016/j.jelechem.2016.11.005
10.1038/ismej.2008.90
10.1128/mr.59.1.48-62.1995
10.1038/ismej.2008.12
10.1073/pnas.1209829109
10.1016/j.jpowsour.2016.11.115
10.1002/bit.21821
10.1038/nature15733
10.1126/science.1066771
10.1038/nature02638
10.1016/j.watres.2007.10.036
10.1371/journal.pone.0104336
10.1002/bit.260431118
10.1021/es048206d
10.1128/AEM.01444-06
10.1201/b19121
10.1002/bit.24538
10.1073/pnas.1512057112
10.1016/0043-1354(88)90182-0
10.7554/eLife.43959
10.1038/nature02152
10.1016/j.ijhydene.2016.04.163
10.1002/cphc.201300984
10.1002/cssc.201100714
10.1128/JB.01092-10
10.1038/ismej.2016.146
10.1002/cssc.201100732
10.1016/j.bioelechem.2015.08.003
10.1126/science.1196526
10.1111/j.1365-2672.1998.tb05279.x
10.1002/bit.21533
10.1128/jb.184.4.1140-1154.2002
10.1016/j.cell.2019.03.029
10.1021/acs.est.5b00175
10.1007/s00253-007-1162-y
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Oct 8, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Oct 8, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
CorporateAuthor_xml – name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1073/pnas.1912498116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20724
ExternalDocumentID PMC6789570
1565965
31548422
10_1073_pnas_1912498116
26858024
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007616
– fundername: DOE | SC | Biological and Environmental Research (BER)
  grantid: DE - SC0016469
– fundername: Simons Foundation
  grantid: 542393
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DWIUU
JSODD
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c536t-f0baefe444c32009476b6bc315fdf86e85cacdd389c21fc6f37dea00142cf1393
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:02:19 EDT 2025
Thu May 18 22:20:40 EDT 2023
Thu Jul 10 23:29:06 EDT 2025
Mon Jun 30 08:30:41 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Tue Jul 01 03:40:09 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Thu May 29 14:19:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Geobacter sulfurreducens
extracellular electron transfer
nanoSIMS
electrode reduction
stable isotope tracers
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-f0baefe444c32009476b6bc315fdf86e85cacdd389c21fc6f37dea00142cf1393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
DE - SC0016469; SC0016469; NNA13AA92A; 542393; DEB 1542513; T32 GM007616; N000141612194
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Edited by Susan L. Brantley, Pennsylvania State University, University Park, PA, and approved August 29, 2019 (received for review July 24, 2019)
1G.L.C. and F.J.O. contributed equally to this work.
Author contributions: G.L.C., F.J.O., J.A.G., D.R.B., and V.J.O. designed research; G.L.C. and F.J.O. performed research; G.L.C. and F.J.O. analyzed data; and G.L.C., F.J.O., J.A.G., D.R.B., and V.J.O. wrote the paper.
ORCID 0000-0001-8083-7107
0000-0001-9250-7770
0000-0003-0700-9350
0000-0002-5374-6178
0000-0003-1583-6495
0000000180837107
0000000315836495
0000000253746178
0000000307009350
0000000192507770
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6789570
PMID 31548422
PQID 2303820646
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789570
osti_scitechconnect_1565965
proquest_miscellaneous_2296666355
proquest_journals_2303820646
pubmed_primary_31548422
crossref_primary_10_1073_pnas_1912498116
crossref_citationtrail_10_1073_pnas_1912498116
jstor_primary_26858024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-08
PublicationDateYYYYMMDD 2019-10-08
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Proceedings of the National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
– name: Proceedings of the National Academy of Sciences
References e_1_3_3_50_2
Ehrlich H. L. (e_1_3_3_4_2) 2015
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_35_2
  doi: 10.1016/j.mimet.2017.09.011
– ident: e_1_3_3_57_2
  doi: 10.1111/1462-2920.12752
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro.2016.94
– ident: e_1_3_3_8_2
  doi: 10.1007/s00248-007-9253-y
– ident: e_1_3_3_60_2
  doi: 10.1038/nature15512
– ident: e_1_3_3_31_2
  doi: 10.1002/cssc.201300605
– ident: e_1_3_3_55_2
  doi: 10.1128/JB.00347-18
– ident: e_1_3_3_45_2
  doi: 10.1039/B816445B
– ident: e_1_3_3_18_2
  doi: 10.1007/s00248-003-0004-4
– ident: e_1_3_3_38_2
  doi: 10.1038/ismej.2009.137
– ident: e_1_3_3_30_2
  doi: 10.1111/j.1462-2920.2008.01675.x
– ident: e_1_3_3_9_2
  doi: 10.1128/aem.59.11.3840-3849.1993
– ident: e_1_3_3_40_2
  doi: 10.1002/cphc.201100246
– ident: e_1_3_3_49_2
  doi: 10.1128/mBio.02034-14
– ident: e_1_3_3_25_2
  doi: 10.1128/AEM.00177-08
– ident: e_1_3_3_52_2
  doi: 10.1128/AEM.01163-06
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1758-2229.2010.00210.x
– ident: e_1_3_3_53_2
  doi: 10.1002/elan.200800007
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.micro.56.012302.160705
– ident: e_1_3_3_39_2
  doi: 10.1016/j.electacta.2011.02.073
– ident: e_1_3_3_47_2
  doi: 10.1039/c3ee40203g
– ident: e_1_3_3_17_2
  doi: 10.1038/nbt716
– ident: e_1_3_3_62_2
  doi: 10.1111/j.1462-2920.2011.02681.x
– ident: e_1_3_3_21_2
  doi: 10.3389/fmicb.2018.00378
– ident: e_1_3_3_27_2
  doi: 10.1002/cssc.201200671
– ident: e_1_3_3_33_2
  doi: 10.1038/ncomms12217
– ident: e_1_3_3_41_2
  doi: 10.1002/anie.201205440
– ident: e_1_3_3_43_2
  doi: 10.1016/j.jelechem.2016.11.005
– ident: e_1_3_3_13_2
  doi: 10.1038/ismej.2008.90
– ident: e_1_3_3_58_2
  doi: 10.1128/mr.59.1.48-62.1995
– ident: e_1_3_3_14_2
  doi: 10.1038/ismej.2008.12
– ident: e_1_3_3_59_2
  doi: 10.1073/pnas.1209829109
– ident: e_1_3_3_29_2
  doi: 10.1016/j.jpowsour.2016.11.115
– ident: e_1_3_3_46_2
  doi: 10.1002/bit.21821
– ident: e_1_3_3_61_2
  doi: 10.1038/nature15733
– ident: e_1_3_3_16_2
  doi: 10.1126/science.1066771
– ident: e_1_3_3_6_2
  doi: 10.1038/nature02638
– ident: e_1_3_3_20_2
  doi: 10.1016/j.watres.2007.10.036
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.pone.0104336
– ident: e_1_3_3_11_2
  doi: 10.1002/bit.260431118
– ident: e_1_3_3_3_2
  doi: 10.1021/es048206d
– ident: e_1_3_3_32_2
  doi: 10.1128/AEM.01444-06
– start-page: 55
  volume-title: Ehrlich’s Geomicrobiology
  year: 2015
  ident: e_1_3_3_4_2
  doi: 10.1201/b19121
– ident: e_1_3_3_44_2
  doi: 10.1002/bit.24538
– ident: e_1_3_3_56_2
  doi: 10.1073/pnas.1512057112
– ident: e_1_3_3_7_2
  doi: 10.1016/0043-1354(88)90182-0
– ident: e_1_3_3_54_2
  doi: 10.7554/eLife.43959
– ident: e_1_3_3_5_2
  doi: 10.1038/nature02152
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ijhydene.2016.04.163
– ident: e_1_3_3_42_2
  doi: 10.1002/cphc.201300984
– ident: e_1_3_3_34_2
  doi: 10.1002/cssc.201100714
– ident: e_1_3_3_37_2
  doi: 10.1128/JB.01092-10
– ident: e_1_3_3_51_2
  doi: 10.1038/ismej.2016.146
– ident: e_1_3_3_15_2
  doi: 10.1002/cssc.201100732
– ident: e_1_3_3_50_2
  doi: 10.1016/j.bioelechem.2015.08.003
– ident: e_1_3_3_22_2
  doi: 10.1126/science.1196526
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-2672.1998.tb05279.x
– ident: e_1_3_3_48_2
  doi: 10.1002/bit.21533
– ident: e_1_3_3_12_2
  doi: 10.1128/jb.184.4.1140-1154.2002
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cell.2019.03.029
– ident: e_1_3_3_23_2
  doi: 10.1021/acs.est.5b00175
– ident: e_1_3_3_19_2
  doi: 10.1007/s00253-007-1162-y
SSID ssj0009580
Score 2.5742986
Snippet Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating...
Electricity-producing bacteria are potential power sources, fermentation platforms, and desalination systems, if current densities could be increased. These...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20716
SubjectTerms Anaerobic respiration
Anodes
Biochemical Phenomena
Bioelectric Energy Sources
Biofilms
Biofilms - growth & development
Biological Sciences
Cell Respiration
Diffusion rate
Electric contacts
Electrical resistivity
Electricity
Electrochemistry
electrode reduction
Electrodes
extracellular electron transfer
Geobacter - growth & development
Geobacter - metabolism
Geobacter sulfurreducens
Image Processing, Computer-Assisted - methods
Mass spectrometry
Mass spectroscopy
Microorganisms
nanoSIMS
Nanotechnology
Nutrients
Oxidation-Reduction
Oxides
Potential gradient
Redox potential
Science & Technology - Other Topics
Secondary ion mass spectrometry
Spectrometry, Mass, Secondary Ion - methods
stable isotope tracers
Stable isotopes
Title NanoSIMS imaging reveals metabolic stratification within current-producing biofilms
URI https://www.jstor.org/stable/26858024
https://www.ncbi.nlm.nih.gov/pubmed/31548422
https://www.proquest.com/docview/2303820646
https://www.proquest.com/docview/2296666355
https://www.osti.gov/biblio/1565965
https://pubmed.ncbi.nlm.nih.gov/PMC6789570
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2VcuGCKFAwLchIHIoih2S9XtvHqmoJVUkrNZFys7xfIlLjVI1zoH-BP82Md9dJSpAKFyuy12vLbzI7MzvzhpBPWC2pyphFyuR5BArPRGDl04gKqnpCJSIzGIf8PuSDMTufJJOdnV9rWUvLWnTl_da6kv9BFc4Brlgl-w_ItpPCCfgN-MIREIbjozAG1Ti__gau-HRmmw0hHxPyIc90DeAif7WlxTUuMteEXTHz3LIyRbcN3yveKabYu9tRlztj9apd3BY-lWDoY4fHq0oUpx4WnahzNVz1NT7B_XXXp_3rXfkTWx22kebz6cxu0Vf6vnMJ2DYRWxfUblcKuO2mclO4krO12KtriGyL5F3io4tf9HObQLemcsFiiTizTUO7ess5r6dtUaYTSEuX5dUuGEp864IAGgy7GFflogueKfiamZ9mg3p7eFmcjS8uitHpZPSEPKXgczRZooN1BufMUlu4V_M8UWn85cH0GyaOzXKFBX8OKnubG_MwG3fNvBm9IM-dXxIeWyHbIzu6ekn2PLThkaMn__yKXHupC53UhU7qwlbqwk2pC63UhX9IXeil7jUZn52OTgaRa80RySTmdWR6otRGM8ZkjPtrLOWCCxn3E6NMxnWWyFIqBdawpH0juYlTpUv0x6k04HTE-2S3mlf6LQlVXwmZCqN4JhgH-1HkhtGSJSYB90TIgHT91yyk463H9ik3RZM_kcYFfv5i9fkDctTecGspW_4-dL-Bpx1HsR0DmK0BOUC8CjBDkUtZYtKZrIs-uD85TwJy6GEsnDpYFODLx9gMgcGsH9vLoKxxB66s9HwJY2jOeWPjB-SNRb19dIzBA0ZpQNINeWgHIBH85pVq-qMhhAeDM0_S3rtHPPeAPFv9CQ_Jbn231O_BrK7Fh0bcfwMsCNBm
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NanoSIMS+imaging+reveals+metabolic+stratification+within+current-producing+biofilms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chadwick%2C+Grayson+L&rft.au=Jim%C3%A9nez+Otero%2C+Fernanda&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Bond%2C+Daniel+R&rft.date=2019-10-08&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=41&rft.spage=20716&rft_id=info:doi/10.1073%2Fpnas.1912498116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon