NanoSIMS imaging reveals metabolic stratification within current-producing biofilms
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick con...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 41; pp. 20716 - 20724 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.10.2019
Proceedings of the National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 μm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-μm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 μm) and fully grown biofilms (>20 μm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. |
---|---|
AbstractList | Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 μm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-μm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 μm) and fully grown biofilms (>20 μm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. Electricity-producing bacteria are potential power sources, fermentation platforms, and desalination systems, if current densities could be increased. These organisms form conductive biofilms on electrodes, allowing new cell layers to contribute to current production until a limit is reached, but the biological underpinning of this limit is not well-understood. We investigated the limitation behind this phenomenon using stable isotope probing and nanoscale secondary ion mass spectrometry, showing active cells are restricted to layers closest to the electrode. This metabolic observation fundamentally changes our understanding of electron flow and cell growth within current-producing biofilms and provides constraints on the physical structure of natural communities reliant on this process for growth. We predict improvements in biofilm conductivity will yield higher current-producing systems. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration.Geobacter sulfurreducensis a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity ofG. sulfurreducensbiofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity. |
Author | Chadwick, Grayson L. Bond, Daniel R. Orphan, Victoria J. Otero, Fernanda Jiménez Gralnick, Jeffrey A. |
Author_xml | – sequence: 1 givenname: Grayson L. surname: Chadwick fullname: Chadwick, Grayson L. – sequence: 2 givenname: Fernanda Jiménez surname: Otero fullname: Otero, Fernanda Jiménez – sequence: 3 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. – sequence: 4 givenname: Daniel R. surname: Bond fullname: Bond, Daniel R. – sequence: 5 givenname: Victoria J. surname: Orphan fullname: Orphan, Victoria J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31548422$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1565965$$D View this record in Osti.gov |
BookMark | eNp9Uk1vEzEUtFARTQtnTqAVXLhs6-9dX5BQxUelAofA2fK-tRNHGzvY3iL-PQ4pAXrAB1t6npk3z-MzdBJisAg9JfiC4I5d7oLJF0QRylVPiHyAFgQr0kqu8AlaYEy7tueUn6KznDcYYyV6_AidMiJ4rdMFWn4yIS6vPy4bvzUrH1ZNsrfWTLnZ2mKGOHlockmmeOeh7jE0331Z-9DAnJINpd2lOM6wZw4-Oj9t82P00FUF--TuPEdf3739cvWhvfn8_vrqzU0LgsnSOjwY6yznHBit1ngnBzlA9eZG10vbCzAwjqxXQIkD6Vg3WoMx4RQcYYqdo9cH3d08bO0I1U0yk96lOkr6oaPx-t-b4Nd6FW-17HolOlwFXhwEYi5eZ_DFwhpiCBaKJkIKJUUFvbrrkuK32eaitz6DnSYTbJyzplTJupjYQ1_eg27inEJ9A00ZZj3FksuKev637aPf36FUwOUBACnmnKw7QgjW-9j1Pnb9J_bKEPcYdZZfadW5_fQf3rMDb5NLTMc2VPb1n1DOfgLDubzN |
CitedBy_id | crossref_primary_10_1021_acs_est_2c01388 crossref_primary_10_1093_ismejo_wrae118 crossref_primary_10_3389_fmicb_2023_1079000 crossref_primary_10_1093_femsre_fuae008 crossref_primary_10_1016_j_jclepro_2024_142142 crossref_primary_10_3390_molecules25143141 crossref_primary_10_1038_s41557_023_01285_z crossref_primary_10_1088_1478_3975_abdc0e crossref_primary_10_34133_research_0081 crossref_primary_10_1016_j_bioelechem_2023_108581 crossref_primary_10_1016_j_mib_2023_102292 crossref_primary_10_1016_j_chemosphere_2021_132196 crossref_primary_10_1016_j_scitotenv_2023_165448 crossref_primary_10_3390_microorganisms8111841 crossref_primary_10_1021_acs_est_2c08094 crossref_primary_10_1016_j_bios_2020_112236 crossref_primary_10_1016_j_copbio_2019_12_013 crossref_primary_10_1016_j_watres_2020_116589 crossref_primary_10_3389_fbioe_2021_786416 crossref_primary_10_1002_celc_202200907 crossref_primary_10_1016_j_isci_2021_102068 crossref_primary_10_1016_j_electacta_2021_139771 crossref_primary_10_1016_j_trac_2025_118227 crossref_primary_10_1016_j_ese_2023_100375 crossref_primary_10_1016_j_bioelechem_2024_108836 crossref_primary_10_1016_j_joule_2020_03_001 crossref_primary_10_1073_pnas_2025211118 crossref_primary_10_1038_s41564_022_01315_5 crossref_primary_10_1111_1462_2920_15264 crossref_primary_10_1111_1751_7915_70035 crossref_primary_10_1021_acs_est_1c06596 crossref_primary_10_1016_j_envres_2021_111572 crossref_primary_10_1371_journal_pone_0234077 crossref_primary_10_1038_s41564_022_01145_5 crossref_primary_10_1126_science_abi4882 crossref_primary_10_1016_j_copbio_2022_102701 crossref_primary_10_1128_AEM_00706_21 crossref_primary_10_1128_mbio_01041_22 crossref_primary_10_1039_C9CS00496C crossref_primary_10_1016_j_scitotenv_2023_163698 crossref_primary_10_1038_s41579_022_00692_2 crossref_primary_10_1016_j_cobme_2021_100289 crossref_primary_10_1016_j_jece_2021_106221 crossref_primary_10_1038_s41598_021_83523_3 crossref_primary_10_1016_j_bios_2025_117232 crossref_primary_10_1016_j_biotechadv_2022_108011 crossref_primary_10_1073_pnas_2206527120 crossref_primary_10_1021_acs_est_2c08443 crossref_primary_10_1016_j_biosx_2023_100370 crossref_primary_10_1021_jasms_0c00232 crossref_primary_10_1016_j_tibtech_2021_10_002 crossref_primary_10_1016_j_joule_2020_08_010 crossref_primary_10_1016_j_ymeth_2024_01_014 crossref_primary_10_1039_D0EE01281E crossref_primary_10_1021_acs_est_0c01343 crossref_primary_10_1128_AEM_01676_21 crossref_primary_10_1007_s13205_025_04252_2 crossref_primary_10_1016_j_scitotenv_2021_148724 crossref_primary_10_1186_s12866_022_02552_8 crossref_primary_10_1016_j_joule_2020_09_016 crossref_primary_10_1016_j_bioelechem_2021_108043 crossref_primary_10_1038_s41589_020_0623_9 crossref_primary_10_1093_mtomcs_mfac011 crossref_primary_10_1016_j_biortech_2020_124141 crossref_primary_10_1021_acs_est_2c07588 crossref_primary_10_1021_acs_analchem_0c03869 crossref_primary_10_1111_mmi_14801 crossref_primary_10_1021_acsbiomaterials_4c01183 crossref_primary_10_1002_celc_202201135 crossref_primary_10_1128_aem_02073_22 crossref_primary_10_1016_j_cbpa_2022_102155 crossref_primary_10_1021_acssynbio_0c00278 crossref_primary_10_1016_j_trac_2022_116902 crossref_primary_10_1002_advs_202403067 crossref_primary_10_1002_celc_202100111 crossref_primary_10_1021_acs_est_0c02664 crossref_primary_10_1128_spectrum_02593_22 crossref_primary_10_1128_mbio_00690_24 crossref_primary_10_1016_j_scitotenv_2020_143537 crossref_primary_10_1016_j_bios_2020_112700 crossref_primary_10_1016_j_rser_2020_110184 crossref_primary_10_1128_mbio_03822_21 crossref_primary_10_3389_fmicb_2021_640734 crossref_primary_10_7554_eLife_81551 crossref_primary_10_1007_s10800_021_01586_6 crossref_primary_10_1128_mBio_03620_20 crossref_primary_10_1016_j_bioflm_2022_100092 |
Cites_doi | 10.1016/j.mimet.2017.09.011 10.1111/1462-2920.12752 10.1038/nrmicro.2016.94 10.1007/s00248-007-9253-y 10.1038/nature15512 10.1002/cssc.201300605 10.1128/JB.00347-18 10.1039/B816445B 10.1007/s00248-003-0004-4 10.1038/ismej.2009.137 10.1111/j.1462-2920.2008.01675.x 10.1128/aem.59.11.3840-3849.1993 10.1002/cphc.201100246 10.1128/mBio.02034-14 10.1128/AEM.00177-08 10.1128/AEM.01163-06 10.1111/j.1758-2229.2010.00210.x 10.1002/elan.200800007 10.1146/annurev.micro.56.012302.160705 10.1016/j.electacta.2011.02.073 10.1039/c3ee40203g 10.1038/nbt716 10.1111/j.1462-2920.2011.02681.x 10.3389/fmicb.2018.00378 10.1002/cssc.201200671 10.1038/ncomms12217 10.1002/anie.201205440 10.1016/j.jelechem.2016.11.005 10.1038/ismej.2008.90 10.1128/mr.59.1.48-62.1995 10.1038/ismej.2008.12 10.1073/pnas.1209829109 10.1016/j.jpowsour.2016.11.115 10.1002/bit.21821 10.1038/nature15733 10.1126/science.1066771 10.1038/nature02638 10.1016/j.watres.2007.10.036 10.1371/journal.pone.0104336 10.1002/bit.260431118 10.1021/es048206d 10.1128/AEM.01444-06 10.1201/b19121 10.1002/bit.24538 10.1073/pnas.1512057112 10.1016/0043-1354(88)90182-0 10.7554/eLife.43959 10.1038/nature02152 10.1016/j.ijhydene.2016.04.163 10.1002/cphc.201300984 10.1002/cssc.201100714 10.1128/JB.01092-10 10.1038/ismej.2016.146 10.1002/cssc.201100732 10.1016/j.bioelechem.2015.08.003 10.1126/science.1196526 10.1111/j.1365-2672.1998.tb05279.x 10.1002/bit.21533 10.1128/jb.184.4.1140-1154.2002 10.1016/j.cell.2019.03.029 10.1021/acs.est.5b00175 10.1007/s00253-007-1162-y |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Oct 8, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Oct 8, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
CorporateAuthor | California Institute of Technology (CalTech), Pasadena, CA (United States) |
CorporateAuthor_xml | – name: California Institute of Technology (CalTech), Pasadena, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OTOTI 5PM |
DOI | 10.1073/pnas.1912498116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20724 |
ExternalDocumentID | PMC6789570 1565965 31548422 10_1073_pnas_1912498116 26858024 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007616 – fundername: DOE | SC | Biological and Environmental Research (BER) grantid: DE - SC0016469 – fundername: Simons Foundation grantid: 542393 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DWIUU JSODD OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c536t-f0baefe444c32009476b6bc315fdf86e85cacdd389c21fc6f37dea00142cf1393 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:02:19 EDT 2025 Thu May 18 22:20:40 EDT 2023 Thu Jul 10 23:29:06 EDT 2025 Mon Jun 30 08:30:41 EDT 2025 Wed Feb 19 02:30:35 EST 2025 Tue Jul 01 03:40:09 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Thu May 29 14:19:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Geobacter sulfurreducens extracellular electron transfer nanoSIMS electrode reduction stable isotope tracers |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-f0baefe444c32009476b6bc315fdf86e85cacdd389c21fc6f37dea00142cf1393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 DE - SC0016469; SC0016469; NNA13AA92A; 542393; DEB 1542513; T32 GM007616; N000141612194 USDOE Office of Science (SC), Biological and Environmental Research (BER) Edited by Susan L. Brantley, Pennsylvania State University, University Park, PA, and approved August 29, 2019 (received for review July 24, 2019) 1G.L.C. and F.J.O. contributed equally to this work. Author contributions: G.L.C., F.J.O., J.A.G., D.R.B., and V.J.O. designed research; G.L.C. and F.J.O. performed research; G.L.C. and F.J.O. analyzed data; and G.L.C., F.J.O., J.A.G., D.R.B., and V.J.O. wrote the paper. |
ORCID | 0000-0001-8083-7107 0000-0001-9250-7770 0000-0003-0700-9350 0000-0002-5374-6178 0000-0003-1583-6495 0000000180837107 0000000315836495 0000000253746178 0000000307009350 0000000192507770 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6789570 |
PMID | 31548422 |
PQID | 2303820646 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789570 osti_scitechconnect_1565965 proquest_miscellaneous_2296666355 proquest_journals_2303820646 pubmed_primary_31548422 crossref_primary_10_1073_pnas_1912498116 crossref_citationtrail_10_1073_pnas_1912498116 jstor_primary_26858024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-08 |
PublicationDateYYYYMMDD | 2019-10-08 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences Proceedings of the National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences – name: Proceedings of the National Academy of Sciences |
References | e_1_3_3_50_2 Ehrlich H. L. (e_1_3_3_4_2) 2015 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_35_2 doi: 10.1016/j.mimet.2017.09.011 – ident: e_1_3_3_57_2 doi: 10.1111/1462-2920.12752 – ident: e_1_3_3_2_2 doi: 10.1038/nrmicro.2016.94 – ident: e_1_3_3_8_2 doi: 10.1007/s00248-007-9253-y – ident: e_1_3_3_60_2 doi: 10.1038/nature15512 – ident: e_1_3_3_31_2 doi: 10.1002/cssc.201300605 – ident: e_1_3_3_55_2 doi: 10.1128/JB.00347-18 – ident: e_1_3_3_45_2 doi: 10.1039/B816445B – ident: e_1_3_3_18_2 doi: 10.1007/s00248-003-0004-4 – ident: e_1_3_3_38_2 doi: 10.1038/ismej.2009.137 – ident: e_1_3_3_30_2 doi: 10.1111/j.1462-2920.2008.01675.x – ident: e_1_3_3_9_2 doi: 10.1128/aem.59.11.3840-3849.1993 – ident: e_1_3_3_40_2 doi: 10.1002/cphc.201100246 – ident: e_1_3_3_49_2 doi: 10.1128/mBio.02034-14 – ident: e_1_3_3_25_2 doi: 10.1128/AEM.00177-08 – ident: e_1_3_3_52_2 doi: 10.1128/AEM.01163-06 – ident: e_1_3_3_24_2 doi: 10.1111/j.1758-2229.2010.00210.x – ident: e_1_3_3_53_2 doi: 10.1002/elan.200800007 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.micro.56.012302.160705 – ident: e_1_3_3_39_2 doi: 10.1016/j.electacta.2011.02.073 – ident: e_1_3_3_47_2 doi: 10.1039/c3ee40203g – ident: e_1_3_3_17_2 doi: 10.1038/nbt716 – ident: e_1_3_3_62_2 doi: 10.1111/j.1462-2920.2011.02681.x – ident: e_1_3_3_21_2 doi: 10.3389/fmicb.2018.00378 – ident: e_1_3_3_27_2 doi: 10.1002/cssc.201200671 – ident: e_1_3_3_33_2 doi: 10.1038/ncomms12217 – ident: e_1_3_3_41_2 doi: 10.1002/anie.201205440 – ident: e_1_3_3_43_2 doi: 10.1016/j.jelechem.2016.11.005 – ident: e_1_3_3_13_2 doi: 10.1038/ismej.2008.90 – ident: e_1_3_3_58_2 doi: 10.1128/mr.59.1.48-62.1995 – ident: e_1_3_3_14_2 doi: 10.1038/ismej.2008.12 – ident: e_1_3_3_59_2 doi: 10.1073/pnas.1209829109 – ident: e_1_3_3_29_2 doi: 10.1016/j.jpowsour.2016.11.115 – ident: e_1_3_3_46_2 doi: 10.1002/bit.21821 – ident: e_1_3_3_61_2 doi: 10.1038/nature15733 – ident: e_1_3_3_16_2 doi: 10.1126/science.1066771 – ident: e_1_3_3_6_2 doi: 10.1038/nature02638 – ident: e_1_3_3_20_2 doi: 10.1016/j.watres.2007.10.036 – ident: e_1_3_3_26_2 doi: 10.1371/journal.pone.0104336 – ident: e_1_3_3_11_2 doi: 10.1002/bit.260431118 – ident: e_1_3_3_3_2 doi: 10.1021/es048206d – ident: e_1_3_3_32_2 doi: 10.1128/AEM.01444-06 – start-page: 55 volume-title: Ehrlich’s Geomicrobiology year: 2015 ident: e_1_3_3_4_2 doi: 10.1201/b19121 – ident: e_1_3_3_44_2 doi: 10.1002/bit.24538 – ident: e_1_3_3_56_2 doi: 10.1073/pnas.1512057112 – ident: e_1_3_3_7_2 doi: 10.1016/0043-1354(88)90182-0 – ident: e_1_3_3_54_2 doi: 10.7554/eLife.43959 – ident: e_1_3_3_5_2 doi: 10.1038/nature02152 – ident: e_1_3_3_28_2 doi: 10.1016/j.ijhydene.2016.04.163 – ident: e_1_3_3_42_2 doi: 10.1002/cphc.201300984 – ident: e_1_3_3_34_2 doi: 10.1002/cssc.201100714 – ident: e_1_3_3_37_2 doi: 10.1128/JB.01092-10 – ident: e_1_3_3_51_2 doi: 10.1038/ismej.2016.146 – ident: e_1_3_3_15_2 doi: 10.1002/cssc.201100732 – ident: e_1_3_3_50_2 doi: 10.1016/j.bioelechem.2015.08.003 – ident: e_1_3_3_22_2 doi: 10.1126/science.1196526 – ident: e_1_3_3_10_2 doi: 10.1111/j.1365-2672.1998.tb05279.x – ident: e_1_3_3_48_2 doi: 10.1002/bit.21533 – ident: e_1_3_3_12_2 doi: 10.1128/jb.184.4.1140-1154.2002 – ident: e_1_3_3_36_2 doi: 10.1016/j.cell.2019.03.029 – ident: e_1_3_3_23_2 doi: 10.1021/acs.est.5b00175 – ident: e_1_3_3_19_2 doi: 10.1007/s00253-007-1162-y |
SSID | ssj0009580 |
Score | 2.5742986 |
Snippet | Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating... Electricity-producing bacteria are potential power sources, fermentation platforms, and desalination systems, if current densities could be increased. These... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20716 |
SubjectTerms | Anaerobic respiration Anodes Biochemical Phenomena Bioelectric Energy Sources Biofilms Biofilms - growth & development Biological Sciences Cell Respiration Diffusion rate Electric contacts Electrical resistivity Electricity Electrochemistry electrode reduction Electrodes extracellular electron transfer Geobacter - growth & development Geobacter - metabolism Geobacter sulfurreducens Image Processing, Computer-Assisted - methods Mass spectrometry Mass spectroscopy Microorganisms nanoSIMS Nanotechnology Nutrients Oxidation-Reduction Oxides Potential gradient Redox potential Science & Technology - Other Topics Secondary ion mass spectrometry Spectrometry, Mass, Secondary Ion - methods stable isotope tracers Stable isotopes |
Title | NanoSIMS imaging reveals metabolic stratification within current-producing biofilms |
URI | https://www.jstor.org/stable/26858024 https://www.ncbi.nlm.nih.gov/pubmed/31548422 https://www.proquest.com/docview/2303820646 https://www.proquest.com/docview/2296666355 https://www.osti.gov/biblio/1565965 https://pubmed.ncbi.nlm.nih.gov/PMC6789570 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2VcuGCKFAwLchIHIoih2S9XtvHqmoJVUkrNZFys7xfIlLjVI1zoH-BP82Md9dJSpAKFyuy12vLbzI7MzvzhpBPWC2pyphFyuR5BArPRGDl04gKqnpCJSIzGIf8PuSDMTufJJOdnV9rWUvLWnTl_da6kv9BFc4Brlgl-w_ItpPCCfgN-MIREIbjozAG1Ti__gau-HRmmw0hHxPyIc90DeAif7WlxTUuMteEXTHz3LIyRbcN3yveKabYu9tRlztj9apd3BY-lWDoY4fHq0oUpx4WnahzNVz1NT7B_XXXp_3rXfkTWx22kebz6cxu0Vf6vnMJ2DYRWxfUblcKuO2mclO4krO12KtriGyL5F3io4tf9HObQLemcsFiiTizTUO7ess5r6dtUaYTSEuX5dUuGEp864IAGgy7GFflogueKfiamZ9mg3p7eFmcjS8uitHpZPSEPKXgczRZooN1BufMUlu4V_M8UWn85cH0GyaOzXKFBX8OKnubG_MwG3fNvBm9IM-dXxIeWyHbIzu6ekn2PLThkaMn__yKXHupC53UhU7qwlbqwk2pC63UhX9IXeil7jUZn52OTgaRa80RySTmdWR6otRGM8ZkjPtrLOWCCxn3E6NMxnWWyFIqBdawpH0juYlTpUv0x6k04HTE-2S3mlf6LQlVXwmZCqN4JhgH-1HkhtGSJSYB90TIgHT91yyk463H9ik3RZM_kcYFfv5i9fkDctTecGspW_4-dL-Bpx1HsR0DmK0BOUC8CjBDkUtZYtKZrIs-uD85TwJy6GEsnDpYFODLx9gMgcGsH9vLoKxxB66s9HwJY2jOeWPjB-SNRb19dIzBA0ZpQNINeWgHIBH85pVq-qMhhAeDM0_S3rtHPPeAPFv9CQ_Jbn231O_BrK7Fh0bcfwMsCNBm |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NanoSIMS+imaging+reveals+metabolic+stratification+within+current-producing+biofilms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chadwick%2C+Grayson+L&rft.au=Jim%C3%A9nez+Otero%2C+Fernanda&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Bond%2C+Daniel+R&rft.date=2019-10-08&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=41&rft.spage=20716&rft_id=info:doi/10.1073%2Fpnas.1912498116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |