ECG Classification Based on Wasserstein Scalar Curvature
Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly pr...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 24; no. 10; p. 1450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm’s accuracy and efficiency when dealing with the classification of heart disease. |
---|---|
AbstractList | Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm's accuracy and efficiency when dealing with the classification of heart disease.Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm's accuracy and efficiency when dealing with the classification of heart disease. Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm’s accuracy and efficiency when dealing with the classification of heart disease. |
Audience | Academic |
Author | Ni, Yin Sun, Huafei Sun, Fupeng Luo, Yihao |
AuthorAffiliation | School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
AuthorAffiliation_xml | – name: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Fupeng orcidid: 0000-0003-4574-1817 surname: Sun fullname: Sun, Fupeng – sequence: 2 givenname: Yin orcidid: 0000-0001-5019-6900 surname: Ni fullname: Ni, Yin – sequence: 3 givenname: Yihao surname: Luo fullname: Luo, Yihao – sequence: 4 givenname: Huafei orcidid: 0000-0002-5871-9961 surname: Sun fullname: Sun, Huafei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420470$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1vFCEUwImpsR968B8wk3jRw7Z8M1xM2kmtTZp4UOORMPBY2cwOFWaa-N_LduvabRoOkMfv_eDBO0YHYxoBobcEnzKm8RlQTjDhAr9ARwRrveAM44NH60N0XMoKY8ooka_QIVOcYq7wEWovu6umG2wpMURnp5jG5sIW8E1d_KxhyGWCODbfnB1sbro539lpzvAavQx2KPDmYT5BPz5ffu--LG6-Xl135zcLJ5icFhCIpawHTkTwgrHgJNG9bJUXqvchSPAYayxAYepa7jQIrqDtBZWeeS7YCbreen2yK3Ob49rmPybZaO4DKS-NzVN0A5jqIjVXcdFaXt1a8oAVAUJF75l11fVp67qd-zV4B-OU7bAn3d8Z4y-zTHdGS0yqtwo-PAhy-j1Dmcw6FgfDYEdIczG0ZYKqVmpd0fdP0FWa81ifylBFWy6pEO1_amlrAXEMqZ7rNlJzXutQWHOxcZ0-Q9XhYR1d7YUQa3wv4d3jQncV_vv3CnzcAi6nUjKEHUKw2fSU2fVUZc-esC5O951SbxGHZzL-Ah0dybo |
CitedBy_id | crossref_primary_10_3390_e26010067 |
Cites_doi | 10.1186/s12880-015-0068-x 10.1109/TBCAS.2019.2930215 10.1109/TIM.2013.2279001 10.1137/18M1231389 10.1109/EEBDA53927.2022.9744978 10.1016/j.medengphy.2005.12.010 10.1109/TBME.2012.2213253 10.1109/MCI.2013.2291691 10.1155/2015/493472 10.1007/978-3-540-71050-9 10.1056/NEJM198608143150722 10.3390/e23010119 10.1109/Cybermatics_2018.2018.00307 10.4324/9780203843130 10.1016/j.ins.2022.01.070 10.1109/TSP.2021.3095725 10.1307/mmj/1029003026 10.1016/j.bspc.2019.101563 10.1016/j.compbiomed.2014.09.005 10.1007/978-3-030-61166-8_17 10.1103/PhysRevLett.123.040603 10.1109/CCECE.2017.7946619 10.1007/978-981-10-9038-7_72 10.1016/j.matpr.2021.05.249 10.3389/fphys.2018.01206 10.1371/journal.pone.0253851 10.1007/978-3-030-47358-7_17 10.1080/0020739910220413 10.1103/PhysRevE.58.6392 10.3390/e23091214 10.1142/S0219519416400054 10.1109/ICMLA.2019.00204 10.1093/gji/ggac267 10.1109/78.726818 10.1109/BSN.2015.7299399 10.1007/s41468-021-00071-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e24101450 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_6ed17e87458a4dff964f071e125bd3ac PMC9601874 A745709459 37420470 10_3390_e24101450 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Plan of China grantid: 2020YFC2006201 – fundername: National Natural Science Foundation of China grantid: 61179031 – fundername: National Key Research and Development Plan of China grantid: No. 2020YFC2006201 – fundername: Natural Science Foundation of China grantid: Grant No. 61179031 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-ef1a23be415fd533fc619b687d57bdff6ed00905e702c84c9e547e8b526d3d453 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:17:36 EDT 2025 Thu Aug 21 18:38:47 EDT 2025 Fri Jul 11 15:05:43 EDT 2025 Fri Jul 25 11:59:11 EDT 2025 Thu Jul 03 02:34:04 EDT 2025 Tue Jul 01 05:42:43 EDT 2025 Thu Apr 03 06:52:14 EDT 2025 Tue Jul 01 01:58:17 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | local statistics positive definite symmetric matrix manifold ECG classification Wasserstein metric curvature |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-ef1a23be415fd533fc619b687d57bdff6ed00905e702c84c9e547e8b526d3d453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5019-6900 0000-0002-5871-9961 0000-0003-4574-1817 |
OpenAccessLink | https://www.proquest.com/docview/2728462558?pq-origsite=%requestingapplication% |
PMID | 37420470 |
PQID | 2728462558 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ed17e87458a4dff964f071e125bd3ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601874 proquest_miscellaneous_2835278699 proquest_journals_2728462558 gale_infotracmisc_A745709459 gale_infotracacademiconefile_A745709459 pubmed_primary_37420470 crossref_primary_10_3390_e24101450 crossref_citationtrail_10_3390_e24101450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ye (ref_12) 2012; 59 Cooper (ref_3) 1986; 315 Wang (ref_8) 2019; 13 ref_34 ref_10 Desai (ref_18) 2016; 16 Hua (ref_15) 2021; 69 ref_30 Stamkopoulos (ref_4) 1998; 46 Marco (ref_19) 2014; 54 Koehl (ref_31) 2019; 123 Richter (ref_16) 1998; 58 Butterworth (ref_38) 1930; 7 ref_39 Bauer (ref_27) 2021; 5 Christov (ref_11) 2006; 28 Banerjee (ref_13) 2013; 63 Gong (ref_20) 2015; 2015 Zhang (ref_33) 2022; 594 ref_25 ref_24 ref_23 ref_21 ref_41 Safarbali (ref_22) 2019; 53 ref_40 ref_1 Massart (ref_37) 2020; 41 ref_2 He (ref_14) 2018; 9 Chen (ref_17) 2014; 9 ref_29 ref_28 ref_26 ref_9 Karsou (ref_32) 2022; 231 ref_5 Ward (ref_36) 1991; 22 ref_7 Givens (ref_35) 1984; 31 ref_6 |
References_xml | – ident: ref_28 – ident: ref_40 doi: 10.1186/s12880-015-0068-x – ident: ref_5 – volume: 13 start-page: 1112 year: 2019 ident: ref_8 article-title: Energy-efficient intelligent ECG monitoring for wearable devices publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2930215 – volume: 63 start-page: 326 year: 2013 ident: ref_13 article-title: Application of cross wavelet transform for ECG pattern analysis and classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2279001 – volume: 41 start-page: 171 year: 2020 ident: ref_37 article-title: Quotient Geometry with Simple Geodesics for the Maniflod of Fixed-rank Positive-semidefinite Matrices publication-title: SLAM J. Matrix Anal. Appl. doi: 10.1137/18M1231389 – ident: ref_26 doi: 10.1109/EEBDA53927.2022.9744978 – volume: 28 start-page: 876 year: 2006 ident: ref_11 article-title: Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.12.010 – volume: 59 start-page: 2930 year: 2012 ident: ref_12 article-title: Heartbeat classification using morphological and dynamic features of ECG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2213253 – volume: 9 start-page: 53 year: 2014 ident: ref_17 article-title: A chaotic theoretical approach to ECG-based identity recognition publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2013.2291691 – volume: 2015 start-page: 493472 year: 2015 ident: ref_20 article-title: Predict defibrillation outcome using stepping increment of poincare plot for out-of-hospital ventricular fibrillation cardiac arrest publication-title: BioMed Res. Int. doi: 10.1155/2015/493472 – ident: ref_34 doi: 10.1007/978-3-540-71050-9 – volume: 315 start-page: 461 year: 1986 ident: ref_3 article-title: Electrocardiography 100 years ago. Origins, pioneers, and contributors publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198608143150722 – ident: ref_9 doi: 10.3390/e23010119 – ident: ref_6 doi: 10.1109/Cybermatics_2018.2018.00307 – ident: ref_41 doi: 10.4324/9780203843130 – volume: 594 start-page: 136 year: 2022 ident: ref_33 article-title: FHRGAN: Generative adversarial networks for synthetic fetal heart rate signal generation in low-resource settings publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.01.070 – volume: 69 start-page: 4326 year: 2021 ident: ref_15 article-title: Target Detection Within Nonhomogeneous Clutter via Total Bregman Divergence-Based Matrix Information Geometry Detectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3095725 – ident: ref_1 – volume: 31 start-page: 231 year: 1984 ident: ref_35 article-title: A Class of Wasserstein Metrics for Probability Distributions publication-title: Mich. Math. J. doi: 10.1307/mmj/1029003026 – volume: 53 start-page: 101563 year: 2019 ident: ref_22 article-title: Nonlinear dynamic approaches to identify atrial fibrillation progression based on topological methods publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101563 – volume: 54 start-page: 172 year: 2014 ident: ref_19 article-title: Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.09.005 – ident: ref_30 doi: 10.1007/978-3-030-61166-8_17 – volume: 123 start-page: 040603 year: 2019 ident: ref_31 article-title: Statistical Physics Approach to the Optimal Transport Problem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.040603 – ident: ref_21 doi: 10.1109/CCECE.2017.7946619 – ident: ref_39 doi: 10.1007/978-981-10-9038-7_72 – ident: ref_10 doi: 10.1016/j.matpr.2021.05.249 – ident: ref_2 – volume: 9 start-page: 1206 year: 2018 ident: ref_14 article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01206 – ident: ref_24 doi: 10.1371/journal.pone.0253851 – ident: ref_25 doi: 10.1007/978-3-030-47358-7_17 – volume: 22 start-page: 615 year: 1991 ident: ref_36 article-title: A General Analysis of Sylvesters’s Matrix Equation publication-title: Int. J. Math. Educ. Sci. Technol. doi: 10.1080/0020739910220413 – volume: 58 start-page: 6392 year: 1998 ident: ref_16 article-title: Phase space embedding of electrocardiograms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.6392 – ident: ref_29 doi: 10.3390/e23091214 – volume: 16 start-page: 1640005 year: 2016 ident: ref_18 article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519416400054 – ident: ref_23 doi: 10.1109/ICMLA.2019.00204 – volume: 231 start-page: 1363 year: 2022 ident: ref_32 article-title: A graph-space optimal transport objective function based on q-statistics to mitigate cycle-skipping issues in FWI publication-title: Geophys. J. Int. doi: 10.1093/gji/ggac267 – volume: 46 start-page: 3058 year: 1998 ident: ref_4 article-title: ECG analysis using nonlinear PCA neural networks for ischemia detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.726818 – ident: ref_7 doi: 10.1109/BSN.2015.7299399 – volume: 5 start-page: 391 year: 2021 ident: ref_27 article-title: Ripser: Efficient computation of Vietoris–Rips persistence barcodes publication-title: J. Appl. Comput. Topol. doi: 10.1007/s41468-021-00071-5 – volume: 7 start-page: 536 year: 1930 ident: ref_38 article-title: On the theory of filter amplifiers publication-title: Wirel. Eng. |
SSID | ssj0023216 |
Score | 2.2878225 |
Snippet | Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1450 |
SubjectTerms | Algorithms Cardiovascular disease Classification Curvature Data analysis Diagnosis Dynamical systems ECG classification Eigenvalues Electrocardiogram Electrocardiography Fourier transforms Heart Heart diseases Histograms local statistics Mathematical analysis Methods Neighborhoods Normal distribution positive definite symmetric matrix manifold Random variables Statistical analysis Statistics Wasserstein metric Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a9xAEF2CKzchwR9RYhslBJxGWNJ-qrQPO8ZFGtvE3bJfwoYgh_Pd__cbSSdOJJAmnbgdCe0brd6MbvYNY191FZ2XPhZgN1-IoJqiMTEVpXeNCcKQvgpVW_xQ1_fi5kE-bLX6opqwQR54AO5MpVjpRKLsxonYto0SLWgxgZh95C7Q2xect0mmxlSL15UadIQ4kvqzBJ6i_8_KGfv0Iv1_voq3uGheJ7lFPFfv2NsxYszPhzt9z96kbo-Zy8X3vG9oSaU-Pbr5BQgp5jj46fo9lNTHMr-FD9wyX6zp2-t6mfbZ_dXl3eK6GJsgFEFytSpSW7ma-wSibSNiszYg5fHK6Ci1Bx7AB2FSKZMu62BEaJIUwMvLWkUeheQHbKd77tIHlqeoGuN45SIMTY3YgMfUihZu4lpXMmPfNuDYMCqEU6OKXxaZAuFoJxwz9mUy_T3IYvzN6IIQngxIybr_Af61o3_tv_ybsVPyj6X1hpsJbtw2gCmRcpU9x5kaOapsMnY0s8Q6CfPhjYftuE5fbK1Bz0gBpcnY52mYzqTasy49r2FDQao2qsElDocHYpoS16IuhcZU9exRmc15PtI9PfYq3kgdqR_ix_8B0ie2W9O2jL7I8IjtrJbrdIxgaeVP-nXxChQPEVo priority: 102 providerName: Directory of Open Access Journals |
Title | ECG Classification Based on Wasserstein Scalar Curvature |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37420470 https://www.proquest.com/docview/2728462558 https://www.proquest.com/docview/2835278699 https://pubmed.ncbi.nlm.nih.gov/PMC9601874 https://doaj.org/article/6ed17e87458a4dff964f071e125bd3ac |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLdY97IXxDeBUQWEBC_RktxnntBatZ14mBAw0bfovjKQUDq69v_HTq5hEYiXquo51dk-n3---GyAt6rwxgrrM_RuNuNOVlmlfchyayrtuKb6KpRtcSkvrvjHtVjHA7fbmFZ52BO7jdpvHJ2Rn5UKN1IE60J_uPmVUdcoersaW2gcwTFuwVpP4Hi2uPz0eQi5WFnIvp4Qw-D-LKC_ovdo-cgLdcX6_96S7_ikcb7kHQe0fAD3I3JMz3tVP4R7oX0EJwQW-1rLj0Ev5qu063JJ-T-dyNMZeimf4pdvprtYSc0t0y-oGLNN53s6kN1vwxO4Wi6-zi-y2Bkhc4LJXRaawpTMBvS-jUfA1jiMg6zUygtlfdPI4BE75SKovHSauyoIroK2opSeeS7YU5i0mzY8hzR4WWnDCuORUJcIGJgPDW9Qd0ypQiTw_iCp2sWy4dS94meN4QMJtR6EmsCbgfSmr5XxL6IZiXsgoPLW3Q-b7XUdraXG-Rc4X8WFNhz5qSRvEAsFRGPWM-MSeEfKqskIcTLOxLsEyBKVs6rP8UmFgauoEjgdUaLxuPHwQd11NN7b-s9SS-D1MExPUkJaGzZ7pCHkqrSs8C-e9atjYIkpXuZcIatqtG5GPI9H2h_fu9LeGE9Sk8QX_5_WSzgp6RZGl1N4CpPddh9eITba2Skc6eVqGs1g2p0w4OdqXfwGENIQ1g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1JbtRAsBWFA7kgdgwBDALBxYrduw8IJUMmExJyIRG5dXozICFPmMwI8SneSJU3YoG45Wa5y1ZXda12LYS8UEWwTriQgXVzGfeyzEodYpY7W2rPNfZXwWyLIzk74e9Pxeka-dXXwmBaZa8TG0Ud5h6_kW9RBYoUnHWh355_z3BqFP5d7UdotGxxEH_-gJDt4s3-Ozjfl5ROd48ns6ybKpB5weQyi1VhKXMRLFcVwNmpPMQQTmoVhHKhqmQM4HfkIqqces19GQVXUTtBZWCB45QIUPnXOANLjpXp070hwGO0kG33IljMtyJYR_xrl49sXjMa4G8DcMkCjrMzL5m76U1yo_NT0-2WsW6RtVjfJhvomradne8QvTvZS5uZmpht1BxwugM2MaRw8ck2ZZw4SjP9CGxgF-lkhZ9_V4t4l5xcCcXukfV6XscHJI1BltqywgYA1BTcExZixSvgFKZUIRLyuqeU8V2TcpyV8c1AsIJENQNRE_J8AD1vO3P8C2gHyT0AYDPt5sZ88dl0smlg_wXsV3GhLQd8Sskr8Lwi-H4uMOsT8goPy6DIw2a87SoXACVsnmW24UkFYbIoE7I5ggRR9ePl_rhNpyouzB_GTsizYRmfxPS3Os5XAIN-stKyhFfcb7ljQIkpTnOuAFU14psRzuOV-uuXppE4RK84kvHh_7f1lFyfHX84NIf7RwePyAbF-o8mm3GTrC8Xq_gYvLKle9KIQkrOrlr2fgOPAEnU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcClXkL6I30arRlH0JVyy33kQ6V3vbK0cRS32bd3sblSQXL3eIf41f50z-bJB8a1vITsJO98zyewMIU9V5m0hCp-AdysS7mSe5NqHJC1srh3X2F8Fqy0W8uCEvzkVp1vkV3cWBssqO5tYG2q_dPiNfEwVGFII1oUel21ZxPH-_NXZ9wQnSOGf1m6cRiMiR-HnD0jfzl8e7gOvn1E6n32YHiTthIHECSbXSSgzS1kRwIuVHgKf0kE-UUitvFCFL0sZPMQgqQgqpU5zlwfBVdCFoNIzz3FiBJj_bYVZ0YhsT2aL43d9usdoJpteRozl6TiAr8R_eOnAA9aDAv52Bxf84bBW84Lzm18jV9uoNd5rxOw62QrVDbKDgWrT5_km0bPp67iesIm1RzW74wl4SB_DxUdbH-rEwZrxexAKu4qnG_wYvFmFW-TkUmh2m4yqZRXukjh4mWvLMusBUFMIVpgPJS9BbphSmYjIi45SxrUty3FyxjcDqQsS1fREjciTHvSs6dPxL6AJkrsHwNba9Y3l6rNpNdXA_jPYr-JCWw745JKXwN4AkWDhmXUReY7MMmgAYDPOtucYACVspWX24EkFSbPII7I7gATFdcPljt2mNRzn5o-YR-Rxv4xPYjFcFZYbgMGoWWmZwyvuNNLRo8QUpylXgKoayM0A5-FK9fVL3VYcclkc0Hjv_9t6RK6A3pm3h4uj-2SH4mGQurRxl4zWq014ACHaunjY6kJMPl22-v0GZv9PZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Classification+Based+on+Wasserstein+Scalar+Curvature&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Fupeng&rft.au=Ni%2C+Yin&rft.au=Luo%2C+Yihao&rft.au=Sun%2C+Huafei&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=10&rft.spage=1450&rft_id=info:doi/10.3390%2Fe24101450&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |