ECG Classification Based on Wasserstein Scalar Curvature

Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly pr...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 10; p. 1450
Main Authors Sun, Fupeng, Ni, Yin, Luo, Yihao, Sun, Huafei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm’s accuracy and efficiency when dealing with the classification of heart disease.
AbstractList Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm's accuracy and efficiency when dealing with the classification of heart disease.Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm's accuracy and efficiency when dealing with the classification of heart disease.
Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based on Wasserstein scalar curvature to comprehend the connection between heart disease and the mathematical characteristics of ECG. The newly proposed method converts an ECG into a point cloud on the family of Gaussian distribution, where the pathological characteristics of ECG will be extracted by the Wasserstein geometric structure of the statistical manifold. Technically, this paper defines the histogram dispersion of Wasserstein scalar curvature, which can accurately describe the divergence between different heart diseases. By combining medical experience with mathematical ideas from geometry and data science, this paper provides a feasible algorithm for the new method, and the theoretical analysis of the algorithm is carried out. Digital experiments on the classical database with large samples show the new algorithm’s accuracy and efficiency when dealing with the classification of heart disease.
Audience Academic
Author Ni, Yin
Sun, Huafei
Sun, Fupeng
Luo, Yihao
AuthorAffiliation School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
AuthorAffiliation_xml – name: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Fupeng
  orcidid: 0000-0003-4574-1817
  surname: Sun
  fullname: Sun, Fupeng
– sequence: 2
  givenname: Yin
  orcidid: 0000-0001-5019-6900
  surname: Ni
  fullname: Ni, Yin
– sequence: 3
  givenname: Yihao
  surname: Luo
  fullname: Luo, Yihao
– sequence: 4
  givenname: Huafei
  orcidid: 0000-0002-5871-9961
  surname: Sun
  fullname: Sun, Huafei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420470$$D View this record in MEDLINE/PubMed
BookMark eNptks1vFCEUwImpsR968B8wk3jRw7Z8M1xM2kmtTZp4UOORMPBY2cwOFWaa-N_LduvabRoOkMfv_eDBO0YHYxoBobcEnzKm8RlQTjDhAr9ARwRrveAM44NH60N0XMoKY8ooka_QIVOcYq7wEWovu6umG2wpMURnp5jG5sIW8E1d_KxhyGWCODbfnB1sbro539lpzvAavQx2KPDmYT5BPz5ffu--LG6-Xl135zcLJ5icFhCIpawHTkTwgrHgJNG9bJUXqvchSPAYayxAYepa7jQIrqDtBZWeeS7YCbreen2yK3Ob49rmPybZaO4DKS-NzVN0A5jqIjVXcdFaXt1a8oAVAUJF75l11fVp67qd-zV4B-OU7bAn3d8Z4y-zTHdGS0yqtwo-PAhy-j1Dmcw6FgfDYEdIczG0ZYKqVmpd0fdP0FWa81ifylBFWy6pEO1_amlrAXEMqZ7rNlJzXutQWHOxcZ0-Q9XhYR1d7YUQa3wv4d3jQncV_vv3CnzcAi6nUjKEHUKw2fSU2fVUZc-esC5O951SbxGHZzL-Ah0dybo
CitedBy_id crossref_primary_10_3390_e26010067
Cites_doi 10.1186/s12880-015-0068-x
10.1109/TBCAS.2019.2930215
10.1109/TIM.2013.2279001
10.1137/18M1231389
10.1109/EEBDA53927.2022.9744978
10.1016/j.medengphy.2005.12.010
10.1109/TBME.2012.2213253
10.1109/MCI.2013.2291691
10.1155/2015/493472
10.1007/978-3-540-71050-9
10.1056/NEJM198608143150722
10.3390/e23010119
10.1109/Cybermatics_2018.2018.00307
10.4324/9780203843130
10.1016/j.ins.2022.01.070
10.1109/TSP.2021.3095725
10.1307/mmj/1029003026
10.1016/j.bspc.2019.101563
10.1016/j.compbiomed.2014.09.005
10.1007/978-3-030-61166-8_17
10.1103/PhysRevLett.123.040603
10.1109/CCECE.2017.7946619
10.1007/978-981-10-9038-7_72
10.1016/j.matpr.2021.05.249
10.3389/fphys.2018.01206
10.1371/journal.pone.0253851
10.1007/978-3-030-47358-7_17
10.1080/0020739910220413
10.1103/PhysRevE.58.6392
10.3390/e23091214
10.1142/S0219519416400054
10.1109/ICMLA.2019.00204
10.1093/gji/ggac267
10.1109/78.726818
10.1109/BSN.2015.7299399
10.1007/s41468-021-00071-5
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24101450
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_6ed17e87458a4dff964f071e125bd3ac
PMC9601874
A745709459
37420470
10_3390_e24101450
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Plan of China
  grantid: 2020YFC2006201
– fundername: National Natural Science Foundation of China
  grantid: 61179031
– fundername: National Key Research and Development Plan of China
  grantid: No. 2020YFC2006201
– fundername: Natural Science Foundation of China
  grantid: Grant No. 61179031
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-ef1a23be415fd533fc619b687d57bdff6ed00905e702c84c9e547e8b526d3d453
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:17:36 EDT 2025
Thu Aug 21 18:38:47 EDT 2025
Fri Jul 11 15:05:43 EDT 2025
Fri Jul 25 11:59:11 EDT 2025
Thu Jul 03 02:34:04 EDT 2025
Tue Jul 01 05:42:43 EDT 2025
Thu Apr 03 06:52:14 EDT 2025
Tue Jul 01 01:58:17 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords local statistics
positive definite symmetric matrix manifold
ECG classification
Wasserstein metric
curvature
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-ef1a23be415fd533fc619b687d57bdff6ed00905e702c84c9e547e8b526d3d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5019-6900
0000-0002-5871-9961
0000-0003-4574-1817
OpenAccessLink https://www.proquest.com/docview/2728462558?pq-origsite=%requestingapplication%
PMID 37420470
PQID 2728462558
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_6ed17e87458a4dff964f071e125bd3ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9601874
proquest_miscellaneous_2835278699
proquest_journals_2728462558
gale_infotracmisc_A745709459
gale_infotracacademiconefile_A745709459
pubmed_primary_37420470
crossref_primary_10_3390_e24101450
crossref_citationtrail_10_3390_e24101450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ye (ref_12) 2012; 59
Cooper (ref_3) 1986; 315
Wang (ref_8) 2019; 13
ref_34
ref_10
Desai (ref_18) 2016; 16
Hua (ref_15) 2021; 69
ref_30
Stamkopoulos (ref_4) 1998; 46
Marco (ref_19) 2014; 54
Koehl (ref_31) 2019; 123
Richter (ref_16) 1998; 58
Butterworth (ref_38) 1930; 7
ref_39
Bauer (ref_27) 2021; 5
Christov (ref_11) 2006; 28
Banerjee (ref_13) 2013; 63
Gong (ref_20) 2015; 2015
Zhang (ref_33) 2022; 594
ref_25
ref_24
ref_23
ref_21
ref_41
Safarbali (ref_22) 2019; 53
ref_40
ref_1
Massart (ref_37) 2020; 41
ref_2
He (ref_14) 2018; 9
Chen (ref_17) 2014; 9
ref_29
ref_28
ref_26
ref_9
Karsou (ref_32) 2022; 231
ref_5
Ward (ref_36) 1991; 22
ref_7
Givens (ref_35) 1984; 31
ref_6
References_xml – ident: ref_28
– ident: ref_40
  doi: 10.1186/s12880-015-0068-x
– ident: ref_5
– volume: 13
  start-page: 1112
  year: 2019
  ident: ref_8
  article-title: Energy-efficient intelligent ECG monitoring for wearable devices
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2930215
– volume: 63
  start-page: 326
  year: 2013
  ident: ref_13
  article-title: Application of cross wavelet transform for ECG pattern analysis and classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2279001
– volume: 41
  start-page: 171
  year: 2020
  ident: ref_37
  article-title: Quotient Geometry with Simple Geodesics for the Maniflod of Fixed-rank Positive-semidefinite Matrices
  publication-title: SLAM J. Matrix Anal. Appl.
  doi: 10.1137/18M1231389
– ident: ref_26
  doi: 10.1109/EEBDA53927.2022.9744978
– volume: 28
  start-page: 876
  year: 2006
  ident: ref_11
  article-title: Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.12.010
– volume: 59
  start-page: 2930
  year: 2012
  ident: ref_12
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213253
– volume: 9
  start-page: 53
  year: 2014
  ident: ref_17
  article-title: A chaotic theoretical approach to ECG-based identity recognition
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2013.2291691
– volume: 2015
  start-page: 493472
  year: 2015
  ident: ref_20
  article-title: Predict defibrillation outcome using stepping increment of poincare plot for out-of-hospital ventricular fibrillation cardiac arrest
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/493472
– ident: ref_34
  doi: 10.1007/978-3-540-71050-9
– volume: 315
  start-page: 461
  year: 1986
  ident: ref_3
  article-title: Electrocardiography 100 years ago. Origins, pioneers, and contributors
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM198608143150722
– ident: ref_9
  doi: 10.3390/e23010119
– ident: ref_6
  doi: 10.1109/Cybermatics_2018.2018.00307
– ident: ref_41
  doi: 10.4324/9780203843130
– volume: 594
  start-page: 136
  year: 2022
  ident: ref_33
  article-title: FHRGAN: Generative adversarial networks for synthetic fetal heart rate signal generation in low-resource settings
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.01.070
– volume: 69
  start-page: 4326
  year: 2021
  ident: ref_15
  article-title: Target Detection Within Nonhomogeneous Clutter via Total Bregman Divergence-Based Matrix Information Geometry Detectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3095725
– ident: ref_1
– volume: 31
  start-page: 231
  year: 1984
  ident: ref_35
  article-title: A Class of Wasserstein Metrics for Probability Distributions
  publication-title: Mich. Math. J.
  doi: 10.1307/mmj/1029003026
– volume: 53
  start-page: 101563
  year: 2019
  ident: ref_22
  article-title: Nonlinear dynamic approaches to identify atrial fibrillation progression based on topological methods
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101563
– volume: 54
  start-page: 172
  year: 2014
  ident: ref_19
  article-title: Recurring patterns of atrial fibrillation in surface ECG predict restoration of sinus rhythm by catheter ablation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.09.005
– ident: ref_30
  doi: 10.1007/978-3-030-61166-8_17
– volume: 123
  start-page: 040603
  year: 2019
  ident: ref_31
  article-title: Statistical Physics Approach to the Optimal Transport Problem
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.040603
– ident: ref_21
  doi: 10.1109/CCECE.2017.7946619
– ident: ref_39
  doi: 10.1007/978-981-10-9038-7_72
– ident: ref_10
  doi: 10.1016/j.matpr.2021.05.249
– ident: ref_2
– volume: 9
  start-page: 1206
  year: 2018
  ident: ref_14
  article-title: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01206
– ident: ref_24
  doi: 10.1371/journal.pone.0253851
– ident: ref_25
  doi: 10.1007/978-3-030-47358-7_17
– volume: 22
  start-page: 615
  year: 1991
  ident: ref_36
  article-title: A General Analysis of Sylvesters’s Matrix Equation
  publication-title: Int. J. Math. Educ. Sci. Technol.
  doi: 10.1080/0020739910220413
– volume: 58
  start-page: 6392
  year: 1998
  ident: ref_16
  article-title: Phase space embedding of electrocardiograms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.6392
– ident: ref_29
  doi: 10.3390/e23091214
– volume: 16
  start-page: 1640005
  year: 2016
  ident: ref_18
  article-title: Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519416400054
– ident: ref_23
  doi: 10.1109/ICMLA.2019.00204
– volume: 231
  start-page: 1363
  year: 2022
  ident: ref_32
  article-title: A graph-space optimal transport objective function based on q-statistics to mitigate cycle-skipping issues in FWI
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggac267
– volume: 46
  start-page: 3058
  year: 1998
  ident: ref_4
  article-title: ECG analysis using nonlinear PCA neural networks for ischemia detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.726818
– ident: ref_7
  doi: 10.1109/BSN.2015.7299399
– volume: 5
  start-page: 391
  year: 2021
  ident: ref_27
  article-title: Ripser: Efficient computation of Vietoris–Rips persistence barcodes
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-021-00071-5
– volume: 7
  start-page: 536
  year: 1930
  ident: ref_38
  article-title: On the theory of filter amplifiers
  publication-title: Wirel. Eng.
SSID ssj0023216
Score 2.2878225
Snippet Electrocardiograms (ECG) analysis is one of the most important ways to diagnose heart disease. This paper proposes an efficient ECG classification method based...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1450
SubjectTerms Algorithms
Cardiovascular disease
Classification
Curvature
Data analysis
Diagnosis
Dynamical systems
ECG classification
Eigenvalues
Electrocardiogram
Electrocardiography
Fourier transforms
Heart
Heart diseases
Histograms
local statistics
Mathematical analysis
Methods
Neighborhoods
Normal distribution
positive definite symmetric matrix manifold
Random variables
Statistical analysis
Statistics
Wasserstein metric
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a9xAEF2CKzchwR9RYhslBJxGWNJ-qrQPO8ZFGtvE3bJfwoYgh_Pd__cbSSdOJJAmnbgdCe0brd6MbvYNY191FZ2XPhZgN1-IoJqiMTEVpXeNCcKQvgpVW_xQ1_fi5kE-bLX6opqwQR54AO5MpVjpRKLsxonYto0SLWgxgZh95C7Q2xect0mmxlSL15UadIQ4kvqzBJ6i_8_KGfv0Iv1_voq3uGheJ7lFPFfv2NsxYszPhzt9z96kbo-Zy8X3vG9oSaU-Pbr5BQgp5jj46fo9lNTHMr-FD9wyX6zp2-t6mfbZ_dXl3eK6GJsgFEFytSpSW7ma-wSibSNiszYg5fHK6Ci1Bx7AB2FSKZMu62BEaJIUwMvLWkUeheQHbKd77tIHlqeoGuN45SIMTY3YgMfUihZu4lpXMmPfNuDYMCqEU6OKXxaZAuFoJxwz9mUy_T3IYvzN6IIQngxIybr_Af61o3_tv_ybsVPyj6X1hpsJbtw2gCmRcpU9x5kaOapsMnY0s8Q6CfPhjYftuE5fbK1Bz0gBpcnY52mYzqTasy49r2FDQao2qsElDocHYpoS16IuhcZU9exRmc15PtI9PfYq3kgdqR_ix_8B0ie2W9O2jL7I8IjtrJbrdIxgaeVP-nXxChQPEVo
  priority: 102
  providerName: Directory of Open Access Journals
Title ECG Classification Based on Wasserstein Scalar Curvature
URI https://www.ncbi.nlm.nih.gov/pubmed/37420470
https://www.proquest.com/docview/2728462558
https://www.proquest.com/docview/2835278699
https://pubmed.ncbi.nlm.nih.gov/PMC9601874
https://doaj.org/article/6ed17e87458a4dff964f071e125bd3ac
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLdY97IXxDeBUQWEBC_RktxnntBatZ14mBAw0bfovjKQUDq69v_HTq5hEYiXquo51dk-n3---GyAt6rwxgrrM_RuNuNOVlmlfchyayrtuKb6KpRtcSkvrvjHtVjHA7fbmFZ52BO7jdpvHJ2Rn5UKN1IE60J_uPmVUdcoersaW2gcwTFuwVpP4Hi2uPz0eQi5WFnIvp4Qw-D-LKC_ovdo-cgLdcX6_96S7_ikcb7kHQe0fAD3I3JMz3tVP4R7oX0EJwQW-1rLj0Ev5qu063JJ-T-dyNMZeimf4pdvprtYSc0t0y-oGLNN53s6kN1vwxO4Wi6-zi-y2Bkhc4LJXRaawpTMBvS-jUfA1jiMg6zUygtlfdPI4BE75SKovHSauyoIroK2opSeeS7YU5i0mzY8hzR4WWnDCuORUJcIGJgPDW9Qd0ypQiTw_iCp2sWy4dS94meN4QMJtR6EmsCbgfSmr5XxL6IZiXsgoPLW3Q-b7XUdraXG-Rc4X8WFNhz5qSRvEAsFRGPWM-MSeEfKqskIcTLOxLsEyBKVs6rP8UmFgauoEjgdUaLxuPHwQd11NN7b-s9SS-D1MExPUkJaGzZ7pCHkqrSs8C-e9atjYIkpXuZcIatqtG5GPI9H2h_fu9LeGE9Sk8QX_5_WSzgp6RZGl1N4CpPddh9eITba2Skc6eVqGs1g2p0w4OdqXfwGENIQ1g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1JbtRAsBWFA7kgdgwBDALBxYrduw8IJUMmExJyIRG5dXozICFPmMwI8SneSJU3YoG45Wa5y1ZXda12LYS8UEWwTriQgXVzGfeyzEodYpY7W2rPNfZXwWyLIzk74e9Pxeka-dXXwmBaZa8TG0Ud5h6_kW9RBYoUnHWh355_z3BqFP5d7UdotGxxEH_-gJDt4s3-Ozjfl5ROd48ns6ybKpB5weQyi1VhKXMRLFcVwNmpPMQQTmoVhHKhqmQM4HfkIqqces19GQVXUTtBZWCB45QIUPnXOANLjpXp070hwGO0kG33IljMtyJYR_xrl49sXjMa4G8DcMkCjrMzL5m76U1yo_NT0-2WsW6RtVjfJhvomradne8QvTvZS5uZmpht1BxwugM2MaRw8ck2ZZw4SjP9CGxgF-lkhZ9_V4t4l5xcCcXukfV6XscHJI1BltqywgYA1BTcExZixSvgFKZUIRLyuqeU8V2TcpyV8c1AsIJENQNRE_J8AD1vO3P8C2gHyT0AYDPt5sZ88dl0smlg_wXsV3GhLQd8Sskr8Lwi-H4uMOsT8goPy6DIw2a87SoXACVsnmW24UkFYbIoE7I5ggRR9ePl_rhNpyouzB_GTsizYRmfxPS3Os5XAIN-stKyhFfcb7ljQIkpTnOuAFU14psRzuOV-uuXppE4RK84kvHh_7f1lFyfHX84NIf7RwePyAbF-o8mm3GTrC8Xq_gYvLKle9KIQkrOrlr2fgOPAEnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcClXkL6I30arRlH0JVyy33kQ6V3vbK0cRS32bd3sblSQXL3eIf41f50z-bJB8a1vITsJO98zyewMIU9V5m0hCp-AdysS7mSe5NqHJC1srh3X2F8Fqy0W8uCEvzkVp1vkV3cWBssqO5tYG2q_dPiNfEwVGFII1oUel21ZxPH-_NXZ9wQnSOGf1m6cRiMiR-HnD0jfzl8e7gOvn1E6n32YHiTthIHECSbXSSgzS1kRwIuVHgKf0kE-UUitvFCFL0sZPMQgqQgqpU5zlwfBVdCFoNIzz3FiBJj_bYVZ0YhsT2aL43d9usdoJpteRozl6TiAr8R_eOnAA9aDAv52Bxf84bBW84Lzm18jV9uoNd5rxOw62QrVDbKDgWrT5_km0bPp67iesIm1RzW74wl4SB_DxUdbH-rEwZrxexAKu4qnG_wYvFmFW-TkUmh2m4yqZRXukjh4mWvLMusBUFMIVpgPJS9BbphSmYjIi45SxrUty3FyxjcDqQsS1fREjciTHvSs6dPxL6AJkrsHwNba9Y3l6rNpNdXA_jPYr-JCWw745JKXwN4AkWDhmXUReY7MMmgAYDPOtucYACVspWX24EkFSbPII7I7gATFdcPljt2mNRzn5o-YR-Rxv4xPYjFcFZYbgMGoWWmZwyvuNNLRo8QUpylXgKoayM0A5-FK9fVL3VYcclkc0Hjv_9t6RK6A3pm3h4uj-2SH4mGQurRxl4zWq014ACHaunjY6kJMPl22-v0GZv9PZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Classification+Based+on+Wasserstein+Scalar+Curvature&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Sun%2C+Fupeng&rft.au=Ni%2C+Yin&rft.au=Luo%2C+Yihao&rft.au=Sun%2C+Huafei&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=10&rft.spage=1450&rft_id=info:doi/10.3390%2Fe24101450&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon