Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition
Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic gene...
Saved in:
Published in | Microsystems & nanoengineering Vol. 3; no. 1; p. 16091 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.04.2017
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.
Microfluidics: Patterned channels pave way for new applications
A simple, low-cost and versatile technique for making reusable microfluidic devices with patterned channels promises new applications. Microfluidic chips have found use in technologies as diverse as fuel cells and the construction of artificial cell models and organs-on-chip. However, the hydrophobic nature of polydimethylsiloxane (PDMS), which is commonly used in chip fabrication, limits potential applications. This spurred Tatiana Trantidou and her colleagues at Imperial College London and University College London, in the United Kingdom, to make PDMS with a hydrophilic surface by coating microfluidic channels with polyvinyl alcohol immediately after plasma treatment. Their innovative technique enables selective patterning of the channels with defined wettability characteristics, facilitating the production of emulsions, double emulsions and inverse double emulsions. The work could expand the use of microfluidic devices to various applications in pharmaceuticals, food science and synthetic biology. |
---|---|
AbstractList | Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions. Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions. Microfluidics: Patterned channels pave way for new applications A simple, low-cost and versatile technique for making reusable microfluidic devices with patterned channels promises new applications. Microfluidic chips have found use in technologies as diverse as fuel cells and the construction of artificial cell models and organs-on-chip. However, the hydrophobic nature of polydimethylsiloxane (PDMS), which is commonly used in chip fabrication, limits potential applications. This spurred Tatiana Trantidou and her colleagues at Imperial College London and University College London, in the United Kingdom, to make PDMS with a hydrophilic surface by coating microfluidic channels with polyvinyl alcohol immediately after plasma treatment. Their innovative technique enables selective patterning of the channels with defined wettability characteristics, facilitating the production of emulsions, double emulsions and inverse double emulsions. The work could expand the use of microfluidic devices to various applications in pharmaceuticals, food science and synthetic biology. Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions. |
ArticleNumber | 16091 |
Author | Ces, Oscar Parsons, Edward Elani, Yuval Trantidou, Tatiana |
Author_xml | – sequence: 1 givenname: Tatiana surname: Trantidou fullname: Trantidou, Tatiana email: t.trantidou@imperial.ac.uk organization: Department of Chemistry, Imperial College London – sequence: 2 givenname: Yuval surname: Elani fullname: Elani, Yuval organization: Department of Chemistry, Imperial College London, Institute of Chemical Biology, Imperial College London – sequence: 3 givenname: Edward surname: Parsons fullname: Parsons, Edward organization: London Centre for Nanotechnology, University College London – sequence: 4 givenname: Oscar surname: Ces fullname: Ces, Oscar email: o.ces@imperial.ac.uk organization: Department of Chemistry, Imperial College London, Institute of Chemical Biology, Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31057854$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1LHDEUhkOxVKv-gN6UQG964a7JJJmZ3BTEflhQKtj2NmTysXvsTLImM4I3_e3Nuipbob3KgfO8b97knNdoJ8TgEHpDyZwS1h4PYFIMOsR5RWg9l_QF2quIELOGM76zVe-iw5yvCSG0YY0k4hXaZZSIphV8D_0-u7MprpbQg8F5Sl4bh4dowYPRI8SAo8eXHy-usI8Jr9Hejfj-bt9PYMFkPGUIC6xxhqF0j_DNBObXEdbB4hS7KRfejcto8S1ofPnzBFu3ihnW7gfopdd9docP5z768fnT99Oz2fm3L19PT85nRrB6nDnXWW-lFh0jsmtsU9W68k1NW1Fq7VnpC8tLJTirpJYt6TotuOaUW9vVbB992Piupm5w1rgwJt2rVYJBpzsVNai_OwGWahFvVc05l01bDN4_GKR4M7k8qgGycX2vg4tTVlXFqGRlLqKg756h13FKoTxP0VbSqpWtlIV6u53oKcrjaArQbIDy1Tkn55WB8X4kJSD0ihK13gP1tAdqvQdK0qKkz5SP5v_TVBtNLmxYuLQV-p-iPyAYzRY |
CitedBy_id | crossref_primary_10_1016_j_jcis_2019_05_028 crossref_primary_10_1016_j_jmst_2024_08_059 crossref_primary_10_1080_17515831_2017_1347736 crossref_primary_10_1016_j_seppur_2021_118860 crossref_primary_10_1021_acs_energyfuels_0c04320 crossref_primary_10_1038_s41598_019_49136_7 crossref_primary_10_1108_SR_03_2024_0211 crossref_primary_10_3390_mi15060670 crossref_primary_10_1021_acsami_3c03275 crossref_primary_10_1080_17460441_2020_1758663 crossref_primary_10_3390_mi15111317 crossref_primary_10_3390_s21144866 crossref_primary_10_1002_smll_202306725 crossref_primary_10_1016_j_seppur_2023_125956 crossref_primary_10_3390_jfb13010002 crossref_primary_10_3390_mi13081197 crossref_primary_10_1016_j_surfcoat_2020_126458 crossref_primary_10_3390_polym13091449 crossref_primary_10_1002_advs_202304506 crossref_primary_10_1007_s00018_023_04748_1 crossref_primary_10_1016_j_optmat_2022_112175 crossref_primary_10_1021_acs_jproteome_9b00832 crossref_primary_10_1039_D3LC00175J crossref_primary_10_1002_marc_201800106 crossref_primary_10_1038_s41467_022_28574_4 crossref_primary_10_1088_1758_5090_ad2d2f crossref_primary_10_1021_acsami_3c13631 crossref_primary_10_1016_j_ces_2019_07_021 crossref_primary_10_1021_acs_langmuir_2c02320 crossref_primary_10_1063_1_5145109 crossref_primary_10_1039_D4TC00748D crossref_primary_10_3390_ma11122511 crossref_primary_10_3390_polym14183883 crossref_primary_10_1007_s00216_022_03915_w crossref_primary_10_1002_ppap_202000215 crossref_primary_10_1039_D2LC00037G crossref_primary_10_1016_j_mtcomm_2024_110499 crossref_primary_10_1007_s10404_025_02793_9 crossref_primary_10_1007_s12015_024_10767_7 crossref_primary_10_1016_j_snb_2024_136831 crossref_primary_10_1021_acsanm_4c03048 crossref_primary_10_1038_s41598_018_33495_8 crossref_primary_10_1016_j_colsurfa_2019_03_032 crossref_primary_10_1021_acsami_9b21789 crossref_primary_10_3390_polym17020182 crossref_primary_10_1002_mds3_10086 crossref_primary_10_1016_j_compositesa_2022_107316 crossref_primary_10_1038_s41598_019_47078_8 crossref_primary_10_1039_D4BM00506F crossref_primary_10_3390_mi12070747 crossref_primary_10_1063_5_0097684 crossref_primary_10_1021_acsnano_7b03245 crossref_primary_10_1016_j_jcis_2021_10_003 crossref_primary_10_1016_j_elecom_2023_107455 crossref_primary_10_1016_j_jcis_2025_01_206 crossref_primary_10_1039_D1LC00602A crossref_primary_10_1016_j_snb_2018_03_165 crossref_primary_10_1021_acs_jafc_4c00454 crossref_primary_10_3390_inventions5020021 crossref_primary_10_1063_5_0067032 crossref_primary_10_1016_j_desal_2022_115600 crossref_primary_10_1021_acs_macromol_8b02465 crossref_primary_10_1002_admt_202300127 crossref_primary_10_1021_acs_analchem_0c05026 crossref_primary_10_1103_PhysRevApplied_22_034065 crossref_primary_10_1002_anie_202111048 crossref_primary_10_1002_adsr_202200033 crossref_primary_10_1002_adfm_202003480 crossref_primary_10_1002_smtd_202001060 crossref_primary_10_1021_acsami_0c11875 crossref_primary_10_1039_C8LC00158H crossref_primary_10_1021_acsnano_3c10246 crossref_primary_10_1021_acsmaterialsau_3c00025 crossref_primary_10_1039_C8NA00335A crossref_primary_10_1021_acs_macromol_0c01639 crossref_primary_10_1016_j_reactfunctpolym_2020_104537 crossref_primary_10_1039_C8AN00898A crossref_primary_10_1002_marc_202100776 crossref_primary_10_1021_acssensors_3c00542 crossref_primary_10_1016_j_snb_2019_04_100 crossref_primary_10_1002_adma_202304005 crossref_primary_10_1039_C9SM00223E crossref_primary_10_3390_mi15040500 crossref_primary_10_1128_aem_00651_23 crossref_primary_10_3390_molecules25225360 crossref_primary_10_1007_s43939_022_00033_3 crossref_primary_10_1002_pat_4373 crossref_primary_10_1007_s10404_019_2249_3 crossref_primary_10_1021_acsbiomaterials_4c02019 crossref_primary_10_1038_s41378_021_00243_4 crossref_primary_10_1016_j_apradiso_2020_109526 crossref_primary_10_1021_acs_langmuir_1c03350 crossref_primary_10_1021_acs_langmuir_3c03537 crossref_primary_10_1021_acs_langmuir_3c01478 crossref_primary_10_1016_j_icheatmasstransfer_2024_107590 crossref_primary_10_1002_EXP_20210036 crossref_primary_10_2320_matertrans_MT_MI2022008 crossref_primary_10_1016_j_xphs_2020_11_028 crossref_primary_10_1016_j_sna_2021_113045 crossref_primary_10_34133_research_0172 crossref_primary_10_1016_j_mne_2023_100224 crossref_primary_10_1021_acs_analchem_4c02363 crossref_primary_10_1371_journal_pone_0295849 crossref_primary_10_1021_acsabm_3c00957 crossref_primary_10_1016_j_matlet_2021_131385 crossref_primary_10_1021_acs_langmuir_3c03404 crossref_primary_10_1002_mawe_202100142 crossref_primary_10_3389_fbioe_2023_1249753 crossref_primary_10_3390_bios11100405 crossref_primary_10_1002_admi_202201152 crossref_primary_10_1080_01694243_2020_1831837 crossref_primary_10_1038_s41598_018_34440_5 crossref_primary_10_1038_s41596_023_00861_4 crossref_primary_10_1021_acs_analchem_1c01861 crossref_primary_10_1021_acs_langmuir_4c03086 crossref_primary_10_3390_mi9100513 crossref_primary_10_1016_j_cej_2024_151846 crossref_primary_10_1002_jbm_b_35007 crossref_primary_10_1021_acs_jpclett_4c01620 crossref_primary_10_1039_D3LC01024D crossref_primary_10_1002_pen_25831 crossref_primary_10_1039_D0AN01268H crossref_primary_10_1038_s43586_023_00212_3 crossref_primary_10_1002_adfm_202011288 crossref_primary_10_1007_s10544_023_00661_3 crossref_primary_10_1039_C8LC00028J crossref_primary_10_3390_ijms241512409 crossref_primary_10_1021_acs_chemrev_2c00823 crossref_primary_10_3390_ma17174322 crossref_primary_10_1039_C9TA07552F crossref_primary_10_1002_adfm_202309707 crossref_primary_10_1038_s41536_021_00162_y crossref_primary_10_1073_pnas_2410806121 crossref_primary_10_1021_acs_analchem_8b04885 crossref_primary_10_1007_s10404_022_02617_0 crossref_primary_10_1016_j_foodhyd_2020_106146 crossref_primary_10_1016_j_cep_2019_107685 crossref_primary_10_1002_dro2_56 crossref_primary_10_1016_j_apmt_2024_102156 crossref_primary_10_1080_15583724_2023_2262558 crossref_primary_10_1021_acs_jchemed_8b01053 crossref_primary_10_1021_acs_langmuir_3c00944 crossref_primary_10_1021_acs_langmuir_4c01237 crossref_primary_10_1109_TIM_2024_3436067 crossref_primary_10_3390_nano12030545 crossref_primary_10_3390_s20144030 crossref_primary_10_1016_j_foodhyd_2024_110113 crossref_primary_10_1039_C9SM01892A crossref_primary_10_3390_bios12100853 crossref_primary_10_1039_D4SM00492B crossref_primary_10_1002_admi_202201051 crossref_primary_10_3390_polym12051186 crossref_primary_10_1016_j_sna_2024_115783 crossref_primary_10_3897_aldj_1_105146 crossref_primary_10_1080_02652048_2024_2382744 crossref_primary_10_1016_j_aiepr_2023_04_001 crossref_primary_10_3390_chemosensors10070247 crossref_primary_10_1016_j_colsurfa_2022_130141 crossref_primary_10_1016_j_polymer_2024_127455 crossref_primary_10_1103_PhysRevE_107_L052602 crossref_primary_10_1063_5_0222071 crossref_primary_10_1109_TASC_2022_3147485 crossref_primary_10_1126_science_adf3345 crossref_primary_10_1109_TBME_2022_3147855 crossref_primary_10_3390_mi15050599 crossref_primary_10_1002_ange_201706665 crossref_primary_10_1002_adfm_202200260 crossref_primary_10_1109_JMEMS_2022_3163281 crossref_primary_10_1016_j_cherd_2021_12_007 crossref_primary_10_1016_j_cep_2024_109732 crossref_primary_10_1016_j_cis_2021_102541 crossref_primary_10_1016_j_est_2019_100954 crossref_primary_10_1016_j_jddst_2023_104557 crossref_primary_10_1021_acsami_1c22692 crossref_primary_10_1021_acs_langmuir_9b02179 crossref_primary_10_1038_s41598_023_37506_1 crossref_primary_10_1039_D1LC00288K crossref_primary_10_1016_j_bbamcr_2020_118823 crossref_primary_10_1002_mabi_202300276 crossref_primary_10_1021_acsami_4c12805 crossref_primary_10_1002_slct_201800443 crossref_primary_10_1039_D2BM00651K crossref_primary_10_1039_D3LC00027C crossref_primary_10_1002_jbio_202400379 crossref_primary_10_1002_ange_202111048 crossref_primary_10_1039_D3LC00584D crossref_primary_10_1021_acsami_7b17132 crossref_primary_10_1021_acsaem_9b02399 crossref_primary_10_1038_s41598_018_27037_5 crossref_primary_10_1016_j_apsusc_2021_151704 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124635 crossref_primary_10_1039_D2LC00089J crossref_primary_10_1021_acs_analchem_1c02914 crossref_primary_10_1039_D4SM01284D crossref_primary_10_1002_adfm_201705484 crossref_primary_10_1016_j_memsci_2023_121897 crossref_primary_10_1002_smll_202400086 crossref_primary_10_1016_j_materresbull_2022_111900 crossref_primary_10_1063_5_0173356 crossref_primary_10_1021_acsami_3c09196 crossref_primary_10_1002_admt_202200661 crossref_primary_10_1007_s11090_023_10385_0 crossref_primary_10_1002_admt_202202166 crossref_primary_10_1016_j_jiec_2019_06_047 crossref_primary_10_1039_D1NH00648G crossref_primary_10_1007_s10544_020_0474_x crossref_primary_10_1016_j_actbio_2020_11_041 crossref_primary_10_1016_j_cofs_2019_06_011 crossref_primary_10_3390_ma17091973 crossref_primary_10_1038_s41598_021_02535_1 crossref_primary_10_3390_molecules26092817 crossref_primary_10_1021_acs_jpcc_9b06561 crossref_primary_10_1021_acsami_9b03160 crossref_primary_10_1007_s11440_021_01235_4 crossref_primary_10_3390_app13116365 crossref_primary_10_1016_j_npe_2020_08_003 crossref_primary_10_1038_s42004_021_00530_1 crossref_primary_10_1016_j_isci_2023_108323 crossref_primary_10_1016_j_aca_2025_343744 crossref_primary_10_1002_smsc_202400314 crossref_primary_10_1039_D2PY01229D crossref_primary_10_3390_bios14090410 crossref_primary_10_1021_acs_chemrev_1c00530 crossref_primary_10_46572_naturengs_883706 crossref_primary_10_1134_S106816202411044X crossref_primary_10_1002_admt_202101026 crossref_primary_10_1021_acs_iecr_0c01065 crossref_primary_10_1039_D0CY02111C crossref_primary_10_1039_D4AN00601A crossref_primary_10_1016_j_cej_2024_156494 crossref_primary_10_1016_j_mne_2021_100085 crossref_primary_10_3390_pharmaceutics16010081 crossref_primary_10_1038_s41526_022_00241_4 crossref_primary_10_1002_adhm_202202846 crossref_primary_10_1016_j_jmbbm_2024_106779 crossref_primary_10_1016_j_jcis_2019_08_081 crossref_primary_10_1016_j_jallcom_2024_173855 crossref_primary_10_1016_j_reactfunctpolym_2023_105604 crossref_primary_10_1016_j_colsurfa_2018_03_024 crossref_primary_10_1038_s41378_024_00815_0 crossref_primary_10_1098_rsfs_2018_0024 crossref_primary_10_1016_j_cej_2024_155727 crossref_primary_10_1039_D0RA02332A crossref_primary_10_1016_j_bioadv_2024_213956 crossref_primary_10_1016_j_colsurfa_2021_127297 crossref_primary_10_1111_1462_2920_15257 crossref_primary_10_1016_j_bios_2022_113971 crossref_primary_10_1021_acs_chemmater_7b05043 crossref_primary_10_1021_acs_analchem_3c00812 crossref_primary_10_1088_2058_8585_ab68ae crossref_primary_10_1039_D3AN00115F crossref_primary_10_1126_scirobotics_add1002 crossref_primary_10_1242_dev_204455 crossref_primary_10_3389_fbioe_2022_891213 crossref_primary_10_1186_s40824_022_00314_1 crossref_primary_10_14710_jksa_24_6_192_199 crossref_primary_10_1002_adom_202401975 crossref_primary_10_1016_j_matpr_2020_10_295 crossref_primary_10_1039_D3SD00165B crossref_primary_10_3390_ijms23073771 crossref_primary_10_1016_j_colsurfa_2022_128555 crossref_primary_10_1002_btm2_10445 crossref_primary_10_1002_anie_201706665 crossref_primary_10_1007_s13206_023_00104_4 crossref_primary_10_1016_j_rechem_2023_100812 crossref_primary_10_1080_02678292_2021_1991016 crossref_primary_10_3389_fnmol_2023_1114928 crossref_primary_10_1002_smll_202407614 crossref_primary_10_1016_j_colsurfb_2023_113571 crossref_primary_10_1002_jbm_a_37633 crossref_primary_10_1039_D1MA01164B crossref_primary_10_1002_jbm_a_36783 crossref_primary_10_1016_j_mtcomm_2023_106063 crossref_primary_10_1039_C9LC00039A crossref_primary_10_1002_adfm_202422374 crossref_primary_10_1039_D2LC01014C crossref_primary_10_1021_acsami_4c09891 crossref_primary_10_1016_j_cocis_2019_01_008 crossref_primary_10_1002_bit_26987 crossref_primary_10_1039_D1LC00836F crossref_primary_10_1116_6_0003443 crossref_primary_10_1016_j_msec_2020_111615 crossref_primary_10_1021_acs_analchem_5c00338 crossref_primary_10_1109_LPT_2023_3264015 crossref_primary_10_1016_j_advwatres_2022_104353 crossref_primary_10_1039_D3LC00711A crossref_primary_10_1016_j_colsurfa_2022_130409 crossref_primary_10_1016_j_nanoen_2022_107049 crossref_primary_10_1021_acs_langmuir_3c03031 crossref_primary_10_3390_mi16020132 crossref_primary_10_1007_s10404_021_02445_8 crossref_primary_10_1016_j_ijrmms_2023_105555 crossref_primary_10_1007_s12200_020_1009_z crossref_primary_10_1016_j_cofs_2022_100957 crossref_primary_10_1007_s40242_021_1262_8 crossref_primary_10_1063_5_0049897 crossref_primary_10_1002_adfm_202100774 crossref_primary_10_1002_adom_202001574 crossref_primary_10_3390_lubricants12120426 crossref_primary_10_1021_acsmeasuresciau_3c00025 crossref_primary_10_1021_acsnano_3c10324 crossref_primary_10_1029_2023WR035670 crossref_primary_10_1002_asia_201801007 crossref_primary_10_1021_acsami_9b13203 crossref_primary_10_1002_adma_202102740 crossref_primary_10_1021_acsapm_9b00753 crossref_primary_10_3390_diagnostics11112155 crossref_primary_10_1039_D3SM01389H |
Cites_doi | 10.1021/ie50320a024 10.1039/C4CP05933F 10.1021/ac00085a019 10.1063/1.3259624 10.1002/elps.200305546 10.1021/ma021681g 10.1016/j.memsci.2006.08.003 10.1042/BST20160052 10.1126/science.288.5463.113 10.1016/S1359-0294(98)80096-4 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 10.1088/0022-3727/44/17/174021 10.1126/science.1109164 10.1021/ar010110q 10.1039/C6CC01434H 10.1016/0076-6879(87)49043-5 10.1021/ac980656z 10.1039/c2lc41121k 10.1039/b808893d 10.1039/c3sc51164b 10.1021/ac0609632 10.1007/s10544-005-6070-2 10.1021/ac403585p 10.1021/cm9028935 10.1002/marc.200700662 10.1002/ange.201006023 10.1016/j.mee.2006.01.195 10.1039/b501972a 10.1016/j.tsf.2006.10.026 10.1039/c2lc40287d 10.1016/S0378-4347(01)00327-9 10.1109/JMEMS.2005.844746 10.1021/ja0529945 10.1002/aic.690480807 10.1021/la7017049 10.1021/bc060108p 10.1021/la0480336 10.1021/la9816050 10.1016/S0920-5861(03)00056-7 10.1038/nnano.2011.183 10.1038/nchem.1753 10.1002/elps.200406157 10.1016/j.ejpb.2004.03.024 10.1007/s10404-010-0760-7 10.1039/C0CC02474K 10.1016/j.foodres.2013.02.040 10.1063/1.1812380 10.1021/la801833a 10.1016/S0032-3861(00)00039-2 10.1021/la0471137 10.1063/1.3665221 10.1039/c004046k 10.1039/b800001h 10.1088/0960-1317/22/2/025012 10.1016/S1369-7021(08)70053-1 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z 10.1021/ac800341m 10.1016/0021-9797(76)90210-1 10.1016/S0378-5173(98)00102-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Apr 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Apr 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/micronano.2016.91 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Surface modification of PDMS for droplet microfluidics |
EISSN | 2055-7434 |
ExternalDocumentID | PMC6444978 4321936099 31057854 10_1038_micronano_2016_91 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT ADMLS ARCSS NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-eebdfd9a5b309b7d726a2f76185d72af3ebd5d42af54329a980bba54a414ddb63 |
IEDL.DBID | AAJSJ |
ISSN | 2055-7434 2096-1030 |
IngestDate | Thu Aug 21 18:31:05 EDT 2025 Fri Jul 11 05:56:26 EDT 2025 Wed Aug 13 09:43:22 EDT 2025 Wed Feb 19 02:32:19 EST 2025 Tue Jul 01 03:27:09 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 21 02:38:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | droplet microfluidics double emulsions hydrophilic hydrophobic surface modification PDMS |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-eebdfd9a5b309b7d726a2f76185d72af3ebd5d42af54329a980bba54a414ddb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/micronano.2016.91 |
PMID | 31057854 |
PQID | 1891289899 |
PQPubID | 2041946 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6444978 proquest_miscellaneous_2231930385 proquest_journals_1891289899 pubmed_primary_31057854 crossref_citationtrail_10_1038_micronano_2016_91 crossref_primary_10_1038_micronano_2016_91 springer_journals_10_1038_micronano_2016_91 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-24 |
PublicationDateYYYYMMDD | 2017-04-24 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Shah, Shum, Rowat (CR45) 2008; 11 Bodas, Khan-Malek (CR23) 2006; 83 i Solvas, deMello (CR7) 2011; 47 Nisisako, Okushima, Torii (CR35) 2005; 1 Xu, Nakajima (CR17) 2004; 85 He, Liang, Zhang (CR33) 2011; 10 Abate, Lee, Do (CR21) 2008; 8 Silva-Cunha, Chéron, Grossiord (CR40) 1998; 169 Villar, Heron, Bayley (CR51) 2011; 6 van Swaay (CR13) 2013; 13 Chen, McClelland, Chen (CR19) 2008; 80 Hillborg, Ankner, Gedde (CR39) 2000; 41 Elani, deMello, Niu (CR14) 2012; 12 Yu, Li, Zhou (CR31) 2007; 18 Davis, Walker (CR42) 1987; 149 Friend, Yeo (CR2) 2010; 4 Pouget, Garcia, Ganachaud (CR32) 2008; 29 Elvira, i Solvas, Wootton (CR9) 2013; 5 Elani, Gee, Law (CR53) 2013; 4 Shum, Lee, Yoon (CR58) 2008; 24 McDonald, Whitesides (CR3) 2002; 35 Stroock, Whitesides (CR1) 2002; 23 Moritani, Yoon, Rafailovich (CR28) 2003; 24 Garti, Bisperink (CR56) 1998; 3 Jiménez-Colmenero (CR57) 2013; 52 Unger, Chou, Thorsen (CR5) 2000; 288 Zinchenko, Devenish, Kintses (CR12) 2014; 86 Matsumoto, Kita, Yonezawa (CR43) 1976; 57 Elani, Law, Ces (CR54) 2015; 17 Quevedo, Steinbacher, McQuade (CR8) 2005; 127 Wu, Luo, Zhou (CR27) 2005; 26 Manakasettharn, Taylor, Krupenkin (CR50) 2011; 4 Kozlov, Quarmyne, Chen (CR29) 2003; 36 Cygan, Cabral, Beers (CR10) 2005; 21 Kobayashi, Nakajima, Chun (CR16) 2002; 48 Okushima, Nisisako, Torii (CR36) 2004; 20 Cournarie, Savelli, Rosilio (CR41) 2004; 58 Yao, Fang (CR20) 2012; 22 Bhattacharya, Datta, Berg (CR47) 2005; 14 Teh, Khnouf, Fan (CR34) 2011; 5 Tan, Fukuda, Akagi (CR37) 2007; 515 Bauer, Fischlechner, Abell (CR22) 2010; 10 Wenzel (CR48) 1936; 28 Ren, Bachman, Sims (CR24) 2001; 762 Serizawa, Hashiguchi, Akashi (CR30) 1999; 15 Gilges, Kleemiss, Schomburg (CR26) 1994; 66 Dummann, Quittmann, Gröschel (CR11) 2003; 79 Bayley, Cronin, Heron (CR15) 2008; 4 Duffy, McDonald, Schueller (CR38) 1998; 70 Mata, Fleischman, Roy (CR6) 2005; 7 Vladisavljević, Shimizu, Nakashima (CR44) 2006; 284 Elani (CR55) 2016; 44 Utada, Lorenceau, Link (CR18) 2005; 308 Gogolides, Constantoudis, Kokkoris (CR49) 2011; 44 Merkel, Bondar, Nagai (CR4) 2000; 38 Shum, Zhao, Kim (CR59) 2011; 123 Vickers, Caulum, Henry (CR25) 2006; 78 Shum, Bandyopadhyay, Bose (CR60) 2009; 21 Chang, Yadav, De Leo (CR46) 2007; 23 Elani, i Solvas, Edel (CR52) 2016; 52 A Mata (BFmicronano201691_CR6) 2005; 7 T Serizawa (BFmicronano201691_CR30) 1999; 15 D Bodas (BFmicronano201691_CR23) 2006; 83 T Moritani (BFmicronano201691_CR28) 2003; 24 HC Shum (BFmicronano201691_CR58) 2008; 24 G Dummann (BFmicronano201691_CR11) 2003; 79 H Hillborg (BFmicronano201691_CR39) 2000; 41 S Okushima (BFmicronano201691_CR36) 2004; 20 S-Y Teh (BFmicronano201691_CR34) 2011; 5 M Gilges (BFmicronano201691_CR26) 1994; 66 D Wu (BFmicronano201691_CR27) 2005; 26 HC Shum (BFmicronano201691_CR59) 2011; 123 AR Abate (BFmicronano201691_CR21) 2008; 8 Y Elani (BFmicronano201691_CR52) 2016; 52 Q Xu (BFmicronano201691_CR17) 2004; 85 TY Chang (BFmicronano201691_CR46) 2007; 23 M Yao (BFmicronano201691_CR20) 2012; 22 S Davis (BFmicronano201691_CR42) 1987; 149 JC McDonald (BFmicronano201691_CR3) 2002; 35 DC Duffy (BFmicronano201691_CR38) 1998; 70 E Pouget (BFmicronano201691_CR32) 2008; 29 A Silva-Cunha (BFmicronano201691_CR40) 1998; 169 HC Shum (BFmicronano201691_CR60) 2009; 21 T He (BFmicronano201691_CR33) 2011; 10 Y Elani (BFmicronano201691_CR55) 2016; 44 S Manakasettharn (BFmicronano201691_CR50) 2011; 4 S Bhattacharya (BFmicronano201691_CR47) 2005; 14 G Villar (BFmicronano201691_CR51) 2011; 6 X Ren (BFmicronano201691_CR24) 2001; 762 T Merkel (BFmicronano201691_CR4) 2000; 38 HM Tan (BFmicronano201691_CR37) 2007; 515 Y Elani (BFmicronano201691_CR14) 2012; 12 I Kobayashi (BFmicronano201691_CR16) 2002; 48 Y Elani (BFmicronano201691_CR53) 2013; 4 J Friend (BFmicronano201691_CR2) 2010; 4 F Cournarie (BFmicronano201691_CR41) 2004; 58 A Zinchenko (BFmicronano201691_CR12) 2014; 86 F Jiménez-Colmenero (BFmicronano201691_CR57) 2013; 52 T Nisisako (BFmicronano201691_CR35) 2005; 1 JA Vickers (BFmicronano201691_CR25) 2006; 78 Y Elani (BFmicronano201691_CR54) 2015; 17 E Quevedo (BFmicronano201691_CR8) 2005; 127 S Matsumoto (BFmicronano201691_CR43) 1976; 57 AD Stroock (BFmicronano201691_CR1) 2002; 23 KS Elvira (BFmicronano201691_CR9) 2013; 5 L Yu (BFmicronano201691_CR31) 2007; 18 H Bayley (BFmicronano201691_CR15) 2008; 4 RK Shah (BFmicronano201691_CR45) 2008; 11 ZT Cygan (BFmicronano201691_CR10) 2005; 21 MA Unger (BFmicronano201691_CR5) 2000; 288 XC i Solvas (BFmicronano201691_CR7) 2011; 47 H-Y Chen (BFmicronano201691_CR19) 2008; 80 A Utada (BFmicronano201691_CR18) 2005; 308 M Kozlov (BFmicronano201691_CR29) 2003; 36 N Garti (BFmicronano201691_CR56) 1998; 3 GT Vladisavljević (BFmicronano201691_CR44) 2006; 284 W-AC Bauer (BFmicronano201691_CR22) 2010; 10 E Gogolides (BFmicronano201691_CR49) 2011; 44 RN Wenzel (BFmicronano201691_CR48) 1936; 28 D van Swaay (BFmicronano201691_CR13) 2013; 13 |
References_xml | – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: CR48 article-title: Resistance of solid surfaces to wetting by water publication-title: Industrial & Engineering Chemistry doi: 10.1021/ie50320a024 – volume: 17 start-page: 15534 year: 2015 end-page: 15537 ident: CR54 article-title: Protein synthesis in artificial cells: Using compartmentalisation for spatial organisation in vesicle bioreactors publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C4CP05933F – volume: 66 start-page: 2038 year: 1994 end-page: 2046 ident: CR26 article-title: Capillary zone electrophoresis separations of basic and acidic proteins using poly (vinyl alcohol) coatings in fused silica capillaries publication-title: Analytical Chemistry doi: 10.1021/ac00085a019 – volume: 4 start-page: 026502 year: 2010 ident: CR2 article-title: Fabrication of microfluidic devices using polydimethylsiloxane publication-title: Biomicrofluidics doi: 10.1063/1.3259624 – volume: 24 start-page: 2764 year: 2003 end-page: 2771 ident: CR28 article-title: DNA capillary electrophoresis using poly (vinyl alcohol). I. Inner capillary coating publication-title: Electrophoresis doi: 10.1002/elps.200305546 – volume: 36 start-page: 6054 year: 2003 end-page: 6059 ident: CR29 article-title: Adsorption of poly (vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surfaces publication-title: Macromolecules doi: 10.1021/ma021681g – volume: 284 start-page: 373 year: 2006 end-page: 383 ident: CR44 article-title: Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: Influence of mean pore size, interfacial tension and continuous phase viscosity publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2006.08.003 – volume: 44 start-page: 723 year: 2016 end-page: 730 ident: CR55 article-title: Construction of membrane-bound artificial cells using microfluidics: A new frontier in bottom-up synthetic biology publication-title: Biochemical Society Transactions doi: 10.1042/BST20160052 – volume: 288 start-page: 113 year: 2000 end-page: 116 ident: CR5 article-title: Monolithic microfabricated valves and pumps by multilayer soft lithography publication-title: Science doi: 10.1126/science.288.5463.113 – volume: 3 start-page: 657 year: 1998 end-page: 667 ident: CR56 article-title: Double emulsions: Progress and applications publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/S1359-0294(98)80096-4 – volume: 23 start-page: 3461 year: 2002 end-page: 3473 ident: CR1 article-title: Components for integrated poly (dimethylsiloxane) microfluidic systems publication-title: Electrophoresis doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 – volume: 44 start-page: 174021 year: 2011 ident: CR49 article-title: Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/44/17/174021 – volume: 308 start-page: 537 year: 2005 end-page: 541 ident: CR18 article-title: Monodisperse double emulsions generated from a microcapillary device publication-title: Science doi: 10.1126/science.1109164 – volume: 35 start-page: 491 year: 2002 end-page: 499 ident: CR3 article-title: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices publication-title: Accounts of Chemical Research doi: 10.1021/ar010110q – volume: 52 start-page: 5961 year: 2016 end-page: 5964 ident: CR52 article-title: Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors publication-title: Chemical Communications doi: 10.1039/C6CC01434H – volume: 149 start-page: 51 year: 1987 ident: CR42 article-title: Multiple emulsions as targetable delivery systems publication-title: Methods in Enzymology doi: 10.1016/0076-6879(87)49043-5 – volume: 70 start-page: 4974 year: 1998 end-page: 4984 ident: CR38 article-title: Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) publication-title: Analytical Chemistry doi: 10.1021/ac980656z – volume: 4 start-page: 388 year: 2011 end-page: 411 ident: CR50 article-title: Superhydrophobicity at micron and submicron scale publication-title: Comprehensive Nanoscience and Technology – volume: 13 start-page: 752 year: 2013 end-page: 767 ident: CR13 article-title: Microfluidic methods for forming liposomes publication-title: Lab on a Chip doi: 10.1039/c2lc41121k – volume: 4 start-page: 1191 year: 2008 end-page: 1208 ident: CR15 article-title: Droplet interface bilayers publication-title: Molecular BioSystems doi: 10.1039/b808893d – volume: 4 start-page: 3332 year: 2013 end-page: 3338 ident: CR53 article-title: Engineering multi-compartment vesicle networks publication-title: Chemical Science doi: 10.1039/c3sc51164b – volume: 78 start-page: 7446 year: 2006 end-page: 7452 ident: CR25 article-title: Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis publication-title: Analytical Chemistry doi: 10.1021/ac0609632 – volume: 7 start-page: 281 year: 2005 end-page: 293 ident: CR6 article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems publication-title: Biomedical Microdevices doi: 10.1007/s10544-005-6070-2 – volume: 86 start-page: 2526 year: 2014 end-page: 2533 ident: CR12 article-title: One in a million: Flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution publication-title: Analytical Chemistry doi: 10.1021/ac403585p – volume: 21 start-page: 5548 year: 2009 end-page: 5555 ident: CR60 article-title: Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite publication-title: Chemistry of Materials doi: 10.1021/cm9028935 – volume: 29 start-page: 425 year: 2008 end-page: 430 ident: CR32 article-title: Direct synthesis of PVA-g-PDMS in microsuspension publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.200700662 – volume: 123 start-page: 1686 year: 2011 ident: CR59 article-title: Multicompartment polymersomes from double emulsions publication-title: Angewandte Chemie doi: 10.1002/ange.201006023 – volume: 83 start-page: 1277 year: 2006 end-page: 1279 ident: CR23 article-title: Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments publication-title: Microelectronic Engineering doi: 10.1016/j.mee.2006.01.195 – volume: 1 start-page: 23 year: 2005 end-page: 27 ident: CR35 article-title: Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system publication-title: Soft Matter doi: 10.1039/b501972a – volume: 515 start-page: 5172 year: 2007 end-page: 5178 ident: CR37 article-title: Surface modification of poly (dimethylsiloxane) for controlling biological cells’ adhesion using a scanning radical microjet publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.10.026 – volume: 12 start-page: 3514 year: 2012 end-page: 3520 ident: CR14 article-title: Novel technologies for the formation of 2-D and 3-D droplet interface bilayer networks publication-title: Lab on a Chip doi: 10.1039/c2lc40287d – volume: 762 start-page: 117 year: 2001 end-page: 125 ident: CR24 article-title: Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane) publication-title: Journal of Chromatography B: Biomedical Sciences and Applications doi: 10.1016/S0378-4347(01)00327-9 – volume: 14 start-page: 590 year: 2005 end-page: 597 ident: CR47 article-title: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength publication-title: Journal of Microelectromechanical Systems doi: 10.1109/JMEMS.2005.844746 – volume: 127 start-page: 10498 year: 2005 end-page: 10499 ident: CR8 article-title: Interfacial polymerization within a simplified microfluidic device: Capturing capsules publication-title: Journal of the American Chemical Society doi: 10.1021/ja0529945 – volume: 48 start-page: 1639 year: 2002 end-page: 1644 ident: CR16 article-title: Silicon array of elongated through-holes for monodisperse emulsion droplets publication-title: AIChE Journal doi: 10.1002/aic.690480807 – volume: 23 start-page: 11718 year: 2007 end-page: 11725 ident: CR46 article-title: Cell and protein compatibility of parylene-C surfaces publication-title: Langmuir doi: 10.1021/la7017049 – volume: 18 start-page: 281 year: 2007 end-page: 284 ident: CR31 article-title: Poly (vinyl alcohol) functionalized poly (dimethylsiloxane) solid surface for immunoassay publication-title: Bioconjugate Chemistry doi: 10.1021/bc060108p – volume: 20 start-page: 9905 year: 2004 end-page: 9908 ident: CR36 article-title: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices publication-title: Langmuir doi: 10.1021/la0480336 – volume: 15 start-page: 5363 year: 1999 end-page: 5368 ident: CR30 article-title: Stepwise assembly of ultrathin poly (vinyl alcohol) films on a gold substrate by repetitive adsorption/drying processes publication-title: Langmuir doi: 10.1021/la9816050 – volume: 79 start-page: 433 year: 2003 end-page: 439 ident: CR11 article-title: The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions publication-title: Catalysis Today doi: 10.1016/S0920-5861(03)00056-7 – volume: 6 start-page: 803 year: 2011 end-page: 808 ident: CR51 article-title: Formation of droplet networks that function in aqueous environments publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.183 – volume: 5 start-page: 905 year: 2013 end-page: 915 ident: CR9 article-title: The past, present and potential for microfluidic reactor technology in chemical synthesis publication-title: Nature Chemistry doi: 10.1038/nchem.1753 – volume: 26 start-page: 211 year: 2005 end-page: 218 ident: CR27 article-title: Multilayer poly (vinyl alcohol)-adsorbed coating on poly (dimethylsiloxane) microfluidic chips for biopolymer separation publication-title: Electrophoresis doi: 10.1002/elps.200406157 – volume: 58 start-page: 477 year: 2004 end-page: 482 ident: CR41 article-title: Insulin-loaded W/O/W multiple emulsions: Comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2004.03.024 – volume: 10 start-page: 1289 year: 2011 end-page: 1298 ident: CR33 article-title: A modified microfluidic chip for fabrication of paclitaxel-loaded poly (L-lactic acid) microspheres publication-title: Microfluidics and Nanofluidics doi: 10.1007/s10404-010-0760-7 – volume: 47 start-page: 1936 year: 2011 end-page: 1942 ident: CR7 article-title: Droplet microfluidics: Recent developments and future applications publication-title: Chemical Communications doi: 10.1039/C0CC02474K – volume: 52 start-page: 64 year: 2013 end-page: 74 ident: CR57 article-title: Potential applications of multiple emulsions in the development of healthy and functional foods publication-title: Food Research International doi: 10.1016/j.foodres.2013.02.040 – volume: 85 start-page: 3726 year: 2004 end-page: 3728 ident: CR17 article-title: The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device publication-title: Applied Physics Letters doi: 10.1063/1.1812380 – volume: 24 start-page: 7651 year: 2008 end-page: 7653 ident: CR58 article-title: Double emulsion templated monodisperse phospholipid vesicles publication-title: Langmuir doi: 10.1021/la801833a – volume: 41 start-page: 6851 year: 2000 end-page: 6863 ident: CR39 article-title: Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques publication-title: Polymer doi: 10.1016/S0032-3861(00)00039-2 – volume: 21 start-page: 3629 year: 2005 end-page: 3634 ident: CR10 article-title: Microfluidic platform for the generation of organic-phase microreactors publication-title: Langmuir doi: 10.1021/la0471137 – volume: 5 start-page: 044113 year: 2011 ident: CR34 article-title: Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics publication-title: Biomicrofluidics doi: 10.1063/1.3665221 – volume: 10 start-page: 1814 year: 2010 end-page: 1819 ident: CR22 article-title: Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions publication-title: Lab on a Chip doi: 10.1039/c004046k – volume: 8 start-page: 516 year: 2008 end-page: 518 ident: CR21 article-title: Glass coating for PDMS microfluidic channels by sol-gel methods publication-title: Lab on a Chip doi: 10.1039/b800001h – volume: 22 start-page: 025012 year: 2012 ident: CR20 article-title: Hydrophilic PEO-PDMS for microfluidic applications publication-title: Journal of Micromechanics and Microengineering doi: 10.1088/0960-1317/22/2/025012 – volume: 11 start-page: 18 year: 2008 end-page: 27 ident: CR45 article-title: Designer emulsions using microfluidics publication-title: Materials Today doi: 10.1016/S1369-7021(08)70053-1 – volume: 38 start-page: 415 year: 2000 end-page: 434 ident: CR4 article-title: Gas sorption, diffusion, and permeation in poly (dimethylsiloxane) publication-title: Journal of Polymer Science Part B: Polymer Physics doi: 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z – volume: 80 start-page: 4119 year: 2008 end-page: 4124 ident: CR19 article-title: Solventless adhesive bonding using reactive polymer coatings publication-title: Analytical Chemistry doi: 10.1021/ac800341m – volume: 57 start-page: 353 year: 1976 end-page: 361 ident: CR43 article-title: An attempt at preparing water-in-oil-in-water multiple-phase emulsions publication-title: Journal of Colloid and Interface Science doi: 10.1016/0021-9797(76)90210-1 – volume: 169 start-page: 33 year: 1998 end-page: 44 ident: CR40 article-title: W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: biological activity after oral administration to normal and diabetic rats publication-title: International Journal of Pharmaceutics doi: 10.1016/S0378-5173(98)00102-1 – volume: 515 start-page: 5172 year: 2007 ident: BFmicronano201691_CR37 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.10.026 – volume: 13 start-page: 752 year: 2013 ident: BFmicronano201691_CR13 publication-title: Lab on a Chip doi: 10.1039/c2lc41121k – volume: 5 start-page: 044113 year: 2011 ident: BFmicronano201691_CR34 publication-title: Biomicrofluidics doi: 10.1063/1.3665221 – volume: 36 start-page: 6054 year: 2003 ident: BFmicronano201691_CR29 publication-title: Macromolecules doi: 10.1021/ma021681g – volume: 58 start-page: 477 year: 2004 ident: BFmicronano201691_CR41 publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2004.03.024 – volume: 86 start-page: 2526 year: 2014 ident: BFmicronano201691_CR12 publication-title: Analytical Chemistry doi: 10.1021/ac403585p – volume: 17 start-page: 15534 year: 2015 ident: BFmicronano201691_CR54 publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C4CP05933F – volume: 38 start-page: 415 year: 2000 ident: BFmicronano201691_CR4 publication-title: Journal of Polymer Science Part B: Polymer Physics doi: 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z – volume: 6 start-page: 803 year: 2011 ident: BFmicronano201691_CR51 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.183 – volume: 20 start-page: 9905 year: 2004 ident: BFmicronano201691_CR36 publication-title: Langmuir doi: 10.1021/la0480336 – volume: 41 start-page: 6851 year: 2000 ident: BFmicronano201691_CR39 publication-title: Polymer doi: 10.1016/S0032-3861(00)00039-2 – volume: 18 start-page: 281 year: 2007 ident: BFmicronano201691_CR31 publication-title: Bioconjugate Chemistry doi: 10.1021/bc060108p – volume: 29 start-page: 425 year: 2008 ident: BFmicronano201691_CR32 publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.200700662 – volume: 70 start-page: 4974 year: 1998 ident: BFmicronano201691_CR38 publication-title: Analytical Chemistry doi: 10.1021/ac980656z – volume: 28 start-page: 988 year: 1936 ident: BFmicronano201691_CR48 publication-title: Industrial & Engineering Chemistry doi: 10.1021/ie50320a024 – volume: 14 start-page: 590 year: 2005 ident: BFmicronano201691_CR47 publication-title: Journal of Microelectromechanical Systems doi: 10.1109/JMEMS.2005.844746 – volume: 3 start-page: 657 year: 1998 ident: BFmicronano201691_CR56 publication-title: Current Opinion in Colloid & Interface Science doi: 10.1016/S1359-0294(98)80096-4 – volume: 15 start-page: 5363 year: 1999 ident: BFmicronano201691_CR30 publication-title: Langmuir doi: 10.1021/la9816050 – volume: 52 start-page: 64 year: 2013 ident: BFmicronano201691_CR57 publication-title: Food Research International doi: 10.1016/j.foodres.2013.02.040 – volume: 48 start-page: 1639 year: 2002 ident: BFmicronano201691_CR16 publication-title: AIChE Journal doi: 10.1002/aic.690480807 – volume: 80 start-page: 4119 year: 2008 ident: BFmicronano201691_CR19 publication-title: Analytical Chemistry doi: 10.1021/ac800341m – volume: 8 start-page: 516 year: 2008 ident: BFmicronano201691_CR21 publication-title: Lab on a Chip doi: 10.1039/b800001h – volume: 47 start-page: 1936 year: 2011 ident: BFmicronano201691_CR7 publication-title: Chemical Communications doi: 10.1039/C0CC02474K – volume: 26 start-page: 211 year: 2005 ident: BFmicronano201691_CR27 publication-title: Electrophoresis doi: 10.1002/elps.200406157 – volume: 127 start-page: 10498 year: 2005 ident: BFmicronano201691_CR8 publication-title: Journal of the American Chemical Society doi: 10.1021/ja0529945 – volume: 78 start-page: 7446 year: 2006 ident: BFmicronano201691_CR25 publication-title: Analytical Chemistry doi: 10.1021/ac0609632 – volume: 83 start-page: 1277 year: 2006 ident: BFmicronano201691_CR23 publication-title: Microelectronic Engineering doi: 10.1016/j.mee.2006.01.195 – volume: 762 start-page: 117 year: 2001 ident: BFmicronano201691_CR24 publication-title: Journal of Chromatography B: Biomedical Sciences and Applications doi: 10.1016/S0378-4347(01)00327-9 – volume: 284 start-page: 373 year: 2006 ident: BFmicronano201691_CR44 publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2006.08.003 – volume: 1 start-page: 23 year: 2005 ident: BFmicronano201691_CR35 publication-title: Soft Matter doi: 10.1039/b501972a – volume: 169 start-page: 33 year: 1998 ident: BFmicronano201691_CR40 publication-title: International Journal of Pharmaceutics doi: 10.1016/S0378-5173(98)00102-1 – volume: 4 start-page: 1191 year: 2008 ident: BFmicronano201691_CR15 publication-title: Molecular BioSystems doi: 10.1039/b808893d – volume: 24 start-page: 2764 year: 2003 ident: BFmicronano201691_CR28 publication-title: Electrophoresis doi: 10.1002/elps.200305546 – volume: 52 start-page: 5961 year: 2016 ident: BFmicronano201691_CR52 publication-title: Chemical Communications doi: 10.1039/C6CC01434H – volume: 11 start-page: 18 year: 2008 ident: BFmicronano201691_CR45 publication-title: Materials Today doi: 10.1016/S1369-7021(08)70053-1 – volume: 66 start-page: 2038 year: 1994 ident: BFmicronano201691_CR26 publication-title: Analytical Chemistry doi: 10.1021/ac00085a019 – volume: 4 start-page: 026502 year: 2010 ident: BFmicronano201691_CR2 publication-title: Biomicrofluidics doi: 10.1063/1.3259624 – volume: 57 start-page: 353 year: 1976 ident: BFmicronano201691_CR43 publication-title: Journal of Colloid and Interface Science doi: 10.1016/0021-9797(76)90210-1 – volume: 44 start-page: 174021 year: 2011 ident: BFmicronano201691_CR49 publication-title: Journal of Physics D: Applied Physics doi: 10.1088/0022-3727/44/17/174021 – volume: 12 start-page: 3514 year: 2012 ident: BFmicronano201691_CR14 publication-title: Lab on a Chip doi: 10.1039/c2lc40287d – volume: 24 start-page: 7651 year: 2008 ident: BFmicronano201691_CR58 publication-title: Langmuir doi: 10.1021/la801833a – volume: 85 start-page: 3726 year: 2004 ident: BFmicronano201691_CR17 publication-title: Applied Physics Letters doi: 10.1063/1.1812380 – volume: 23 start-page: 3461 year: 2002 ident: BFmicronano201691_CR1 publication-title: Electrophoresis doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 – volume: 5 start-page: 905 year: 2013 ident: BFmicronano201691_CR9 publication-title: Nature Chemistry doi: 10.1038/nchem.1753 – volume: 21 start-page: 5548 year: 2009 ident: BFmicronano201691_CR60 publication-title: Chemistry of Materials doi: 10.1021/cm9028935 – volume: 288 start-page: 113 year: 2000 ident: BFmicronano201691_CR5 publication-title: Science doi: 10.1126/science.288.5463.113 – volume: 79 start-page: 433 year: 2003 ident: BFmicronano201691_CR11 publication-title: Catalysis Today doi: 10.1016/S0920-5861(03)00056-7 – volume: 4 start-page: 388 year: 2011 ident: BFmicronano201691_CR50 publication-title: Comprehensive Nanoscience and Technology – volume: 4 start-page: 3332 year: 2013 ident: BFmicronano201691_CR53 publication-title: Chemical Science doi: 10.1039/c3sc51164b – volume: 21 start-page: 3629 year: 2005 ident: BFmicronano201691_CR10 publication-title: Langmuir doi: 10.1021/la0471137 – volume: 308 start-page: 537 year: 2005 ident: BFmicronano201691_CR18 publication-title: Science doi: 10.1126/science.1109164 – volume: 123 start-page: 1686 year: 2011 ident: BFmicronano201691_CR59 publication-title: Angewandte Chemie doi: 10.1002/ange.201006023 – volume: 22 start-page: 025012 year: 2012 ident: BFmicronano201691_CR20 publication-title: Journal of Micromechanics and Microengineering doi: 10.1088/0960-1317/22/2/025012 – volume: 7 start-page: 281 year: 2005 ident: BFmicronano201691_CR6 publication-title: Biomedical Microdevices doi: 10.1007/s10544-005-6070-2 – volume: 10 start-page: 1289 year: 2011 ident: BFmicronano201691_CR33 publication-title: Microfluidics and Nanofluidics doi: 10.1007/s10404-010-0760-7 – volume: 35 start-page: 491 year: 2002 ident: BFmicronano201691_CR3 publication-title: Accounts of Chemical Research doi: 10.1021/ar010110q – volume: 44 start-page: 723 year: 2016 ident: BFmicronano201691_CR55 publication-title: Biochemical Society Transactions doi: 10.1042/BST20160052 – volume: 10 start-page: 1814 year: 2010 ident: BFmicronano201691_CR22 publication-title: Lab on a Chip doi: 10.1039/c004046k – volume: 149 start-page: 51 year: 1987 ident: BFmicronano201691_CR42 publication-title: Methods in Enzymology doi: 10.1016/0076-6879(87)49043-5 – volume: 23 start-page: 11718 year: 2007 ident: BFmicronano201691_CR46 publication-title: Langmuir doi: 10.1021/la7017049 |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5154223 |
Snippet | Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16091 |
SubjectTerms | 639/166 639/301 Engineering |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAWp6BgozECWqaxHYSn1BVqFZIRZWgaG-RX4GINtluNki98NuZ8SahS0VvljxR7MzY_jwz-YaQ167gCV4jWKYkum54zgzcwliufZwZ5Y0LEd3jz9nsVHyay_ngcOuGtMpxTwwbtWst-sj3k0LBVqrgevB-ccGwahRGV4cSGrfJHaQuQ6vO59NxKsBaxciWHnwuMBQVshpTQO4MK2yNgU5e7J9jBlyjG_wlMMneqWTzqLqGP6-nUf4TSw1H1NE2uT9gS3qwNoYdcss3D8i9K4yDD8nv2aVbtgv0olja9ctKW0_PW4cJQ0FHtK3oyYfjLxTALEVR0CsNY67O-trVtqOYKv-datrVyCy8Ry_62v7co7pxdNmavgP5UJaa_qo1Pfl2QJ0fU8MekdOjj18PZ2wowcCs5NmKeVBW5ZSWhsfK5C5PM51WeQanPLR1xaFfOgEtKXiqtCpiY7QUWiTCOZPxx2SraRv_lNA4s86mtgLZVHidG20dl4k2CkCOdEVE4vFrl3bgJ8cyGWdliJPzopwUVKKCSpVE5M30yGJNznGT8O6ownJYp13516oi8mrqhhWGYRPd-LbvSgBQgHIxghqRJ2uNT2_jWCa5kCIi-YYtTALI3r3Z09Q_Aos3AFGs7heRt6PVXBnW_ybx7OZJPCd3U4QdsWCp2CVbq2XvXwBoWpmXYWX8AVKYGaU priority: 102 providerName: ProQuest |
Title | Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition |
URI | https://link.springer.com/article/10.1038/micronano.2016.91 https://www.ncbi.nlm.nih.gov/pubmed/31057854 https://www.proquest.com/docview/1891289899 https://www.proquest.com/docview/2231930385 https://pubmed.ncbi.nlm.nih.gov/PMC6444978 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfG9gIPiG8CozIST7BAEn8kfixlpaq0qWIM9S3yVyBiS0bTIPHC387ZTcJKBRIvSRSfZcdn536-O98h9MJkJHbbiJAL5lQ3JA0V7MLCVNqIK2GV8Rbdk1M-O6fzJVvuobg_C-Od9n1IS_-b7r3D3lw697RKVu68Xsxfu_PqBy5SO0ztg_F4fjb_rViB9kTEegsmyXbrbsugHWC56x_5h5HUy57pHXS7A414vOnmXbRnq3vo1rVQgvfRz9kPs6qvnHpE46ZdFVJbfFkb5wnkBx_XBV68OznDgFKxIwWGYd_n4qItTakb7HzgP2OJm9KFDD7C39pSfz3CsjJ4Vau2AXqfbxp_LyVefBpjY3ufrwfofHr8cTILu9wKoWaEr0MLXCiMkEyRSKjUpAmXSZFyEN_wLAsC5cxQeGKUJEKKLFJKMippTI1RnDxE-1Vd2ccIR1wbnegCaBNqZaqkNoTFUglAL8xkAYr60c51F3jc5b-4yL0BnGT5wKDcMSgXcYBeDlWuNlE3_kV82LMw7xZgk8eZAMkrYDcZoOdDMSwdZw-Rla3bJgdkBPDVmUYD9GjD8aE14vIfZ4wGKN2aCwOBC8u9XVKVX3x4bkCYLm1fgF71s-Zat_72EU_-i_opupk4eBHRMKGHaH-9au0zAEdrNUI30mUK12z6ftQtDbi_PT5dfIC3Ez4ZebXDL_5gG0M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBBRqaxM7DB4QqyrKl3aoSbdVb8CsQ0SbbzQbUCz-J38iMdxO6VPTWmyVP4jgztr95eIaQFyZjIaoRfiJiNN2w1FeghfmptEGihFXGeXRHO8lwn386jA-XyO_uLgyGVXZ7otuoTa3RRr4WZgK2UgHqwbvxiY9Vo9C72pXQmInFlj39CSpb83ZzA_j7MooGH_beD_15VQFfxyyZ-hbGL4yQsWKBUKlJo0RGBWjzWQxtWTDojw2HVsxZJKTIAqVkzCUPuTEqYfDeK-QqZ3CS4830wcdOfjmsDt5lZ3c2Hpi6cFGUEWgKPlb06hyrLFs7xoi7SlZ4BTFM3ohw8Wg8h3fPh23-47t1R-LgFrk5x7J0fSZ8t8mSre6QG2cyHN4lv4anZlKP0WqjadNOCqktPa4NBig5maB1QXc3Rp8pgGeKpCBH1H1zcdSWptQNxdD8r1TSpsRMxqv0pC3191UqK0MntWoboHdlsOmPUtLdg3VqbBeKdo_sXwpz7pPlqq7sQ0KDRBsd6QJoI25lqqQ2LA6lEgCqYpN5JOj-dq7n-dCxLMdR7vzyLMt7BuXIoFyEHnnVPzKeJQO5iHilY2E-3xea_K8Ue-R53w0rGt00srJ12-QA2ABVo8fWIw9mHO9HY1iWOYu5R9IFWegJMFv4Yk9VfnNZwwH4YjVBj7zupObMZ_1vEo8unsQzcm24N9rOtzd3th6T6xFCnoD7EV8hy9NJa58AYJuqp26VUPLlspflH6OnWCc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyF4QPwnMMBI8AILTWI7iR8QGnRVx1hVAUN7C3bsQMSWdE0D2gsfjE_HXZqUlYm97S2SL4ntu7N_5zvfEfLUxMxHM8INpcCjGxa5GqwwN1LWC7W02jQe3b1xONrn7w7EwRr53d2FwbDKbk1sFmpTpnhG3vdjCUupBPOgn7VhEZPB8PX02MUKUuhp7cppLERk1578BPOterUzAF4_C4Lh9qe3I7etMOCmgoVz10JfMiOV0MyTOjJREKogA8s-FvCsMgbtwnB4EpwFUsnY01oJrrjPjdEhg-9eIusRWkU9sv5mezz50EkzB13hXa725sQHJkI2MZUB2A0u1vfq3Kws7h9h_F2hCryQ6Icvpb-6UZ5Bv2eDOP_x5DYb5PA6udYiW7q1EMUbZM0WN8nVU_kOb5FfoxMzK6d4hpPSqp5lKrX0qDQYrtRICC0zOhnsfaQApSmSglTRps_ZYZ2bPK0oBup_pYpWOeY13qTHdZ5-36SqMHRW6roC-qYoNv2RKzr5vEWN7QLTbpP9C2HPHdIrysLeI9QLU5MGaQa0Abcq0io1TPhKS4BYwsQO8brZTtI2OzoW6ThMGi89i5MlgxJkUCJ9hzxfvjJdpAY5j3ijY2HSrhJV8lemHfJk2Qz6jU4bVdiyrhKAb4Cx0X_rkLsLji__xrBIcyy4Q6IVWVgSYO7w1ZYi_9bkEAcYjLUFHfKik5pT3frfIO6fP4jH5DKoZPJ-Z7z7gFwJEP943A34BunNZ7V9COhtrh-1akLJl4vWzD8NsV25 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophilic+surface+modification+of+PDMS+for+droplet+microfluidics+using+a+simple%2C+quick%2C+and+robust+method+via+PVA+deposition&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Trantidou%2C+Tatiana&rft.au=Elani%2C+Yuval&rft.au=Parsons%2C+Edward&rft.au=Ces%2C+Oscar&rft.date=2017-04-24&rft.pub=Nature+Publishing+Group&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=3&rft_id=info:doi/10.1038%2Fmicronano.2016.91&rft_id=info%3Apmid%2F31057854&rft.externalDocID=PMC6444978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |