Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition

Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic gene...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 3; no. 1; p. 16091
Main Authors Trantidou, Tatiana, Elani, Yuval, Parsons, Edward, Ces, Oscar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.04.2017
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions. Microfluidics: Patterned channels pave way for new applications A simple, low-cost and versatile technique for making reusable microfluidic devices with patterned channels promises new applications. Microfluidic chips have found use in technologies as diverse as fuel cells and the construction of artificial cell models and organs-on-chip. However, the hydrophobic nature of polydimethylsiloxane (PDMS), which is commonly used in chip fabrication, limits potential applications. This spurred Tatiana Trantidou and her colleagues at Imperial College London and University College London, in the United Kingdom, to make PDMS with a hydrophilic surface by coating microfluidic channels with polyvinyl alcohol immediately after plasma treatment. Their innovative technique enables selective patterning of the channels with defined wettability characteristics, facilitating the production of emulsions, double emulsions and inverse double emulsions. The work could expand the use of microfluidic devices to various applications in pharmaceuticals, food science and synthetic biology.
AbstractList Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.
Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions. Microfluidics: Patterned channels pave way for new applications A simple, low-cost and versatile technique for making reusable microfluidic devices with patterned channels promises new applications. Microfluidic chips have found use in technologies as diverse as fuel cells and the construction of artificial cell models and organs-on-chip. However, the hydrophobic nature of polydimethylsiloxane (PDMS), which is commonly used in chip fabrication, limits potential applications. This spurred Tatiana Trantidou and her colleagues at Imperial College London and University College London, in the United Kingdom, to make PDMS with a hydrophilic surface by coating microfluidic channels with polyvinyl alcohol immediately after plasma treatment. Their innovative technique enables selective patterning of the channels with defined wettability characteristics, facilitating the production of emulsions, double emulsions and inverse double emulsions. The work could expand the use of microfluidic devices to various applications in pharmaceuticals, food science and synthetic biology.
Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.
ArticleNumber 16091
Author Ces, Oscar
Parsons, Edward
Elani, Yuval
Trantidou, Tatiana
Author_xml – sequence: 1
  givenname: Tatiana
  surname: Trantidou
  fullname: Trantidou, Tatiana
  email: t.trantidou@imperial.ac.uk
  organization: Department of Chemistry, Imperial College London
– sequence: 2
  givenname: Yuval
  surname: Elani
  fullname: Elani, Yuval
  organization: Department of Chemistry, Imperial College London, Institute of Chemical Biology, Imperial College London
– sequence: 3
  givenname: Edward
  surname: Parsons
  fullname: Parsons, Edward
  organization: London Centre for Nanotechnology, University College London
– sequence: 4
  givenname: Oscar
  surname: Ces
  fullname: Ces, Oscar
  email: o.ces@imperial.ac.uk
  organization: Department of Chemistry, Imperial College London, Institute of Chemical Biology, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31057854$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1LHDEUhkOxVKv-gN6UQG964a7JJJmZ3BTEflhQKtj2NmTysXvsTLImM4I3_e3Nuipbob3KgfO8b97knNdoJ8TgEHpDyZwS1h4PYFIMOsR5RWg9l_QF2quIELOGM76zVe-iw5yvCSG0YY0k4hXaZZSIphV8D_0-u7MprpbQg8F5Sl4bh4dowYPRI8SAo8eXHy-usI8Jr9Hejfj-bt9PYMFkPGUIC6xxhqF0j_DNBObXEdbB4hS7KRfejcto8S1ofPnzBFu3ihnW7gfopdd9docP5z768fnT99Oz2fm3L19PT85nRrB6nDnXWW-lFh0jsmtsU9W68k1NW1Fq7VnpC8tLJTirpJYt6TotuOaUW9vVbB992Piupm5w1rgwJt2rVYJBpzsVNai_OwGWahFvVc05l01bDN4_GKR4M7k8qgGycX2vg4tTVlXFqGRlLqKg756h13FKoTxP0VbSqpWtlIV6u53oKcrjaArQbIDy1Tkn55WB8X4kJSD0ihK13gP1tAdqvQdK0qKkz5SP5v_TVBtNLmxYuLQV-p-iPyAYzRY
CitedBy_id crossref_primary_10_1016_j_jcis_2019_05_028
crossref_primary_10_1016_j_jmst_2024_08_059
crossref_primary_10_1080_17515831_2017_1347736
crossref_primary_10_1016_j_seppur_2021_118860
crossref_primary_10_1021_acs_energyfuels_0c04320
crossref_primary_10_1038_s41598_019_49136_7
crossref_primary_10_1108_SR_03_2024_0211
crossref_primary_10_3390_mi15060670
crossref_primary_10_1021_acsami_3c03275
crossref_primary_10_1080_17460441_2020_1758663
crossref_primary_10_3390_mi15111317
crossref_primary_10_3390_s21144866
crossref_primary_10_1002_smll_202306725
crossref_primary_10_1016_j_seppur_2023_125956
crossref_primary_10_3390_jfb13010002
crossref_primary_10_3390_mi13081197
crossref_primary_10_1016_j_surfcoat_2020_126458
crossref_primary_10_3390_polym13091449
crossref_primary_10_1002_advs_202304506
crossref_primary_10_1007_s00018_023_04748_1
crossref_primary_10_1016_j_optmat_2022_112175
crossref_primary_10_1021_acs_jproteome_9b00832
crossref_primary_10_1039_D3LC00175J
crossref_primary_10_1002_marc_201800106
crossref_primary_10_1038_s41467_022_28574_4
crossref_primary_10_1088_1758_5090_ad2d2f
crossref_primary_10_1021_acsami_3c13631
crossref_primary_10_1016_j_ces_2019_07_021
crossref_primary_10_1021_acs_langmuir_2c02320
crossref_primary_10_1063_1_5145109
crossref_primary_10_1039_D4TC00748D
crossref_primary_10_3390_ma11122511
crossref_primary_10_3390_polym14183883
crossref_primary_10_1007_s00216_022_03915_w
crossref_primary_10_1002_ppap_202000215
crossref_primary_10_1039_D2LC00037G
crossref_primary_10_1016_j_mtcomm_2024_110499
crossref_primary_10_1007_s10404_025_02793_9
crossref_primary_10_1007_s12015_024_10767_7
crossref_primary_10_1016_j_snb_2024_136831
crossref_primary_10_1021_acsanm_4c03048
crossref_primary_10_1038_s41598_018_33495_8
crossref_primary_10_1016_j_colsurfa_2019_03_032
crossref_primary_10_1021_acsami_9b21789
crossref_primary_10_3390_polym17020182
crossref_primary_10_1002_mds3_10086
crossref_primary_10_1016_j_compositesa_2022_107316
crossref_primary_10_1038_s41598_019_47078_8
crossref_primary_10_1039_D4BM00506F
crossref_primary_10_3390_mi12070747
crossref_primary_10_1063_5_0097684
crossref_primary_10_1021_acsnano_7b03245
crossref_primary_10_1016_j_jcis_2021_10_003
crossref_primary_10_1016_j_elecom_2023_107455
crossref_primary_10_1016_j_jcis_2025_01_206
crossref_primary_10_1039_D1LC00602A
crossref_primary_10_1016_j_snb_2018_03_165
crossref_primary_10_1021_acs_jafc_4c00454
crossref_primary_10_3390_inventions5020021
crossref_primary_10_1063_5_0067032
crossref_primary_10_1016_j_desal_2022_115600
crossref_primary_10_1021_acs_macromol_8b02465
crossref_primary_10_1002_admt_202300127
crossref_primary_10_1021_acs_analchem_0c05026
crossref_primary_10_1103_PhysRevApplied_22_034065
crossref_primary_10_1002_anie_202111048
crossref_primary_10_1002_adsr_202200033
crossref_primary_10_1002_adfm_202003480
crossref_primary_10_1002_smtd_202001060
crossref_primary_10_1021_acsami_0c11875
crossref_primary_10_1039_C8LC00158H
crossref_primary_10_1021_acsnano_3c10246
crossref_primary_10_1021_acsmaterialsau_3c00025
crossref_primary_10_1039_C8NA00335A
crossref_primary_10_1021_acs_macromol_0c01639
crossref_primary_10_1016_j_reactfunctpolym_2020_104537
crossref_primary_10_1039_C8AN00898A
crossref_primary_10_1002_marc_202100776
crossref_primary_10_1021_acssensors_3c00542
crossref_primary_10_1016_j_snb_2019_04_100
crossref_primary_10_1002_adma_202304005
crossref_primary_10_1039_C9SM00223E
crossref_primary_10_3390_mi15040500
crossref_primary_10_1128_aem_00651_23
crossref_primary_10_3390_molecules25225360
crossref_primary_10_1007_s43939_022_00033_3
crossref_primary_10_1002_pat_4373
crossref_primary_10_1007_s10404_019_2249_3
crossref_primary_10_1021_acsbiomaterials_4c02019
crossref_primary_10_1038_s41378_021_00243_4
crossref_primary_10_1016_j_apradiso_2020_109526
crossref_primary_10_1021_acs_langmuir_1c03350
crossref_primary_10_1021_acs_langmuir_3c03537
crossref_primary_10_1021_acs_langmuir_3c01478
crossref_primary_10_1016_j_icheatmasstransfer_2024_107590
crossref_primary_10_1002_EXP_20210036
crossref_primary_10_2320_matertrans_MT_MI2022008
crossref_primary_10_1016_j_xphs_2020_11_028
crossref_primary_10_1016_j_sna_2021_113045
crossref_primary_10_34133_research_0172
crossref_primary_10_1016_j_mne_2023_100224
crossref_primary_10_1021_acs_analchem_4c02363
crossref_primary_10_1371_journal_pone_0295849
crossref_primary_10_1021_acsabm_3c00957
crossref_primary_10_1016_j_matlet_2021_131385
crossref_primary_10_1021_acs_langmuir_3c03404
crossref_primary_10_1002_mawe_202100142
crossref_primary_10_3389_fbioe_2023_1249753
crossref_primary_10_3390_bios11100405
crossref_primary_10_1002_admi_202201152
crossref_primary_10_1080_01694243_2020_1831837
crossref_primary_10_1038_s41598_018_34440_5
crossref_primary_10_1038_s41596_023_00861_4
crossref_primary_10_1021_acs_analchem_1c01861
crossref_primary_10_1021_acs_langmuir_4c03086
crossref_primary_10_3390_mi9100513
crossref_primary_10_1016_j_cej_2024_151846
crossref_primary_10_1002_jbm_b_35007
crossref_primary_10_1021_acs_jpclett_4c01620
crossref_primary_10_1039_D3LC01024D
crossref_primary_10_1002_pen_25831
crossref_primary_10_1039_D0AN01268H
crossref_primary_10_1038_s43586_023_00212_3
crossref_primary_10_1002_adfm_202011288
crossref_primary_10_1007_s10544_023_00661_3
crossref_primary_10_1039_C8LC00028J
crossref_primary_10_3390_ijms241512409
crossref_primary_10_1021_acs_chemrev_2c00823
crossref_primary_10_3390_ma17174322
crossref_primary_10_1039_C9TA07552F
crossref_primary_10_1002_adfm_202309707
crossref_primary_10_1038_s41536_021_00162_y
crossref_primary_10_1073_pnas_2410806121
crossref_primary_10_1021_acs_analchem_8b04885
crossref_primary_10_1007_s10404_022_02617_0
crossref_primary_10_1016_j_foodhyd_2020_106146
crossref_primary_10_1016_j_cep_2019_107685
crossref_primary_10_1002_dro2_56
crossref_primary_10_1016_j_apmt_2024_102156
crossref_primary_10_1080_15583724_2023_2262558
crossref_primary_10_1021_acs_jchemed_8b01053
crossref_primary_10_1021_acs_langmuir_3c00944
crossref_primary_10_1021_acs_langmuir_4c01237
crossref_primary_10_1109_TIM_2024_3436067
crossref_primary_10_3390_nano12030545
crossref_primary_10_3390_s20144030
crossref_primary_10_1016_j_foodhyd_2024_110113
crossref_primary_10_1039_C9SM01892A
crossref_primary_10_3390_bios12100853
crossref_primary_10_1039_D4SM00492B
crossref_primary_10_1002_admi_202201051
crossref_primary_10_3390_polym12051186
crossref_primary_10_1016_j_sna_2024_115783
crossref_primary_10_3897_aldj_1_105146
crossref_primary_10_1080_02652048_2024_2382744
crossref_primary_10_1016_j_aiepr_2023_04_001
crossref_primary_10_3390_chemosensors10070247
crossref_primary_10_1016_j_colsurfa_2022_130141
crossref_primary_10_1016_j_polymer_2024_127455
crossref_primary_10_1103_PhysRevE_107_L052602
crossref_primary_10_1063_5_0222071
crossref_primary_10_1109_TASC_2022_3147485
crossref_primary_10_1126_science_adf3345
crossref_primary_10_1109_TBME_2022_3147855
crossref_primary_10_3390_mi15050599
crossref_primary_10_1002_ange_201706665
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1109_JMEMS_2022_3163281
crossref_primary_10_1016_j_cherd_2021_12_007
crossref_primary_10_1016_j_cep_2024_109732
crossref_primary_10_1016_j_cis_2021_102541
crossref_primary_10_1016_j_est_2019_100954
crossref_primary_10_1016_j_jddst_2023_104557
crossref_primary_10_1021_acsami_1c22692
crossref_primary_10_1021_acs_langmuir_9b02179
crossref_primary_10_1038_s41598_023_37506_1
crossref_primary_10_1039_D1LC00288K
crossref_primary_10_1016_j_bbamcr_2020_118823
crossref_primary_10_1002_mabi_202300276
crossref_primary_10_1021_acsami_4c12805
crossref_primary_10_1002_slct_201800443
crossref_primary_10_1039_D2BM00651K
crossref_primary_10_1039_D3LC00027C
crossref_primary_10_1002_jbio_202400379
crossref_primary_10_1002_ange_202111048
crossref_primary_10_1039_D3LC00584D
crossref_primary_10_1021_acsami_7b17132
crossref_primary_10_1021_acsaem_9b02399
crossref_primary_10_1038_s41598_018_27037_5
crossref_primary_10_1016_j_apsusc_2021_151704
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124635
crossref_primary_10_1039_D2LC00089J
crossref_primary_10_1021_acs_analchem_1c02914
crossref_primary_10_1039_D4SM01284D
crossref_primary_10_1002_adfm_201705484
crossref_primary_10_1016_j_memsci_2023_121897
crossref_primary_10_1002_smll_202400086
crossref_primary_10_1016_j_materresbull_2022_111900
crossref_primary_10_1063_5_0173356
crossref_primary_10_1021_acsami_3c09196
crossref_primary_10_1002_admt_202200661
crossref_primary_10_1007_s11090_023_10385_0
crossref_primary_10_1002_admt_202202166
crossref_primary_10_1016_j_jiec_2019_06_047
crossref_primary_10_1039_D1NH00648G
crossref_primary_10_1007_s10544_020_0474_x
crossref_primary_10_1016_j_actbio_2020_11_041
crossref_primary_10_1016_j_cofs_2019_06_011
crossref_primary_10_3390_ma17091973
crossref_primary_10_1038_s41598_021_02535_1
crossref_primary_10_3390_molecules26092817
crossref_primary_10_1021_acs_jpcc_9b06561
crossref_primary_10_1021_acsami_9b03160
crossref_primary_10_1007_s11440_021_01235_4
crossref_primary_10_3390_app13116365
crossref_primary_10_1016_j_npe_2020_08_003
crossref_primary_10_1038_s42004_021_00530_1
crossref_primary_10_1016_j_isci_2023_108323
crossref_primary_10_1016_j_aca_2025_343744
crossref_primary_10_1002_smsc_202400314
crossref_primary_10_1039_D2PY01229D
crossref_primary_10_3390_bios14090410
crossref_primary_10_1021_acs_chemrev_1c00530
crossref_primary_10_46572_naturengs_883706
crossref_primary_10_1134_S106816202411044X
crossref_primary_10_1002_admt_202101026
crossref_primary_10_1021_acs_iecr_0c01065
crossref_primary_10_1039_D0CY02111C
crossref_primary_10_1039_D4AN00601A
crossref_primary_10_1016_j_cej_2024_156494
crossref_primary_10_1016_j_mne_2021_100085
crossref_primary_10_3390_pharmaceutics16010081
crossref_primary_10_1038_s41526_022_00241_4
crossref_primary_10_1002_adhm_202202846
crossref_primary_10_1016_j_jmbbm_2024_106779
crossref_primary_10_1016_j_jcis_2019_08_081
crossref_primary_10_1016_j_jallcom_2024_173855
crossref_primary_10_1016_j_reactfunctpolym_2023_105604
crossref_primary_10_1016_j_colsurfa_2018_03_024
crossref_primary_10_1038_s41378_024_00815_0
crossref_primary_10_1098_rsfs_2018_0024
crossref_primary_10_1016_j_cej_2024_155727
crossref_primary_10_1039_D0RA02332A
crossref_primary_10_1016_j_bioadv_2024_213956
crossref_primary_10_1016_j_colsurfa_2021_127297
crossref_primary_10_1111_1462_2920_15257
crossref_primary_10_1016_j_bios_2022_113971
crossref_primary_10_1021_acs_chemmater_7b05043
crossref_primary_10_1021_acs_analchem_3c00812
crossref_primary_10_1088_2058_8585_ab68ae
crossref_primary_10_1039_D3AN00115F
crossref_primary_10_1126_scirobotics_add1002
crossref_primary_10_1242_dev_204455
crossref_primary_10_3389_fbioe_2022_891213
crossref_primary_10_1186_s40824_022_00314_1
crossref_primary_10_14710_jksa_24_6_192_199
crossref_primary_10_1002_adom_202401975
crossref_primary_10_1016_j_matpr_2020_10_295
crossref_primary_10_1039_D3SD00165B
crossref_primary_10_3390_ijms23073771
crossref_primary_10_1016_j_colsurfa_2022_128555
crossref_primary_10_1002_btm2_10445
crossref_primary_10_1002_anie_201706665
crossref_primary_10_1007_s13206_023_00104_4
crossref_primary_10_1016_j_rechem_2023_100812
crossref_primary_10_1080_02678292_2021_1991016
crossref_primary_10_3389_fnmol_2023_1114928
crossref_primary_10_1002_smll_202407614
crossref_primary_10_1016_j_colsurfb_2023_113571
crossref_primary_10_1002_jbm_a_37633
crossref_primary_10_1039_D1MA01164B
crossref_primary_10_1002_jbm_a_36783
crossref_primary_10_1016_j_mtcomm_2023_106063
crossref_primary_10_1039_C9LC00039A
crossref_primary_10_1002_adfm_202422374
crossref_primary_10_1039_D2LC01014C
crossref_primary_10_1021_acsami_4c09891
crossref_primary_10_1016_j_cocis_2019_01_008
crossref_primary_10_1002_bit_26987
crossref_primary_10_1039_D1LC00836F
crossref_primary_10_1116_6_0003443
crossref_primary_10_1016_j_msec_2020_111615
crossref_primary_10_1021_acs_analchem_5c00338
crossref_primary_10_1109_LPT_2023_3264015
crossref_primary_10_1016_j_advwatres_2022_104353
crossref_primary_10_1039_D3LC00711A
crossref_primary_10_1016_j_colsurfa_2022_130409
crossref_primary_10_1016_j_nanoen_2022_107049
crossref_primary_10_1021_acs_langmuir_3c03031
crossref_primary_10_3390_mi16020132
crossref_primary_10_1007_s10404_021_02445_8
crossref_primary_10_1016_j_ijrmms_2023_105555
crossref_primary_10_1007_s12200_020_1009_z
crossref_primary_10_1016_j_cofs_2022_100957
crossref_primary_10_1007_s40242_021_1262_8
crossref_primary_10_1063_5_0049897
crossref_primary_10_1002_adfm_202100774
crossref_primary_10_1002_adom_202001574
crossref_primary_10_3390_lubricants12120426
crossref_primary_10_1021_acsmeasuresciau_3c00025
crossref_primary_10_1021_acsnano_3c10324
crossref_primary_10_1029_2023WR035670
crossref_primary_10_1002_asia_201801007
crossref_primary_10_1021_acsami_9b13203
crossref_primary_10_1002_adma_202102740
crossref_primary_10_1021_acsapm_9b00753
crossref_primary_10_3390_diagnostics11112155
crossref_primary_10_1039_D3SM01389H
Cites_doi 10.1021/ie50320a024
10.1039/C4CP05933F
10.1021/ac00085a019
10.1063/1.3259624
10.1002/elps.200305546
10.1021/ma021681g
10.1016/j.memsci.2006.08.003
10.1042/BST20160052
10.1126/science.288.5463.113
10.1016/S1359-0294(98)80096-4
10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
10.1088/0022-3727/44/17/174021
10.1126/science.1109164
10.1021/ar010110q
10.1039/C6CC01434H
10.1016/0076-6879(87)49043-5
10.1021/ac980656z
10.1039/c2lc41121k
10.1039/b808893d
10.1039/c3sc51164b
10.1021/ac0609632
10.1007/s10544-005-6070-2
10.1021/ac403585p
10.1021/cm9028935
10.1002/marc.200700662
10.1002/ange.201006023
10.1016/j.mee.2006.01.195
10.1039/b501972a
10.1016/j.tsf.2006.10.026
10.1039/c2lc40287d
10.1016/S0378-4347(01)00327-9
10.1109/JMEMS.2005.844746
10.1021/ja0529945
10.1002/aic.690480807
10.1021/la7017049
10.1021/bc060108p
10.1021/la0480336
10.1021/la9816050
10.1016/S0920-5861(03)00056-7
10.1038/nnano.2011.183
10.1038/nchem.1753
10.1002/elps.200406157
10.1016/j.ejpb.2004.03.024
10.1007/s10404-010-0760-7
10.1039/C0CC02474K
10.1016/j.foodres.2013.02.040
10.1063/1.1812380
10.1021/la801833a
10.1016/S0032-3861(00)00039-2
10.1021/la0471137
10.1063/1.3665221
10.1039/c004046k
10.1039/b800001h
10.1088/0960-1317/22/2/025012
10.1016/S1369-7021(08)70053-1
10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
10.1021/ac800341m
10.1016/0021-9797(76)90210-1
10.1016/S0378-5173(98)00102-1
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Apr 2017
Copyright © 2017 The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Apr 2017
– notice: Copyright © 2017 The Author(s) 2017 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/micronano.2016.91
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Surface modification of PDMS for droplet microfluidics
EISSN 2055-7434
ExternalDocumentID PMC6444978
4321936099
31057854
10_1038_micronano_2016_91
Genre Journal Article
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
ADMLS
ARCSS
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-eebdfd9a5b309b7d726a2f76185d72af3ebd5d42af54329a980bba54a414ddb63
IEDL.DBID AAJSJ
ISSN 2055-7434
2096-1030
IngestDate Thu Aug 21 18:31:05 EDT 2025
Fri Jul 11 05:56:26 EDT 2025
Wed Aug 13 09:43:22 EDT 2025
Wed Feb 19 02:32:19 EST 2025
Tue Jul 01 03:27:09 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 21 02:38:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords droplet microfluidics
double emulsions
hydrophilic
hydrophobic
surface modification
PDMS
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-eebdfd9a5b309b7d726a2f76185d72af3ebd5d42af54329a980bba54a414ddb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/micronano.2016.91
PMID 31057854
PQID 1891289899
PQPubID 2041946
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6444978
proquest_miscellaneous_2231930385
proquest_journals_1891289899
pubmed_primary_31057854
crossref_citationtrail_10_1038_micronano_2016_91
crossref_primary_10_1038_micronano_2016_91
springer_journals_10_1038_micronano_2016_91
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-24
PublicationDateYYYYMMDD 2017-04-24
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2017
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Shah, Shum, Rowat (CR45) 2008; 11
Bodas, Khan-Malek (CR23) 2006; 83
i Solvas, deMello (CR7) 2011; 47
Nisisako, Okushima, Torii (CR35) 2005; 1
Xu, Nakajima (CR17) 2004; 85
He, Liang, Zhang (CR33) 2011; 10
Abate, Lee, Do (CR21) 2008; 8
Silva-Cunha, Chéron, Grossiord (CR40) 1998; 169
Villar, Heron, Bayley (CR51) 2011; 6
van Swaay (CR13) 2013; 13
Chen, McClelland, Chen (CR19) 2008; 80
Hillborg, Ankner, Gedde (CR39) 2000; 41
Elani, deMello, Niu (CR14) 2012; 12
Yu, Li, Zhou (CR31) 2007; 18
Davis, Walker (CR42) 1987; 149
Friend, Yeo (CR2) 2010; 4
Pouget, Garcia, Ganachaud (CR32) 2008; 29
Elvira, i Solvas, Wootton (CR9) 2013; 5
Elani, Gee, Law (CR53) 2013; 4
Shum, Lee, Yoon (CR58) 2008; 24
McDonald, Whitesides (CR3) 2002; 35
Stroock, Whitesides (CR1) 2002; 23
Moritani, Yoon, Rafailovich (CR28) 2003; 24
Garti, Bisperink (CR56) 1998; 3
Jiménez-Colmenero (CR57) 2013; 52
Unger, Chou, Thorsen (CR5) 2000; 288
Zinchenko, Devenish, Kintses (CR12) 2014; 86
Matsumoto, Kita, Yonezawa (CR43) 1976; 57
Elani, Law, Ces (CR54) 2015; 17
Quevedo, Steinbacher, McQuade (CR8) 2005; 127
Wu, Luo, Zhou (CR27) 2005; 26
Manakasettharn, Taylor, Krupenkin (CR50) 2011; 4
Kozlov, Quarmyne, Chen (CR29) 2003; 36
Cygan, Cabral, Beers (CR10) 2005; 21
Kobayashi, Nakajima, Chun (CR16) 2002; 48
Okushima, Nisisako, Torii (CR36) 2004; 20
Cournarie, Savelli, Rosilio (CR41) 2004; 58
Yao, Fang (CR20) 2012; 22
Bhattacharya, Datta, Berg (CR47) 2005; 14
Teh, Khnouf, Fan (CR34) 2011; 5
Tan, Fukuda, Akagi (CR37) 2007; 515
Bauer, Fischlechner, Abell (CR22) 2010; 10
Wenzel (CR48) 1936; 28
Ren, Bachman, Sims (CR24) 2001; 762
Serizawa, Hashiguchi, Akashi (CR30) 1999; 15
Gilges, Kleemiss, Schomburg (CR26) 1994; 66
Dummann, Quittmann, Gröschel (CR11) 2003; 79
Bayley, Cronin, Heron (CR15) 2008; 4
Duffy, McDonald, Schueller (CR38) 1998; 70
Mata, Fleischman, Roy (CR6) 2005; 7
Vladisavljević, Shimizu, Nakashima (CR44) 2006; 284
Elani (CR55) 2016; 44
Utada, Lorenceau, Link (CR18) 2005; 308
Gogolides, Constantoudis, Kokkoris (CR49) 2011; 44
Merkel, Bondar, Nagai (CR4) 2000; 38
Shum, Zhao, Kim (CR59) 2011; 123
Vickers, Caulum, Henry (CR25) 2006; 78
Shum, Bandyopadhyay, Bose (CR60) 2009; 21
Chang, Yadav, De Leo (CR46) 2007; 23
Elani, i Solvas, Edel (CR52) 2016; 52
A Mata (BFmicronano201691_CR6) 2005; 7
T Serizawa (BFmicronano201691_CR30) 1999; 15
D Bodas (BFmicronano201691_CR23) 2006; 83
T Moritani (BFmicronano201691_CR28) 2003; 24
HC Shum (BFmicronano201691_CR58) 2008; 24
G Dummann (BFmicronano201691_CR11) 2003; 79
H Hillborg (BFmicronano201691_CR39) 2000; 41
S Okushima (BFmicronano201691_CR36) 2004; 20
S-Y Teh (BFmicronano201691_CR34) 2011; 5
M Gilges (BFmicronano201691_CR26) 1994; 66
D Wu (BFmicronano201691_CR27) 2005; 26
HC Shum (BFmicronano201691_CR59) 2011; 123
AR Abate (BFmicronano201691_CR21) 2008; 8
Y Elani (BFmicronano201691_CR52) 2016; 52
Q Xu (BFmicronano201691_CR17) 2004; 85
TY Chang (BFmicronano201691_CR46) 2007; 23
M Yao (BFmicronano201691_CR20) 2012; 22
S Davis (BFmicronano201691_CR42) 1987; 149
JC McDonald (BFmicronano201691_CR3) 2002; 35
DC Duffy (BFmicronano201691_CR38) 1998; 70
E Pouget (BFmicronano201691_CR32) 2008; 29
A Silva-Cunha (BFmicronano201691_CR40) 1998; 169
HC Shum (BFmicronano201691_CR60) 2009; 21
T He (BFmicronano201691_CR33) 2011; 10
Y Elani (BFmicronano201691_CR55) 2016; 44
S Manakasettharn (BFmicronano201691_CR50) 2011; 4
S Bhattacharya (BFmicronano201691_CR47) 2005; 14
G Villar (BFmicronano201691_CR51) 2011; 6
X Ren (BFmicronano201691_CR24) 2001; 762
T Merkel (BFmicronano201691_CR4) 2000; 38
HM Tan (BFmicronano201691_CR37) 2007; 515
Y Elani (BFmicronano201691_CR14) 2012; 12
I Kobayashi (BFmicronano201691_CR16) 2002; 48
Y Elani (BFmicronano201691_CR53) 2013; 4
J Friend (BFmicronano201691_CR2) 2010; 4
F Cournarie (BFmicronano201691_CR41) 2004; 58
A Zinchenko (BFmicronano201691_CR12) 2014; 86
F Jiménez-Colmenero (BFmicronano201691_CR57) 2013; 52
T Nisisako (BFmicronano201691_CR35) 2005; 1
JA Vickers (BFmicronano201691_CR25) 2006; 78
Y Elani (BFmicronano201691_CR54) 2015; 17
E Quevedo (BFmicronano201691_CR8) 2005; 127
S Matsumoto (BFmicronano201691_CR43) 1976; 57
AD Stroock (BFmicronano201691_CR1) 2002; 23
KS Elvira (BFmicronano201691_CR9) 2013; 5
L Yu (BFmicronano201691_CR31) 2007; 18
H Bayley (BFmicronano201691_CR15) 2008; 4
RK Shah (BFmicronano201691_CR45) 2008; 11
ZT Cygan (BFmicronano201691_CR10) 2005; 21
MA Unger (BFmicronano201691_CR5) 2000; 288
XC i Solvas (BFmicronano201691_CR7) 2011; 47
H-Y Chen (BFmicronano201691_CR19) 2008; 80
A Utada (BFmicronano201691_CR18) 2005; 308
M Kozlov (BFmicronano201691_CR29) 2003; 36
N Garti (BFmicronano201691_CR56) 1998; 3
GT Vladisavljević (BFmicronano201691_CR44) 2006; 284
W-AC Bauer (BFmicronano201691_CR22) 2010; 10
E Gogolides (BFmicronano201691_CR49) 2011; 44
RN Wenzel (BFmicronano201691_CR48) 1936; 28
D van Swaay (BFmicronano201691_CR13) 2013; 13
References_xml – volume: 28
  start-page: 988
  year: 1936
  end-page: 994
  ident: CR48
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Industrial & Engineering Chemistry
  doi: 10.1021/ie50320a024
– volume: 17
  start-page: 15534
  year: 2015
  end-page: 15537
  ident: CR54
  article-title: Protein synthesis in artificial cells: Using compartmentalisation for spatial organisation in vesicle bioreactors
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C4CP05933F
– volume: 66
  start-page: 2038
  year: 1994
  end-page: 2046
  ident: CR26
  article-title: Capillary zone electrophoresis separations of basic and acidic proteins using poly (vinyl alcohol) coatings in fused silica capillaries
  publication-title: Analytical Chemistry
  doi: 10.1021/ac00085a019
– volume: 4
  start-page: 026502
  year: 2010
  ident: CR2
  article-title: Fabrication of microfluidic devices using polydimethylsiloxane
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3259624
– volume: 24
  start-page: 2764
  year: 2003
  end-page: 2771
  ident: CR28
  article-title: DNA capillary electrophoresis using poly (vinyl alcohol). I. Inner capillary coating
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305546
– volume: 36
  start-page: 6054
  year: 2003
  end-page: 6059
  ident: CR29
  article-title: Adsorption of poly (vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surfaces
  publication-title: Macromolecules
  doi: 10.1021/ma021681g
– volume: 284
  start-page: 373
  year: 2006
  end-page: 383
  ident: CR44
  article-title: Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: Influence of mean pore size, interfacial tension and continuous phase viscosity
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2006.08.003
– volume: 44
  start-page: 723
  year: 2016
  end-page: 730
  ident: CR55
  article-title: Construction of membrane-bound artificial cells using microfluidics: A new frontier in bottom-up synthetic biology
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST20160052
– volume: 288
  start-page: 113
  year: 2000
  end-page: 116
  ident: CR5
  article-title: Monolithic microfabricated valves and pumps by multilayer soft lithography
  publication-title: Science
  doi: 10.1126/science.288.5463.113
– volume: 3
  start-page: 657
  year: 1998
  end-page: 667
  ident: CR56
  article-title: Double emulsions: Progress and applications
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/S1359-0294(98)80096-4
– volume: 23
  start-page: 3461
  year: 2002
  end-page: 3473
  ident: CR1
  article-title: Components for integrated poly (dimethylsiloxane) microfluidic systems
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
– volume: 44
  start-page: 174021
  year: 2011
  ident: CR49
  article-title: Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/44/17/174021
– volume: 308
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR18
  article-title: Monodisperse double emulsions generated from a microcapillary device
  publication-title: Science
  doi: 10.1126/science.1109164
– volume: 35
  start-page: 491
  year: 2002
  end-page: 499
  ident: CR3
  article-title: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar010110q
– volume: 52
  start-page: 5961
  year: 2016
  end-page: 5964
  ident: CR52
  article-title: Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors
  publication-title: Chemical Communications
  doi: 10.1039/C6CC01434H
– volume: 149
  start-page: 51
  year: 1987
  ident: CR42
  article-title: Multiple emulsions as targetable delivery systems
  publication-title: Methods in Enzymology
  doi: 10.1016/0076-6879(87)49043-5
– volume: 70
  start-page: 4974
  year: 1998
  end-page: 4984
  ident: CR38
  article-title: Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)
  publication-title: Analytical Chemistry
  doi: 10.1021/ac980656z
– volume: 4
  start-page: 388
  year: 2011
  end-page: 411
  ident: CR50
  article-title: Superhydrophobicity at micron and submicron scale
  publication-title: Comprehensive Nanoscience and Technology
– volume: 13
  start-page: 752
  year: 2013
  end-page: 767
  ident: CR13
  article-title: Microfluidic methods for forming liposomes
  publication-title: Lab on a Chip
  doi: 10.1039/c2lc41121k
– volume: 4
  start-page: 1191
  year: 2008
  end-page: 1208
  ident: CR15
  article-title: Droplet interface bilayers
  publication-title: Molecular BioSystems
  doi: 10.1039/b808893d
– volume: 4
  start-page: 3332
  year: 2013
  end-page: 3338
  ident: CR53
  article-title: Engineering multi-compartment vesicle networks
  publication-title: Chemical Science
  doi: 10.1039/c3sc51164b
– volume: 78
  start-page: 7446
  year: 2006
  end-page: 7452
  ident: CR25
  article-title: Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis
  publication-title: Analytical Chemistry
  doi: 10.1021/ac0609632
– volume: 7
  start-page: 281
  year: 2005
  end-page: 293
  ident: CR6
  article-title: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
  publication-title: Biomedical Microdevices
  doi: 10.1007/s10544-005-6070-2
– volume: 86
  start-page: 2526
  year: 2014
  end-page: 2533
  ident: CR12
  article-title: One in a million: Flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution
  publication-title: Analytical Chemistry
  doi: 10.1021/ac403585p
– volume: 21
  start-page: 5548
  year: 2009
  end-page: 5555
  ident: CR60
  article-title: Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite
  publication-title: Chemistry of Materials
  doi: 10.1021/cm9028935
– volume: 29
  start-page: 425
  year: 2008
  end-page: 430
  ident: CR32
  article-title: Direct synthesis of PVA-g-PDMS in microsuspension
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.200700662
– volume: 123
  start-page: 1686
  year: 2011
  ident: CR59
  article-title: Multicompartment polymersomes from double emulsions
  publication-title: Angewandte Chemie
  doi: 10.1002/ange.201006023
– volume: 83
  start-page: 1277
  year: 2006
  end-page: 1279
  ident: CR23
  article-title: Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments
  publication-title: Microelectronic Engineering
  doi: 10.1016/j.mee.2006.01.195
– volume: 1
  start-page: 23
  year: 2005
  end-page: 27
  ident: CR35
  article-title: Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system
  publication-title: Soft Matter
  doi: 10.1039/b501972a
– volume: 515
  start-page: 5172
  year: 2007
  end-page: 5178
  ident: CR37
  article-title: Surface modification of poly (dimethylsiloxane) for controlling biological cells’ adhesion using a scanning radical microjet
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.10.026
– volume: 12
  start-page: 3514
  year: 2012
  end-page: 3520
  ident: CR14
  article-title: Novel technologies for the formation of 2-D and 3-D droplet interface bilayer networks
  publication-title: Lab on a Chip
  doi: 10.1039/c2lc40287d
– volume: 762
  start-page: 117
  year: 2001
  end-page: 125
  ident: CR24
  article-title: Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane)
  publication-title: Journal of Chromatography B: Biomedical Sciences and Applications
  doi: 10.1016/S0378-4347(01)00327-9
– volume: 14
  start-page: 590
  year: 2005
  end-page: 597
  ident: CR47
  article-title: Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength
  publication-title: Journal of Microelectromechanical Systems
  doi: 10.1109/JMEMS.2005.844746
– volume: 127
  start-page: 10498
  year: 2005
  end-page: 10499
  ident: CR8
  article-title: Interfacial polymerization within a simplified microfluidic device: Capturing capsules
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja0529945
– volume: 48
  start-page: 1639
  year: 2002
  end-page: 1644
  ident: CR16
  article-title: Silicon array of elongated through-holes for monodisperse emulsion droplets
  publication-title: AIChE Journal
  doi: 10.1002/aic.690480807
– volume: 23
  start-page: 11718
  year: 2007
  end-page: 11725
  ident: CR46
  article-title: Cell and protein compatibility of parylene-C surfaces
  publication-title: Langmuir
  doi: 10.1021/la7017049
– volume: 18
  start-page: 281
  year: 2007
  end-page: 284
  ident: CR31
  article-title: Poly (vinyl alcohol) functionalized poly (dimethylsiloxane) solid surface for immunoassay
  publication-title: Bioconjugate Chemistry
  doi: 10.1021/bc060108p
– volume: 20
  start-page: 9905
  year: 2004
  end-page: 9908
  ident: CR36
  article-title: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices
  publication-title: Langmuir
  doi: 10.1021/la0480336
– volume: 15
  start-page: 5363
  year: 1999
  end-page: 5368
  ident: CR30
  article-title: Stepwise assembly of ultrathin poly (vinyl alcohol) films on a gold substrate by repetitive adsorption/drying processes
  publication-title: Langmuir
  doi: 10.1021/la9816050
– volume: 79
  start-page: 433
  year: 2003
  end-page: 439
  ident: CR11
  article-title: The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions
  publication-title: Catalysis Today
  doi: 10.1016/S0920-5861(03)00056-7
– volume: 6
  start-page: 803
  year: 2011
  end-page: 808
  ident: CR51
  article-title: Formation of droplet networks that function in aqueous environments
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.183
– volume: 5
  start-page: 905
  year: 2013
  end-page: 915
  ident: CR9
  article-title: The past, present and potential for microfluidic reactor technology in chemical synthesis
  publication-title: Nature Chemistry
  doi: 10.1038/nchem.1753
– volume: 26
  start-page: 211
  year: 2005
  end-page: 218
  ident: CR27
  article-title: Multilayer poly (vinyl alcohol)-adsorbed coating on poly (dimethylsiloxane) microfluidic chips for biopolymer separation
  publication-title: Electrophoresis
  doi: 10.1002/elps.200406157
– volume: 58
  start-page: 477
  year: 2004
  end-page: 482
  ident: CR41
  article-title: Insulin-loaded W/O/W multiple emulsions: Comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics
  doi: 10.1016/j.ejpb.2004.03.024
– volume: 10
  start-page: 1289
  year: 2011
  end-page: 1298
  ident: CR33
  article-title: A modified microfluidic chip for fabrication of paclitaxel-loaded poly (L-lactic acid) microspheres
  publication-title: Microfluidics and Nanofluidics
  doi: 10.1007/s10404-010-0760-7
– volume: 47
  start-page: 1936
  year: 2011
  end-page: 1942
  ident: CR7
  article-title: Droplet microfluidics: Recent developments and future applications
  publication-title: Chemical Communications
  doi: 10.1039/C0CC02474K
– volume: 52
  start-page: 64
  year: 2013
  end-page: 74
  ident: CR57
  article-title: Potential applications of multiple emulsions in the development of healthy and functional foods
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2013.02.040
– volume: 85
  start-page: 3726
  year: 2004
  end-page: 3728
  ident: CR17
  article-title: The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1812380
– volume: 24
  start-page: 7651
  year: 2008
  end-page: 7653
  ident: CR58
  article-title: Double emulsion templated monodisperse phospholipid vesicles
  publication-title: Langmuir
  doi: 10.1021/la801833a
– volume: 41
  start-page: 6851
  year: 2000
  end-page: 6863
  ident: CR39
  article-title: Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00039-2
– volume: 21
  start-page: 3629
  year: 2005
  end-page: 3634
  ident: CR10
  article-title: Microfluidic platform for the generation of organic-phase microreactors
  publication-title: Langmuir
  doi: 10.1021/la0471137
– volume: 5
  start-page: 044113
  year: 2011
  ident: CR34
  article-title: Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3665221
– volume: 10
  start-page: 1814
  year: 2010
  end-page: 1819
  ident: CR22
  article-title: Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions
  publication-title: Lab on a Chip
  doi: 10.1039/c004046k
– volume: 8
  start-page: 516
  year: 2008
  end-page: 518
  ident: CR21
  article-title: Glass coating for PDMS microfluidic channels by sol-gel methods
  publication-title: Lab on a Chip
  doi: 10.1039/b800001h
– volume: 22
  start-page: 025012
  year: 2012
  ident: CR20
  article-title: Hydrophilic PEO-PDMS for microfluidic applications
  publication-title: Journal of Micromechanics and Microengineering
  doi: 10.1088/0960-1317/22/2/025012
– volume: 11
  start-page: 18
  year: 2008
  end-page: 27
  ident: CR45
  article-title: Designer emulsions using microfluidics
  publication-title: Materials Today
  doi: 10.1016/S1369-7021(08)70053-1
– volume: 38
  start-page: 415
  year: 2000
  end-page: 434
  ident: CR4
  article-title: Gas sorption, diffusion, and permeation in poly (dimethylsiloxane)
  publication-title: Journal of Polymer Science Part B: Polymer Physics
  doi: 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
– volume: 80
  start-page: 4119
  year: 2008
  end-page: 4124
  ident: CR19
  article-title: Solventless adhesive bonding using reactive polymer coatings
  publication-title: Analytical Chemistry
  doi: 10.1021/ac800341m
– volume: 57
  start-page: 353
  year: 1976
  end-page: 361
  ident: CR43
  article-title: An attempt at preparing water-in-oil-in-water multiple-phase emulsions
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/0021-9797(76)90210-1
– volume: 169
  start-page: 33
  year: 1998
  end-page: 44
  ident: CR40
  article-title: W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: biological activity after oral administration to normal and diabetic rats
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/S0378-5173(98)00102-1
– volume: 515
  start-page: 5172
  year: 2007
  ident: BFmicronano201691_CR37
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.10.026
– volume: 13
  start-page: 752
  year: 2013
  ident: BFmicronano201691_CR13
  publication-title: Lab on a Chip
  doi: 10.1039/c2lc41121k
– volume: 5
  start-page: 044113
  year: 2011
  ident: BFmicronano201691_CR34
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3665221
– volume: 36
  start-page: 6054
  year: 2003
  ident: BFmicronano201691_CR29
  publication-title: Macromolecules
  doi: 10.1021/ma021681g
– volume: 58
  start-page: 477
  year: 2004
  ident: BFmicronano201691_CR41
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics
  doi: 10.1016/j.ejpb.2004.03.024
– volume: 86
  start-page: 2526
  year: 2014
  ident: BFmicronano201691_CR12
  publication-title: Analytical Chemistry
  doi: 10.1021/ac403585p
– volume: 17
  start-page: 15534
  year: 2015
  ident: BFmicronano201691_CR54
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C4CP05933F
– volume: 38
  start-page: 415
  year: 2000
  ident: BFmicronano201691_CR4
  publication-title: Journal of Polymer Science Part B: Polymer Physics
  doi: 10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
– volume: 6
  start-page: 803
  year: 2011
  ident: BFmicronano201691_CR51
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.183
– volume: 20
  start-page: 9905
  year: 2004
  ident: BFmicronano201691_CR36
  publication-title: Langmuir
  doi: 10.1021/la0480336
– volume: 41
  start-page: 6851
  year: 2000
  ident: BFmicronano201691_CR39
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00039-2
– volume: 18
  start-page: 281
  year: 2007
  ident: BFmicronano201691_CR31
  publication-title: Bioconjugate Chemistry
  doi: 10.1021/bc060108p
– volume: 29
  start-page: 425
  year: 2008
  ident: BFmicronano201691_CR32
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.200700662
– volume: 70
  start-page: 4974
  year: 1998
  ident: BFmicronano201691_CR38
  publication-title: Analytical Chemistry
  doi: 10.1021/ac980656z
– volume: 28
  start-page: 988
  year: 1936
  ident: BFmicronano201691_CR48
  publication-title: Industrial & Engineering Chemistry
  doi: 10.1021/ie50320a024
– volume: 14
  start-page: 590
  year: 2005
  ident: BFmicronano201691_CR47
  publication-title: Journal of Microelectromechanical Systems
  doi: 10.1109/JMEMS.2005.844746
– volume: 3
  start-page: 657
  year: 1998
  ident: BFmicronano201691_CR56
  publication-title: Current Opinion in Colloid & Interface Science
  doi: 10.1016/S1359-0294(98)80096-4
– volume: 15
  start-page: 5363
  year: 1999
  ident: BFmicronano201691_CR30
  publication-title: Langmuir
  doi: 10.1021/la9816050
– volume: 52
  start-page: 64
  year: 2013
  ident: BFmicronano201691_CR57
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2013.02.040
– volume: 48
  start-page: 1639
  year: 2002
  ident: BFmicronano201691_CR16
  publication-title: AIChE Journal
  doi: 10.1002/aic.690480807
– volume: 80
  start-page: 4119
  year: 2008
  ident: BFmicronano201691_CR19
  publication-title: Analytical Chemistry
  doi: 10.1021/ac800341m
– volume: 8
  start-page: 516
  year: 2008
  ident: BFmicronano201691_CR21
  publication-title: Lab on a Chip
  doi: 10.1039/b800001h
– volume: 47
  start-page: 1936
  year: 2011
  ident: BFmicronano201691_CR7
  publication-title: Chemical Communications
  doi: 10.1039/C0CC02474K
– volume: 26
  start-page: 211
  year: 2005
  ident: BFmicronano201691_CR27
  publication-title: Electrophoresis
  doi: 10.1002/elps.200406157
– volume: 127
  start-page: 10498
  year: 2005
  ident: BFmicronano201691_CR8
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja0529945
– volume: 78
  start-page: 7446
  year: 2006
  ident: BFmicronano201691_CR25
  publication-title: Analytical Chemistry
  doi: 10.1021/ac0609632
– volume: 83
  start-page: 1277
  year: 2006
  ident: BFmicronano201691_CR23
  publication-title: Microelectronic Engineering
  doi: 10.1016/j.mee.2006.01.195
– volume: 762
  start-page: 117
  year: 2001
  ident: BFmicronano201691_CR24
  publication-title: Journal of Chromatography B: Biomedical Sciences and Applications
  doi: 10.1016/S0378-4347(01)00327-9
– volume: 284
  start-page: 373
  year: 2006
  ident: BFmicronano201691_CR44
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2006.08.003
– volume: 1
  start-page: 23
  year: 2005
  ident: BFmicronano201691_CR35
  publication-title: Soft Matter
  doi: 10.1039/b501972a
– volume: 169
  start-page: 33
  year: 1998
  ident: BFmicronano201691_CR40
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/S0378-5173(98)00102-1
– volume: 4
  start-page: 1191
  year: 2008
  ident: BFmicronano201691_CR15
  publication-title: Molecular BioSystems
  doi: 10.1039/b808893d
– volume: 24
  start-page: 2764
  year: 2003
  ident: BFmicronano201691_CR28
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305546
– volume: 52
  start-page: 5961
  year: 2016
  ident: BFmicronano201691_CR52
  publication-title: Chemical Communications
  doi: 10.1039/C6CC01434H
– volume: 11
  start-page: 18
  year: 2008
  ident: BFmicronano201691_CR45
  publication-title: Materials Today
  doi: 10.1016/S1369-7021(08)70053-1
– volume: 66
  start-page: 2038
  year: 1994
  ident: BFmicronano201691_CR26
  publication-title: Analytical Chemistry
  doi: 10.1021/ac00085a019
– volume: 4
  start-page: 026502
  year: 2010
  ident: BFmicronano201691_CR2
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3259624
– volume: 57
  start-page: 353
  year: 1976
  ident: BFmicronano201691_CR43
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/0021-9797(76)90210-1
– volume: 44
  start-page: 174021
  year: 2011
  ident: BFmicronano201691_CR49
  publication-title: Journal of Physics D: Applied Physics
  doi: 10.1088/0022-3727/44/17/174021
– volume: 12
  start-page: 3514
  year: 2012
  ident: BFmicronano201691_CR14
  publication-title: Lab on a Chip
  doi: 10.1039/c2lc40287d
– volume: 24
  start-page: 7651
  year: 2008
  ident: BFmicronano201691_CR58
  publication-title: Langmuir
  doi: 10.1021/la801833a
– volume: 85
  start-page: 3726
  year: 2004
  ident: BFmicronano201691_CR17
  publication-title: Applied Physics Letters
  doi: 10.1063/1.1812380
– volume: 23
  start-page: 3461
  year: 2002
  ident: BFmicronano201691_CR1
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
– volume: 5
  start-page: 905
  year: 2013
  ident: BFmicronano201691_CR9
  publication-title: Nature Chemistry
  doi: 10.1038/nchem.1753
– volume: 21
  start-page: 5548
  year: 2009
  ident: BFmicronano201691_CR60
  publication-title: Chemistry of Materials
  doi: 10.1021/cm9028935
– volume: 288
  start-page: 113
  year: 2000
  ident: BFmicronano201691_CR5
  publication-title: Science
  doi: 10.1126/science.288.5463.113
– volume: 79
  start-page: 433
  year: 2003
  ident: BFmicronano201691_CR11
  publication-title: Catalysis Today
  doi: 10.1016/S0920-5861(03)00056-7
– volume: 4
  start-page: 388
  year: 2011
  ident: BFmicronano201691_CR50
  publication-title: Comprehensive Nanoscience and Technology
– volume: 4
  start-page: 3332
  year: 2013
  ident: BFmicronano201691_CR53
  publication-title: Chemical Science
  doi: 10.1039/c3sc51164b
– volume: 21
  start-page: 3629
  year: 2005
  ident: BFmicronano201691_CR10
  publication-title: Langmuir
  doi: 10.1021/la0471137
– volume: 308
  start-page: 537
  year: 2005
  ident: BFmicronano201691_CR18
  publication-title: Science
  doi: 10.1126/science.1109164
– volume: 123
  start-page: 1686
  year: 2011
  ident: BFmicronano201691_CR59
  publication-title: Angewandte Chemie
  doi: 10.1002/ange.201006023
– volume: 22
  start-page: 025012
  year: 2012
  ident: BFmicronano201691_CR20
  publication-title: Journal of Micromechanics and Microengineering
  doi: 10.1088/0960-1317/22/2/025012
– volume: 7
  start-page: 281
  year: 2005
  ident: BFmicronano201691_CR6
  publication-title: Biomedical Microdevices
  doi: 10.1007/s10544-005-6070-2
– volume: 10
  start-page: 1289
  year: 2011
  ident: BFmicronano201691_CR33
  publication-title: Microfluidics and Nanofluidics
  doi: 10.1007/s10404-010-0760-7
– volume: 35
  start-page: 491
  year: 2002
  ident: BFmicronano201691_CR3
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar010110q
– volume: 44
  start-page: 723
  year: 2016
  ident: BFmicronano201691_CR55
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST20160052
– volume: 10
  start-page: 1814
  year: 2010
  ident: BFmicronano201691_CR22
  publication-title: Lab on a Chip
  doi: 10.1039/c004046k
– volume: 149
  start-page: 51
  year: 1987
  ident: BFmicronano201691_CR42
  publication-title: Methods in Enzymology
  doi: 10.1016/0076-6879(87)49043-5
– volume: 23
  start-page: 11718
  year: 2007
  ident: BFmicronano201691_CR46
  publication-title: Langmuir
  doi: 10.1021/la7017049
SSID ssj0001737905
ssib048324881
Score 2.5154223
Snippet Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16091
SubjectTerms 639/166
639/301
Engineering
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAWp6BgozECWqaxHYSn1BVqFZIRZWgaG-RX4GINtluNki98NuZ8SahS0VvljxR7MzY_jwz-YaQ167gCV4jWKYkum54zgzcwliufZwZ5Y0LEd3jz9nsVHyay_ngcOuGtMpxTwwbtWst-sj3k0LBVqrgevB-ccGwahRGV4cSGrfJHaQuQ6vO59NxKsBaxciWHnwuMBQVshpTQO4MK2yNgU5e7J9jBlyjG_wlMMneqWTzqLqGP6-nUf4TSw1H1NE2uT9gS3qwNoYdcss3D8i9K4yDD8nv2aVbtgv0olja9ctKW0_PW4cJQ0FHtK3oyYfjLxTALEVR0CsNY67O-trVtqOYKv-datrVyCy8Ry_62v7co7pxdNmavgP5UJaa_qo1Pfl2QJ0fU8MekdOjj18PZ2wowcCs5NmKeVBW5ZSWhsfK5C5PM51WeQanPLR1xaFfOgEtKXiqtCpiY7QUWiTCOZPxx2SraRv_lNA4s86mtgLZVHidG20dl4k2CkCOdEVE4vFrl3bgJ8cyGWdliJPzopwUVKKCSpVE5M30yGJNznGT8O6ownJYp13516oi8mrqhhWGYRPd-LbvSgBQgHIxghqRJ2uNT2_jWCa5kCIi-YYtTALI3r3Z09Q_Aos3AFGs7heRt6PVXBnW_ybx7OZJPCd3U4QdsWCp2CVbq2XvXwBoWpmXYWX8AVKYGaU
  priority: 102
  providerName: ProQuest
Title Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition
URI https://link.springer.com/article/10.1038/micronano.2016.91
https://www.ncbi.nlm.nih.gov/pubmed/31057854
https://www.proquest.com/docview/1891289899
https://www.proquest.com/docview/2231930385
https://pubmed.ncbi.nlm.nih.gov/PMC6444978
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfG9gIPiG8CozIST7BAEn8kfixlpaq0qWIM9S3yVyBiS0bTIPHC387ZTcJKBRIvSRSfZcdn536-O98h9MJkJHbbiJAL5lQ3JA0V7MLCVNqIK2GV8Rbdk1M-O6fzJVvuobg_C-Od9n1IS_-b7r3D3lw697RKVu68Xsxfu_PqBy5SO0ztg_F4fjb_rViB9kTEegsmyXbrbsugHWC56x_5h5HUy57pHXS7A414vOnmXbRnq3vo1rVQgvfRz9kPs6qvnHpE46ZdFVJbfFkb5wnkBx_XBV68OznDgFKxIwWGYd_n4qItTakb7HzgP2OJm9KFDD7C39pSfz3CsjJ4Vau2AXqfbxp_LyVefBpjY3ufrwfofHr8cTILu9wKoWaEr0MLXCiMkEyRSKjUpAmXSZFyEN_wLAsC5cxQeGKUJEKKLFJKMippTI1RnDxE-1Vd2ccIR1wbnegCaBNqZaqkNoTFUglAL8xkAYr60c51F3jc5b-4yL0BnGT5wKDcMSgXcYBeDlWuNlE3_kV82LMw7xZgk8eZAMkrYDcZoOdDMSwdZw-Rla3bJgdkBPDVmUYD9GjD8aE14vIfZ4wGKN2aCwOBC8u9XVKVX3x4bkCYLm1fgF71s-Zat_72EU_-i_opupk4eBHRMKGHaH-9au0zAEdrNUI30mUK12z6ftQtDbi_PT5dfIC3Ez4ZebXDL_5gG0M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBBRqaxM7DB4QqyrKl3aoSbdVb8CsQ0SbbzQbUCz-J38iMdxO6VPTWmyVP4jgztr95eIaQFyZjIaoRfiJiNN2w1FeghfmptEGihFXGeXRHO8lwn386jA-XyO_uLgyGVXZ7otuoTa3RRr4WZgK2UgHqwbvxiY9Vo9C72pXQmInFlj39CSpb83ZzA_j7MooGH_beD_15VQFfxyyZ-hbGL4yQsWKBUKlJo0RGBWjzWQxtWTDojw2HVsxZJKTIAqVkzCUPuTEqYfDeK-QqZ3CS4830wcdOfjmsDt5lZ3c2Hpi6cFGUEWgKPlb06hyrLFs7xoi7SlZ4BTFM3ohw8Wg8h3fPh23-47t1R-LgFrk5x7J0fSZ8t8mSre6QG2cyHN4lv4anZlKP0WqjadNOCqktPa4NBig5maB1QXc3Rp8pgGeKpCBH1H1zcdSWptQNxdD8r1TSpsRMxqv0pC3191UqK0MntWoboHdlsOmPUtLdg3VqbBeKdo_sXwpz7pPlqq7sQ0KDRBsd6QJoI25lqqQ2LA6lEgCqYpN5JOj-dq7n-dCxLMdR7vzyLMt7BuXIoFyEHnnVPzKeJQO5iHilY2E-3xea_K8Ue-R53w0rGt00srJ12-QA2ABVo8fWIw9mHO9HY1iWOYu5R9IFWegJMFv4Yk9VfnNZwwH4YjVBj7zupObMZ_1vEo8unsQzcm24N9rOtzd3th6T6xFCnoD7EV8hy9NJa58AYJuqp26VUPLlspflH6OnWCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyF4QPwnMMBI8AILTWI7iR8QGnRVx1hVAUN7C3bsQMSWdE0D2gsfjE_HXZqUlYm97S2SL4ntu7N_5zvfEfLUxMxHM8INpcCjGxa5GqwwN1LWC7W02jQe3b1xONrn7w7EwRr53d2FwbDKbk1sFmpTpnhG3vdjCUupBPOgn7VhEZPB8PX02MUKUuhp7cppLERk1578BPOterUzAF4_C4Lh9qe3I7etMOCmgoVz10JfMiOV0MyTOjJREKogA8s-FvCsMgbtwnB4EpwFUsnY01oJrrjPjdEhg-9eIusRWkU9sv5mezz50EkzB13hXa725sQHJkI2MZUB2A0u1vfq3Kws7h9h_F2hCryQ6Icvpb-6UZ5Bv2eDOP_x5DYb5PA6udYiW7q1EMUbZM0WN8nVU_kOb5FfoxMzK6d4hpPSqp5lKrX0qDQYrtRICC0zOhnsfaQApSmSglTRps_ZYZ2bPK0oBup_pYpWOeY13qTHdZ5-36SqMHRW6roC-qYoNv2RKzr5vEWN7QLTbpP9C2HPHdIrysLeI9QLU5MGaQa0Abcq0io1TPhKS4BYwsQO8brZTtI2OzoW6ThMGi89i5MlgxJkUCJ9hzxfvjJdpAY5j3ijY2HSrhJV8lemHfJk2Qz6jU4bVdiyrhKAb4Cx0X_rkLsLji__xrBIcyy4Q6IVWVgSYO7w1ZYi_9bkEAcYjLUFHfKik5pT3frfIO6fP4jH5DKoZPJ-Z7z7gFwJEP943A34BunNZ7V9COhtrh-1akLJl4vWzD8NsV25
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophilic+surface+modification+of+PDMS+for+droplet+microfluidics+using+a+simple%2C+quick%2C+and+robust+method+via+PVA+deposition&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Trantidou%2C+Tatiana&rft.au=Elani%2C+Yuval&rft.au=Parsons%2C+Edward&rft.au=Ces%2C+Oscar&rft.date=2017-04-24&rft.pub=Nature+Publishing+Group&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=3&rft_id=info:doi/10.1038%2Fmicronano.2016.91&rft_id=info%3Apmid%2F31057854&rft.externalDocID=PMC6444978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon