High-Yield Resveratrol Production in Engineered Escherichia coli
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 77; no. 10; pp. 3451 - 3460 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.05.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
AEM
About
AEM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AEM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0099-2240
Online ISSN:
1098-5336
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AEM
.asm.org, visit:
AEM
|
---|---|
AbstractList | Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol. Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol. Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol. [PUBLICATION ABSTRACT] Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM |
Author | Thomas Hueller Chin Giaw Lim Zachary L. Fowler Steffen Schaffer Mattheos A. G. Koffas |
Author_xml | – sequence: 1 givenname: Chin Giaw surname: Lim fullname: Lim, Chin Giaw organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260 – sequence: 2 givenname: Zachary L. surname: Fowler fullname: Fowler, Zachary L. organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260 – sequence: 3 givenname: Thomas surname: Hueller fullname: Hueller, Thomas organization: Evonik Degussa GmbH, Creavis Technologies & Innovation, Paul-Baumann-Strasse 1, D-45772 Marl, Germany – sequence: 4 givenname: Steffen surname: Schaffer fullname: Schaffer, Steffen organization: Evonik Degussa GmbH, Creavis Technologies & Innovation, Paul-Baumann-Strasse 1, D-45772 Marl, Germany – sequence: 5 givenname: Mattheos A. G. surname: Koffas fullname: Koffas, Mattheos A. G. organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21441338$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEUx4NU7Hb15lkGL-3BqfmdzEVaymqFFkX04ClkM292UmaSmsy0-N-btVuxBYWQwMvnffm-9z1AeyEGQOglwceEUP32dHV5jCnRsib4CVoQ3OhaMCb30ALjpqkp5XgfHeR8hTHmWOpnaJ8SzgljeoFOzv2mr797GNrqC-QbSHZKcag-p9jObvIxVD5Uq7DxASBBW62y6yF513tbuTj45-hpZ4cML3bvEn17v_p6dl5ffPrw8ez0onaCyakGIqTQQnWybWRr17JpWufAaqyxI9CWy5ZD24apruNECMDYWtVRWK_LOGyJ3t3pXs_rEVoHYUp2MNfJjzb9NNF68_An-N5s4o1hhErOSBE43Amk-GOGPJnRZwfDYAPEORstpWBEc1XIo_-ShFNMKBVFdoleP0Kv4pxCWUTRU0pJLmmBXv1t_Y_n-xQKQO8Al2LOCTrj_GS3yy-T-MEQbLZRmxK1-R11qZSmN4-a7nX_ge-c9iXwW5_A2DwaC6NRatvBuCDsFzC6tEg |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2018_05_014 crossref_primary_10_1016_j_foodcont_2021_108050 crossref_primary_10_1016_j_copbio_2014_01_008 crossref_primary_10_1016_j_biotechadv_2018_11_002 crossref_primary_10_1093_femsle_fnw061 crossref_primary_10_1007_s10295_017_1937_9 crossref_primary_10_1002_bit_24988 crossref_primary_10_1007_s00253_019_09672_8 crossref_primary_10_1021_acs_jafc_6b05212 crossref_primary_10_1007_s00253_018_9137_8 crossref_primary_10_1007_s11274_018_2506_8 crossref_primary_10_1007_s10295_019_02239_6 crossref_primary_10_1073_pnas_1406401111 crossref_primary_10_1186_s12934_016_0562_z crossref_primary_10_1021_acsfoodscitech_2c00301 crossref_primary_10_1186_s12934_019_1117_x crossref_primary_10_1007_s11101_017_9546_9 crossref_primary_10_1016_j_ymben_2011_06_008 crossref_primary_10_1016_j_ymben_2016_06_003 crossref_primary_10_1007_s12033_022_00635_5 crossref_primary_10_1038_s41598_017_01700_9 crossref_primary_10_1007_s00253_019_09748_5 crossref_primary_10_1007_s00253_020_10576_1 crossref_primary_10_1007_s11274_015_1889_z crossref_primary_10_3945_an_115_011627 crossref_primary_10_1007_s11274_018_2458_z crossref_primary_10_1128_AEM_02178_16 crossref_primary_10_1016_j_indcrop_2017_12_064 crossref_primary_10_1016_j_procbio_2012_04_005 crossref_primary_10_1016_j_copbio_2013_08_009 crossref_primary_10_4161_bioe_23885 crossref_primary_10_1007_s10529_014_1651_x crossref_primary_10_1007_s11274_022_03263_y crossref_primary_10_1016_j_jbiotec_2017_11_006 crossref_primary_10_1021_acssynbio_1c00163 crossref_primary_10_1007_s13213_014_0922_z crossref_primary_10_1016_j_ymben_2018_04_008 crossref_primary_10_1016_j_ymben_2022_10_013 crossref_primary_10_1016_j_ymben_2015_08_003 crossref_primary_10_1021_acssynbio_6b00291 crossref_primary_10_3390_microorganisms10030628 crossref_primary_10_1007_s12268_017_0804_6 crossref_primary_10_1186_s12934_014_0173_5 crossref_primary_10_1128_AEM_02966_14 crossref_primary_10_1016_j_copbio_2012_08_010 crossref_primary_10_1021_acssynbio_9b00443 crossref_primary_10_1186_s12934_024_02398_x crossref_primary_10_3390_nu9101117 crossref_primary_10_1039_D3GC05013K crossref_primary_10_1016_j_ymben_2020_08_009 crossref_primary_10_1016_j_biochi_2015_05_019 crossref_primary_10_1007_s10295_014_1539_8 crossref_primary_10_4014_jmb_1911_11009 crossref_primary_10_1007_s00253_018_8747_5 crossref_primary_10_1016_j_ymben_2016_01_002 crossref_primary_10_1016_j_ymben_2017_01_006 crossref_primary_10_1007_s00253_011_3747_8 crossref_primary_10_1016_j_ymben_2016_01_006 crossref_primary_10_1021_cb300222b crossref_primary_10_1016_j_cofs_2019_12_007 crossref_primary_10_1186_s12934_023_02055_9 crossref_primary_10_1007_s10295_017_1935_y crossref_primary_10_1002_bit_26939 crossref_primary_10_1016_j_biotechadv_2020_107575 crossref_primary_10_1186_s12934_019_1063_7 crossref_primary_10_1146_annurev_genet_120213_092053 crossref_primary_10_1128_AEM_01448_15 crossref_primary_10_1016_j_nbt_2018_02_011 crossref_primary_10_1007_s00253_014_6282_6 crossref_primary_10_3389_fmolb_2021_732256 crossref_primary_10_3390_molecules28062619 crossref_primary_10_1186_s12934_020_01331_2 crossref_primary_10_3390_cimb46040181 crossref_primary_10_1007_s00253_018_9222_z crossref_primary_10_1021_acs_jafc_0c07588 crossref_primary_10_1186_s13765_021_00595_5 crossref_primary_10_1016_j_ymben_2012_01_006 crossref_primary_10_1021_acs_jafc_9b07628 crossref_primary_10_1016_j_jff_2019_04_008 crossref_primary_10_1002_bit_26797 crossref_primary_10_3390_biom14060712 crossref_primary_10_1007_s00425_017_2797_2 crossref_primary_10_1021_cb400623m crossref_primary_10_1016_j_biotechadv_2018_10_009 crossref_primary_10_1002_adsc_201601168 crossref_primary_10_1039_C5CS00159E crossref_primary_10_1016_j_ymben_2018_11_013 crossref_primary_10_1186_s13068_022_02236_5 crossref_primary_10_3390_agronomy13030858 crossref_primary_10_1016_j_jbiotec_2016_06_007 crossref_primary_10_1186_s12934_022_02006_w crossref_primary_10_1186_s12934_018_0990_z crossref_primary_10_3389_fpls_2016_00089 crossref_primary_10_1080_10408398_2022_2045558 crossref_primary_10_1007_s00253_020_10643_7 crossref_primary_10_3390_app10144847 crossref_primary_10_1016_j_jbiotec_2012_06_001 crossref_primary_10_1080_07388551_2024_2424362 crossref_primary_10_1007_s00253_018_8815_x crossref_primary_10_3390_molecules25102378 crossref_primary_10_3389_fmicb_2021_770734 crossref_primary_10_1371_journal_pone_0156186 crossref_primary_10_1128_AEM_03986_13 crossref_primary_10_1007_s00253_024_13065_x crossref_primary_10_1186_s12934_015_0248_y crossref_primary_10_1186_s12934_021_01551_0 crossref_primary_10_1002_jctb_5762 crossref_primary_10_1038_s41467_023_40947_x crossref_primary_10_1002_biot_201700463 crossref_primary_10_1039_D0NP00030B crossref_primary_10_1016_j_copbio_2020_07_008 crossref_primary_10_1080_14787210_2020_1782188 crossref_primary_10_1007_s00253_016_7723_1 crossref_primary_10_1016_j_copbio_2013_10_004 crossref_primary_10_1111_pbi_12539 crossref_primary_10_1002_elsc_201400022 crossref_primary_10_1002_bit_25237 crossref_primary_10_1016_j_copbio_2024_103178 crossref_primary_10_1021_acssynbio_7b00006 crossref_primary_10_1186_1472_6750_14_67 crossref_primary_10_1002_adbi_201700190 crossref_primary_10_1007_s00253_018_9323_8 crossref_primary_10_5936_csbj_201210016 crossref_primary_10_1186_s12934_020_01401_5 crossref_primary_10_1021_acs_chemrev_2c00403 crossref_primary_10_3390_microbiolres15010018 crossref_primary_10_1007_s10529_023_03441_4 crossref_primary_10_1186_s12934_017_0732_7 crossref_primary_10_1186_s12934_019_1118_9 crossref_primary_10_1038_srep36827 crossref_primary_10_1007_s00253_017_8599_4 crossref_primary_10_1128_ecosalplus_esp_0010_2015 crossref_primary_10_1016_j_biotechadv_2016_02_012 crossref_primary_10_1186_s12934_015_0261_1 crossref_primary_10_1038_ncomms3603 crossref_primary_10_1016_j_tibtech_2019_11_007 crossref_primary_10_1186_s12934_016_0489_4 crossref_primary_10_1007_s00210_019_01696_1 crossref_primary_10_1016_j_ces_2012_10_009 crossref_primary_10_1016_j_jbiotec_2014_08_016 crossref_primary_10_1016_j_tibtech_2017_05_006 crossref_primary_10_1186_s13068_020_01707_x crossref_primary_10_1007_s12010_019_03206_8 crossref_primary_10_1007_s12033_015_9858_1 crossref_primary_10_1016_j_btre_2014_10_008 crossref_primary_10_1128_AEM_02411_14 crossref_primary_10_1007_s10295_016_1793_z crossref_primary_10_1002_jctb_5538 crossref_primary_10_1016_j_cofs_2018_11_002 crossref_primary_10_1039_D4GC00053F crossref_primary_10_1016_j_jbiotec_2024_04_007 crossref_primary_10_1074_jbc_REV119_006132 crossref_primary_10_1016_j_jbiotec_2013_07_030 crossref_primary_10_1016_j_ymben_2012_11_009 crossref_primary_10_1126_science_1217410 crossref_primary_10_1016_j_biotechadv_2020_107538 crossref_primary_10_1021_acssynbio_0c00185 crossref_primary_10_1007_s00203_024_03939_z crossref_primary_10_1007_s10295_015_1725_3 crossref_primary_10_1007_s11274_016_2062_z crossref_primary_10_1039_C5RA08196C crossref_primary_10_1055_a_1576_4148 crossref_primary_10_1016_j_biotechadv_2021_107853 crossref_primary_10_1186_s12934_014_0126_z crossref_primary_10_1002_bbb_2522 crossref_primary_10_1007_s13765_012_2105_6 crossref_primary_10_1021_sb5002505 crossref_primary_10_1371_journal_pone_0101492 crossref_primary_10_1007_s00253_013_5212_3 crossref_primary_10_3389_fbioe_2022_833920 crossref_primary_10_1016_j_synbio_2022_03_001 crossref_primary_10_3389_fmicb_2017_02259 crossref_primary_10_1021_acs_jafc_1c01557 crossref_primary_10_3389_fbioe_2020_00407 crossref_primary_10_1021_sb300016b crossref_primary_10_1016_j_ymben_2015_03_018 crossref_primary_10_1021_acs_chemrev_6b00804 crossref_primary_10_1016_j_biortech_2023_129129 crossref_primary_10_3390_molecules24142571 crossref_primary_10_1016_j_synbio_2017_10_005 crossref_primary_10_1016_j_biortech_2017_07_053 crossref_primary_10_3390_molecules24091836 crossref_primary_10_1186_s12934_017_0700_2 crossref_primary_10_1155_2013_780145 crossref_primary_10_1002_bab_1060 crossref_primary_10_3390_biom11060830 crossref_primary_10_1007_s11101_017_9515_3 crossref_primary_10_1021_acs_jafc_8b05014 crossref_primary_10_1007_s10068_016_0134_3 crossref_primary_10_1016_j_ymben_2021_08_004 crossref_primary_10_1016_j_cpb_2020_100163 crossref_primary_10_1016_j_ymben_2013_04_004 |
Cites_doi | 10.1021/bi015621z 10.1046/j.1432-1327.2001.02289.x 10.1038/nature05354 10.1128/AEM.00270-09 10.1002/elps.1150181505 10.1093/jxb/erp085 10.1074/jbc.M109.088682 10.1042/bj3500229 10.1111/j.1541-4337.2006.00001.x 10.1016/j.jbiotec.2009.03.013 10.1128/AEM.00609-06 10.1016/0014-5793(95)00199-J 10.1016/j.chembiol.2004.05.024 10.1096/fj.07-9574LSF 10.1002/prot.20584 10.1111/j.1432-1033.1988.tb14328.x 10.1515/znc-1975-5-609 10.1016/0140-6736(92)91277-F 10.1038/nature01960 10.1186/1472-6750-6-22 10.1111/j.1467-7652.2009.00409.x 10.1089/152308601317203567 10.1016/S0024-3205(97)00883-7 10.1128/AEM.00200-07 10.1126/science.275.5297.218 10.1016/j.chembiol.2007.05.004 10.1016/S0024-3205(99)00209-X 10.1111/j.1747-0285.2009.00901.x 10.1007/s00425-009-0899-1 10.1038/nature02789 10.1021/mp7001472 10.1038/nrd2060 10.1093/carcin/bgi286 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology May 2011 Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology May 2011 – notice: Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.02186-10 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
EndPage | 3460 |
ExternalDocumentID | PMC3126431 2352993071 21441338 10_1128_AEM_02186_10 aem_77_10_3451 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS EJD F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ZY4 ~02 ~KM .55 .GJ 3O- ADXHL AFFNX AGCDD AI. C1A CGR CUY CVF ECM EIF H~9 MVM NEJ NPM OHT VH1 WHG X7M XJT YV5 ZCG ZGI ZXP 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c536t-e1565857f6d96dab699dccea8080c1ed0c1ac1a2d937ff4155e00aa7f2ebb5333 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 14:33:42 EDT 2025 Fri Jul 11 04:00:11 EDT 2025 Fri Jul 11 06:59:38 EDT 2025 Mon Jun 30 08:52:23 EDT 2025 Mon Jul 21 06:01:00 EDT 2025 Tue Jul 01 02:19:17 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed May 18 15:29:07 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-e1565857f6d96dab699dccea8080c1ed0c1ac1a2d937ff4155e00aa7f2ebb5333 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3126431 |
PMID | 21441338 |
PQID | 867776462 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3126431 proquest_journals_867776462 proquest_miscellaneous_1420122564 proquest_miscellaneous_866531847 crossref_citationtrail_10_1128_AEM_02186_10 highwire_asm_aem_77_10_3451 crossref_primary_10_1128_AEM_02186_10 pubmed_primary_21441338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-01 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Jez J. M. (e_1_3_3_17_2) 2000; 275 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 Sambrook J. (e_1_3_3_30_2) 1989 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 19633125 - Appl Environ Microbiol. 2009 Sep;75(18):5831-9 12939617 - Nature. 2003 Sep 11;425(6954):191-6 11732902 - Biochemistry. 2001 Dec 11;40(49):14829-38 19443619 - J Exp Bot. 2009;60(7):2093-106 15254550 - Nature. 2004 Aug 5;430(7000):686-9 11432743 - Eur J Biochem. 2001 Jul;268(13):3759-66 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51 3169018 - Eur J Biochem. 1988 Oct 1;176(3):661-7 126581 - Z Naturforsch C. 1975 May-Jun;30(3):352-8 17468269 - Appl Environ Microbiol. 2007 Jun;73(12):3877-86 19225805 - Planta. 2009 Apr;229(5):1077-86 16028220 - Proteins. 2005 Sep 1;60(4):803-6 1351198 - Lancet. 1992 Jun 20;339(8808):1523-6 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24 16885328 - Appl Environ Microbiol. 2006 Aug;72(8):5670-2 16338953 - Carcinogenesis. 2006 May;27(5):1038-46 10926848 - Biochem J. 2000 Aug 15;350 Pt 1:229-35 11006298 - J Biol Chem. 2000 Dec 15;275(50):39640-6 9504803 - Electrophoresis. 1997 Dec;18(15):2714-23 7698342 - FEBS Lett. 1995 Mar 20;361(2-3):299-302 10403511 - Life Sci. 1999;64(26):2511-21 16551366 - BMC Biotechnol. 2006;6:22 11813979 - Antioxid Redox Signal. 2001 Dec;3(6):1041-64 17584609 - Chem Biol. 2007 Jun;14(6):613-21 19433224 - J Biotechnol. 2009 May 20;141(3-4):181-8 18333619 - Mol Pharm. 2008 Mar-Apr;5(2):257-65 17942826 - FASEB J. 2008 Mar;22(3):659-61 19490505 - Plant Biotechnol J. 2009 Jun;7(5):422-9 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 15380179 - Chem Biol. 2004 Sep;11(9):1179-94 9395251 - Life Sci. 1997;61(21):2103-10 17086191 - Nature. 2006 Nov 16;444(7117):337-42 8985016 - Science. 1997 Jan 10;275(5297):218-20 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1021/bi015621z – ident: e_1_3_3_24_2 doi: 10.1046/j.1432-1327.2001.02289.x – ident: e_1_3_3_3_2 doi: 10.1038/nature05354 – ident: e_1_3_3_10_2 doi: 10.1128/AEM.00270-09 – volume-title: Molecular cloning: a laboratory manual year: 1989 ident: e_1_3_3_30_2 – ident: e_1_3_3_12_2 doi: 10.1002/elps.1150181505 – ident: e_1_3_3_13_2 doi: 10.1093/jxb/erp085 – ident: e_1_3_3_25_2 doi: 10.1074/jbc.M109.088682 – ident: e_1_3_3_34_2 doi: 10.1042/bj3500229 – ident: e_1_3_3_19_2 doi: 10.1111/j.1541-4337.2006.00001.x – ident: e_1_3_3_26_2 doi: 10.1016/j.jbiotec.2009.03.013 – ident: e_1_3_3_5_2 doi: 10.1128/AEM.00609-06 – ident: e_1_3_3_27_2 doi: 10.1016/0014-5793(95)00199-J – ident: e_1_3_3_2_2 doi: 10.1016/j.chembiol.2004.05.024 – ident: e_1_3_3_28_2 doi: 10.1096/fj.07-9574LSF – ident: e_1_3_3_32_2 doi: 10.1002/prot.20584 – ident: e_1_3_3_22_2 doi: 10.1111/j.1432-1033.1988.tb14328.x – ident: e_1_3_3_33_2 doi: 10.1515/znc-1975-5-609 – ident: e_1_3_3_29_2 doi: 10.1016/0140-6736(92)91277-F – ident: e_1_3_3_14_2 doi: 10.1038/nature01960 – ident: e_1_3_3_35_2 doi: 10.1186/1472-6750-6-22 – ident: e_1_3_3_8_2 doi: 10.1111/j.1467-7652.2009.00409.x – ident: e_1_3_3_7_2 doi: 10.1089/152308601317203567 – ident: e_1_3_3_9_2 doi: 10.1016/S0024-3205(97)00883-7 – ident: e_1_3_3_20_2 doi: 10.1128/AEM.00200-07 – ident: e_1_3_3_15_2 doi: 10.1126/science.275.5297.218 – ident: e_1_3_3_18_2 doi: 10.1016/j.chembiol.2007.05.004 – ident: e_1_3_3_11_2 doi: 10.1016/S0024-3205(99)00209-X – volume: 275 start-page: 39640 year: 2000 ident: e_1_3_3_17_2 article-title: Mechanism of chalcone synthase publication-title: pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J. Biol. Chem. – ident: e_1_3_3_6_2 doi: 10.1111/j.1747-0285.2009.00901.x – ident: e_1_3_3_23_2 doi: 10.1007/s00425-009-0899-1 – ident: e_1_3_3_36_2 doi: 10.1038/nature02789 – ident: e_1_3_3_21_2 doi: 10.1021/mp7001472 – ident: e_1_3_3_4_2 doi: 10.1038/nrd2060 – ident: e_1_3_3_31_2 doi: 10.1093/carcin/bgi286 – reference: 11732902 - Biochemistry. 2001 Dec 11;40(49):14829-38 – reference: 9504803 - Electrophoresis. 1997 Dec;18(15):2714-23 – reference: 19633125 - Appl Environ Microbiol. 2009 Sep;75(18):5831-9 – reference: 1351198 - Lancet. 1992 Jun 20;339(8808):1523-6 – reference: 16028220 - Proteins. 2005 Sep 1;60(4):803-6 – reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42 – reference: 15380179 - Chem Biol. 2004 Sep;11(9):1179-94 – reference: 16551366 - BMC Biotechnol. 2006;6:22 – reference: 17942826 - FASEB J. 2008 Mar;22(3):659-61 – reference: 19225805 - Planta. 2009 Apr;229(5):1077-86 – reference: 19433224 - J Biotechnol. 2009 May 20;141(3-4):181-8 – reference: 16338953 - Carcinogenesis. 2006 May;27(5):1038-46 – reference: 19490505 - Plant Biotechnol J. 2009 Jun;7(5):422-9 – reference: 16885328 - Appl Environ Microbiol. 2006 Aug;72(8):5670-2 – reference: 12939617 - Nature. 2003 Sep 11;425(6954):191-6 – reference: 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506 – reference: 11432743 - Eur J Biochem. 2001 Jul;268(13):3759-66 – reference: 10926848 - Biochem J. 2000 Aug 15;350 Pt 1:229-35 – reference: 19443619 - J Exp Bot. 2009;60(7):2093-106 – reference: 3169018 - Eur J Biochem. 1988 Oct 1;176(3):661-7 – reference: 126581 - Z Naturforsch C. 1975 May-Jun;30(3):352-8 – reference: 7698342 - FEBS Lett. 1995 Mar 20;361(2-3):299-302 – reference: 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24 – reference: 11813979 - Antioxid Redox Signal. 2001 Dec;3(6):1041-64 – reference: 17584609 - Chem Biol. 2007 Jun;14(6):613-21 – reference: 17468269 - Appl Environ Microbiol. 2007 Jun;73(12):3877-86 – reference: 10403511 - Life Sci. 1999;64(26):2511-21 – reference: 15254550 - Nature. 2004 Aug 5;430(7000):686-9 – reference: 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51 – reference: 18333619 - Mol Pharm. 2008 Mar-Apr;5(2):257-65 – reference: 11006298 - J Biol Chem. 2000 Dec 15;275(50):39640-6 – reference: 9395251 - Life Sci. 1997;61(21):2103-10 – reference: 8985016 - Science. 1997 Jan 10;275(5297):218-20 |
SSID | ssj0004068 |
Score | 2.4880164 |
Snippet | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3451 |
SubjectTerms | Acyltransferases - genetics Acyltransferases - metabolism Biotechnology Cardiovascular diseases Chromatography, High Pressure Liquid diabetes E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Health promotion heart diseases host strains humans Industrial production Metabolic Networks and Pathways - genetics Metabolism Microbiology Microorganisms Plant Proteins - genetics Plant Proteins - metabolism Plant species Polyphenols protein sources Recombinant Proteins - genetics Recombinant Proteins - metabolism resveratrol Stilbenes - metabolism structure-activity relationships therapeutics Tissue engineering |
Title | High-Yield Resveratrol Production in Engineered Escherichia coli |
URI | http://aem.asm.org/content/77/10/3451.abstract https://www.ncbi.nlm.nih.gov/pubmed/21441338 https://www.proquest.com/docview/867776462 https://www.proquest.com/docview/1420122564 https://www.proquest.com/docview/866531847 https://pubmed.ncbi.nlm.nih.gov/PMC3126431 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqIQQ8ICgwwgAFCZ6qlPyyk7wxTR0TUDSkTRq8RI7jaJFoNpEWafxH_JfcOXbijE2CSVXUJm6T5r7Yd_Z33xHyOqZlERaJ8BAeXiyryksp514ieFyKKigSpTO7_MwOjuMPJ_RkMvltsZY262Iufl2ZV3ITq8I-sCtmyf6HZfsfhR3wHuwLW7AwbP_JxkjS8L4iBw2n4X-iPjLSzg87FVfNYjSKg-BZLlo0UY305hkAoLY9U-OO4kS6lf2GySX1INbU83e6IsxYfXv2vh4mwvdxhk6B4BvHhK6L2af5gBxp8g4tWpJaBDrlWKZFs87gbWNPRuDsKh0RO8wqk005XV6-St0VZ5mH_kQ3EHW9L4qbgv_J7O5ZV3nRMPStzjaKtVat1B-7ygR_DwohJjrsLpZzVYHLC0bNwKTnKwUQVI_DkH0YGnvC4uFyLwrAd8SM_VshRCRYLOPjF0uY3mepETzFf2VyLML0rX1ipT3dnWXsCBlx6qsCnct8XcsBOnpA7uvIxd3tYPiQTGQzJbe7WqYXU3LHpLi3U3LPUrl8RN4NMHUtmLoDTN26cQeYuhZMXYTpY3K8vzjaO_B04Q5P0IitPRlAmJDSpGJlxkpesCwrhZAcNUxFIEvYcHiFJfjGVYUurfR9zpMqlEUB9o-ekK3mrJFPiStY5kexZAUFP1TKKJXgIpecckYrkQWVQ2bmLuZCq9pjcZXvuYpuwzSH25-r2w97HPKmb33eqblc027HGCTn7SrncpUnCTZFzMFRY6Nc9wZtjrqQCYtZ6JBX_VHoqnH9jTfybNNClB3iQjZlsUPca9qg_CQMs3HikO3O6P2FGuA4JBnBoW-ASvHjI019qhTjNXaf3fibO-Tu8Lg_J1vrHxv5ArzxdfFSPQd_AKFh4Xg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Yield+Resveratrol+Production+in+Engineered+Escherichia+coli&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Lim%2C+Chin+Giaw&rft.au=Fowler%2C+Zachary+L.&rft.au=Hueller%2C+Thomas&rft.au=Schaffer%2C+Steffen&rft.date=2011-05-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=77&rft.issue=10&rft.spage=3451&rft.epage=3460&rft_id=info:doi/10.1128%2FAEM.02186-10&rft_id=info%3Apmid%2F21441338&rft.externalDocID=PMC3126431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |