High-Yield Resveratrol Production in Engineered Escherichia coli

Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 77; no. 10; pp. 3451 - 3460
Main Authors Lim, Chin Giaw, Fowler, Zachary L., Hueller, Thomas, Schaffer, Steffen, Koffas, Mattheos A. G.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
AbstractList Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.
Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.
Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol. [PUBLICATION ABSTRACT]
Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly active in the human body, with a plethora of health-promoting activities against a variety of diseases, including heart disease, diabetes, and cancer, and with even the potential to slow aging. Further development of these potent natural therapeutics hinges on the formation of robust industrial production platforms designed using specifically selected as well as engineered protein sources along with the construction of optimal expression platforms. In this work, we first report the investigation of various stilbene synthases from an array of plant species considering structure-activity relationships, their expression efficiency in microorganisms, and their ability to synthesize resveratrol. Second, we looked into the construct environment of recombinantly expressed stilbene synthases, including different promoters, construct designs, and host strains, to create an Escherichia coli strain capable of producing superior resveratrol titers sufficient for commercial usage. Further improvement of metabolic capabilities of the recombinant strain aimed at improving the intracellular malonyl-coenzyme A pool, a resveratrol precursor, resulted in a final improved titer of 2.3 g/liter resveratrol.
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
Author Thomas Hueller
Chin Giaw Lim
Zachary L. Fowler
Steffen Schaffer
Mattheos A. G. Koffas
Author_xml – sequence: 1
  givenname: Chin Giaw
  surname: Lim
  fullname: Lim, Chin Giaw
  organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260
– sequence: 2
  givenname: Zachary L.
  surname: Fowler
  fullname: Fowler, Zachary L.
  organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260
– sequence: 3
  givenname: Thomas
  surname: Hueller
  fullname: Hueller, Thomas
  organization: Evonik Degussa GmbH, Creavis Technologies & Innovation, Paul-Baumann-Strasse 1, D-45772 Marl, Germany
– sequence: 4
  givenname: Steffen
  surname: Schaffer
  fullname: Schaffer, Steffen
  organization: Evonik Degussa GmbH, Creavis Technologies & Innovation, Paul-Baumann-Strasse 1, D-45772 Marl, Germany
– sequence: 5
  givenname: Mattheos A. G.
  surname: Koffas
  fullname: Koffas, Mattheos A. G.
  organization: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21441338$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4NU7Hb15lkGL-3BqfmdzEVaymqFFkX04ClkM292UmaSmsy0-N-btVuxBYWQwMvnffm-9z1AeyEGQOglwceEUP32dHV5jCnRsib4CVoQ3OhaMCb30ALjpqkp5XgfHeR8hTHmWOpnaJ8SzgljeoFOzv2mr797GNrqC-QbSHZKcag-p9jObvIxVD5Uq7DxASBBW62y6yF513tbuTj45-hpZ4cML3bvEn17v_p6dl5ffPrw8ez0onaCyakGIqTQQnWybWRr17JpWufAaqyxI9CWy5ZD24apruNECMDYWtVRWK_LOGyJ3t3pXs_rEVoHYUp2MNfJjzb9NNF68_An-N5s4o1hhErOSBE43Amk-GOGPJnRZwfDYAPEORstpWBEc1XIo_-ShFNMKBVFdoleP0Kv4pxCWUTRU0pJLmmBXv1t_Y_n-xQKQO8Al2LOCTrj_GS3yy-T-MEQbLZRmxK1-R11qZSmN4-a7nX_ge-c9iXwW5_A2DwaC6NRatvBuCDsFzC6tEg
CODEN AEMIDF
CitedBy_id crossref_primary_10_1016_j_jbiosc_2018_05_014
crossref_primary_10_1016_j_foodcont_2021_108050
crossref_primary_10_1016_j_copbio_2014_01_008
crossref_primary_10_1016_j_biotechadv_2018_11_002
crossref_primary_10_1093_femsle_fnw061
crossref_primary_10_1007_s10295_017_1937_9
crossref_primary_10_1002_bit_24988
crossref_primary_10_1007_s00253_019_09672_8
crossref_primary_10_1021_acs_jafc_6b05212
crossref_primary_10_1007_s00253_018_9137_8
crossref_primary_10_1007_s11274_018_2506_8
crossref_primary_10_1007_s10295_019_02239_6
crossref_primary_10_1073_pnas_1406401111
crossref_primary_10_1186_s12934_016_0562_z
crossref_primary_10_1021_acsfoodscitech_2c00301
crossref_primary_10_1186_s12934_019_1117_x
crossref_primary_10_1007_s11101_017_9546_9
crossref_primary_10_1016_j_ymben_2011_06_008
crossref_primary_10_1016_j_ymben_2016_06_003
crossref_primary_10_1007_s12033_022_00635_5
crossref_primary_10_1038_s41598_017_01700_9
crossref_primary_10_1007_s00253_019_09748_5
crossref_primary_10_1007_s00253_020_10576_1
crossref_primary_10_1007_s11274_015_1889_z
crossref_primary_10_3945_an_115_011627
crossref_primary_10_1007_s11274_018_2458_z
crossref_primary_10_1128_AEM_02178_16
crossref_primary_10_1016_j_indcrop_2017_12_064
crossref_primary_10_1016_j_procbio_2012_04_005
crossref_primary_10_1016_j_copbio_2013_08_009
crossref_primary_10_4161_bioe_23885
crossref_primary_10_1007_s10529_014_1651_x
crossref_primary_10_1007_s11274_022_03263_y
crossref_primary_10_1016_j_jbiotec_2017_11_006
crossref_primary_10_1021_acssynbio_1c00163
crossref_primary_10_1007_s13213_014_0922_z
crossref_primary_10_1016_j_ymben_2018_04_008
crossref_primary_10_1016_j_ymben_2022_10_013
crossref_primary_10_1016_j_ymben_2015_08_003
crossref_primary_10_1021_acssynbio_6b00291
crossref_primary_10_3390_microorganisms10030628
crossref_primary_10_1007_s12268_017_0804_6
crossref_primary_10_1186_s12934_014_0173_5
crossref_primary_10_1128_AEM_02966_14
crossref_primary_10_1016_j_copbio_2012_08_010
crossref_primary_10_1021_acssynbio_9b00443
crossref_primary_10_1186_s12934_024_02398_x
crossref_primary_10_3390_nu9101117
crossref_primary_10_1039_D3GC05013K
crossref_primary_10_1016_j_ymben_2020_08_009
crossref_primary_10_1016_j_biochi_2015_05_019
crossref_primary_10_1007_s10295_014_1539_8
crossref_primary_10_4014_jmb_1911_11009
crossref_primary_10_1007_s00253_018_8747_5
crossref_primary_10_1016_j_ymben_2016_01_002
crossref_primary_10_1016_j_ymben_2017_01_006
crossref_primary_10_1007_s00253_011_3747_8
crossref_primary_10_1016_j_ymben_2016_01_006
crossref_primary_10_1021_cb300222b
crossref_primary_10_1016_j_cofs_2019_12_007
crossref_primary_10_1186_s12934_023_02055_9
crossref_primary_10_1007_s10295_017_1935_y
crossref_primary_10_1002_bit_26939
crossref_primary_10_1016_j_biotechadv_2020_107575
crossref_primary_10_1186_s12934_019_1063_7
crossref_primary_10_1146_annurev_genet_120213_092053
crossref_primary_10_1128_AEM_01448_15
crossref_primary_10_1016_j_nbt_2018_02_011
crossref_primary_10_1007_s00253_014_6282_6
crossref_primary_10_3389_fmolb_2021_732256
crossref_primary_10_3390_molecules28062619
crossref_primary_10_1186_s12934_020_01331_2
crossref_primary_10_3390_cimb46040181
crossref_primary_10_1007_s00253_018_9222_z
crossref_primary_10_1021_acs_jafc_0c07588
crossref_primary_10_1186_s13765_021_00595_5
crossref_primary_10_1016_j_ymben_2012_01_006
crossref_primary_10_1021_acs_jafc_9b07628
crossref_primary_10_1016_j_jff_2019_04_008
crossref_primary_10_1002_bit_26797
crossref_primary_10_3390_biom14060712
crossref_primary_10_1007_s00425_017_2797_2
crossref_primary_10_1021_cb400623m
crossref_primary_10_1016_j_biotechadv_2018_10_009
crossref_primary_10_1002_adsc_201601168
crossref_primary_10_1039_C5CS00159E
crossref_primary_10_1016_j_ymben_2018_11_013
crossref_primary_10_1186_s13068_022_02236_5
crossref_primary_10_3390_agronomy13030858
crossref_primary_10_1016_j_jbiotec_2016_06_007
crossref_primary_10_1186_s12934_022_02006_w
crossref_primary_10_1186_s12934_018_0990_z
crossref_primary_10_3389_fpls_2016_00089
crossref_primary_10_1080_10408398_2022_2045558
crossref_primary_10_1007_s00253_020_10643_7
crossref_primary_10_3390_app10144847
crossref_primary_10_1016_j_jbiotec_2012_06_001
crossref_primary_10_1080_07388551_2024_2424362
crossref_primary_10_1007_s00253_018_8815_x
crossref_primary_10_3390_molecules25102378
crossref_primary_10_3389_fmicb_2021_770734
crossref_primary_10_1371_journal_pone_0156186
crossref_primary_10_1128_AEM_03986_13
crossref_primary_10_1007_s00253_024_13065_x
crossref_primary_10_1186_s12934_015_0248_y
crossref_primary_10_1186_s12934_021_01551_0
crossref_primary_10_1002_jctb_5762
crossref_primary_10_1038_s41467_023_40947_x
crossref_primary_10_1002_biot_201700463
crossref_primary_10_1039_D0NP00030B
crossref_primary_10_1016_j_copbio_2020_07_008
crossref_primary_10_1080_14787210_2020_1782188
crossref_primary_10_1007_s00253_016_7723_1
crossref_primary_10_1016_j_copbio_2013_10_004
crossref_primary_10_1111_pbi_12539
crossref_primary_10_1002_elsc_201400022
crossref_primary_10_1002_bit_25237
crossref_primary_10_1016_j_copbio_2024_103178
crossref_primary_10_1021_acssynbio_7b00006
crossref_primary_10_1186_1472_6750_14_67
crossref_primary_10_1002_adbi_201700190
crossref_primary_10_1007_s00253_018_9323_8
crossref_primary_10_5936_csbj_201210016
crossref_primary_10_1186_s12934_020_01401_5
crossref_primary_10_1021_acs_chemrev_2c00403
crossref_primary_10_3390_microbiolres15010018
crossref_primary_10_1007_s10529_023_03441_4
crossref_primary_10_1186_s12934_017_0732_7
crossref_primary_10_1186_s12934_019_1118_9
crossref_primary_10_1038_srep36827
crossref_primary_10_1007_s00253_017_8599_4
crossref_primary_10_1128_ecosalplus_esp_0010_2015
crossref_primary_10_1016_j_biotechadv_2016_02_012
crossref_primary_10_1186_s12934_015_0261_1
crossref_primary_10_1038_ncomms3603
crossref_primary_10_1016_j_tibtech_2019_11_007
crossref_primary_10_1186_s12934_016_0489_4
crossref_primary_10_1007_s00210_019_01696_1
crossref_primary_10_1016_j_ces_2012_10_009
crossref_primary_10_1016_j_jbiotec_2014_08_016
crossref_primary_10_1016_j_tibtech_2017_05_006
crossref_primary_10_1186_s13068_020_01707_x
crossref_primary_10_1007_s12010_019_03206_8
crossref_primary_10_1007_s12033_015_9858_1
crossref_primary_10_1016_j_btre_2014_10_008
crossref_primary_10_1128_AEM_02411_14
crossref_primary_10_1007_s10295_016_1793_z
crossref_primary_10_1002_jctb_5538
crossref_primary_10_1016_j_cofs_2018_11_002
crossref_primary_10_1039_D4GC00053F
crossref_primary_10_1016_j_jbiotec_2024_04_007
crossref_primary_10_1074_jbc_REV119_006132
crossref_primary_10_1016_j_jbiotec_2013_07_030
crossref_primary_10_1016_j_ymben_2012_11_009
crossref_primary_10_1126_science_1217410
crossref_primary_10_1016_j_biotechadv_2020_107538
crossref_primary_10_1021_acssynbio_0c00185
crossref_primary_10_1007_s00203_024_03939_z
crossref_primary_10_1007_s10295_015_1725_3
crossref_primary_10_1007_s11274_016_2062_z
crossref_primary_10_1039_C5RA08196C
crossref_primary_10_1055_a_1576_4148
crossref_primary_10_1016_j_biotechadv_2021_107853
crossref_primary_10_1186_s12934_014_0126_z
crossref_primary_10_1002_bbb_2522
crossref_primary_10_1007_s13765_012_2105_6
crossref_primary_10_1021_sb5002505
crossref_primary_10_1371_journal_pone_0101492
crossref_primary_10_1007_s00253_013_5212_3
crossref_primary_10_3389_fbioe_2022_833920
crossref_primary_10_1016_j_synbio_2022_03_001
crossref_primary_10_3389_fmicb_2017_02259
crossref_primary_10_1021_acs_jafc_1c01557
crossref_primary_10_3389_fbioe_2020_00407
crossref_primary_10_1021_sb300016b
crossref_primary_10_1016_j_ymben_2015_03_018
crossref_primary_10_1021_acs_chemrev_6b00804
crossref_primary_10_1016_j_biortech_2023_129129
crossref_primary_10_3390_molecules24142571
crossref_primary_10_1016_j_synbio_2017_10_005
crossref_primary_10_1016_j_biortech_2017_07_053
crossref_primary_10_3390_molecules24091836
crossref_primary_10_1186_s12934_017_0700_2
crossref_primary_10_1155_2013_780145
crossref_primary_10_1002_bab_1060
crossref_primary_10_3390_biom11060830
crossref_primary_10_1007_s11101_017_9515_3
crossref_primary_10_1021_acs_jafc_8b05014
crossref_primary_10_1007_s10068_016_0134_3
crossref_primary_10_1016_j_ymben_2021_08_004
crossref_primary_10_1016_j_cpb_2020_100163
crossref_primary_10_1016_j_ymben_2013_04_004
Cites_doi 10.1021/bi015621z
10.1046/j.1432-1327.2001.02289.x
10.1038/nature05354
10.1128/AEM.00270-09
10.1002/elps.1150181505
10.1093/jxb/erp085
10.1074/jbc.M109.088682
10.1042/bj3500229
10.1111/j.1541-4337.2006.00001.x
10.1016/j.jbiotec.2009.03.013
10.1128/AEM.00609-06
10.1016/0014-5793(95)00199-J
10.1016/j.chembiol.2004.05.024
10.1096/fj.07-9574LSF
10.1002/prot.20584
10.1111/j.1432-1033.1988.tb14328.x
10.1515/znc-1975-5-609
10.1016/0140-6736(92)91277-F
10.1038/nature01960
10.1186/1472-6750-6-22
10.1111/j.1467-7652.2009.00409.x
10.1089/152308601317203567
10.1016/S0024-3205(97)00883-7
10.1128/AEM.00200-07
10.1126/science.275.5297.218
10.1016/j.chembiol.2007.05.004
10.1016/S0024-3205(99)00209-X
10.1111/j.1747-0285.2009.00901.x
10.1007/s00425-009-0899-1
10.1038/nature02789
10.1021/mp7001472
10.1038/nrd2060
10.1093/carcin/bgi286
ContentType Journal Article
Copyright Copyright American Society for Microbiology May 2011
Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology May 2011
– notice: Copyright © 2011, American Society for Microbiology 2011 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
DOI 10.1128/AEM.02186-10
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
EndPage 3460
ExternalDocumentID PMC3126431
2352993071
21441338
10_1128_AEM_02186_10
aem_77_10_3451
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
ZY4
~02
~KM
.55
.GJ
3O-
ADXHL
AFFNX
AGCDD
AI.
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NEJ
NPM
OHT
VH1
WHG
X7M
XJT
YV5
ZCG
ZGI
ZXP
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c536t-e1565857f6d96dab699dccea8080c1ed0c1ac1a2d937ff4155e00aa7f2ebb5333
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 14:33:42 EDT 2025
Fri Jul 11 04:00:11 EDT 2025
Fri Jul 11 06:59:38 EDT 2025
Mon Jun 30 08:52:23 EDT 2025
Mon Jul 21 06:01:00 EDT 2025
Tue Jul 01 02:19:17 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed May 18 15:29:07 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-e1565857f6d96dab699dccea8080c1ed0c1ac1a2d937ff4155e00aa7f2ebb5333
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3126431
PMID 21441338
PQID 867776462
PQPubID 42251
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3126431
proquest_journals_867776462
proquest_miscellaneous_1420122564
proquest_miscellaneous_866531847
crossref_citationtrail_10_1128_AEM_02186_10
highwire_asm_aem_77_10_3451
crossref_primary_10_1128_AEM_02186_10
pubmed_primary_21441338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2011
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Jez J. M. (e_1_3_3_17_2) 2000; 275
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
Sambrook J. (e_1_3_3_30_2) 1989
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
19633125 - Appl Environ Microbiol. 2009 Sep;75(18):5831-9
12939617 - Nature. 2003 Sep 11;425(6954):191-6
11732902 - Biochemistry. 2001 Dec 11;40(49):14829-38
19443619 - J Exp Bot. 2009;60(7):2093-106
15254550 - Nature. 2004 Aug 5;430(7000):686-9
11432743 - Eur J Biochem. 2001 Jul;268(13):3759-66
20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51
3169018 - Eur J Biochem. 1988 Oct 1;176(3):661-7
126581 - Z Naturforsch C. 1975 May-Jun;30(3):352-8
17468269 - Appl Environ Microbiol. 2007 Jun;73(12):3877-86
19225805 - Planta. 2009 Apr;229(5):1077-86
16028220 - Proteins. 2005 Sep 1;60(4):803-6
1351198 - Lancet. 1992 Jun 20;339(8808):1523-6
19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24
16885328 - Appl Environ Microbiol. 2006 Aug;72(8):5670-2
16338953 - Carcinogenesis. 2006 May;27(5):1038-46
10926848 - Biochem J. 2000 Aug 15;350 Pt 1:229-35
11006298 - J Biol Chem. 2000 Dec 15;275(50):39640-6
9504803 - Electrophoresis. 1997 Dec;18(15):2714-23
7698342 - FEBS Lett. 1995 Mar 20;361(2-3):299-302
10403511 - Life Sci. 1999;64(26):2511-21
16551366 - BMC Biotechnol. 2006;6:22
11813979 - Antioxid Redox Signal. 2001 Dec;3(6):1041-64
17584609 - Chem Biol. 2007 Jun;14(6):613-21
19433224 - J Biotechnol. 2009 May 20;141(3-4):181-8
18333619 - Mol Pharm. 2008 Mar-Apr;5(2):257-65
17942826 - FASEB J. 2008 Mar;22(3):659-61
19490505 - Plant Biotechnol J. 2009 Jun;7(5):422-9
16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506
15380179 - Chem Biol. 2004 Sep;11(9):1179-94
9395251 - Life Sci. 1997;61(21):2103-10
17086191 - Nature. 2006 Nov 16;444(7117):337-42
8985016 - Science. 1997 Jan 10;275(5297):218-20
References_xml – ident: e_1_3_3_16_2
  doi: 10.1021/bi015621z
– ident: e_1_3_3_24_2
  doi: 10.1046/j.1432-1327.2001.02289.x
– ident: e_1_3_3_3_2
  doi: 10.1038/nature05354
– ident: e_1_3_3_10_2
  doi: 10.1128/AEM.00270-09
– volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: e_1_3_3_30_2
– ident: e_1_3_3_12_2
  doi: 10.1002/elps.1150181505
– ident: e_1_3_3_13_2
  doi: 10.1093/jxb/erp085
– ident: e_1_3_3_25_2
  doi: 10.1074/jbc.M109.088682
– ident: e_1_3_3_34_2
  doi: 10.1042/bj3500229
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1541-4337.2006.00001.x
– ident: e_1_3_3_26_2
  doi: 10.1016/j.jbiotec.2009.03.013
– ident: e_1_3_3_5_2
  doi: 10.1128/AEM.00609-06
– ident: e_1_3_3_27_2
  doi: 10.1016/0014-5793(95)00199-J
– ident: e_1_3_3_2_2
  doi: 10.1016/j.chembiol.2004.05.024
– ident: e_1_3_3_28_2
  doi: 10.1096/fj.07-9574LSF
– ident: e_1_3_3_32_2
  doi: 10.1002/prot.20584
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1432-1033.1988.tb14328.x
– ident: e_1_3_3_33_2
  doi: 10.1515/znc-1975-5-609
– ident: e_1_3_3_29_2
  doi: 10.1016/0140-6736(92)91277-F
– ident: e_1_3_3_14_2
  doi: 10.1038/nature01960
– ident: e_1_3_3_35_2
  doi: 10.1186/1472-6750-6-22
– ident: e_1_3_3_8_2
  doi: 10.1111/j.1467-7652.2009.00409.x
– ident: e_1_3_3_7_2
  doi: 10.1089/152308601317203567
– ident: e_1_3_3_9_2
  doi: 10.1016/S0024-3205(97)00883-7
– ident: e_1_3_3_20_2
  doi: 10.1128/AEM.00200-07
– ident: e_1_3_3_15_2
  doi: 10.1126/science.275.5297.218
– ident: e_1_3_3_18_2
  doi: 10.1016/j.chembiol.2007.05.004
– ident: e_1_3_3_11_2
  doi: 10.1016/S0024-3205(99)00209-X
– volume: 275
  start-page: 39640
  year: 2000
  ident: e_1_3_3_17_2
  article-title: Mechanism of chalcone synthase
  publication-title: pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J. Biol. Chem.
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1747-0285.2009.00901.x
– ident: e_1_3_3_23_2
  doi: 10.1007/s00425-009-0899-1
– ident: e_1_3_3_36_2
  doi: 10.1038/nature02789
– ident: e_1_3_3_21_2
  doi: 10.1021/mp7001472
– ident: e_1_3_3_4_2
  doi: 10.1038/nrd2060
– ident: e_1_3_3_31_2
  doi: 10.1093/carcin/bgi286
– reference: 11732902 - Biochemistry. 2001 Dec 11;40(49):14829-38
– reference: 9504803 - Electrophoresis. 1997 Dec;18(15):2714-23
– reference: 19633125 - Appl Environ Microbiol. 2009 Sep;75(18):5831-9
– reference: 1351198 - Lancet. 1992 Jun 20;339(8808):1523-6
– reference: 16028220 - Proteins. 2005 Sep 1;60(4):803-6
– reference: 17086191 - Nature. 2006 Nov 16;444(7117):337-42
– reference: 15380179 - Chem Biol. 2004 Sep;11(9):1179-94
– reference: 16551366 - BMC Biotechnol. 2006;6:22
– reference: 17942826 - FASEB J. 2008 Mar;22(3):659-61
– reference: 19225805 - Planta. 2009 Apr;229(5):1077-86
– reference: 19433224 - J Biotechnol. 2009 May 20;141(3-4):181-8
– reference: 16338953 - Carcinogenesis. 2006 May;27(5):1038-46
– reference: 19490505 - Plant Biotechnol J. 2009 Jun;7(5):422-9
– reference: 16885328 - Appl Environ Microbiol. 2006 Aug;72(8):5670-2
– reference: 12939617 - Nature. 2003 Sep 11;425(6954):191-6
– reference: 16732220 - Nat Rev Drug Discov. 2006 Jun;5(6):493-506
– reference: 11432743 - Eur J Biochem. 2001 Jul;268(13):3759-66
– reference: 10926848 - Biochem J. 2000 Aug 15;350 Pt 1:229-35
– reference: 19443619 - J Exp Bot. 2009;60(7):2093-106
– reference: 3169018 - Eur J Biochem. 1988 Oct 1;176(3):661-7
– reference: 126581 - Z Naturforsch C. 1975 May-Jun;30(3):352-8
– reference: 7698342 - FEBS Lett. 1995 Mar 20;361(2-3):299-302
– reference: 19843076 - Chem Biol Drug Des. 2009 Dec;74(6):619-24
– reference: 11813979 - Antioxid Redox Signal. 2001 Dec;3(6):1041-64
– reference: 17584609 - Chem Biol. 2007 Jun;14(6):613-21
– reference: 17468269 - Appl Environ Microbiol. 2007 Jun;73(12):3877-86
– reference: 10403511 - Life Sci. 1999;64(26):2511-21
– reference: 15254550 - Nature. 2004 Aug 5;430(7000):686-9
– reference: 20061378 - J Biol Chem. 2010 Mar 12;285(11):8340-51
– reference: 18333619 - Mol Pharm. 2008 Mar-Apr;5(2):257-65
– reference: 11006298 - J Biol Chem. 2000 Dec 15;275(50):39640-6
– reference: 9395251 - Life Sci. 1997;61(21):2103-10
– reference: 8985016 - Science. 1997 Jan 10;275(5297):218-20
SSID ssj0004068
Score 2.4880164
Snippet Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Plant polyphenols have been the subject of several recent scientific investigations since many of the molecules in this class have been found to be highly...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3451
SubjectTerms Acyltransferases - genetics
Acyltransferases - metabolism
Biotechnology
Cardiovascular diseases
Chromatography, High Pressure Liquid
diabetes
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Health promotion
heart diseases
host strains
humans
Industrial production
Metabolic Networks and Pathways - genetics
Metabolism
Microbiology
Microorganisms
Plant Proteins - genetics
Plant Proteins - metabolism
Plant species
Polyphenols
protein sources
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
resveratrol
Stilbenes - metabolism
structure-activity relationships
therapeutics
Tissue engineering
Title High-Yield Resveratrol Production in Engineered Escherichia coli
URI http://aem.asm.org/content/77/10/3451.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21441338
https://www.proquest.com/docview/867776462
https://www.proquest.com/docview/1420122564
https://www.proquest.com/docview/866531847
https://pubmed.ncbi.nlm.nih.gov/PMC3126431
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqIQQ8ICgwwgAFCZ6qlPyyk7wxTR0TUDSkTRq8RI7jaJFoNpEWafxH_JfcOXbijE2CSVXUJm6T5r7Yd_Z33xHyOqZlERaJ8BAeXiyryksp514ieFyKKigSpTO7_MwOjuMPJ_RkMvltsZY262Iufl2ZV3ITq8I-sCtmyf6HZfsfhR3wHuwLW7AwbP_JxkjS8L4iBw2n4X-iPjLSzg87FVfNYjSKg-BZLlo0UY305hkAoLY9U-OO4kS6lf2GySX1INbU83e6IsxYfXv2vh4mwvdxhk6B4BvHhK6L2af5gBxp8g4tWpJaBDrlWKZFs87gbWNPRuDsKh0RO8wqk005XV6-St0VZ5mH_kQ3EHW9L4qbgv_J7O5ZV3nRMPStzjaKtVat1B-7ygR_DwohJjrsLpZzVYHLC0bNwKTnKwUQVI_DkH0YGnvC4uFyLwrAd8SM_VshRCRYLOPjF0uY3mepETzFf2VyLML0rX1ipT3dnWXsCBlx6qsCnct8XcsBOnpA7uvIxd3tYPiQTGQzJbe7WqYXU3LHpLi3U3LPUrl8RN4NMHUtmLoDTN26cQeYuhZMXYTpY3K8vzjaO_B04Q5P0IitPRlAmJDSpGJlxkpesCwrhZAcNUxFIEvYcHiFJfjGVYUurfR9zpMqlEUB9o-ekK3mrJFPiStY5kexZAUFP1TKKJXgIpecckYrkQWVQ2bmLuZCq9pjcZXvuYpuwzSH25-r2w97HPKmb33eqblc027HGCTn7SrncpUnCTZFzMFRY6Nc9wZtjrqQCYtZ6JBX_VHoqnH9jTfybNNClB3iQjZlsUPca9qg_CQMs3HikO3O6P2FGuA4JBnBoW-ASvHjI019qhTjNXaf3fibO-Tu8Lg_J1vrHxv5ArzxdfFSPQd_AKFh4Xg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Yield+Resveratrol+Production+in+Engineered+Escherichia+coli&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Lim%2C+Chin+Giaw&rft.au=Fowler%2C+Zachary+L.&rft.au=Hueller%2C+Thomas&rft.au=Schaffer%2C+Steffen&rft.date=2011-05-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=77&rft.issue=10&rft.spage=3451&rft.epage=3460&rft_id=info:doi/10.1128%2FAEM.02186-10&rft_id=info%3Apmid%2F21441338&rft.externalDocID=PMC3126431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon