Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning
Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection rad...
Saved in:
Published in | Nature biomedical engineering Vol. 3; no. 11; pp. 880 - 888 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2157-846X 2157-846X |
DOI | 10.1038/s41551-019-0466-4 |
Cover
Loading…
Abstract | Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.
A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. |
---|---|
AbstractList | Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. Tomographic imaging via penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here, we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. |
Author | Shen, Liyue Zhao, Wei Xing, Lei |
AuthorAffiliation | 2 Department of Electrical Engineering, Stanford University, Stanford, USA, 94305 1 Department of Radiation Oncology, Stanford University, Stanford, USA, 94305 |
AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering, Stanford University, Stanford, USA, 94305 – name: 1 Department of Radiation Oncology, Stanford University, Stanford, USA, 94305 |
Author_xml | – sequence: 1 givenname: Liyue surname: Shen fullname: Shen, Liyue organization: Department of Radiation Oncology, Stanford University, Department of Electrical Engineering, Stanford University – sequence: 2 givenname: Wei orcidid: 0000-0002-6182-4746 surname: Zhao fullname: Zhao, Wei organization: Department of Radiation Oncology, Stanford University – sequence: 3 givenname: Lei orcidid: 0000-0003-2536-5359 surname: Xing fullname: Xing, Lei email: lei@stanford.edu organization: Department of Radiation Oncology, Stanford University, Department of Electrical Engineering, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31659306$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1r1jAUxotM3Jz7A7yRgDfeVJPmo82NIMOpMNALBe_CedPTLi9tUpP21f33S-mcc6AE8kF-z5Nz8jwtjnzwWBTPGX3NKG_eJMGkZCVluqRCqVI8Kk4qJuuyEer70b39cXGW0p7STHKha_mkOOZMSc2pOil-fYHZoZ_LNKF1nbMkog0-zXGxswuehI4cwrCMOMd8acM4LTO2ZA5j6CNMV9fEjdBjIl0MIwGSnO8HJFMMe9wcDg5_5glIiziRASH6zDwrHncwJDy7XU-Lbxfvv55_LC8_f_h0_u6ytJKruWwBtapk2wjdyi4fBDSNqACs2DVgKw67CjUooIqC0KxueA21YppZ3VQ7zk-Lt5vvtOxGbG3uNcJgppjLjtcmgDN_33h3ZfpwMKqReawGr24NYvixYJrN6JLFYQCPYUmm4oxWWgq-oi8foPuwRJ_by1SjlVaskpl6cb-iu1J-h5IBtgE2hpQidncIo2bN3mzZm5yoWbM3ImvqBxrrZlj_Pzflhv8qq02Z8iu-x_in6H-LbgAr98Wz |
CitedBy_id | crossref_primary_10_1177_08953996241301661 crossref_primary_10_1016_j_cmpb_2023_107708 crossref_primary_10_61186_ijbc_15_3_13 crossref_primary_10_1016_j_cmpb_2021_106575 crossref_primary_10_1016_j_phro_2023_100444 crossref_primary_10_1038_s41571_022_00631_3 crossref_primary_10_1002_mp_15218 crossref_primary_10_1038_s41598_022_20279_4 crossref_primary_10_1088_1361_6560_ad46dc crossref_primary_10_1088_1361_6560_acb30d crossref_primary_10_1007_s11030_021_10225_3 crossref_primary_10_1016_j_compbiomed_2024_108390 crossref_primary_10_1016_j_compmedimag_2025_102518 crossref_primary_10_1097_RLI_0000000000000995 crossref_primary_10_1016_j_media_2022_102372 crossref_primary_10_14326_abe_12_21 crossref_primary_10_1109_TMI_2022_3148728 crossref_primary_10_3389_fmed_2022_832920 crossref_primary_10_1016_j_compbiomed_2024_108393 crossref_primary_10_1088_1361_6560_abcde8 crossref_primary_10_1155_2022_2872461 crossref_primary_10_1002_mp_16141 crossref_primary_10_1088_1361_6560_acd29d crossref_primary_10_1002_mp_15176 crossref_primary_10_1109_TMI_2023_3313795 crossref_primary_10_1002_mp_16781 crossref_primary_10_1038_s41551_022_00953_8 crossref_primary_10_1016_j_compmedimag_2022_102067 crossref_primary_10_1016_S2589_7500_20_30076_5 crossref_primary_10_1109_TIM_2024_3476543 crossref_primary_10_1109_TCI_2021_3070184 crossref_primary_10_1109_JBHI_2022_3225697 crossref_primary_10_1038_s41598_025_87014_7 crossref_primary_10_1016_j_semradonc_2024_07_005 crossref_primary_10_1088_1361_6560_ad6edd crossref_primary_10_1109_TPAMI_2024_3465649 crossref_primary_10_1007_s13246_023_01317_5 crossref_primary_10_1088_1361_6560_abc303 crossref_primary_10_1007_s11548_022_02586_3 crossref_primary_10_1088_1361_6560_aba165 crossref_primary_10_1109_TMI_2024_3473970 crossref_primary_10_1002_mp_16691 crossref_primary_10_1002_mp_16212 crossref_primary_10_1088_1361_6560_ace1d0 crossref_primary_10_1097_RCT_0000000000001734 crossref_primary_10_3390_tomography11030023 crossref_primary_10_1016_j_media_2024_103283 crossref_primary_10_1364_OE_522097 crossref_primary_10_3389_fonc_2022_806742 crossref_primary_10_3390_cancers16030570 crossref_primary_10_3390_jimaging8100271 crossref_primary_10_1016_j_jncc_2023_08_002 crossref_primary_10_1186_s13244_021_01105_3 crossref_primary_10_3390_tomography8050179 crossref_primary_10_1002_mp_15350 crossref_primary_10_1007_s10439_024_03473_5 crossref_primary_10_1088_1361_6560_adaad1 crossref_primary_10_1038_s41467_023_36383_6 crossref_primary_10_1109_TMI_2024_3439573 crossref_primary_10_1016_j_medengphy_2023_104088 crossref_primary_10_1155_2022_5794681 crossref_primary_10_1002_mp_14785 crossref_primary_10_1088_1361_6560_ac508d crossref_primary_10_1016_j_compbiomed_2022_105710 crossref_primary_10_1109_TMI_2021_3097808 crossref_primary_10_1016_j_compbiomed_2023_106663 crossref_primary_10_1016_j_arth_2024_06_059 crossref_primary_10_1016_j_xcrm_2022_100775 crossref_primary_10_1109_TMI_2021_3084748 crossref_primary_10_1109_TGRS_2021_3110606 crossref_primary_10_1016_j_ejmp_2022_05_013 crossref_primary_10_1016_j_media_2021_102001 crossref_primary_10_1088_1361_6560_ac6b7b crossref_primary_10_1016_j_media_2021_102339 crossref_primary_10_1016_j_dsp_2023_104123 crossref_primary_10_1109_JIOT_2023_3291051 crossref_primary_10_1093_bjro_tzae017 crossref_primary_10_1186_s13256_024_04743_5 crossref_primary_10_1016_j_bspc_2022_104072 crossref_primary_10_1109_TMI_2024_3387830 crossref_primary_10_1002_mp_15662 crossref_primary_10_1117_1_JMI_11_2_024008 crossref_primary_10_1109_TMC_2022_3214721 crossref_primary_10_1016_j_knosys_2021_107680 crossref_primary_10_1016_j_compbiomed_2024_108868 crossref_primary_10_1016_j_xcrp_2024_101940 crossref_primary_10_1080_21681163_2024_2359397 crossref_primary_10_1002_mp_15822 crossref_primary_10_1002_mp_14328 crossref_primary_10_1016_j_ijrobp_2024_11_077 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1088_1361_6560_ac7b09 crossref_primary_10_1364_AO_534352 crossref_primary_10_1088_2057_1976_ad3bb9 crossref_primary_10_1016_j_bspc_2024_106384 crossref_primary_10_1038_s41598_024_65795_7 crossref_primary_10_1002_mp_16580 crossref_primary_10_1109_TIM_2023_3296838 crossref_primary_10_1016_j_semradonc_2022_06_003 crossref_primary_10_1088_1361_6560_acb889 crossref_primary_10_1002_mp_16226 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1002_mp_15414 crossref_primary_10_1109_TIM_2022_3221772 crossref_primary_10_1002_pro6_1242 crossref_primary_10_1002_mp_14835 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1016_j_ejro_2022_100441 crossref_primary_10_1109_TCI_2022_3201390 crossref_primary_10_1002_mp_15806 crossref_primary_10_1002_smtd_202200979 crossref_primary_10_1016_j_semradonc_2022_06_006 crossref_primary_10_1088_1361_6560_ada519 crossref_primary_10_1109_TRPMS_2021_3107454 crossref_primary_10_1109_TNNLS_2022_3177134 crossref_primary_10_1088_1361_6560_ac7bcd crossref_primary_10_1038_s41551_021_00758_1 crossref_primary_10_1002_mp_15160 crossref_primary_10_2174_0118749445335956241002052628 crossref_primary_10_1007_s11760_024_03334_7 crossref_primary_10_1016_j_compbiomed_2024_109574 crossref_primary_10_1371_journal_pone_0297437 crossref_primary_10_1016_j_media_2023_102998 crossref_primary_10_1002_mp_16377 crossref_primary_10_1038_s41746_023_00859_y crossref_primary_10_1007_s11548_023_02877_3 crossref_primary_10_1016_j_compbiomed_2023_106615 crossref_primary_10_1038_s43856_024_00672_y crossref_primary_10_1364_OE_532255 crossref_primary_10_1002_mp_14624 crossref_primary_10_1109_TIM_2021_3068142 crossref_primary_10_1002_btm2_10494 crossref_primary_10_1088_1361_6560_ac067f crossref_primary_10_1002_mp_17617 crossref_primary_10_1109_TRPMS_2024_3439585 crossref_primary_10_1016_j_compbiomed_2023_107663 crossref_primary_10_1002_smtd_202001025 crossref_primary_10_1039_D2NJ01021F crossref_primary_10_1109_TCI_2022_3216202 crossref_primary_10_1109_TIM_2024_3353877 crossref_primary_10_1200_CCI_23_00136 crossref_primary_10_1038_s41467_023_43958_w crossref_primary_10_1080_10589759_2023_2195646 crossref_primary_10_1111_1754_9485_13285 crossref_primary_10_3390_tomography9060169 crossref_primary_10_1002_mp_17572 crossref_primary_10_1002_mp_15673 crossref_primary_10_3390_cancers15245768 crossref_primary_10_1002_mp_14587 crossref_primary_10_1002_mp_16644 crossref_primary_10_1016_j_ejmp_2022_06_016 crossref_primary_10_1109_TMI_2021_3090257 crossref_primary_10_1186_s41824_020_00086_8 crossref_primary_10_1088_1361_6560_abca05 crossref_primary_10_1038_s41551_020_00682_w crossref_primary_10_1088_1361_6560_abb02c crossref_primary_10_20517_2574_1225_2024_78 crossref_primary_10_1109_TMI_2024_3456251 crossref_primary_10_1007_s10462_025_11109_w crossref_primary_10_1016_j_media_2021_102289 crossref_primary_10_1109_TMI_2024_3406876 crossref_primary_10_1002_mp_17290 crossref_primary_10_1007_s00521_024_10690_5 crossref_primary_10_1155_2021_5852595 |
Cites_doi | 10.1109/TMI.2006.882141 10.1002/mrm.26841 10.1109/TMI.2016.2528162 10.1002/mp.13122 10.1038/s41551-018-0195-0 10.1001/jama.2017.18152 10.1109/TSP.2007.914345 10.1109/TIP.2003.819861 10.1109/83.535846 10.1109/TMI.2003.812253 10.1002/mrm.27707 10.1002/mrm.26467 10.1016/j.neunet.2014.09.003 10.1038/nature25988 10.1118/1.2836423 10.1109/ACCESS.2018.2807385 10.1118/1.3582693 10.1002/mrm.21391 10.1109/42.870666 10.1016/j.ijrobp.2019.05.071 10.1109/TNNLS.2018.2886017 10.1016/j.radonc.2019.06.027 10.1109/TEVC.2019.2890858 10.1088/0031-9155/54/9/014 10.1126/science.1127647 10.1038/nature14539 10.1118/1.3481510 10.1111/cgf.13369 10.1038/nature21056 10.1118/1.4918577 10.1088/0031-9155/53/17/021 10.1118/1.3426002 10.1001/jama.2016.17216 10.1109/TMI.2012.2195669 10.1126/science.aar6170 10.1002/cpa.20124 10.1109/CVPR.2018.00175 10.1117/12.2513133 10.1016/j.mri.2019.03.012 10.1145/1390156.1390177 10.1109/CVPR.2017.632 10.1002/mp.13583 10.1109/CVPR.2016.90 10.1007/978-94-009-1740-8 10.1109/WACV.2018.00181 10.1109/ICCV.2015.312 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 The Author(s), under exclusive licence to Springer Nature Limited 2019. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41551-019-0466-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 888 |
ExternalDocumentID | PMC6858583 31659306 10_1038_s41551_019_0466_4 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: R01EB016777 funderid: https://doi.org/10.13039/100000070 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA176553 funderid: https://doi.org/10.13039/100000054 – fundername: NCI NIH HHS grantid: R01 CA176553 – fundername: NCI NIH HHS grantid: R01 CA223667 – fundername: NIBIB NIH HHS grantid: R01 EB016777 |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-dae9625d849d5fae94a8842aac4b8ac23ab2e9a6a060a4917837a76191c982b33 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Thu Aug 21 18:23:04 EDT 2025 Fri Jul 11 10:57:11 EDT 2025 Wed Jul 16 16:25:52 EDT 2025 Thu Apr 03 07:11:04 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Sun Aug 31 08:57:43 EDT 2025 Sun Aug 31 08:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-dae9625d849d5fae94a8842aac4b8ac23ab2e9a6a060a4917837a76191c982b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 L.X. proposed the original notion of single-view reconstruction for tomographic imaging and supervised the research, L.S. designed and implemented the algorithm. W.Z. designed the experiments and implemented the data generation process. L.S. and W.Z. carried out experimental work. L.X., L.S. and W.Z. wrote the manuscript. All the authors reviewed the manuscript. These authors contributed equally Author contributions |
ORCID | 0000-0003-2536-5359 0000-0002-6182-4746 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6858583 |
PMID | 31659306 |
PQID | 2389696125 |
PQPubID | 4669717 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6858583 proquest_miscellaneous_2310295433 proquest_journals_2389696125 pubmed_primary_31659306 crossref_primary_10_1038_s41551_019_0466_4 crossref_citationtrail_10_1038_s41551_019_0466_4 springer_journals_10_1038_s41551_019_0466_4 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhu, Liu, Cauley, Rosen, Rosen (CR15) 2018; 555 Esteva (CR30) 2017; 542 CR39 Sidky, Pan (CR3) 2008; 53 Candes, Romberg, Tao (CR1) 2006; 59 Ting (CR32) 2017; 318 Ji, Xue, Carin (CR8) 2008; 56 Yu, Wang (CR5) 2009; 54 Zhao (CR34) 2019; 140 Akhtar, Mian (CR43) 2018; 6 Eslami (CR20) 2018; 360 Wang, Bovik, Sheikh, Simoncelli (CR54) 2004; 13 Preiswerk (CR14) 2017; 78 Ibragimov, Toesca, Chang, Koong, Xing (CR28) 2018; 45 CR9 CR49 Su, Vargas, Sakurai (CR45) 2019; 23 Hinton, Salakhutdinov (CR47) 2006; 313 CR48 van der Maaten, Hinton (CR38) 2008; 9 CR44 Zhao (CR36) 2019; 105 CR42 CR41 CR40 Choi, Wang, Zhu, Suh, Boyd, Xing (CR6) 2010; 37 Schmidhuber (CR22) 2015; 61 Henzler, Rasche, Ropinski, Ritschel (CR16) 2018; 37 Stayman, Fessler (CR10) 2000; 19 Li (CR56) 2011; 38 Chen, Tang, Leng (CR4) 2008; 35 CR19 CR17 LeCun, Bengio, Hinton (CR21) 2015; 521 CR53 CR52 CR51 CR50 Hoo-Chang (CR37) 2016; 35 Nomura, Xu, Shirato, Shimizu, Xing (CR18) 2019; 46 Fessler, Rogers (CR7) 1996; 5 Xu (CR13) 2012; 31 Gulshan (CR31) 2016; 316 Lustig, Donoho, Pauly (CR2) 2007; 58 Liu, Feng, Kijowski (CR35) 2019; 82 Li (CR55) 2010; 37 Xu (CR57) 2015; 42 Yuan, He, Zhu, Li (CR46) 2019; 30 CR27 CR26 CR25 Jiang, Wang (CR11) 2003; 22 CR24 CR23 Poplin (CR29) 2018; 2 Wang, Li, Lu, Liang (CR12) 2006; 25 Liu (CR33) 2018; 79 R Poplin (466_CR29) 2018; 2 J Wang (466_CR12) 2006; 25 B Zhu (466_CR15) 2018; 555 466_CR17 466_CR19 J Su (466_CR45) 2019; 23 466_CR25 466_CR24 F Preiswerk (466_CR14) 2017; 78 466_CR27 466_CR26 EJ Candes (466_CR1) 2006; 59 466_CR23 P Henzler (466_CR16) 2018; 37 SA Eslami (466_CR20) 2018; 360 R Li (466_CR56) 2011; 38 F Liu (466_CR33) 2018; 79 V Gulshan (466_CR31) 2016; 316 Y Xu (466_CR57) 2015; 42 S Ji (466_CR8) 2008; 56 X Yuan (466_CR46) 2019; 30 J Schmidhuber (466_CR22) 2015; 61 L van der Maaten (466_CR38) 2008; 9 GH Chen (466_CR4) 2008; 35 DSW Ting (466_CR32) 2017; 318 Y Nomura (466_CR18) 2019; 46 GE Hinton (466_CR47) 2006; 313 W Zhao (466_CR34) 2019; 140 N Akhtar (466_CR43) 2018; 6 K Choi (466_CR6) 2010; 37 466_CR39 466_CR9 466_CR49 466_CR48 466_CR42 466_CR44 R Li (466_CR55) 2010; 37 EY Sidky (466_CR3) 2008; 53 466_CR41 466_CR40 B Ibragimov (466_CR28) 2018; 45 S Hoo-Chang (466_CR37) 2016; 35 W Zhao (466_CR36) 2019; 105 A Esteva (466_CR30) 2017; 542 F Liu (466_CR35) 2019; 82 H Yu (466_CR5) 2009; 54 M Jiang (466_CR11) 2003; 22 Q Xu (466_CR13) 2012; 31 466_CR53 JA Fessler (466_CR7) 1996; 5 JW Stayman (466_CR10) 2000; 19 Y LeCun (466_CR21) 2015; 521 Z Wang (466_CR54) 2004; 13 466_CR50 466_CR52 466_CR51 M Lustig (466_CR2) 2007; 58 |
References_xml | – volume: 25 start-page: 1272 year: 2006 end-page: 1283 ident: CR12 article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882141 – ident: CR49 – volume: 79 start-page: 2379 year: 2018 end-page: 2391 ident: CR33 article-title: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26841 – ident: CR39 – ident: CR51 – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: CR37 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 45 start-page: 4763 year: 2018 end-page: 4774 ident: CR28 article-title: Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT publication-title: Med. Phys. doi: 10.1002/mp.13122 – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: CR29 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: CR32 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – ident: CR25 – ident: CR42 – ident: CR19 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR38 article-title: Visualizing data using -SNE publication-title: J. Mach. Learn. Res. – volume: 46 start-page: 3142 year: 2019 end-page: 3155 ident: CR18 article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network publication-title: Med. Phys. – volume: 56 start-page: 2346 year: 2008 end-page: 2356 ident: CR8 article-title: Bayesian compressive sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914345 – ident: CR50 – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: CR54 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2003.819861 – volume: 5 start-page: 1346 year: 1996 end-page: 1358 ident: CR7 article-title: Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs publication-title: IEEE Trans. Image Process doi: 10.1109/83.535846 – ident: CR9 – volume: 22 start-page: 569 year: 2003 end-page: 579 ident: CR11 article-title: Convergence studies on iterative algorithms for image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.812253 – volume: 82 start-page: 174 year: 2019 end-page: 188 ident: CR35 article-title: MANTIS: Model-Augmented neural network with incoherent k-space sampling for efficient mr parameter mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27707 – volume: 78 start-page: 897 year: 2017 end-page: 908 ident: CR14 article-title: Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26467 – ident: CR26 – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR22 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 555 start-page: 487 year: 2018 end-page: 492 ident: CR15 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – volume: 35 start-page: 660 year: 2008 end-page: 663 ident: CR4 article-title: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets publication-title: Med. Phys. doi: 10.1118/1.2836423 – volume: 6 start-page: 14410 year: 2018 end-page: 14430 ident: CR43 article-title: Threat of adversarial attacks on deep learning in computer vision: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – volume: 38 start-page: 2783 year: 2011 end-page: 2794 ident: CR56 article-title: 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy publication-title: Med. Phys. doi: 10.1118/1.3582693 – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: CR2 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 – volume: 19 start-page: 601 year: 2000 end-page: 615 ident: CR10 article-title: Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.870666 – volume: 105 start-page: 432 year: 2019 end-page: 439 ident: CR36 article-title: Markerless pancreatic tumor target localization enabled by deep learning publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2019.05.071 – volume: 30 start-page: 2805 year: 2019 end-page: 2824 ident: CR46 article-title: Adversarial examples: attacks and defenses for deep learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2886017 – ident: CR53 – volume: 140 start-page: 167 year: 2019 end-page: 174 ident: CR34 article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT) publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2019.06.027 – volume: 23 start-page: 828 year: 2019 end-page: 841 ident: CR45 article-title: One pixel attack for fooling deep neural networks. IEEE Trans publication-title: Evol. Comput. doi: 10.1109/TEVC.2019.2890858 – volume: 54 start-page: 2791 year: 2009 end-page: 2805 ident: CR5 article-title: Compressed sensing based interior tomography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/9/014 – ident: CR40 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR47 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: CR27 – ident: CR23 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 37 start-page: 5113 year: 2010 end-page: 5125 ident: CR6 article-title: Compressed sensing based cone-beam computed tomography reconstruction with a first-order method publication-title: Med. Phys. doi: 10.1118/1.3481510 – ident: CR44 – volume: 37 start-page: 377 year: 2018 end-page: 388 ident: CR16 article-title: Single-image tomography: 3D volumes from 2D cranial X-rays publication-title: Computer Graph. Forum doi: 10.1111/cgf.13369 – ident: CR48 – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: CR30 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 42 start-page: 2498 year: 2015 end-page: 2509 ident: CR57 article-title: A method for volumetric imaging in radiotherapy using single x-ray projection publication-title: Med. Phys. doi: 10.1118/1.4918577 – ident: CR52 – ident: CR17 – volume: 53 start-page: 4777 year: 2008 end-page: 4807 ident: CR3 article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/17/021 – volume: 37 start-page: 2822 year: 2010 end-page: 2826 ident: CR55 article-title: Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy publication-title: Med. Phys. doi: 10.1118/1.3426002 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR31 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 31 start-page: 1682 year: 2012 end-page: 1697 ident: CR13 article-title: Low-dose X-ray CT reconstruction via dictionary learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2195669 – volume: 360 start-page: 1204 year: 2018 end-page: 1210 ident: CR20 article-title: Neural scene representation and rendering publication-title: Science doi: 10.1126/science.aar6170 – volume: 59 start-page: 1207 year: 2006 end-page: 1223 ident: CR1 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20124 – ident: CR41 – ident: CR24 – volume: 22 start-page: 569 year: 2003 ident: 466_CR11 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.812253 – volume: 19 start-page: 601 year: 2000 ident: 466_CR10 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.870666 – volume: 58 start-page: 1182 year: 2007 ident: 466_CR2 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 – volume: 78 start-page: 897 year: 2017 ident: 466_CR14 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26467 – ident: 466_CR44 – ident: 466_CR40 doi: 10.1109/CVPR.2018.00175 – volume: 30 start-page: 2805 year: 2019 ident: 466_CR46 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2886017 – volume: 542 start-page: 115 year: 2017 ident: 466_CR30 publication-title: Nature doi: 10.1038/nature21056 – volume: 360 start-page: 1204 year: 2018 ident: 466_CR20 publication-title: Science doi: 10.1126/science.aar6170 – ident: 466_CR24 – volume: 37 start-page: 377 year: 2018 ident: 466_CR16 publication-title: Computer Graph. Forum doi: 10.1111/cgf.13369 – ident: 466_CR53 – volume: 9 start-page: 2579 year: 2008 ident: 466_CR38 publication-title: J. Mach. Learn. Res. – volume: 555 start-page: 487 year: 2018 ident: 466_CR15 publication-title: Nature doi: 10.1038/nature25988 – volume: 56 start-page: 2346 year: 2008 ident: 466_CR8 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914345 – volume: 61 start-page: 85 year: 2015 ident: 466_CR22 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 23 start-page: 828 year: 2019 ident: 466_CR45 publication-title: Evol. Comput. doi: 10.1109/TEVC.2019.2890858 – volume: 140 start-page: 167 year: 2019 ident: 466_CR34 publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2019.06.027 – volume: 37 start-page: 2822 year: 2010 ident: 466_CR55 publication-title: Med. Phys. doi: 10.1118/1.3426002 – volume: 37 start-page: 5113 year: 2010 ident: 466_CR6 publication-title: Med. Phys. doi: 10.1118/1.3481510 – ident: 466_CR23 – volume: 105 start-page: 432 year: 2019 ident: 466_CR36 publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2019.05.071 – ident: 466_CR17 doi: 10.1117/12.2513133 – volume: 521 start-page: 436 year: 2015 ident: 466_CR21 publication-title: Nature doi: 10.1038/nature14539 – ident: 466_CR50 – volume: 5 start-page: 1346 year: 1996 ident: 466_CR7 publication-title: IEEE Trans. Image Process doi: 10.1109/83.535846 – volume: 31 start-page: 1682 year: 2012 ident: 466_CR13 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2195669 – volume: 13 start-page: 600 year: 2004 ident: 466_CR54 publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2003.819861 – volume: 54 start-page: 2791 year: 2009 ident: 466_CR5 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/9/014 – volume: 2 start-page: 158 year: 2018 ident: 466_CR29 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 38 start-page: 2783 year: 2011 ident: 466_CR56 publication-title: Med. Phys. doi: 10.1118/1.3582693 – volume: 318 start-page: 2211 year: 2017 ident: 466_CR32 publication-title: JAMA doi: 10.1001/jama.2017.18152 – ident: 466_CR19 doi: 10.1016/j.mri.2019.03.012 – volume: 82 start-page: 174 year: 2019 ident: 466_CR35 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27707 – ident: 466_CR27 doi: 10.1145/1390156.1390177 – ident: 466_CR42 – ident: 466_CR51 doi: 10.1109/CVPR.2017.632 – volume: 46 start-page: 3142 year: 2019 ident: 466_CR18 publication-title: Med. Phys. doi: 10.1002/mp.13583 – ident: 466_CR49 – volume: 6 start-page: 14410 year: 2018 ident: 466_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – ident: 466_CR48 doi: 10.1109/CVPR.2016.90 – volume: 25 start-page: 1272 year: 2006 ident: 466_CR12 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882141 – volume: 59 start-page: 1207 year: 2006 ident: 466_CR1 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 45 start-page: 4763 year: 2018 ident: 466_CR28 publication-title: Med. Phys. doi: 10.1002/mp.13122 – volume: 316 start-page: 2402 year: 2016 ident: 466_CR31 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 42 start-page: 2498 year: 2015 ident: 466_CR57 publication-title: Med. Phys. doi: 10.1118/1.4918577 – ident: 466_CR41 – volume: 53 start-page: 4777 year: 2008 ident: 466_CR3 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/53/17/021 – ident: 466_CR9 doi: 10.1007/978-94-009-1740-8 – volume: 79 start-page: 2379 year: 2018 ident: 466_CR33 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26841 – volume: 313 start-page: 504 year: 2006 ident: 466_CR47 publication-title: Science doi: 10.1126/science.1127647 – ident: 466_CR25 doi: 10.1109/WACV.2018.00181 – volume: 35 start-page: 1285 year: 2016 ident: 466_CR37 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: 466_CR52 – volume: 35 start-page: 660 year: 2008 ident: 466_CR4 publication-title: Med. Phys. doi: 10.1118/1.2836423 – ident: 466_CR26 doi: 10.1109/ICCV.2015.312 – ident: 466_CR39 |
SSID | ssj0001934975 |
Score | 2.5424657 |
Snippet | Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging,... Tomographic imaging via penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 880 |
SubjectTerms | 59 639/166/985 692/4028/67/1059/485 692/700/1421/1846/2771 692/700/1421/2025 Abdomen - diagnostic imaging Anatomy Angular position Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biopsy Biopsy, Needle Computed tomography Cone-Beam Computed Tomography - methods Deep Learning Head - diagnostic imaging Humans Image reconstruction Imaging, Three-Dimensional - methods Lung - diagnostic imaging Machine learning Medical imaging Neck - diagnostic imaging Projection Radiation therapy Radiographs Radiography Radiotherapy Radiotherapy Planning, Computer-Assisted - methods Tomography Two dimensional models |
Title | Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning |
URI | https://link.springer.com/article/10.1038/s41551-019-0466-4 https://www.ncbi.nlm.nih.gov/pubmed/31659306 https://www.proquest.com/docview/2389696125 https://www.proquest.com/docview/2310295433 https://pubmed.ncbi.nlm.nih.gov/PMC6858583 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9s-6IP4rdXa4ngkxK6TbK55ElUehbBUsRC35ZJNmcL7e7JndA_35nd7J5nsS8LyybZJDOZycwkvwF46-YM661QKlRRmpBqGTAGGUKJRJQUbHcY89uJPT4zX8_L8-xwW-ZjlYNM7AR13Ub2kR-QamEgF9LHHxa_JGeN4uhqTqGxBTskgh0ZXzufjk5Ov6-9LF4bPy2HcKZ2B0vWoGxBc0zAWmk2FdKtXebtw5L_REw7RTR7BA_zDlJ87En-GO6l5gk8-AtX8CncnPZoqZLvUfJZINHZvSNWrGjnohdLjM8vYp_ZoRar9jojWIvLaxI0S8G3TwQKdihcJZHdNtwCzxY9UNQpLUTOPfHzGZzNjn58PpY5xYKMpbYrWWPyZAHVzvi6nNOLQeeMQowmOIxKY1DJo8XCFmjItCN7FtnzcRi9U0Hr57DdtE16CYLjhb6wNNs2mIDax1QoX1tTOm-mzkygGOa5ihl_nNNgXFVdHFy7qidNRaSpmDQVVXk3Vln04Bt3Fd4biFfldbis1lwzgTfjZ1pBHBbBJrW_uQxtsqj3Wk_gRU_r8W_60JaerKoJTDe4YCzA6NybX5rLiw6luwP2d9Tm-4Ff1t367yB27x7EK7ivmHO7u5B7sE1sk17TpmgV9mHLzb7sZ_7_A-LIDmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcXChgJLiCrqe147UNVIWDZ0oc4tFJvZux4oVKbLNpFwJ_qb-xMXstS0VsvkaI4L897xv6GsVd2QrDeEoQEGYUOqRABYhAh5IBEScHUizH3D8z4SH8-zo9X2Hm3F4aWVXY6sVbURRUpR76BpoWAXNAeb09_COoaRdXVroVGwxa76c8vDNlmWzsfkL6vpRx9PHw_Fm1XARFzZeaigOTQ6S-sdkU-wRMN1moJEHWwEKWCIJMDA5nJQGM0gyEcULC_GZ2VgRKgqPJvaKUcSZQdfVrkdJzSbph3xVNlN2ZkrylepwqEMUIvm79LPu3lpZn_1Gdrsze6y-60_ip_1zDYPbaSyvvs9l8ohg_Y7y8NNqugXZu08ojXUXaPTMurCW-UIHUD4LHpI1HweXXW4mXzkzNUazNOe104cEpfnCbeJonoCUQbPAAvUpryttPFt4fs6Fqm_hFbLasyrTFO1UmXGZxtE3QA5WLKpCuMzq3TQ6sHLOvm2ccW7Zyabpz6uuqurG9I45E0nkjj8ZY3_S3TBurjqsHrHfF8K_Uzv-DRAXvZX0Z5pSIMlKn6SWPQpcOvV2rAHje07t-mNk3uMIYbsOESF_QDCAt8-Up58r3GBK_bCFh85tuOXxaf9d-feHL1T7xgN8eH-3t-b-dg9ym7JYmL612Y62wVWSg9Q3dsHp7XMsDZ1-sWuguEWEjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-specific+reconstruction+of+volumetric+computed+tomography+images+from+a+single+projection+view+via+deep+learning&rft.jtitle=Nature+biomedical+engineering&rft.au=Shen%2C+Liyue&rft.au=Zhao%2C+Wei&rft.au=Xing%2C+Lei&rft.date=2019-11-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=3&rft.issue=11&rft.spage=880&rft.epage=888&rft_id=info:doi/10.1038%2Fs41551-019-0466-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41551_019_0466_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |