Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning

Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection rad...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 3; no. 11; pp. 880 - 888
Main Authors Shen, Liyue, Zhao, Wei, Xing, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2157-846X
2157-846X
DOI10.1038/s41551-019-0466-4

Cover

Loading…
Abstract Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view.
AbstractList Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.
Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view.
Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.
Tomographic imaging via penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here, we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems.
Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging, projection views from a large number of angular positions are required. Here we show that a deep-learning model trained to map projection radiographs of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view. We demonstrate the feasibility of the approach with upper-abdomen, lung, and head-and-neck computed tomography scans from three patients. Volumetric reconstruction via deep learning could be useful in image-guided interventional procedures such as radiation therapy and needle biopsy, and might help simplify the hardware of tomographic imaging systems. A deep-learning model trained to map 2D projection views of a patient to the corresponding 3D anatomy can subsequently generate volumetric tomographic X-ray images of the patient from a single projection view.
Author Shen, Liyue
Zhao, Wei
Xing, Lei
AuthorAffiliation 2 Department of Electrical Engineering, Stanford University, Stanford, USA, 94305
1 Department of Radiation Oncology, Stanford University, Stanford, USA, 94305
AuthorAffiliation_xml – name: 2 Department of Electrical Engineering, Stanford University, Stanford, USA, 94305
– name: 1 Department of Radiation Oncology, Stanford University, Stanford, USA, 94305
Author_xml – sequence: 1
  givenname: Liyue
  surname: Shen
  fullname: Shen, Liyue
  organization: Department of Radiation Oncology, Stanford University, Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-6182-4746
  surname: Zhao
  fullname: Zhao, Wei
  organization: Department of Radiation Oncology, Stanford University
– sequence: 3
  givenname: Lei
  orcidid: 0000-0003-2536-5359
  surname: Xing
  fullname: Xing, Lei
  email: lei@stanford.edu
  organization: Department of Radiation Oncology, Stanford University, Department of Electrical Engineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31659306$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1r1jAUxotM3Jz7A7yRgDfeVJPmo82NIMOpMNALBe_CedPTLi9tUpP21f33S-mcc6AE8kF-z5Nz8jwtjnzwWBTPGX3NKG_eJMGkZCVluqRCqVI8Kk4qJuuyEer70b39cXGW0p7STHKha_mkOOZMSc2pOil-fYHZoZ_LNKF1nbMkog0-zXGxswuehI4cwrCMOMd8acM4LTO2ZA5j6CNMV9fEjdBjIl0MIwGSnO8HJFMMe9wcDg5_5glIiziRASH6zDwrHncwJDy7XU-Lbxfvv55_LC8_f_h0_u6ytJKruWwBtapk2wjdyi4fBDSNqACs2DVgKw67CjUooIqC0KxueA21YppZ3VQ7zk-Lt5vvtOxGbG3uNcJgppjLjtcmgDN_33h3ZfpwMKqReawGr24NYvixYJrN6JLFYQCPYUmm4oxWWgq-oi8foPuwRJ_by1SjlVaskpl6cb-iu1J-h5IBtgE2hpQidncIo2bN3mzZm5yoWbM3ImvqBxrrZlj_Pzflhv8qq02Z8iu-x_in6H-LbgAr98Wz
CitedBy_id crossref_primary_10_1177_08953996241301661
crossref_primary_10_1016_j_cmpb_2023_107708
crossref_primary_10_61186_ijbc_15_3_13
crossref_primary_10_1016_j_cmpb_2021_106575
crossref_primary_10_1016_j_phro_2023_100444
crossref_primary_10_1038_s41571_022_00631_3
crossref_primary_10_1002_mp_15218
crossref_primary_10_1038_s41598_022_20279_4
crossref_primary_10_1088_1361_6560_ad46dc
crossref_primary_10_1088_1361_6560_acb30d
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_1016_j_compbiomed_2024_108390
crossref_primary_10_1016_j_compmedimag_2025_102518
crossref_primary_10_1097_RLI_0000000000000995
crossref_primary_10_1016_j_media_2022_102372
crossref_primary_10_14326_abe_12_21
crossref_primary_10_1109_TMI_2022_3148728
crossref_primary_10_3389_fmed_2022_832920
crossref_primary_10_1016_j_compbiomed_2024_108393
crossref_primary_10_1088_1361_6560_abcde8
crossref_primary_10_1155_2022_2872461
crossref_primary_10_1002_mp_16141
crossref_primary_10_1088_1361_6560_acd29d
crossref_primary_10_1002_mp_15176
crossref_primary_10_1109_TMI_2023_3313795
crossref_primary_10_1002_mp_16781
crossref_primary_10_1038_s41551_022_00953_8
crossref_primary_10_1016_j_compmedimag_2022_102067
crossref_primary_10_1016_S2589_7500_20_30076_5
crossref_primary_10_1109_TIM_2024_3476543
crossref_primary_10_1109_TCI_2021_3070184
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1038_s41598_025_87014_7
crossref_primary_10_1016_j_semradonc_2024_07_005
crossref_primary_10_1088_1361_6560_ad6edd
crossref_primary_10_1109_TPAMI_2024_3465649
crossref_primary_10_1007_s13246_023_01317_5
crossref_primary_10_1088_1361_6560_abc303
crossref_primary_10_1007_s11548_022_02586_3
crossref_primary_10_1088_1361_6560_aba165
crossref_primary_10_1109_TMI_2024_3473970
crossref_primary_10_1002_mp_16691
crossref_primary_10_1002_mp_16212
crossref_primary_10_1088_1361_6560_ace1d0
crossref_primary_10_1097_RCT_0000000000001734
crossref_primary_10_3390_tomography11030023
crossref_primary_10_1016_j_media_2024_103283
crossref_primary_10_1364_OE_522097
crossref_primary_10_3389_fonc_2022_806742
crossref_primary_10_3390_cancers16030570
crossref_primary_10_3390_jimaging8100271
crossref_primary_10_1016_j_jncc_2023_08_002
crossref_primary_10_1186_s13244_021_01105_3
crossref_primary_10_3390_tomography8050179
crossref_primary_10_1002_mp_15350
crossref_primary_10_1007_s10439_024_03473_5
crossref_primary_10_1088_1361_6560_adaad1
crossref_primary_10_1038_s41467_023_36383_6
crossref_primary_10_1109_TMI_2024_3439573
crossref_primary_10_1016_j_medengphy_2023_104088
crossref_primary_10_1155_2022_5794681
crossref_primary_10_1002_mp_14785
crossref_primary_10_1088_1361_6560_ac508d
crossref_primary_10_1016_j_compbiomed_2022_105710
crossref_primary_10_1109_TMI_2021_3097808
crossref_primary_10_1016_j_compbiomed_2023_106663
crossref_primary_10_1016_j_arth_2024_06_059
crossref_primary_10_1016_j_xcrm_2022_100775
crossref_primary_10_1109_TMI_2021_3084748
crossref_primary_10_1109_TGRS_2021_3110606
crossref_primary_10_1016_j_ejmp_2022_05_013
crossref_primary_10_1016_j_media_2021_102001
crossref_primary_10_1088_1361_6560_ac6b7b
crossref_primary_10_1016_j_media_2021_102339
crossref_primary_10_1016_j_dsp_2023_104123
crossref_primary_10_1109_JIOT_2023_3291051
crossref_primary_10_1093_bjro_tzae017
crossref_primary_10_1186_s13256_024_04743_5
crossref_primary_10_1016_j_bspc_2022_104072
crossref_primary_10_1109_TMI_2024_3387830
crossref_primary_10_1002_mp_15662
crossref_primary_10_1117_1_JMI_11_2_024008
crossref_primary_10_1109_TMC_2022_3214721
crossref_primary_10_1016_j_knosys_2021_107680
crossref_primary_10_1016_j_compbiomed_2024_108868
crossref_primary_10_1016_j_xcrp_2024_101940
crossref_primary_10_1080_21681163_2024_2359397
crossref_primary_10_1002_mp_15822
crossref_primary_10_1002_mp_14328
crossref_primary_10_1016_j_ijrobp_2024_11_077
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1088_1361_6560_ac7b09
crossref_primary_10_1364_AO_534352
crossref_primary_10_1088_2057_1976_ad3bb9
crossref_primary_10_1016_j_bspc_2024_106384
crossref_primary_10_1038_s41598_024_65795_7
crossref_primary_10_1002_mp_16580
crossref_primary_10_1109_TIM_2023_3296838
crossref_primary_10_1016_j_semradonc_2022_06_003
crossref_primary_10_1088_1361_6560_acb889
crossref_primary_10_1002_mp_16226
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1002_mp_15414
crossref_primary_10_1109_TIM_2022_3221772
crossref_primary_10_1002_pro6_1242
crossref_primary_10_1002_mp_14835
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1016_j_ejro_2022_100441
crossref_primary_10_1109_TCI_2022_3201390
crossref_primary_10_1002_mp_15806
crossref_primary_10_1002_smtd_202200979
crossref_primary_10_1016_j_semradonc_2022_06_006
crossref_primary_10_1088_1361_6560_ada519
crossref_primary_10_1109_TRPMS_2021_3107454
crossref_primary_10_1109_TNNLS_2022_3177134
crossref_primary_10_1088_1361_6560_ac7bcd
crossref_primary_10_1038_s41551_021_00758_1
crossref_primary_10_1002_mp_15160
crossref_primary_10_2174_0118749445335956241002052628
crossref_primary_10_1007_s11760_024_03334_7
crossref_primary_10_1016_j_compbiomed_2024_109574
crossref_primary_10_1371_journal_pone_0297437
crossref_primary_10_1016_j_media_2023_102998
crossref_primary_10_1002_mp_16377
crossref_primary_10_1038_s41746_023_00859_y
crossref_primary_10_1007_s11548_023_02877_3
crossref_primary_10_1016_j_compbiomed_2023_106615
crossref_primary_10_1038_s43856_024_00672_y
crossref_primary_10_1364_OE_532255
crossref_primary_10_1002_mp_14624
crossref_primary_10_1109_TIM_2021_3068142
crossref_primary_10_1002_btm2_10494
crossref_primary_10_1088_1361_6560_ac067f
crossref_primary_10_1002_mp_17617
crossref_primary_10_1109_TRPMS_2024_3439585
crossref_primary_10_1016_j_compbiomed_2023_107663
crossref_primary_10_1002_smtd_202001025
crossref_primary_10_1039_D2NJ01021F
crossref_primary_10_1109_TCI_2022_3216202
crossref_primary_10_1109_TIM_2024_3353877
crossref_primary_10_1200_CCI_23_00136
crossref_primary_10_1038_s41467_023_43958_w
crossref_primary_10_1080_10589759_2023_2195646
crossref_primary_10_1111_1754_9485_13285
crossref_primary_10_3390_tomography9060169
crossref_primary_10_1002_mp_17572
crossref_primary_10_1002_mp_15673
crossref_primary_10_3390_cancers15245768
crossref_primary_10_1002_mp_14587
crossref_primary_10_1002_mp_16644
crossref_primary_10_1016_j_ejmp_2022_06_016
crossref_primary_10_1109_TMI_2021_3090257
crossref_primary_10_1186_s41824_020_00086_8
crossref_primary_10_1088_1361_6560_abca05
crossref_primary_10_1038_s41551_020_00682_w
crossref_primary_10_1088_1361_6560_abb02c
crossref_primary_10_20517_2574_1225_2024_78
crossref_primary_10_1109_TMI_2024_3456251
crossref_primary_10_1007_s10462_025_11109_w
crossref_primary_10_1016_j_media_2021_102289
crossref_primary_10_1109_TMI_2024_3406876
crossref_primary_10_1002_mp_17290
crossref_primary_10_1007_s00521_024_10690_5
crossref_primary_10_1155_2021_5852595
Cites_doi 10.1109/TMI.2006.882141
10.1002/mrm.26841
10.1109/TMI.2016.2528162
10.1002/mp.13122
10.1038/s41551-018-0195-0
10.1001/jama.2017.18152
10.1109/TSP.2007.914345
10.1109/TIP.2003.819861
10.1109/83.535846
10.1109/TMI.2003.812253
10.1002/mrm.27707
10.1002/mrm.26467
10.1016/j.neunet.2014.09.003
10.1038/nature25988
10.1118/1.2836423
10.1109/ACCESS.2018.2807385
10.1118/1.3582693
10.1002/mrm.21391
10.1109/42.870666
10.1016/j.ijrobp.2019.05.071
10.1109/TNNLS.2018.2886017
10.1016/j.radonc.2019.06.027
10.1109/TEVC.2019.2890858
10.1088/0031-9155/54/9/014
10.1126/science.1127647
10.1038/nature14539
10.1118/1.3481510
10.1111/cgf.13369
10.1038/nature21056
10.1118/1.4918577
10.1088/0031-9155/53/17/021
10.1118/1.3426002
10.1001/jama.2016.17216
10.1109/TMI.2012.2195669
10.1126/science.aar6170
10.1002/cpa.20124
10.1109/CVPR.2018.00175
10.1117/12.2513133
10.1016/j.mri.2019.03.012
10.1145/1390156.1390177
10.1109/CVPR.2017.632
10.1002/mp.13583
10.1109/CVPR.2016.90
10.1007/978-94-009-1740-8
10.1109/WACV.2018.00181
10.1109/ICCV.2015.312
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41551-019-0466-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 888
ExternalDocumentID PMC6858583
31659306
10_1038_s41551_019_0466_4
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: R01EB016777
  funderid: https://doi.org/10.13039/100000070
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: R01CA176553
  funderid: https://doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: R01 CA176553
– fundername: NCI NIH HHS
  grantid: R01 CA223667
– fundername: NIBIB NIH HHS
  grantid: R01 EB016777
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-dae9625d849d5fae94a8842aac4b8ac23ab2e9a6a060a4917837a76191c982b33
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Thu Aug 21 18:23:04 EDT 2025
Fri Jul 11 10:57:11 EDT 2025
Wed Jul 16 16:25:52 EDT 2025
Thu Apr 03 07:11:04 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Sun Aug 31 08:57:43 EDT 2025
Sun Aug 31 08:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-dae9625d849d5fae94a8842aac4b8ac23ab2e9a6a060a4917837a76191c982b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
L.X. proposed the original notion of single-view reconstruction for tomographic imaging and supervised the research, L.S. designed and implemented the algorithm. W.Z. designed the experiments and implemented the data generation process. L.S. and W.Z. carried out experimental work. L.X., L.S. and W.Z. wrote the manuscript. All the authors reviewed the manuscript.
These authors contributed equally
Author contributions
ORCID 0000-0003-2536-5359
0000-0002-6182-4746
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6858583
PMID 31659306
PQID 2389696125
PQPubID 4669717
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6858583
proquest_miscellaneous_2310295433
proquest_journals_2389696125
pubmed_primary_31659306
crossref_primary_10_1038_s41551_019_0466_4
crossref_citationtrail_10_1038_s41551_019_0466_4
springer_journals_10_1038_s41551_019_0466_4
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat Biomed Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhu, Liu, Cauley, Rosen, Rosen (CR15) 2018; 555
Esteva (CR30) 2017; 542
CR39
Sidky, Pan (CR3) 2008; 53
Candes, Romberg, Tao (CR1) 2006; 59
Ting (CR32) 2017; 318
Ji, Xue, Carin (CR8) 2008; 56
Yu, Wang (CR5) 2009; 54
Zhao (CR34) 2019; 140
Akhtar, Mian (CR43) 2018; 6
Eslami (CR20) 2018; 360
Wang, Bovik, Sheikh, Simoncelli (CR54) 2004; 13
Preiswerk (CR14) 2017; 78
Ibragimov, Toesca, Chang, Koong, Xing (CR28) 2018; 45
CR9
CR49
Su, Vargas, Sakurai (CR45) 2019; 23
Hinton, Salakhutdinov (CR47) 2006; 313
CR48
van der Maaten, Hinton (CR38) 2008; 9
CR44
Zhao (CR36) 2019; 105
CR42
CR41
CR40
Choi, Wang, Zhu, Suh, Boyd, Xing (CR6) 2010; 37
Schmidhuber (CR22) 2015; 61
Henzler, Rasche, Ropinski, Ritschel (CR16) 2018; 37
Stayman, Fessler (CR10) 2000; 19
Li (CR56) 2011; 38
Chen, Tang, Leng (CR4) 2008; 35
CR19
CR17
LeCun, Bengio, Hinton (CR21) 2015; 521
CR53
CR52
CR51
CR50
Hoo-Chang (CR37) 2016; 35
Nomura, Xu, Shirato, Shimizu, Xing (CR18) 2019; 46
Fessler, Rogers (CR7) 1996; 5
Xu (CR13) 2012; 31
Gulshan (CR31) 2016; 316
Lustig, Donoho, Pauly (CR2) 2007; 58
Liu, Feng, Kijowski (CR35) 2019; 82
Li (CR55) 2010; 37
Xu (CR57) 2015; 42
Yuan, He, Zhu, Li (CR46) 2019; 30
CR27
CR26
CR25
Jiang, Wang (CR11) 2003; 22
CR24
CR23
Poplin (CR29) 2018; 2
Wang, Li, Lu, Liang (CR12) 2006; 25
Liu (CR33) 2018; 79
R Poplin (466_CR29) 2018; 2
J Wang (466_CR12) 2006; 25
B Zhu (466_CR15) 2018; 555
466_CR17
466_CR19
J Su (466_CR45) 2019; 23
466_CR25
466_CR24
F Preiswerk (466_CR14) 2017; 78
466_CR27
466_CR26
EJ Candes (466_CR1) 2006; 59
466_CR23
P Henzler (466_CR16) 2018; 37
SA Eslami (466_CR20) 2018; 360
R Li (466_CR56) 2011; 38
F Liu (466_CR33) 2018; 79
V Gulshan (466_CR31) 2016; 316
Y Xu (466_CR57) 2015; 42
S Ji (466_CR8) 2008; 56
X Yuan (466_CR46) 2019; 30
J Schmidhuber (466_CR22) 2015; 61
L van der Maaten (466_CR38) 2008; 9
GH Chen (466_CR4) 2008; 35
DSW Ting (466_CR32) 2017; 318
Y Nomura (466_CR18) 2019; 46
GE Hinton (466_CR47) 2006; 313
W Zhao (466_CR34) 2019; 140
N Akhtar (466_CR43) 2018; 6
K Choi (466_CR6) 2010; 37
466_CR39
466_CR9
466_CR49
466_CR48
466_CR42
466_CR44
R Li (466_CR55) 2010; 37
EY Sidky (466_CR3) 2008; 53
466_CR41
466_CR40
B Ibragimov (466_CR28) 2018; 45
S Hoo-Chang (466_CR37) 2016; 35
W Zhao (466_CR36) 2019; 105
A Esteva (466_CR30) 2017; 542
F Liu (466_CR35) 2019; 82
H Yu (466_CR5) 2009; 54
M Jiang (466_CR11) 2003; 22
Q Xu (466_CR13) 2012; 31
466_CR53
JA Fessler (466_CR7) 1996; 5
JW Stayman (466_CR10) 2000; 19
Y LeCun (466_CR21) 2015; 521
Z Wang (466_CR54) 2004; 13
466_CR50
466_CR52
466_CR51
M Lustig (466_CR2) 2007; 58
References_xml – volume: 25
  start-page: 1272
  year: 2006
  end-page: 1283
  ident: CR12
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– ident: CR49
– volume: 79
  start-page: 2379
  year: 2018
  end-page: 2391
  ident: CR33
  article-title: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26841
– ident: CR39
– ident: CR51
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: CR37
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 45
  start-page: 4763
  year: 2018
  end-page: 4774
  ident: CR28
  article-title: Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT
  publication-title: Med. Phys.
  doi: 10.1002/mp.13122
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: CR29
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: CR32
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– ident: CR25
– ident: CR42
– ident: CR19
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR38
  article-title: Visualizing data using -SNE
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 3142
  year: 2019
  end-page: 3155
  ident: CR18
  article-title: Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network
  publication-title: Med. Phys.
– volume: 56
  start-page: 2346
  year: 2008
  end-page: 2356
  ident: CR8
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– ident: CR50
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: CR54
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 5
  start-page: 1346
  year: 1996
  end-page: 1358
  ident: CR7
  article-title: Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/83.535846
– ident: CR9
– volume: 22
  start-page: 569
  year: 2003
  end-page: 579
  ident: CR11
  article-title: Convergence studies on iterative algorithms for image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.812253
– volume: 82
  start-page: 174
  year: 2019
  end-page: 188
  ident: CR35
  article-title: MANTIS: Model-Augmented neural network with incoherent k-space sampling for efficient mr parameter mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27707
– volume: 78
  start-page: 897
  year: 2017
  end-page: 908
  ident: CR14
  article-title: Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26467
– ident: CR26
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR22
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 555
  start-page: 487
  year: 2018
  end-page: 492
  ident: CR15
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 35
  start-page: 660
  year: 2008
  end-page: 663
  ident: CR4
  article-title: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets
  publication-title: Med. Phys.
  doi: 10.1118/1.2836423
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: CR43
  article-title: Threat of adversarial attacks on deep learning in computer vision: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– volume: 38
  start-page: 2783
  year: 2011
  end-page: 2794
  ident: CR56
  article-title: 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy
  publication-title: Med. Phys.
  doi: 10.1118/1.3582693
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: CR2
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 19
  start-page: 601
  year: 2000
  end-page: 615
  ident: CR10
  article-title: Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.870666
– volume: 105
  start-page: 432
  year: 2019
  end-page: 439
  ident: CR36
  article-title: Markerless pancreatic tumor target localization enabled by deep learning
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2019.05.071
– volume: 30
  start-page: 2805
  year: 2019
  end-page: 2824
  ident: CR46
  article-title: Adversarial examples: attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886017
– ident: CR53
– volume: 140
  start-page: 167
  year: 2019
  end-page: 174
  ident: CR34
  article-title: Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT)
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2019.06.027
– volume: 23
  start-page: 828
  year: 2019
  end-page: 841
  ident: CR45
  article-title: One pixel attack for fooling deep neural networks. IEEE Trans
  publication-title: Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– volume: 54
  start-page: 2791
  year: 2009
  end-page: 2805
  ident: CR5
  article-title: Compressed sensing based interior tomography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/9/014
– ident: CR40
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR47
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: CR27
– ident: CR23
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 37
  start-page: 5113
  year: 2010
  end-page: 5125
  ident: CR6
  article-title: Compressed sensing based cone-beam computed tomography reconstruction with a first-order method
  publication-title: Med. Phys.
  doi: 10.1118/1.3481510
– ident: CR44
– volume: 37
  start-page: 377
  year: 2018
  end-page: 388
  ident: CR16
  article-title: Single-image tomography: 3D volumes from 2D cranial X-rays
  publication-title: Computer Graph. Forum
  doi: 10.1111/cgf.13369
– ident: CR48
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR30
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 42
  start-page: 2498
  year: 2015
  end-page: 2509
  ident: CR57
  article-title: A method for volumetric imaging in radiotherapy using single x-ray projection
  publication-title: Med. Phys.
  doi: 10.1118/1.4918577
– ident: CR52
– ident: CR17
– volume: 53
  start-page: 4777
  year: 2008
  end-page: 4807
  ident: CR3
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– volume: 37
  start-page: 2822
  year: 2010
  end-page: 2826
  ident: CR55
  article-title: Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy
  publication-title: Med. Phys.
  doi: 10.1118/1.3426002
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR31
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 31
  start-page: 1682
  year: 2012
  end-page: 1697
  ident: CR13
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2195669
– volume: 360
  start-page: 1204
  year: 2018
  end-page: 1210
  ident: CR20
  article-title: Neural scene representation and rendering
  publication-title: Science
  doi: 10.1126/science.aar6170
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  ident: CR1
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– ident: CR41
– ident: CR24
– volume: 22
  start-page: 569
  year: 2003
  ident: 466_CR11
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.812253
– volume: 19
  start-page: 601
  year: 2000
  ident: 466_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.870666
– volume: 58
  start-page: 1182
  year: 2007
  ident: 466_CR2
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 78
  start-page: 897
  year: 2017
  ident: 466_CR14
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26467
– ident: 466_CR44
– ident: 466_CR40
  doi: 10.1109/CVPR.2018.00175
– volume: 30
  start-page: 2805
  year: 2019
  ident: 466_CR46
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886017
– volume: 542
  start-page: 115
  year: 2017
  ident: 466_CR30
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 360
  start-page: 1204
  year: 2018
  ident: 466_CR20
  publication-title: Science
  doi: 10.1126/science.aar6170
– ident: 466_CR24
– volume: 37
  start-page: 377
  year: 2018
  ident: 466_CR16
  publication-title: Computer Graph. Forum
  doi: 10.1111/cgf.13369
– ident: 466_CR53
– volume: 9
  start-page: 2579
  year: 2008
  ident: 466_CR38
  publication-title: J. Mach. Learn. Res.
– volume: 555
  start-page: 487
  year: 2018
  ident: 466_CR15
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 56
  start-page: 2346
  year: 2008
  ident: 466_CR8
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– volume: 61
  start-page: 85
  year: 2015
  ident: 466_CR22
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 23
  start-page: 828
  year: 2019
  ident: 466_CR45
  publication-title: Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– volume: 140
  start-page: 167
  year: 2019
  ident: 466_CR34
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2019.06.027
– volume: 37
  start-page: 2822
  year: 2010
  ident: 466_CR55
  publication-title: Med. Phys.
  doi: 10.1118/1.3426002
– volume: 37
  start-page: 5113
  year: 2010
  ident: 466_CR6
  publication-title: Med. Phys.
  doi: 10.1118/1.3481510
– ident: 466_CR23
– volume: 105
  start-page: 432
  year: 2019
  ident: 466_CR36
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2019.05.071
– ident: 466_CR17
  doi: 10.1117/12.2513133
– volume: 521
  start-page: 436
  year: 2015
  ident: 466_CR21
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 466_CR50
– volume: 5
  start-page: 1346
  year: 1996
  ident: 466_CR7
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/83.535846
– volume: 31
  start-page: 1682
  year: 2012
  ident: 466_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2195669
– volume: 13
  start-page: 600
  year: 2004
  ident: 466_CR54
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 54
  start-page: 2791
  year: 2009
  ident: 466_CR5
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/9/014
– volume: 2
  start-page: 158
  year: 2018
  ident: 466_CR29
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 38
  start-page: 2783
  year: 2011
  ident: 466_CR56
  publication-title: Med. Phys.
  doi: 10.1118/1.3582693
– volume: 318
  start-page: 2211
  year: 2017
  ident: 466_CR32
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– ident: 466_CR19
  doi: 10.1016/j.mri.2019.03.012
– volume: 82
  start-page: 174
  year: 2019
  ident: 466_CR35
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27707
– ident: 466_CR27
  doi: 10.1145/1390156.1390177
– ident: 466_CR42
– ident: 466_CR51
  doi: 10.1109/CVPR.2017.632
– volume: 46
  start-page: 3142
  year: 2019
  ident: 466_CR18
  publication-title: Med. Phys.
  doi: 10.1002/mp.13583
– ident: 466_CR49
– volume: 6
  start-page: 14410
  year: 2018
  ident: 466_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– ident: 466_CR48
  doi: 10.1109/CVPR.2016.90
– volume: 25
  start-page: 1272
  year: 2006
  ident: 466_CR12
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– volume: 59
  start-page: 1207
  year: 2006
  ident: 466_CR1
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 45
  start-page: 4763
  year: 2018
  ident: 466_CR28
  publication-title: Med. Phys.
  doi: 10.1002/mp.13122
– volume: 316
  start-page: 2402
  year: 2016
  ident: 466_CR31
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 42
  start-page: 2498
  year: 2015
  ident: 466_CR57
  publication-title: Med. Phys.
  doi: 10.1118/1.4918577
– ident: 466_CR41
– volume: 53
  start-page: 4777
  year: 2008
  ident: 466_CR3
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– ident: 466_CR9
  doi: 10.1007/978-94-009-1740-8
– volume: 79
  start-page: 2379
  year: 2018
  ident: 466_CR33
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26841
– volume: 313
  start-page: 504
  year: 2006
  ident: 466_CR47
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 466_CR25
  doi: 10.1109/WACV.2018.00181
– volume: 35
  start-page: 1285
  year: 2016
  ident: 466_CR37
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 466_CR52
– volume: 35
  start-page: 660
  year: 2008
  ident: 466_CR4
  publication-title: Med. Phys.
  doi: 10.1118/1.2836423
– ident: 466_CR26
  doi: 10.1109/ICCV.2015.312
– ident: 466_CR39
SSID ssj0001934975
Score 2.5424657
Snippet Tomographic imaging using penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging,...
Tomographic imaging via penetrating waves generates cross-sectional views of the internal anatomy of a living subject. For artefact-free volumetric imaging,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 880
SubjectTerms 59
639/166/985
692/4028/67/1059/485
692/700/1421/1846/2771
692/700/1421/2025
Abdomen - diagnostic imaging
Anatomy
Angular position
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biopsy
Biopsy, Needle
Computed tomography
Cone-Beam Computed Tomography - methods
Deep Learning
Head - diagnostic imaging
Humans
Image reconstruction
Imaging, Three-Dimensional - methods
Lung - diagnostic imaging
Machine learning
Medical imaging
Neck - diagnostic imaging
Projection
Radiation therapy
Radiographs
Radiography
Radiotherapy
Radiotherapy Planning, Computer-Assisted - methods
Tomography
Two dimensional models
Title Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning
URI https://link.springer.com/article/10.1038/s41551-019-0466-4
https://www.ncbi.nlm.nih.gov/pubmed/31659306
https://www.proquest.com/docview/2389696125
https://www.proquest.com/docview/2310295433
https://pubmed.ncbi.nlm.nih.gov/PMC6858583
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9s-6IP4rdXa4ngkxK6TbK55ElUehbBUsRC35ZJNmcL7e7JndA_35nd7J5nsS8LyybZJDOZycwkvwF46-YM661QKlRRmpBqGTAGGUKJRJQUbHcY89uJPT4zX8_L8-xwW-ZjlYNM7AR13Ub2kR-QamEgF9LHHxa_JGeN4uhqTqGxBTskgh0ZXzufjk5Ov6-9LF4bPy2HcKZ2B0vWoGxBc0zAWmk2FdKtXebtw5L_REw7RTR7BA_zDlJ87En-GO6l5gk8-AtX8CncnPZoqZLvUfJZINHZvSNWrGjnohdLjM8vYp_ZoRar9jojWIvLaxI0S8G3TwQKdihcJZHdNtwCzxY9UNQpLUTOPfHzGZzNjn58PpY5xYKMpbYrWWPyZAHVzvi6nNOLQeeMQowmOIxKY1DJo8XCFmjItCN7FtnzcRi9U0Hr57DdtE16CYLjhb6wNNs2mIDax1QoX1tTOm-mzkygGOa5ihl_nNNgXFVdHFy7qidNRaSpmDQVVXk3Vln04Bt3Fd4biFfldbis1lwzgTfjZ1pBHBbBJrW_uQxtsqj3Wk_gRU_r8W_60JaerKoJTDe4YCzA6NybX5rLiw6luwP2d9Tm-4Ff1t367yB27x7EK7ivmHO7u5B7sE1sk17TpmgV9mHLzb7sZ_7_A-LIDmA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcXChgJLiCrqe147UNVIWDZ0oc4tFJvZux4oVKbLNpFwJ_qb-xMXstS0VsvkaI4L897xv6GsVd2QrDeEoQEGYUOqRABYhAh5IBEScHUizH3D8z4SH8-zo9X2Hm3F4aWVXY6sVbURRUpR76BpoWAXNAeb09_COoaRdXVroVGwxa76c8vDNlmWzsfkL6vpRx9PHw_Fm1XARFzZeaigOTQ6S-sdkU-wRMN1moJEHWwEKWCIJMDA5nJQGM0gyEcULC_GZ2VgRKgqPJvaKUcSZQdfVrkdJzSbph3xVNlN2ZkrylepwqEMUIvm79LPu3lpZn_1Gdrsze6y-60_ip_1zDYPbaSyvvs9l8ohg_Y7y8NNqugXZu08ojXUXaPTMurCW-UIHUD4LHpI1HweXXW4mXzkzNUazNOe104cEpfnCbeJonoCUQbPAAvUpryttPFt4fs6Fqm_hFbLasyrTFO1UmXGZxtE3QA5WLKpCuMzq3TQ6sHLOvm2ccW7Zyabpz6uuqurG9I45E0nkjj8ZY3_S3TBurjqsHrHfF8K_Uzv-DRAXvZX0Z5pSIMlKn6SWPQpcOvV2rAHje07t-mNk3uMIYbsOESF_QDCAt8-Up58r3GBK_bCFh85tuOXxaf9d-feHL1T7xgN8eH-3t-b-dg9ym7JYmL612Y62wVWSg9Q3dsHp7XMsDZ1-sWuguEWEjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient-specific+reconstruction+of+volumetric+computed+tomography+images+from+a+single+projection+view+via+deep+learning&rft.jtitle=Nature+biomedical+engineering&rft.au=Shen%2C+Liyue&rft.au=Zhao%2C+Wei&rft.au=Xing%2C+Lei&rft.date=2019-11-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=3&rft.issue=11&rft.spage=880&rft.epage=888&rft_id=info:doi/10.1038%2Fs41551-019-0466-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41551_019_0466_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon