The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding

The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain le...

Full description

Saved in:
Bibliographic Details
Published inNature plants Vol. 6; no. 9; pp. 1106 - 1115
Main Authors Liu, Jun, Huang, Yanyan, Kong, Liang, Yu, Xiao, Feng, Baomin, Liu, Derui, Zhao, Baoyu, Mendes, Giselle C., Yuan, Peiguo, Ge, Dongdong, Wang, Wen-Ming, Fontes, Elizabeth P. B., Li, Pingwei, Shan, Libo, He, Ping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity 4 – 9 . To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1–mkk1/2 – mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling.
AbstractList The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity . To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity 4 – 9 . To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1–mkk1/2 – mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling.
Plants have evolved both cell surface-resident receptor-like kinases (RLKs) and intracellular nucleotide-binding leucine-rich repeat (NLR) proteins as immune receptors to detect infections. It remains enigmatic how RLK- and NLR-mediated signaling is connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity. To gain insights into the mechanisms underlying SUMM2 activation, we deployed an RNAi-based genetic screen for mekk1 autoimmune suppressors, and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2 - mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation; thereby, regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homeostasis caused by the deficiency in immune-activated signaling, and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1–3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4–9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1–mkk1/2–mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling.
Author Wang, Wen-Ming
Feng, Baomin
Ge, Dongdong
Yuan, Peiguo
Kong, Liang
He, Ping
Yu, Xiao
Fontes, Elizabeth P. B.
Huang, Yanyan
Mendes, Giselle C.
Li, Pingwei
Zhao, Baoyu
Shan, Libo
Liu, Derui
Liu, Jun
AuthorAffiliation 1 Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
2 Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
6 These authors contributed equally
4 Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
5 National Institute of Science and Technology in Plant-Pest Interactions, and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, 36570.000, Brazil
3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P. R. China
AuthorAffiliation_xml – name: 2 Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
– name: 5 National Institute of Science and Technology in Plant-Pest Interactions, and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, 36570.000, Brazil
– name: 4 Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
– name: 3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P. R. China
– name: 6 These authors contributed equally
– name: 1 Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-9272-9602
  surname: Liu
  fullname: Liu, Jun
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University
– sequence: 2
  givenname: Yanyan
  orcidid: 0000-0001-7688-0997
  surname: Huang
  fullname: Huang, Yanyan
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University
– sequence: 3
  givenname: Liang
  surname: Kong
  fullname: Kong, Liang
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University
– sequence: 4
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University
– sequence: 5
  givenname: Baomin
  surname: Feng
  fullname: Feng, Baomin
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University
– sequence: 6
  givenname: Derui
  surname: Liu
  fullname: Liu, Derui
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University
– sequence: 7
  givenname: Baoyu
  surname: Zhao
  fullname: Zhao, Baoyu
  organization: Department of Biochemistry & Biophysics, Texas A&M University
– sequence: 8
  givenname: Giselle C.
  surname: Mendes
  fullname: Mendes, Giselle C.
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University, National Institute of Science and Technology in Plant–Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa
– sequence: 9
  givenname: Peiguo
  surname: Yuan
  fullname: Yuan, Peiguo
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University
– sequence: 10
  givenname: Dongdong
  surname: Ge
  fullname: Ge, Dongdong
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University
– sequence: 11
  givenname: Wen-Ming
  surname: Wang
  fullname: Wang, Wen-Ming
  organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University
– sequence: 12
  givenname: Elizabeth P. B.
  orcidid: 0000-0002-7986-1369
  surname: Fontes
  fullname: Fontes, Elizabeth P. B.
  organization: National Institute of Science and Technology in Plant–Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa
– sequence: 13
  givenname: Pingwei
  orcidid: 0000-0002-1815-3107
  surname: Li
  fullname: Li, Pingwei
  organization: Department of Biochemistry & Biophysics, Texas A&M University
– sequence: 14
  givenname: Libo
  surname: Shan
  fullname: Shan, Libo
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University
– sequence: 15
  givenname: Ping
  orcidid: 0000-0002-5926-8349
  surname: He
  fullname: He, Ping
  email: pinghe@tamu.edu
  organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32839517$$D View this record in MEDLINE/PubMed
BookMark eNp9UV1vFCEUJabG1tof4Ish8cWXUWCYYXgxMc36ke5qorvPhGEuW7YzsMLMJv57WafV2kTDA1w459xzOU_RiQ8eEHpOyWtKyuZN4pQLURBGCiJ4U9SP0BkjVZVvRHNy73yKLlLaEUKoqKqyJk_QacmaUlZUnKHd-hrwoHswo_NF724ARzCwH0OcqxvndQK8XKw3K4qH0E29HiHhz8uveB_DCM7jb5vVimGdJQ56dMHjg9N4tbi6YjgZbW3oO-e3z9Bjq_sEF7f7Odq8X6wvPxbLLx8-Xb5bFia7G4tOQivBMlnVUnBWG0p4LhmTXU0FEaympGt1WRne5rkZkbSxzHbWdobJtinP0dtZdz-1A3QG_Bh1r_bRDTr-UEE79feLd9dqGw5KcMk4rbPAq1uBGL5PkEY1uGSg77WHMCXFeCkoy-vY6-UD6C5M0efxMipr1TLHkFEv7jv6beUuhgwQM8DEkFIEq4wbf31lNuh6RYk6Zq7mzFXOXB0zV0ev9AHzTvx_HDZzUsb6LcQ_pv9N-gkkbbyO
CitedBy_id crossref_primary_10_1111_nph_17683
crossref_primary_10_1038_s41477_021_01028_3
crossref_primary_10_1360_SSV_2024_0140
crossref_primary_10_3389_fpls_2022_938876
crossref_primary_10_1038_s41586_022_04684_3
crossref_primary_10_3390_ijms21218163
crossref_primary_10_3390_ijms23158214
crossref_primary_10_1016_j_molp_2023_11_011
crossref_primary_10_1038_s41467_020_18600_8
crossref_primary_10_1016_j_molcel_2021_09_006
crossref_primary_10_1016_j_cell_2023_12_030
crossref_primary_10_1038_s41467_021_25580_w
crossref_primary_10_1093_jxb_eraf071
crossref_primary_10_1146_annurev_arplant_102820_103424
crossref_primary_10_3390_ijms24087417
crossref_primary_10_1016_j_cub_2021_04_080
crossref_primary_10_1016_j_cell_2023_04_027
crossref_primary_10_1038_s41467_025_57231_9
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1111_jipb_13215
crossref_primary_10_1093_pcp_pcac105
crossref_primary_10_3390_plants12132458
crossref_primary_10_1007_s44154_021_00009_y
crossref_primary_10_1016_j_tibs_2023_06_002
crossref_primary_10_1094_MPMI_08_20_0239_IA
crossref_primary_10_1007_s43621_024_00456_3
crossref_primary_10_1016_j_tcsw_2021_100056
crossref_primary_10_1111_nph_19212
crossref_primary_10_1016_j_pbi_2022_102276
crossref_primary_10_1016_j_pbi_2022_102230
crossref_primary_10_1111_nph_19596
crossref_primary_10_1093_plphys_kiae574
crossref_primary_10_1146_annurev_phyto_021622_110443
crossref_primary_10_3390_ijms23062937
crossref_primary_10_1093_jxb_erae020
crossref_primary_10_3390_ijms23042175
crossref_primary_10_1007_s12275_024_00114_3
crossref_primary_10_1093_plcell_koae142
crossref_primary_10_1111_pce_14123
crossref_primary_10_3389_fpls_2022_812279
crossref_primary_10_1016_j_sjbs_2023_103676
crossref_primary_10_1016_j_chom_2024_06_004
crossref_primary_10_1094_MPMI_10_23_0177_HH
crossref_primary_10_1186_s12870_021_03208_x
crossref_primary_10_1111_nph_18509
Cites_doi 10.1104/pp.16.00667
10.1038/nature05286
10.1038/ni1410
10.1146/annurev-phyto-082712-102314
10.1105/tpc.17.00981
10.1038/nri3141
10.1126/science.aao3642
10.1074/jbc.M605319200
10.1016/j.cub.2009.06.064
10.3390/s16091488
10.1016/j.cell.2006.02.008
10.1016/j.cub.2018.07.078
10.1016/j.chom.2007.03.006
10.1016/j.pbi.2012.07.003
10.1016/S0092-8674(00)00213-0
10.1126/science.aal2541
10.1038/nri.2016.77
10.1146/annurev-arplant-042809-112252
10.1016/j.str.2013.04.025
10.1073/pnas.1105685108
10.1104/pp.19.01555
10.1016/j.chom.2014.10.018
10.1242/dev.040071
10.1126/science.1244454
10.1074/jbc.M605293200
10.1007/978-1-60761-765-5_26
10.1016/j.tplants.2015.12.004
10.1146/annurev-arplant-042817-040557
10.1104/pp.106.091389
10.1146/annurev-phyto-080516-035649
10.15252/embr.201642704
10.1038/415977a
10.1016/j.cub.2013.11.047
10.1111/j.1365-313X.2011.04799.x
10.1016/j.pbi.2011.05.006
10.1105/tpc.17.00464
10.1016/j.cub.2019.09.018
10.1073/pnas.0812346106
10.1016/j.pbi.2011.03.011
10.1105/tpc.113.112102
10.1111/tpj.14763
10.1105/tpc.112.097253
10.1038/nplants.2015.218
10.1016/j.tplants.2017.07.005
10.1126/science.1204903
10.1146/annurev-arplant-050213-040012
10.1016/j.chom.2012.01.015
10.1242/dev.00458
10.15252/embr.201745324
10.1038/cr.2008.300
10.1038/s41586-019-1409-7
10.1126/science.1195211
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
DOI 10.1038/s41477-020-0748-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2055-0278
EndPage 1115
ExternalDocumentID PMC7492416
32839517
10_1038_s41477_020_0748_6
Genre Journal Article
GeographicLocations United States--US
Texas
China
GeographicLocations_xml – name: Texas
– name: China
– name: United States--US
GrantInformation_xml – fundername: Robert A. Welch Foundation (A-1795)
– fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
  grantid: R01GM097247; R01GM092893
  funderid: https://doi.org/10.13039/100000009
– fundername: Center for Hierarchical Manufacturing, National Science Foundation (Center for Hierarchical Manufacturing)
  grantid: MCB-1906060
  funderid: https://doi.org/10.13039/100006445
– fundername: China Scholarship Council (CSC)
  funderid: https://doi.org/10.13039/501100004543
– fundername: G.C.M was partially supported by INCT/CNPq Fellowship, Brazil
– fundername: NIGMS NIH HHS
  grantid: R01 GM092893
– fundername: NIGMS NIH HHS
  grantid: R01 GM097247
GroupedDBID 0R~
4.4
5BI
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFSHS
AFWHJ
AGAYW
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK5
M7R
NNMJJ
O9-
ODYON
PCBAR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7SN
C1K
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c536t-d9eb9ef295697426c104ef2229d617072610dba35c4b74820918f2fdffdc29b83
IEDL.DBID BENPR
ISSN 2055-0278
IngestDate Thu Aug 21 18:16:06 EDT 2025
Thu Aug 07 15:09:03 EDT 2025
Sat Aug 23 13:08:21 EDT 2025
Mon Jul 21 05:59:13 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 03:33:58 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d9eb9ef295697426c104ef2229d617072610dba35c4b74820918f2fdffdc29b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Y.H., J.L., L.S., and P.H. conceived the project, designed experiments and analyzed data. J.L., Y.H., L.K., X.Y., B.F., D.L., B.Z., G.C.M., P.Y., and D.G. performed experiments and analyzed data. W.M.W, E.P.B.F., and P.L. analyzed data and provided critical feedback. L.S., and P.H. wrote the manuscript with inputs from all co-authors.
Author Contributions
ORCID 0000-0001-7688-0997
0000-0002-7986-1369
0000-0002-1815-3107
0000-0002-5926-8349
0000-0002-9272-9602
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7492416
PMID 32839517
PQID 2441669205
PQPubID 2069614
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7492416
proquest_miscellaneous_2437121218
proquest_journals_2441669205
pubmed_primary_32839517
crossref_citationtrail_10_1038_s41477_020_0748_6
crossref_primary_10_1038_s41477_020_0748_6
springer_journals_10_1038_s41477_020_0748_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature plants
PublicationTitleAbbrev Nat. Plants
PublicationTitleAlternate Nat Plants
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ge (CR36) 2017; 358
Halter (CR53) 2014; 24
DeYoung, Innes (CR15) 2006; 7
Yu (CR23) 2019; 29
Rodriguez, Petersen, Mundy (CR16) 2010; 61
Zhang (CR4) 2012; 11
Gao (CR5) 2008; 18
Nissen, Willats, Malinovsky (CR28) 2016; 21
Franck, Westermann, Boisson-Dernier (CR31) 2018; 69
Zhang (CR45) 2007; 1
Li (CR48) 2014; 16
Su (CR26) 2013; 25
Kessler (CR40) 2010; 330
Lindner, Muller, Boisson-Dernier, Grossniklaus (CR30) 2012; 15
Jones, Dangl (CR1) 2006; 444
Li, Wu, Cheung (CR29) 2016; 171
Kong (CR25) 2012; 24
Gou (CR43) 2012; 69
Tena, Boudsocq, Sheen (CR18) 2011; 14
CR49
Nakagami, Soukupova, Schikora, Zarsky, Hirt (CR8) 2006; 281
Lu (CR44) 2011; 332
Stegmann (CR37) 2017; 355
Elmore, Lin, Coaker (CR14) 2011; 14
Asai (CR21) 2002; 415
Nitta (CR41) 2020; 103
Spoel, Dong (CR3) 2012; 12
Mang (CR38) 2017; 29
Guo (CR35) 2009; 106
Zhang (CR27) 2017; 18
Haruta, Sabat, Stecker, Minkoff, Sussman (CR46) 2014; 343
Cheng (CR42) 2011; 108
Cui, Tsuda, Parker (CR13) 2015; 66
Couto, Zipfel (CR10) 2016; 16
Yu, Feng, He, Shan (CR11) 2017; 55
Bi (CR20) 2018; 30
Sun (CR19) 2018; 19
CR50
Shu (CR51) 2013; 21
Huck, Moore, Federer, Grossniklaus (CR32) 2003; 130
Gust, Pruitt, Nurnberger (CR12) 2017; 22
Yang (CR24) 2020; 183
Boisson-Dernier (CR33) 2009; 136
Miyazaki (CR34) 2009; 19
Xiao (CR47) 2019; 572
Suarez-Rodriguez (CR7) 2007; 143
Petersen (CR9) 2000; 103
Guo (CR39) 2018; 28
Bucherl, Aker, de Vries, Borst (CR52) 2010; 655
Ichimura, Casais, Peck, Shinozaki, Shirasu (CR6) 2006; 281
Meng, Zhang (CR17) 2013; 51
de Oliveira (CR22) 2016; 2
Chisholm, Coaker, Day, Staskawicz (CR2) 2006; 124
748_CR50
D Lu (748_CR44) 2011; 332
JDG Jones (748_CR1) 2006; 444
M Petersen (748_CR9) 2000; 103
H Cui (748_CR13) 2015; 66
G Bi (748_CR20) 2018; 30
SA Kessler (748_CR40) 2010; 330
C Li (748_CR29) 2016; 171
M Haruta (748_CR46) 2014; 343
A Boisson-Dernier (748_CR33) 2009; 136
H Nakagami (748_CR8) 2006; 281
MC Rodriguez (748_CR16) 2010; 61
N Huck (748_CR32) 2003; 130
T Halter (748_CR53) 2014; 24
H Guo (748_CR39) 2018; 28
MVV de Oliveira (748_CR22) 2016; 2
M Gou (748_CR43) 2012; 69
Z Zhang (748_CR4) 2012; 11
Y Yang (748_CR24) 2020; 183
D Couto (748_CR10) 2016; 16
M Stegmann (748_CR37) 2017; 355
G Tena (748_CR18) 2011; 14
ST Chisholm (748_CR2) 2006; 124
Z Ge (748_CR36) 2017; 358
Y Xiao (748_CR47) 2019; 572
M Gao (748_CR5) 2008; 18
BJ DeYoung (748_CR15) 2006; 7
MC Suarez-Rodriguez (748_CR7) 2007; 143
X Meng (748_CR17) 2013; 51
Z Zhang (748_CR27) 2017; 18
X Yu (748_CR23) 2019; 29
X Yu (748_CR11) 2017; 55
S Miyazaki (748_CR34) 2009; 19
JM Elmore (748_CR14) 2011; 14
K Ichimura (748_CR6) 2006; 281
J Zhang (748_CR45) 2007; 1
T Sun (748_CR19) 2018; 19
H Lindner (748_CR30) 2012; 15
F Li (748_CR48) 2014; 16
KS Nissen (748_CR28) 2016; 21
YT Cheng (748_CR42) 2011; 108
SH Su (748_CR26) 2013; 25
Y Nitta (748_CR41) 2020; 103
H Guo (748_CR35) 2009; 106
C Shu (748_CR51) 2013; 21
Q Kong (748_CR25) 2012; 24
SH Spoel (748_CR3) 2012; 12
T Asai (748_CR21) 2002; 415
CM Franck (748_CR31) 2018; 69
H Mang (748_CR38) 2017; 29
748_CR49
C Bucherl (748_CR52) 2010; 655
AA Gust (748_CR12) 2017; 22
References_xml – volume: 14
  start-page: 519
  year: 2011
  end-page: 529
  ident: CR18
  article-title: Protein kinase signaling networks in plant innate immunity
  publication-title: Curr. Opin. Plant Biol.
– volume: 1
  start-page: 175
  year: 2007
  end-page: 185
  ident: CR45
  article-title: A effector inactivates MAPKs to suppress PAMP-induced immunity in plants
  publication-title: Cell Host Microbe
– volume: 16
  start-page: 748
  year: 2014
  end-page: 758
  ident: CR48
  article-title: Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity
  publication-title: Cell Host Microbe
– volume: 29
  start-page: 3778
  year: 2019
  end-page: 3790
  ident: CR23
  article-title: The receptor kinases BAK1/SERK4 regulate Ca channel-mediated cellular homeostasis for cell death containment
  publication-title: Curr. Biol.
– ident: CR49
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  ident: CR17
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu. Rev. Phytopathol.
– volume: 12
  start-page: 89
  year: 2012
  end-page: 100
  ident: CR3
  article-title: How do plants achieve immunity? Defence without specialized immune cells
  publication-title: Nat. Rev. Immunol.
– volume: 124
  start-page: 803
  year: 2006
  end-page: 814
  ident: CR2
  article-title: Host–microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
– volume: 14
  start-page: 365
  year: 2011
  end-page: 371
  ident: CR14
  article-title: Plant NB-LRR signaling: upstreams and downstreams
  publication-title: Curr. Opin. Plant Biol.
– volume: 16
  start-page: 537
  year: 2016
  end-page: 552
  ident: CR10
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
– volume: 108
  start-page: 14694
  year: 2011
  end-page: 14699
  ident: CR42
  article-title: Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation
  publication-title: Proc Natl Acad. Sci. USA
– volume: 18
  start-page: 1190
  year: 2008
  end-page: 1198
  ident: CR5
  article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants
  publication-title: Cell Res.
– volume: 655
  start-page: 389
  year: 2010
  end-page: 399
  ident: CR52
  article-title: Probing protein–protein Interactions with FRET–FLIM
  publication-title: Methods Mol. Biol.
– volume: 21
  start-page: 516
  year: 2016
  end-page: 527
  ident: CR28
  article-title: Understanding CrRLK1L function: cell walls and growth control
  publication-title: Trends Plant Sci.
– volume: 19
  start-page: e45324
  year: 2018
  ident: CR19
  article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling
  publication-title: EMBO Rep.
– volume: 69
  start-page: 301
  year: 2018
  end-page: 328
  ident: CR31
  article-title: Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond
  publication-title: Annu. Rev. Plant Biol.
– volume: 281
  start-page: 38697
  year: 2006
  end-page: 38704
  ident: CR8
  article-title: A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in
  publication-title: J. Biol. Chem.
– volume: 136
  start-page: 3279
  year: 2009
  end-page: 3288
  ident: CR33
  article-title: Disruption of the pollen-expressed homologs and triggers pollen tube discharge
  publication-title: Development
– volume: 343
  start-page: 408
  year: 2014
  end-page: 411
  ident: CR46
  article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion
  publication-title: Science
– ident: CR50
– volume: 21
  start-page: 1137
  year: 2013
  end-page: 1148
  ident: CR51
  article-title: Structural insights into the functions of TBK1 in innate antimicrobial immunity
  publication-title: Structure
– volume: 171
  start-page: 2379
  year: 2016
  end-page: 2392
  ident: CR29
  article-title: FERONIA and her pals: functions and mechanisms
  publication-title: Plant Physiol.
– volume: 19
  start-page: 1327
  year: 2009
  end-page: 1331
  ident: CR34
  article-title: and , sister genes to , are male factors for coordinated fertilization
  publication-title: Curr. Biol.
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  ident: CR1
  article-title: The plant immune system
  publication-title: Nature
– volume: 103
  start-page: 705
  year: 2020
  end-page: 714
  ident: CR41
  article-title: MEKK2 inhibits activation of MAP kinases in
  publication-title: Plant J.
– volume: 572
  start-page: 270
  year: 2019
  end-page: 274
  ident: CR47
  article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex
  publication-title: Nature
– volume: 143
  start-page: 661
  year: 2007
  end-page: 669
  ident: CR7
  article-title: MEKK1 is required for flg22-induced MPK4 activation in plants
  publication-title: Plant Physiol.
– volume: 183
  start-page: 331
  year: 2020
  end-page: 344
  ident: CR24
  article-title: RNA interference-based screen reveals concerted functions of MEKK2 and CRCK3 in plant cell death regulation
  publication-title: Plant Physiol.
– volume: 332
  start-page: 1439
  year: 2011
  end-page: 1442
  ident: CR44
  article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity
  publication-title: Science
– volume: 11
  start-page: 253
  year: 2012
  end-page: 263
  ident: CR4
  article-title: Disruption of PAMP-induced MAP kinase cascade by a effector activates plant immunity mediated by the NB-LRR protein SUMM2
  publication-title: Cell Host Microbe
– volume: 22
  start-page: 779
  year: 2017
  end-page: 791
  ident: CR12
  article-title: Sensing danger: key to activating plant immunity
  publication-title: Trends Plant Sci.
– volume: 29
  start-page: 3140
  year: 2017
  end-page: 3156
  ident: CR38
  article-title: Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases
  publication-title: Plant Cell
– volume: 355
  start-page: 287
  year: 2017
  end-page: 289
  ident: CR37
  article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling
  publication-title: Science
– volume: 130
  start-page: 2149
  year: 2003
  end-page: 2159
  ident: CR32
  article-title: The mutant disrupts the female gametophytic control of pollen tube reception
  publication-title: Development
– volume: 30
  start-page: 1543
  year: 2018
  end-page: 1561
  ident: CR20
  article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in
  publication-title: Plant Cell
– volume: 7
  start-page: 1243
  year: 2006
  end-page: 1249
  ident: CR15
  article-title: Plant NBS-LRR proteins in pathogen sensing and host defense
  publication-title: Nat. Immunol.
– volume: 330
  start-page: 968
  year: 2010
  end-page: 971
  ident: CR40
  article-title: Conserved molecular components for pollen tube reception and fungal invasion
  publication-title: Science
– volume: 69
  start-page: 411
  year: 2012
  end-page: 420
  ident: CR43
  article-title: The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation
  publication-title: Plant J.
– volume: 106
  start-page: 7648
  year: 2009
  end-page: 7653
  ident: CR35
  article-title: Three related receptor-like kinases are required for optimal cell elongation in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 2225
  year: 2012
  end-page: 2236
  ident: CR25
  article-title: The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in
  publication-title: Plant Cell
– volume: 24
  start-page: 134
  year: 2014
  end-page: 143
  ident: CR53
  article-title: The leucine-rich repeat receptor kinase BIR2 Is a negative regulator of BAK1 in plant immunity
  publication-title: Curr. Biol.
– volume: 55
  start-page: 109
  year: 2017
  end-page: 137
  ident: CR11
  article-title: From chaos to harmony: responses and signaling upon microbial pattern recognition
  publication-title: Annu. Rev. Phytopathol.
– volume: 415
  start-page: 977
  year: 2002
  end-page: 983
  ident: CR21
  article-title: MAP kinase signalling cascade in innate immunity
  publication-title: Nature
– volume: 18
  start-page: 292
  year: 2017
  end-page: 302
  ident: CR27
  article-title: The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3
  publication-title: EMBO Rep.
– volume: 281
  start-page: 36969
  year: 2006
  end-page: 36976
  ident: CR6
  article-title: MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 1895
  year: 2013
  end-page: 1910
  ident: CR26
  article-title: Deletion of a tandem gene family in : increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted
  publication-title: Plant Cell
– volume: 103
  start-page: 1111
  year: 2000
  end-page: 1120
  ident: CR9
  article-title: map kinase 4 negatively regulates systemic acquired resistance
  publication-title: Cell
– volume: 66
  start-page: 487
  year: 2015
  end-page: 511
  ident: CR13
  article-title: Effector-triggered immunity: from pathogen perception to robust defense
  publication-title: Annu. Rev. Plant Biol.
– volume: 358
  start-page: 1596
  year: 2017
  end-page: 1600
  ident: CR36
  article-title: pollen tube integrity and sperm release are regulated by RALF-mediated signaling
  publication-title: Science
– volume: 15
  start-page: 659
  year: 2012
  end-page: 669
  ident: CR30
  article-title: CrRLK1L receptor-like kinases: not just another brick in the wall
  publication-title: Curr. Opin. Plant Biol.
– volume: 61
  start-page: 621
  year: 2010
  end-page: 649
  ident: CR16
  article-title: Mitogen-activated protein kinase signaling in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 2
  start-page: 15218
  year: 2016
  ident: CR22
  article-title: Specific control of BAK1/SERK4-regulated cell death by protein glycosylation
  publication-title: Nat. Plants
– volume: 28
  start-page: 3316
  year: 2018
  end-page: 3324
  ident: CR39
  article-title: FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in
  publication-title: Curr. Biol.
– volume: 171
  start-page: 2379
  year: 2016
  ident: 748_CR29
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00667
– volume: 444
  start-page: 323
  year: 2006
  ident: 748_CR1
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 7
  start-page: 1243
  year: 2006
  ident: 748_CR15
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1410
– volume: 51
  start-page: 245
  year: 2013
  ident: 748_CR17
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102314
– volume: 30
  start-page: 1543
  year: 2018
  ident: 748_CR20
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00981
– volume: 12
  start-page: 89
  year: 2012
  ident: 748_CR3
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3141
– volume: 358
  start-page: 1596
  year: 2017
  ident: 748_CR36
  publication-title: Science
  doi: 10.1126/science.aao3642
– volume: 281
  start-page: 36969
  year: 2006
  ident: 748_CR6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605319200
– volume: 19
  start-page: 1327
  year: 2009
  ident: 748_CR34
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.06.064
– ident: 748_CR49
  doi: 10.3390/s16091488
– volume: 124
  start-page: 803
  year: 2006
  ident: 748_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.008
– volume: 28
  start-page: 3316
  year: 2018
  ident: 748_CR39
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.07.078
– volume: 1
  start-page: 175
  year: 2007
  ident: 748_CR45
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.03.006
– volume: 15
  start-page: 659
  year: 2012
  ident: 748_CR30
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2012.07.003
– volume: 103
  start-page: 1111
  year: 2000
  ident: 748_CR9
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00213-0
– volume: 355
  start-page: 287
  year: 2017
  ident: 748_CR37
  publication-title: Science
  doi: 10.1126/science.aal2541
– volume: 16
  start-page: 537
  year: 2016
  ident: 748_CR10
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.77
– volume: 61
  start-page: 621
  year: 2010
  ident: 748_CR16
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112252
– volume: 21
  start-page: 1137
  year: 2013
  ident: 748_CR51
  publication-title: Structure
  doi: 10.1016/j.str.2013.04.025
– volume: 108
  start-page: 14694
  year: 2011
  ident: 748_CR42
  publication-title: Proc Natl Acad. Sci. USA
  doi: 10.1073/pnas.1105685108
– volume: 183
  start-page: 331
  year: 2020
  ident: 748_CR24
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01555
– volume: 16
  start-page: 748
  year: 2014
  ident: 748_CR48
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.10.018
– volume: 136
  start-page: 3279
  year: 2009
  ident: 748_CR33
  publication-title: Development
  doi: 10.1242/dev.040071
– volume: 343
  start-page: 408
  year: 2014
  ident: 748_CR46
  publication-title: Science
  doi: 10.1126/science.1244454
– volume: 281
  start-page: 38697
  year: 2006
  ident: 748_CR8
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605293200
– volume: 655
  start-page: 389
  year: 2010
  ident: 748_CR52
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-765-5_26
– volume: 21
  start-page: 516
  year: 2016
  ident: 748_CR28
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.12.004
– volume: 69
  start-page: 301
  year: 2018
  ident: 748_CR31
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040557
– volume: 143
  start-page: 661
  year: 2007
  ident: 748_CR7
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.091389
– volume: 55
  start-page: 109
  year: 2017
  ident: 748_CR11
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080516-035649
– volume: 18
  start-page: 292
  year: 2017
  ident: 748_CR27
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201642704
– volume: 415
  start-page: 977
  year: 2002
  ident: 748_CR21
  publication-title: Nature
  doi: 10.1038/415977a
– volume: 24
  start-page: 134
  year: 2014
  ident: 748_CR53
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.11.047
– volume: 69
  start-page: 411
  year: 2012
  ident: 748_CR43
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04799.x
– volume: 14
  start-page: 519
  year: 2011
  ident: 748_CR18
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2011.05.006
– volume: 29
  start-page: 3140
  year: 2017
  ident: 748_CR38
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00464
– volume: 29
  start-page: 3778
  year: 2019
  ident: 748_CR23
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.09.018
– volume: 106
  start-page: 7648
  year: 2009
  ident: 748_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0812346106
– volume: 14
  start-page: 365
  year: 2011
  ident: 748_CR14
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2011.03.011
– ident: 748_CR50
– volume: 25
  start-page: 1895
  year: 2013
  ident: 748_CR26
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.112102
– volume: 103
  start-page: 705
  year: 2020
  ident: 748_CR41
  publication-title: Plant J.
  doi: 10.1111/tpj.14763
– volume: 24
  start-page: 2225
  year: 2012
  ident: 748_CR25
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.097253
– volume: 2
  start-page: 15218
  year: 2016
  ident: 748_CR22
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.218
– volume: 22
  start-page: 779
  year: 2017
  ident: 748_CR12
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.07.005
– volume: 332
  start-page: 1439
  year: 2011
  ident: 748_CR44
  publication-title: Science
  doi: 10.1126/science.1204903
– volume: 66
  start-page: 487
  year: 2015
  ident: 748_CR13
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050213-040012
– volume: 11
  start-page: 253
  year: 2012
  ident: 748_CR4
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.015
– volume: 130
  start-page: 2149
  year: 2003
  ident: 748_CR32
  publication-title: Development
  doi: 10.1242/dev.00458
– volume: 19
  start-page: e45324
  year: 2018
  ident: 748_CR19
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201745324
– volume: 18
  start-page: 1190
  year: 2008
  ident: 748_CR5
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.300
– volume: 572
  start-page: 270
  year: 2019
  ident: 748_CR47
  publication-title: Nature
  doi: 10.1038/s41586-019-1409-7
– volume: 330
  start-page: 968
  year: 2010
  ident: 748_CR40
  publication-title: Science
  doi: 10.1126/science.1195211
SSID ssj0001755360
Score 2.3757656
Snippet The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell...
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections . Plant immune receptors include cell...
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1–3. Plant immune receptors include cell...
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell...
Plants have evolved both cell surface-resident receptor-like kinases (RLKs) and intracellular nucleotide-binding leucine-rich repeat (NLR) proteins as immune...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1106
SubjectTerms 13
13/44
14/19
14/35
38/22
38/90
631/449/1659
631/449/1736
631/449/2169
631/449/448
82
82/1
82/29
82/80
82/83
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Autoimmunity
Biomedical and Life Sciences
Cell surface
Dwarfism
F-box protein
Gene Expression Regulation, Plant
Genes, Plant
Genetic screening
Immune system
Innate immunity
Kinases
Letter
Leucine
Life Sciences
MAP kinase
MAP Kinase Signaling System - genetics
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mutation
Nlr protein
Nucleotides
Pattern recognition
Pattern recognition receptors
Phenotypes
Plant Immunity - genetics
Plant Sciences
Proteins
Receptors
RNA-mediated interference
Scaffolding
Signal transduction
Signaling
Suppressors
Ubiquitination
Title The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding
URI https://link.springer.com/article/10.1038/s41477-020-0748-6
https://www.ncbi.nlm.nih.gov/pubmed/32839517
https://www.proquest.com/docview/2441669205
https://www.proquest.com/docview/2437121218
https://pubmed.ncbi.nlm.nih.gov/PMC7492416
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8SalICNxAlnd-O0TomirirYrVHWl3iLHDzW0TZZmi8S_Z5xks1oqeozsKI6_ycx8M84MQh-ddGCGPCUuj4FwLjgxXESiSmYZZcqo2J3yncnDOf9-Ls6HgFs7HKtc6cROUfvGpRj5HpihXEpDJ-LL4hdJXaNSdnVoofEQbYMK1kC-tvensx-n6yiLEoLJMZ3J9F7Lc64USawJrKcmctMg3fEy7x6W_Cdj2hmig6foyeBB4q895M_Qg1A_R4_2G_Dy_rxAPwF3fG1TML6qyVV1GTDotLAAat1fXVY1GC58PD2bn-T4uvGpf1do8ez4FHdFG6oaJ1VLcfrloQ_Y4t-VxSfToyOKW2dj7DNWL9H8YHr27ZAM_RSIg01YEm9CaUKkQImARVDpgIrBJaXGp7LsCsjUxJeWCcdL2BoKroSONPoYvaOm1OwV2qqbOrxBmCphAxVaamt4lNFw43UE7mYDYKxshiarTS3cUGw89by4KrqkN9NFj0MBOBQJh0Jm6NN4y6KvtHHf5N0VUsXw0bXFWkQy9GEchs8l5UBsHZrbNIepHGQl1xl63QM7Po2BqwUOp8qQ2oB8nJBKcW-O1NVFV5JbceCxOSzr80o41sv670vs3P8Sb9Fj2olpOtC2i7aWN7fhHXhAy_L9IOZ_AQucAnw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLRJcEG8CBYwEF5DVje3E8QEhCltt2YdQtSv1liaOLULbZGG3oP4pfiPjvFZLRW89Wnbix4w9883YMwCvdahRDGWMat8aKkQgqBKBpTLlCWdcKmmrW77TcDgXX46Coy34076Fcdcq2zOxOqizUjsb-S6KIT8MFesHHxY_qMsa5byrbQqNmi1G5uI3Qrbl-4PPSN83jO0PZp-GtMkqQHXAwxXNlEmVsQyBAerSLNQISLDImMpccHKJkKKfpQkPtEilQAGp_Mgym1mbaabSiON_b8C24AhlerC9N5h-PVxbdWSAnXTuUx7tLoUvpKQOpaG0jmi4KQAvabWXL2f-46GtBN_-XbjTaKzkY81i92DLFPfh5l6JWuXFA_iOfEbOEmf8zwt6mp8YgmeoWSCUr0sneYGCkowHs_nEJ2dl5vKFmSWZjg9JFSQiL4g72hlxTyxqAzH5lSdkMhiNGFnqxNraQ_YQ5tey0o-gV5SFeQKEySAxLIjCKFHChlYJlUUWsWJikKdk4kG_XdRYN8HNXY6N07hysvMorukQIx1iR4c49OBt98mijuxxVeOdllJxs8mX8ZolPXjVVeP2dD6XpDDluWvDpY_qgR958LgmbNcbR9UOFVzpgdwgedfAhf7erCnyb1UIcCkQN_s4rHctc6yH9d9JPL16Ei_h1nA2Gcfjg-noGdxmFcu6y3Q70Fv9PDfPUftapS8alidwfN277C9fmD6H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+malectin-like+receptor-like+kinase+LETUM1+modulates+NLR+protein+SUMM2+activation+via+MEKK2+scaffolding&rft.jtitle=Nature+plants&rft.au=Liu%2C+Jun&rft.au=Huang%2C+Yanyan&rft.au=Kong%2C+Liang&rft.au=Yu%2C+Xiao&rft.date=2020-09-01&rft.eissn=2055-0278&rft.volume=6&rft.issue=9&rft.spage=1106&rft_id=info:doi/10.1038%2Fs41477-020-0748-6&rft_id=info%3Apmid%2F32839517&rft.externalDocID=32839517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon