The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding
The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain le...
Saved in:
Published in | Nature plants Vol. 6; no. 9; pp. 1106 - 1115 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections
1
–
3
. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity
4
–
9
. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for
mekk1
autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of
mekk1–mkk1/2
–
mpk4
autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.
Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling. |
---|---|
AbstractList | The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections
. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity
. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4-9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2-mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections 1 – 3 . Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity 4 – 9 . To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1–mkk1/2 – mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling. Plants have evolved both cell surface-resident receptor-like kinases (RLKs) and intracellular nucleotide-binding leucine-rich repeat (NLR) proteins as immune receptors to detect infections. It remains enigmatic how RLK- and NLR-mediated signaling is connected. Disruption of an immune-activated MEKK1-MKK1/2-MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity. To gain insights into the mechanisms underlying SUMM2 activation, we deployed an RNAi-based genetic screen for mekk1 autoimmune suppressors, and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1-mkk1/2 - mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation; thereby, regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homeostasis caused by the deficiency in immune-activated signaling, and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding. The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1–3. Plant immune receptors include cell surface-resident pattern recognition receptors (PRRs, including receptor-like kinases (RLKs)), and intracellular nucleotide-binding domain leucine-rich repeat proteins (NLRs). It remains enigmatic how RLK- and NLR-mediated signalling are connected. Disruption of an immune-activated MEKK1–MKK1/2–MPK4 MAPK cascade activates the NLR SUMM2 via the MAPK kinase kinase MEKK2, leading to autoimmunity4–9. To gain insights into the mechanisms underlying SUMM2 activation, we used an RNA interference-based genetic screen for mekk1 autoimmune suppressors and identified an uncharacterized malectin-like RLK, named LETUM1 (LET1), as a specific regulator of mekk1–mkk1/2–mpk4 autoimmunity via complexing with both SUMM2 and MEKK2. MEKK2 scaffolds LET1 and SUMM2 for protein stability and association, and counter-regulates the F-box protein CPR1-mediated SUMM2 ubiquitination and degradation, thereby regulating SUMM2 accumulation and activation. Our study indicates that malectin-like RLK LET1 senses the perturbance of cellular homoeostasis caused by the deficiency in immune-activated signalling and activates the NLR SUMM2-mediated autoimmunity via MEKK2 scaffolding.Plants with loss of function mutations in the MEKK1–MKK1/2–MPK4 MAP kinase pathway show strong autoimmunity phenotypes and dwarfism. Through a suppressor genetic screen, the malectin-like receptor kinase LET1 is identified as a new regulator of immune signalling. |
Author | Wang, Wen-Ming Feng, Baomin Ge, Dongdong Yuan, Peiguo Kong, Liang He, Ping Yu, Xiao Fontes, Elizabeth P. B. Huang, Yanyan Mendes, Giselle C. Li, Pingwei Zhao, Baoyu Shan, Libo Liu, Derui Liu, Jun |
AuthorAffiliation | 1 Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA 2 Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA 6 These authors contributed equally 4 Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA 5 National Institute of Science and Technology in Plant-Pest Interactions, and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, 36570.000, Brazil 3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P. R. China |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA – name: 5 National Institute of Science and Technology in Plant-Pest Interactions, and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Minas Gerais, 36570.000, Brazil – name: 4 Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA – name: 3 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P. R. China – name: 6 These authors contributed equally – name: 1 Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-9272-9602 surname: Liu fullname: Liu, Jun organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University – sequence: 2 givenname: Yanyan orcidid: 0000-0001-7688-0997 surname: Huang fullname: Huang, Yanyan organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University – sequence: 3 givenname: Liang surname: Kong fullname: Kong, Liang organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University – sequence: 4 givenname: Xiao surname: Yu fullname: Yu, Xiao organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University – sequence: 5 givenname: Baomin surname: Feng fullname: Feng, Baomin organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University – sequence: 6 givenname: Derui surname: Liu fullname: Liu, Derui organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University – sequence: 7 givenname: Baoyu surname: Zhao fullname: Zhao, Baoyu organization: Department of Biochemistry & Biophysics, Texas A&M University – sequence: 8 givenname: Giselle C. surname: Mendes fullname: Mendes, Giselle C. organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University, National Institute of Science and Technology in Plant–Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa – sequence: 9 givenname: Peiguo surname: Yuan fullname: Yuan, Peiguo organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University – sequence: 10 givenname: Dongdong surname: Ge fullname: Ge, Dongdong organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University – sequence: 11 givenname: Wen-Ming surname: Wang fullname: Wang, Wen-Ming organization: State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University – sequence: 12 givenname: Elizabeth P. B. orcidid: 0000-0002-7986-1369 surname: Fontes fullname: Fontes, Elizabeth P. B. organization: National Institute of Science and Technology in Plant–Pest Interactions and Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa – sequence: 13 givenname: Pingwei orcidid: 0000-0002-1815-3107 surname: Li fullname: Li, Pingwei organization: Department of Biochemistry & Biophysics, Texas A&M University – sequence: 14 givenname: Libo surname: Shan fullname: Shan, Libo organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Plant Pathology & Microbiology, Texas A&M University – sequence: 15 givenname: Ping orcidid: 0000-0002-5926-8349 surname: He fullname: He, Ping email: pinghe@tamu.edu organization: Institute for Plant Genomics & Biotechnology, Texas A&M University, Department of Biochemistry & Biophysics, Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32839517$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UV1vFCEUJabG1tof4Ish8cWXUWCYYXgxMc36ke5qorvPhGEuW7YzsMLMJv57WafV2kTDA1w459xzOU_RiQ8eEHpOyWtKyuZN4pQLURBGCiJ4U9SP0BkjVZVvRHNy73yKLlLaEUKoqKqyJk_QacmaUlZUnKHd-hrwoHswo_NF724ARzCwH0OcqxvndQK8XKw3K4qH0E29HiHhz8uveB_DCM7jb5vVimGdJQ56dMHjg9N4tbi6YjgZbW3oO-e3z9Bjq_sEF7f7Odq8X6wvPxbLLx8-Xb5bFia7G4tOQivBMlnVUnBWG0p4LhmTXU0FEaympGt1WRne5rkZkbSxzHbWdobJtinP0dtZdz-1A3QG_Bh1r_bRDTr-UEE79feLd9dqGw5KcMk4rbPAq1uBGL5PkEY1uGSg77WHMCXFeCkoy-vY6-UD6C5M0efxMipr1TLHkFEv7jv6beUuhgwQM8DEkFIEq4wbf31lNuh6RYk6Zq7mzFXOXB0zV0ev9AHzTvx_HDZzUsb6LcQ_pv9N-gkkbbyO |
CitedBy_id | crossref_primary_10_1111_nph_17683 crossref_primary_10_1038_s41477_021_01028_3 crossref_primary_10_1360_SSV_2024_0140 crossref_primary_10_3389_fpls_2022_938876 crossref_primary_10_1038_s41586_022_04684_3 crossref_primary_10_3390_ijms21218163 crossref_primary_10_3390_ijms23158214 crossref_primary_10_1016_j_molp_2023_11_011 crossref_primary_10_1038_s41467_020_18600_8 crossref_primary_10_1016_j_molcel_2021_09_006 crossref_primary_10_1016_j_cell_2023_12_030 crossref_primary_10_1038_s41467_021_25580_w crossref_primary_10_1093_jxb_eraf071 crossref_primary_10_1146_annurev_arplant_102820_103424 crossref_primary_10_3390_ijms24087417 crossref_primary_10_1016_j_cub_2021_04_080 crossref_primary_10_1016_j_cell_2023_04_027 crossref_primary_10_1038_s41467_025_57231_9 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_1111_jipb_13215 crossref_primary_10_1093_pcp_pcac105 crossref_primary_10_3390_plants12132458 crossref_primary_10_1007_s44154_021_00009_y crossref_primary_10_1016_j_tibs_2023_06_002 crossref_primary_10_1094_MPMI_08_20_0239_IA crossref_primary_10_1007_s43621_024_00456_3 crossref_primary_10_1016_j_tcsw_2021_100056 crossref_primary_10_1111_nph_19212 crossref_primary_10_1016_j_pbi_2022_102276 crossref_primary_10_1016_j_pbi_2022_102230 crossref_primary_10_1111_nph_19596 crossref_primary_10_1093_plphys_kiae574 crossref_primary_10_1146_annurev_phyto_021622_110443 crossref_primary_10_3390_ijms23062937 crossref_primary_10_1093_jxb_erae020 crossref_primary_10_3390_ijms23042175 crossref_primary_10_1007_s12275_024_00114_3 crossref_primary_10_1093_plcell_koae142 crossref_primary_10_1111_pce_14123 crossref_primary_10_3389_fpls_2022_812279 crossref_primary_10_1016_j_sjbs_2023_103676 crossref_primary_10_1016_j_chom_2024_06_004 crossref_primary_10_1094_MPMI_10_23_0177_HH crossref_primary_10_1186_s12870_021_03208_x crossref_primary_10_1111_nph_18509 |
Cites_doi | 10.1104/pp.16.00667 10.1038/nature05286 10.1038/ni1410 10.1146/annurev-phyto-082712-102314 10.1105/tpc.17.00981 10.1038/nri3141 10.1126/science.aao3642 10.1074/jbc.M605319200 10.1016/j.cub.2009.06.064 10.3390/s16091488 10.1016/j.cell.2006.02.008 10.1016/j.cub.2018.07.078 10.1016/j.chom.2007.03.006 10.1016/j.pbi.2012.07.003 10.1016/S0092-8674(00)00213-0 10.1126/science.aal2541 10.1038/nri.2016.77 10.1146/annurev-arplant-042809-112252 10.1016/j.str.2013.04.025 10.1073/pnas.1105685108 10.1104/pp.19.01555 10.1016/j.chom.2014.10.018 10.1242/dev.040071 10.1126/science.1244454 10.1074/jbc.M605293200 10.1007/978-1-60761-765-5_26 10.1016/j.tplants.2015.12.004 10.1146/annurev-arplant-042817-040557 10.1104/pp.106.091389 10.1146/annurev-phyto-080516-035649 10.15252/embr.201642704 10.1038/415977a 10.1016/j.cub.2013.11.047 10.1111/j.1365-313X.2011.04799.x 10.1016/j.pbi.2011.05.006 10.1105/tpc.17.00464 10.1016/j.cub.2019.09.018 10.1073/pnas.0812346106 10.1016/j.pbi.2011.03.011 10.1105/tpc.113.112102 10.1111/tpj.14763 10.1105/tpc.112.097253 10.1038/nplants.2015.218 10.1016/j.tplants.2017.07.005 10.1126/science.1204903 10.1146/annurev-arplant-050213-040012 10.1016/j.chom.2012.01.015 10.1242/dev.00458 10.15252/embr.201745324 10.1038/cr.2008.300 10.1038/s41586-019-1409-7 10.1126/science.1195211 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
DOI | 10.1038/s41477-020-0748-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
EndPage | 1115 |
ExternalDocumentID | PMC7492416 32839517 10_1038_s41477_020_0748_6 |
Genre | Journal Article |
GeographicLocations | United States--US Texas China |
GeographicLocations_xml | – name: Texas – name: China – name: United States--US |
GrantInformation_xml | – fundername: Robert A. Welch Foundation (A-1795) – fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) grantid: R01GM097247; R01GM092893 funderid: https://doi.org/10.13039/100000009 – fundername: Center for Hierarchical Manufacturing, National Science Foundation (Center for Hierarchical Manufacturing) grantid: MCB-1906060 funderid: https://doi.org/10.13039/100006445 – fundername: China Scholarship Council (CSC) funderid: https://doi.org/10.13039/501100004543 – fundername: G.C.M was partially supported by INCT/CNPq Fellowship, Brazil – fundername: NIGMS NIH HHS grantid: R01 GM092893 – fundername: NIGMS NIH HHS grantid: R01 GM097247 |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AENEX AEUYN AFKRA AFSHS AFWHJ AGAYW AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7SN C1K DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c536t-d9eb9ef295697426c104ef2229d617072610dba35c4b74820918f2fdffdc29b83 |
IEDL.DBID | BENPR |
ISSN | 2055-0278 |
IngestDate | Thu Aug 21 18:16:06 EDT 2025 Thu Aug 07 15:09:03 EDT 2025 Sat Aug 23 13:08:21 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 03:33:58 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-d9eb9ef295697426c104ef2229d617072610dba35c4b74820918f2fdffdc29b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Y.H., J.L., L.S., and P.H. conceived the project, designed experiments and analyzed data. J.L., Y.H., L.K., X.Y., B.F., D.L., B.Z., G.C.M., P.Y., and D.G. performed experiments and analyzed data. W.M.W, E.P.B.F., and P.L. analyzed data and provided critical feedback. L.S., and P.H. wrote the manuscript with inputs from all co-authors. Author Contributions |
ORCID | 0000-0001-7688-0997 0000-0002-7986-1369 0000-0002-1815-3107 0000-0002-5926-8349 0000-0002-9272-9602 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7492416 |
PMID | 32839517 |
PQID | 2441669205 |
PQPubID | 2069614 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7492416 proquest_miscellaneous_2437121218 proquest_journals_2441669205 pubmed_primary_32839517 crossref_citationtrail_10_1038_s41477_020_0748_6 crossref_primary_10_1038_s41477_020_0748_6 springer_journals_10_1038_s41477_020_0748_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ge (CR36) 2017; 358 Halter (CR53) 2014; 24 DeYoung, Innes (CR15) 2006; 7 Yu (CR23) 2019; 29 Rodriguez, Petersen, Mundy (CR16) 2010; 61 Zhang (CR4) 2012; 11 Gao (CR5) 2008; 18 Nissen, Willats, Malinovsky (CR28) 2016; 21 Franck, Westermann, Boisson-Dernier (CR31) 2018; 69 Zhang (CR45) 2007; 1 Li (CR48) 2014; 16 Su (CR26) 2013; 25 Kessler (CR40) 2010; 330 Lindner, Muller, Boisson-Dernier, Grossniklaus (CR30) 2012; 15 Jones, Dangl (CR1) 2006; 444 Li, Wu, Cheung (CR29) 2016; 171 Kong (CR25) 2012; 24 Gou (CR43) 2012; 69 Tena, Boudsocq, Sheen (CR18) 2011; 14 CR49 Nakagami, Soukupova, Schikora, Zarsky, Hirt (CR8) 2006; 281 Lu (CR44) 2011; 332 Stegmann (CR37) 2017; 355 Elmore, Lin, Coaker (CR14) 2011; 14 Asai (CR21) 2002; 415 Nitta (CR41) 2020; 103 Spoel, Dong (CR3) 2012; 12 Mang (CR38) 2017; 29 Guo (CR35) 2009; 106 Zhang (CR27) 2017; 18 Haruta, Sabat, Stecker, Minkoff, Sussman (CR46) 2014; 343 Cheng (CR42) 2011; 108 Cui, Tsuda, Parker (CR13) 2015; 66 Couto, Zipfel (CR10) 2016; 16 Yu, Feng, He, Shan (CR11) 2017; 55 Bi (CR20) 2018; 30 Sun (CR19) 2018; 19 CR50 Shu (CR51) 2013; 21 Huck, Moore, Federer, Grossniklaus (CR32) 2003; 130 Gust, Pruitt, Nurnberger (CR12) 2017; 22 Yang (CR24) 2020; 183 Boisson-Dernier (CR33) 2009; 136 Miyazaki (CR34) 2009; 19 Xiao (CR47) 2019; 572 Suarez-Rodriguez (CR7) 2007; 143 Petersen (CR9) 2000; 103 Guo (CR39) 2018; 28 Bucherl, Aker, de Vries, Borst (CR52) 2010; 655 Ichimura, Casais, Peck, Shinozaki, Shirasu (CR6) 2006; 281 Meng, Zhang (CR17) 2013; 51 de Oliveira (CR22) 2016; 2 Chisholm, Coaker, Day, Staskawicz (CR2) 2006; 124 748_CR50 D Lu (748_CR44) 2011; 332 JDG Jones (748_CR1) 2006; 444 M Petersen (748_CR9) 2000; 103 H Cui (748_CR13) 2015; 66 G Bi (748_CR20) 2018; 30 SA Kessler (748_CR40) 2010; 330 C Li (748_CR29) 2016; 171 M Haruta (748_CR46) 2014; 343 A Boisson-Dernier (748_CR33) 2009; 136 H Nakagami (748_CR8) 2006; 281 MC Rodriguez (748_CR16) 2010; 61 N Huck (748_CR32) 2003; 130 T Halter (748_CR53) 2014; 24 H Guo (748_CR39) 2018; 28 MVV de Oliveira (748_CR22) 2016; 2 M Gou (748_CR43) 2012; 69 Z Zhang (748_CR4) 2012; 11 Y Yang (748_CR24) 2020; 183 D Couto (748_CR10) 2016; 16 M Stegmann (748_CR37) 2017; 355 G Tena (748_CR18) 2011; 14 ST Chisholm (748_CR2) 2006; 124 Z Ge (748_CR36) 2017; 358 Y Xiao (748_CR47) 2019; 572 M Gao (748_CR5) 2008; 18 BJ DeYoung (748_CR15) 2006; 7 MC Suarez-Rodriguez (748_CR7) 2007; 143 X Meng (748_CR17) 2013; 51 Z Zhang (748_CR27) 2017; 18 X Yu (748_CR23) 2019; 29 X Yu (748_CR11) 2017; 55 S Miyazaki (748_CR34) 2009; 19 JM Elmore (748_CR14) 2011; 14 K Ichimura (748_CR6) 2006; 281 J Zhang (748_CR45) 2007; 1 T Sun (748_CR19) 2018; 19 H Lindner (748_CR30) 2012; 15 F Li (748_CR48) 2014; 16 KS Nissen (748_CR28) 2016; 21 YT Cheng (748_CR42) 2011; 108 SH Su (748_CR26) 2013; 25 Y Nitta (748_CR41) 2020; 103 H Guo (748_CR35) 2009; 106 C Shu (748_CR51) 2013; 21 Q Kong (748_CR25) 2012; 24 SH Spoel (748_CR3) 2012; 12 T Asai (748_CR21) 2002; 415 CM Franck (748_CR31) 2018; 69 H Mang (748_CR38) 2017; 29 748_CR49 C Bucherl (748_CR52) 2010; 655 AA Gust (748_CR12) 2017; 22 |
References_xml | – volume: 14 start-page: 519 year: 2011 end-page: 529 ident: CR18 article-title: Protein kinase signaling networks in plant innate immunity publication-title: Curr. Opin. Plant Biol. – volume: 1 start-page: 175 year: 2007 end-page: 185 ident: CR45 article-title: A effector inactivates MAPKs to suppress PAMP-induced immunity in plants publication-title: Cell Host Microbe – volume: 16 start-page: 748 year: 2014 end-page: 758 ident: CR48 article-title: Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity publication-title: Cell Host Microbe – volume: 29 start-page: 3778 year: 2019 end-page: 3790 ident: CR23 article-title: The receptor kinases BAK1/SERK4 regulate Ca channel-mediated cellular homeostasis for cell death containment publication-title: Curr. Biol. – ident: CR49 – volume: 51 start-page: 245 year: 2013 end-page: 266 ident: CR17 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu. Rev. Phytopathol. – volume: 12 start-page: 89 year: 2012 end-page: 100 ident: CR3 article-title: How do plants achieve immunity? Defence without specialized immune cells publication-title: Nat. Rev. Immunol. – volume: 124 start-page: 803 year: 2006 end-page: 814 ident: CR2 article-title: Host–microbe interactions: shaping the evolution of the plant immune response publication-title: Cell – volume: 14 start-page: 365 year: 2011 end-page: 371 ident: CR14 article-title: Plant NB-LRR signaling: upstreams and downstreams publication-title: Curr. Opin. Plant Biol. – volume: 16 start-page: 537 year: 2016 end-page: 552 ident: CR10 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. – volume: 108 start-page: 14694 year: 2011 end-page: 14699 ident: CR42 article-title: Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation publication-title: Proc Natl Acad. Sci. USA – volume: 18 start-page: 1190 year: 2008 end-page: 1198 ident: CR5 article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants publication-title: Cell Res. – volume: 655 start-page: 389 year: 2010 end-page: 399 ident: CR52 article-title: Probing protein–protein Interactions with FRET–FLIM publication-title: Methods Mol. Biol. – volume: 21 start-page: 516 year: 2016 end-page: 527 ident: CR28 article-title: Understanding CrRLK1L function: cell walls and growth control publication-title: Trends Plant Sci. – volume: 19 start-page: e45324 year: 2018 ident: CR19 article-title: Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling publication-title: EMBO Rep. – volume: 69 start-page: 301 year: 2018 end-page: 328 ident: CR31 article-title: Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond publication-title: Annu. Rev. Plant Biol. – volume: 281 start-page: 38697 year: 2006 end-page: 38704 ident: CR8 article-title: A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in publication-title: J. Biol. Chem. – volume: 136 start-page: 3279 year: 2009 end-page: 3288 ident: CR33 article-title: Disruption of the pollen-expressed homologs and triggers pollen tube discharge publication-title: Development – volume: 343 start-page: 408 year: 2014 end-page: 411 ident: CR46 article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion publication-title: Science – ident: CR50 – volume: 21 start-page: 1137 year: 2013 end-page: 1148 ident: CR51 article-title: Structural insights into the functions of TBK1 in innate antimicrobial immunity publication-title: Structure – volume: 171 start-page: 2379 year: 2016 end-page: 2392 ident: CR29 article-title: FERONIA and her pals: functions and mechanisms publication-title: Plant Physiol. – volume: 19 start-page: 1327 year: 2009 end-page: 1331 ident: CR34 article-title: and , sister genes to , are male factors for coordinated fertilization publication-title: Curr. Biol. – volume: 444 start-page: 323 year: 2006 end-page: 329 ident: CR1 article-title: The plant immune system publication-title: Nature – volume: 103 start-page: 705 year: 2020 end-page: 714 ident: CR41 article-title: MEKK2 inhibits activation of MAP kinases in publication-title: Plant J. – volume: 572 start-page: 270 year: 2019 end-page: 274 ident: CR47 article-title: Mechanisms of RALF peptide perception by a heterotypic receptor complex publication-title: Nature – volume: 143 start-page: 661 year: 2007 end-page: 669 ident: CR7 article-title: MEKK1 is required for flg22-induced MPK4 activation in plants publication-title: Plant Physiol. – volume: 183 start-page: 331 year: 2020 end-page: 344 ident: CR24 article-title: RNA interference-based screen reveals concerted functions of MEKK2 and CRCK3 in plant cell death regulation publication-title: Plant Physiol. – volume: 332 start-page: 1439 year: 2011 end-page: 1442 ident: CR44 article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity publication-title: Science – volume: 11 start-page: 253 year: 2012 end-page: 263 ident: CR4 article-title: Disruption of PAMP-induced MAP kinase cascade by a effector activates plant immunity mediated by the NB-LRR protein SUMM2 publication-title: Cell Host Microbe – volume: 22 start-page: 779 year: 2017 end-page: 791 ident: CR12 article-title: Sensing danger: key to activating plant immunity publication-title: Trends Plant Sci. – volume: 29 start-page: 3140 year: 2017 end-page: 3156 ident: CR38 article-title: Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases publication-title: Plant Cell – volume: 355 start-page: 287 year: 2017 end-page: 289 ident: CR37 article-title: The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling publication-title: Science – volume: 130 start-page: 2149 year: 2003 end-page: 2159 ident: CR32 article-title: The mutant disrupts the female gametophytic control of pollen tube reception publication-title: Development – volume: 30 start-page: 1543 year: 2018 end-page: 1561 ident: CR20 article-title: Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in publication-title: Plant Cell – volume: 7 start-page: 1243 year: 2006 end-page: 1249 ident: CR15 article-title: Plant NBS-LRR proteins in pathogen sensing and host defense publication-title: Nat. Immunol. – volume: 330 start-page: 968 year: 2010 end-page: 971 ident: CR40 article-title: Conserved molecular components for pollen tube reception and fungal invasion publication-title: Science – volume: 69 start-page: 411 year: 2012 end-page: 420 ident: CR43 article-title: The F-box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation publication-title: Plant J. – volume: 106 start-page: 7648 year: 2009 end-page: 7653 ident: CR35 article-title: Three related receptor-like kinases are required for optimal cell elongation in publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 2225 year: 2012 end-page: 2236 ident: CR25 article-title: The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in publication-title: Plant Cell – volume: 24 start-page: 134 year: 2014 end-page: 143 ident: CR53 article-title: The leucine-rich repeat receptor kinase BIR2 Is a negative regulator of BAK1 in plant immunity publication-title: Curr. Biol. – volume: 55 start-page: 109 year: 2017 end-page: 137 ident: CR11 article-title: From chaos to harmony: responses and signaling upon microbial pattern recognition publication-title: Annu. Rev. Phytopathol. – volume: 415 start-page: 977 year: 2002 end-page: 983 ident: CR21 article-title: MAP kinase signalling cascade in innate immunity publication-title: Nature – volume: 18 start-page: 292 year: 2017 end-page: 302 ident: CR27 article-title: The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3 publication-title: EMBO Rep. – volume: 281 start-page: 36969 year: 2006 end-page: 36976 ident: CR6 article-title: MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in publication-title: J. Biol. Chem. – volume: 25 start-page: 1895 year: 2013 end-page: 1910 ident: CR26 article-title: Deletion of a tandem gene family in : increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted publication-title: Plant Cell – volume: 103 start-page: 1111 year: 2000 end-page: 1120 ident: CR9 article-title: map kinase 4 negatively regulates systemic acquired resistance publication-title: Cell – volume: 66 start-page: 487 year: 2015 end-page: 511 ident: CR13 article-title: Effector-triggered immunity: from pathogen perception to robust defense publication-title: Annu. Rev. Plant Biol. – volume: 358 start-page: 1596 year: 2017 end-page: 1600 ident: CR36 article-title: pollen tube integrity and sperm release are regulated by RALF-mediated signaling publication-title: Science – volume: 15 start-page: 659 year: 2012 end-page: 669 ident: CR30 article-title: CrRLK1L receptor-like kinases: not just another brick in the wall publication-title: Curr. Opin. Plant Biol. – volume: 61 start-page: 621 year: 2010 end-page: 649 ident: CR16 article-title: Mitogen-activated protein kinase signaling in plants publication-title: Annu. Rev. Plant Biol. – volume: 2 start-page: 15218 year: 2016 ident: CR22 article-title: Specific control of BAK1/SERK4-regulated cell death by protein glycosylation publication-title: Nat. Plants – volume: 28 start-page: 3316 year: 2018 end-page: 3324 ident: CR39 article-title: FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in publication-title: Curr. Biol. – volume: 171 start-page: 2379 year: 2016 ident: 748_CR29 publication-title: Plant Physiol. doi: 10.1104/pp.16.00667 – volume: 444 start-page: 323 year: 2006 ident: 748_CR1 publication-title: Nature doi: 10.1038/nature05286 – volume: 7 start-page: 1243 year: 2006 ident: 748_CR15 publication-title: Nat. Immunol. doi: 10.1038/ni1410 – volume: 51 start-page: 245 year: 2013 ident: 748_CR17 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102314 – volume: 30 start-page: 1543 year: 2018 ident: 748_CR20 publication-title: Plant Cell doi: 10.1105/tpc.17.00981 – volume: 12 start-page: 89 year: 2012 ident: 748_CR3 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3141 – volume: 358 start-page: 1596 year: 2017 ident: 748_CR36 publication-title: Science doi: 10.1126/science.aao3642 – volume: 281 start-page: 36969 year: 2006 ident: 748_CR6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605319200 – volume: 19 start-page: 1327 year: 2009 ident: 748_CR34 publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.06.064 – ident: 748_CR49 doi: 10.3390/s16091488 – volume: 124 start-page: 803 year: 2006 ident: 748_CR2 publication-title: Cell doi: 10.1016/j.cell.2006.02.008 – volume: 28 start-page: 3316 year: 2018 ident: 748_CR39 publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.07.078 – volume: 1 start-page: 175 year: 2007 ident: 748_CR45 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.03.006 – volume: 15 start-page: 659 year: 2012 ident: 748_CR30 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2012.07.003 – volume: 103 start-page: 1111 year: 2000 ident: 748_CR9 publication-title: Cell doi: 10.1016/S0092-8674(00)00213-0 – volume: 355 start-page: 287 year: 2017 ident: 748_CR37 publication-title: Science doi: 10.1126/science.aal2541 – volume: 16 start-page: 537 year: 2016 ident: 748_CR10 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.77 – volume: 61 start-page: 621 year: 2010 ident: 748_CR16 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112252 – volume: 21 start-page: 1137 year: 2013 ident: 748_CR51 publication-title: Structure doi: 10.1016/j.str.2013.04.025 – volume: 108 start-page: 14694 year: 2011 ident: 748_CR42 publication-title: Proc Natl Acad. Sci. USA doi: 10.1073/pnas.1105685108 – volume: 183 start-page: 331 year: 2020 ident: 748_CR24 publication-title: Plant Physiol. doi: 10.1104/pp.19.01555 – volume: 16 start-page: 748 year: 2014 ident: 748_CR48 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.10.018 – volume: 136 start-page: 3279 year: 2009 ident: 748_CR33 publication-title: Development doi: 10.1242/dev.040071 – volume: 343 start-page: 408 year: 2014 ident: 748_CR46 publication-title: Science doi: 10.1126/science.1244454 – volume: 281 start-page: 38697 year: 2006 ident: 748_CR8 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605293200 – volume: 655 start-page: 389 year: 2010 ident: 748_CR52 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-765-5_26 – volume: 21 start-page: 516 year: 2016 ident: 748_CR28 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.12.004 – volume: 69 start-page: 301 year: 2018 ident: 748_CR31 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040557 – volume: 143 start-page: 661 year: 2007 ident: 748_CR7 publication-title: Plant Physiol. doi: 10.1104/pp.106.091389 – volume: 55 start-page: 109 year: 2017 ident: 748_CR11 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080516-035649 – volume: 18 start-page: 292 year: 2017 ident: 748_CR27 publication-title: EMBO Rep. doi: 10.15252/embr.201642704 – volume: 415 start-page: 977 year: 2002 ident: 748_CR21 publication-title: Nature doi: 10.1038/415977a – volume: 24 start-page: 134 year: 2014 ident: 748_CR53 publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.11.047 – volume: 69 start-page: 411 year: 2012 ident: 748_CR43 publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04799.x – volume: 14 start-page: 519 year: 2011 ident: 748_CR18 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.05.006 – volume: 29 start-page: 3140 year: 2017 ident: 748_CR38 publication-title: Plant Cell doi: 10.1105/tpc.17.00464 – volume: 29 start-page: 3778 year: 2019 ident: 748_CR23 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.09.018 – volume: 106 start-page: 7648 year: 2009 ident: 748_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0812346106 – volume: 14 start-page: 365 year: 2011 ident: 748_CR14 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.03.011 – ident: 748_CR50 – volume: 25 start-page: 1895 year: 2013 ident: 748_CR26 publication-title: Plant Cell doi: 10.1105/tpc.113.112102 – volume: 103 start-page: 705 year: 2020 ident: 748_CR41 publication-title: Plant J. doi: 10.1111/tpj.14763 – volume: 24 start-page: 2225 year: 2012 ident: 748_CR25 publication-title: Plant Cell doi: 10.1105/tpc.112.097253 – volume: 2 start-page: 15218 year: 2016 ident: 748_CR22 publication-title: Nat. Plants doi: 10.1038/nplants.2015.218 – volume: 22 start-page: 779 year: 2017 ident: 748_CR12 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.07.005 – volume: 332 start-page: 1439 year: 2011 ident: 748_CR44 publication-title: Science doi: 10.1126/science.1204903 – volume: 66 start-page: 487 year: 2015 ident: 748_CR13 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050213-040012 – volume: 11 start-page: 253 year: 2012 ident: 748_CR4 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.015 – volume: 130 start-page: 2149 year: 2003 ident: 748_CR32 publication-title: Development doi: 10.1242/dev.00458 – volume: 19 start-page: e45324 year: 2018 ident: 748_CR19 publication-title: EMBO Rep. doi: 10.15252/embr.201745324 – volume: 18 start-page: 1190 year: 2008 ident: 748_CR5 publication-title: Cell Res. doi: 10.1038/cr.2008.300 – volume: 572 start-page: 270 year: 2019 ident: 748_CR47 publication-title: Nature doi: 10.1038/s41586-019-1409-7 – volume: 330 start-page: 968 year: 2010 ident: 748_CR40 publication-title: Science doi: 10.1126/science.1195211 |
SSID | ssj0001755360 |
Score | 2.3757656 |
Snippet | The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections
1
–
3
. Plant immune receptors include cell... The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections . Plant immune receptors include cell... The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1–3. Plant immune receptors include cell... The innate immune system detects pathogen-derived molecules via specialized immune receptors to prevent infections1-3. Plant immune receptors include cell... Plants have evolved both cell surface-resident receptor-like kinases (RLKs) and intracellular nucleotide-binding leucine-rich repeat (NLR) proteins as immune... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1106 |
SubjectTerms | 13 13/44 14/19 14/35 38/22 38/90 631/449/1659 631/449/1736 631/449/2169 631/449/448 82 82/1 82/29 82/80 82/83 Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Autoimmunity Biomedical and Life Sciences Cell surface Dwarfism F-box protein Gene Expression Regulation, Plant Genes, Plant Genetic screening Immune system Innate immunity Kinases Letter Leucine Life Sciences MAP kinase MAP Kinase Signaling System - genetics Membrane Proteins - genetics Membrane Proteins - metabolism Mutation Nlr protein Nucleotides Pattern recognition Pattern recognition receptors Phenotypes Plant Immunity - genetics Plant Sciences Proteins Receptors RNA-mediated interference Scaffolding Signal transduction Signaling Suppressors Ubiquitination |
Title | The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding |
URI | https://link.springer.com/article/10.1038/s41477-020-0748-6 https://www.ncbi.nlm.nih.gov/pubmed/32839517 https://www.proquest.com/docview/2441669205 https://www.proquest.com/docview/2437121218 https://pubmed.ncbi.nlm.nih.gov/PMC7492416 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8SalICNxAlnd-O0TomirirYrVHWl3iLHDzW0TZZmi8S_Z5xks1oqeozsKI6_ycx8M84MQh-ddGCGPCUuj4FwLjgxXESiSmYZZcqo2J3yncnDOf9-Ls6HgFs7HKtc6cROUfvGpRj5HpihXEpDJ-LL4hdJXaNSdnVoofEQbYMK1kC-tvensx-n6yiLEoLJMZ3J9F7Lc64USawJrKcmctMg3fEy7x6W_Cdj2hmig6foyeBB4q895M_Qg1A_R4_2G_Dy_rxAPwF3fG1TML6qyVV1GTDotLAAat1fXVY1GC58PD2bn-T4uvGpf1do8ez4FHdFG6oaJ1VLcfrloQ_Y4t-VxSfToyOKW2dj7DNWL9H8YHr27ZAM_RSIg01YEm9CaUKkQImARVDpgIrBJaXGp7LsCsjUxJeWCcdL2BoKroSONPoYvaOm1OwV2qqbOrxBmCphAxVaamt4lNFw43UE7mYDYKxshiarTS3cUGw89by4KrqkN9NFj0MBOBQJh0Jm6NN4y6KvtHHf5N0VUsXw0bXFWkQy9GEchs8l5UBsHZrbNIepHGQl1xl63QM7Po2BqwUOp8qQ2oB8nJBKcW-O1NVFV5JbceCxOSzr80o41sv670vs3P8Sb9Fj2olpOtC2i7aWN7fhHXhAy_L9IOZ_AQucAnw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VLRJcEG8CBYwEF5DVje3E8QEhCltt2YdQtSv1liaOLULbZGG3oP4pfiPjvFZLRW89Wnbix4w9883YMwCvdahRDGWMat8aKkQgqBKBpTLlCWdcKmmrW77TcDgXX46Coy34076Fcdcq2zOxOqizUjsb-S6KIT8MFesHHxY_qMsa5byrbQqNmi1G5uI3Qrbl-4PPSN83jO0PZp-GtMkqQHXAwxXNlEmVsQyBAerSLNQISLDImMpccHKJkKKfpQkPtEilQAGp_Mgym1mbaabSiON_b8C24AhlerC9N5h-PVxbdWSAnXTuUx7tLoUvpKQOpaG0jmi4KQAvabWXL2f-46GtBN_-XbjTaKzkY81i92DLFPfh5l6JWuXFA_iOfEbOEmf8zwt6mp8YgmeoWSCUr0sneYGCkowHs_nEJ2dl5vKFmSWZjg9JFSQiL4g72hlxTyxqAzH5lSdkMhiNGFnqxNraQ_YQ5tey0o-gV5SFeQKEySAxLIjCKFHChlYJlUUWsWJikKdk4kG_XdRYN8HNXY6N07hysvMorukQIx1iR4c49OBt98mijuxxVeOdllJxs8mX8ZolPXjVVeP2dD6XpDDluWvDpY_qgR958LgmbNcbR9UOFVzpgdwgedfAhf7erCnyb1UIcCkQN_s4rHctc6yH9d9JPL16Ei_h1nA2Gcfjg-noGdxmFcu6y3Q70Fv9PDfPUftapS8alidwfN277C9fmD6H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+malectin-like+receptor-like+kinase+LETUM1+modulates+NLR+protein+SUMM2+activation+via+MEKK2+scaffolding&rft.jtitle=Nature+plants&rft.au=Liu%2C+Jun&rft.au=Huang%2C+Yanyan&rft.au=Kong%2C+Liang&rft.au=Yu%2C+Xiao&rft.date=2020-09-01&rft.eissn=2055-0278&rft.volume=6&rft.issue=9&rft.spage=1106&rft_id=info:doi/10.1038%2Fs41477-020-0748-6&rft_id=info%3Apmid%2F32839517&rft.externalDocID=32839517 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |