Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase i...
Saved in:
Published in | Basic research in cardiology Vol. 112; no. 4; pp. 38 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H
2
O
2
-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. |
---|---|
AbstractList | Extracellular vesicles (EVs) serve an import ant function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using a nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85 fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 Swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H
2
O
2
-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 (IGF-1) to mimic exercise stimulus
in vitro
, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H O -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future. |
ArticleNumber | 38 |
Author | Das, Saumya Bei, Yihua Toxavidis, Vassilios Shah, Ravi Xu, Jiahong Tigges, John Xu, Tianzhao Che, Lin Lv, Dongchao Yu, Pujiao Xiao, Junjie Ghiran, Ionita Li, Yongqin Das, Avash Zhang, Yuhui |
AuthorAffiliation | 3 Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA 5 Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China 1 Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China 4 Beth Israel Deaconess Medical Center, Boston, and Harvard Medical School, Boston, MA 02215, USA 2 Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China |
AuthorAffiliation_xml | – name: 5 Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China – name: 4 Beth Israel Deaconess Medical Center, Boston, and Harvard Medical School, Boston, MA 02215, USA – name: 3 Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA – name: 1 Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China – name: 2 Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China |
Author_xml | – sequence: 1 givenname: Yihua surname: Bei fullname: Bei, Yihua organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University – sequence: 2 givenname: Tianzhao surname: Xu fullname: Xu, Tianzhao organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University – sequence: 3 givenname: Dongchao surname: Lv fullname: Lv, Dongchao organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University – sequence: 4 givenname: Pujiao surname: Yu fullname: Yu, Pujiao organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine – sequence: 5 givenname: Jiahong surname: Xu fullname: Xu, Jiahong organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine – sequence: 6 givenname: Lin surname: Che fullname: Che, Lin organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine – sequence: 7 givenname: Avash surname: Das fullname: Das, Avash organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School – sequence: 8 givenname: John surname: Tigges fullname: Tigges, John organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 9 givenname: Vassilios surname: Toxavidis fullname: Toxavidis, Vassilios organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 10 givenname: Ionita surname: Ghiran fullname: Ghiran, Ionita organization: Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 11 givenname: Ravi surname: Shah fullname: Shah, Ravi organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School – sequence: 12 givenname: Yongqin surname: Li fullname: Li, Yongqin organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University – sequence: 13 givenname: Yuhui surname: Zhang fullname: Zhang, Yuhui organization: Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College – sequence: 14 givenname: Saumya surname: Das fullname: Das, Saumya organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School – sequence: 15 givenname: Junjie surname: Xiao fullname: Xiao, Junjie email: junjiexiao@live.cn organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28534118$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi3Uim4LD8AFReLCxdQTO7ZzQUJVoZUqcSlny3EmW6-y9mInVdsT78Ab8iR42VKVSvRky_P9M_P7PyR7IQYk5A2wD8CYOs6M8bahDBRlstb07gVZgOANBc34HlkwzhjVotYH5DDnFWMgpISX5KDWDRcAekH86Q0m5zNSH_rZYV85n9w82smHZYU3U7IOx7E8pOoas3cj5mqT4oRuquzS-pCnytnUe-sqn90Vrr399eNnwg2mYc4-hsqH1ZxuX5H9wY4ZX9-fR-Tb59PLkzN68fXL-cmnC-oaLifaN31rRdOzDlTHZblxbBizgwQELQehS8kOXLVcCQWdqmvFWdsNksuuVj0_Ih93fTdzt8beYSgeRrNJfm3TrYnWm38rwV-ZZbw2jRKaa1EavL9vkOL3GfNk1sVY-QQbMM7ZQFs-XGot24K-e4Ku4pxCsfeHAt0oqAv19vFGD6v8TaEAsANcijknHB4QYGabtNklbcpgs03a3BWNeqJxfiqpxa0pPz6rrHfKXKaEJaZHS_9X9BvGpsDp |
CitedBy_id | crossref_primary_10_1172_jci_insight_182589 crossref_primary_10_1038_s41598_019_55783_7 crossref_primary_10_31083_j_fbl2705143 crossref_primary_10_3389_fnmol_2019_00081 crossref_primary_10_1039_D3CC00998J crossref_primary_10_2174_1570161119666201120160619 crossref_primary_10_1021_acs_jproteome_2c00505 crossref_primary_10_1113_JP282849 crossref_primary_10_7554_eLife_89512_3 crossref_primary_10_1111_jcmm_16441 crossref_primary_10_1111_apha_13862 crossref_primary_10_1016_j_freeradbiomed_2023_05_007 crossref_primary_10_3389_fmolb_2021_784080 crossref_primary_10_3390_membranes12050464 crossref_primary_10_1016_j_intimp_2021_107730 crossref_primary_10_1016_j_phrs_2024_107529 crossref_primary_10_1038_s41536_021_00128_0 crossref_primary_10_1016_j_biochi_2021_10_009 crossref_primary_10_1016_j_ghir_2019_01_002 crossref_primary_10_3389_fphys_2023_1190095 crossref_primary_10_1002_jev2_12331 crossref_primary_10_1016_j_exger_2023_112179 crossref_primary_10_3389_fcell_2022_950927 crossref_primary_10_1155_2021_5545416 crossref_primary_10_1002_jev2_12222 crossref_primary_10_1016_j_isci_2025_111752 crossref_primary_10_1161_CIRCRESAHA_121_320458 crossref_primary_10_1007_s12265_018_9791_3 crossref_primary_10_3390_nu14051002 crossref_primary_10_1186_s12885_024_12530_0 crossref_primary_10_3389_fphys_2017_00899 crossref_primary_10_1096_fj_202400007RR crossref_primary_10_1111_evj_13300 crossref_primary_10_3389_fonc_2021_746040 crossref_primary_10_1139_cjpp_2020_0205 crossref_primary_10_3390_nu13020665 crossref_primary_10_1080_20013078_2019_1615820 crossref_primary_10_1016_j_phrs_2020_105162 crossref_primary_10_1213_ANE_0000000000005655 crossref_primary_10_1080_0886022X_2023_2171886 crossref_primary_10_1016_j_lfs_2022_120806 crossref_primary_10_1002_jcp_30094 crossref_primary_10_1620_tjem_2022_J048 crossref_primary_10_3389_fphys_2021_723931 crossref_primary_10_3390_molecules27123941 crossref_primary_10_1016_j_cmet_2023_10_013 crossref_primary_10_1124_pharmrev_121_000348 crossref_primary_10_1002_jev2_12403 crossref_primary_10_1007_s00441_022_03605_0 crossref_primary_10_3389_fphys_2021_738333 crossref_primary_10_1080_14728222_2025_2454617 crossref_primary_10_3390_ijms24043196 crossref_primary_10_1042_CS20200892 crossref_primary_10_1007_s00395_018_0682_1 crossref_primary_10_3390_cells8101128 crossref_primary_10_1113_JP287400 crossref_primary_10_3390_antiox11010078 crossref_primary_10_1016_j_lfs_2023_122041 crossref_primary_10_1038_s41598_024_62123_x crossref_primary_10_1016_j_bbcan_2022_188761 crossref_primary_10_3390_ijms25094761 crossref_primary_10_1016_j_addr_2021_114108 crossref_primary_10_1152_ajplung_00040_2023 crossref_primary_10_1249_MSS_0000000000003031 crossref_primary_10_1002_jor_25467 crossref_primary_10_1002_adhm_202300052 crossref_primary_10_1152_ajpendo_00160_2018 crossref_primary_10_1016_j_clnesp_2024_02_024 crossref_primary_10_1053_j_jvca_2020_05_033 crossref_primary_10_1016_j_vph_2020_106790 crossref_primary_10_3390_cells10123331 crossref_primary_10_1249_MSS_0000000000002185 crossref_primary_10_3389_fbioe_2022_903779 crossref_primary_10_3390_biology13090701 crossref_primary_10_1016_j_freeradbiomed_2021_06_007 crossref_primary_10_1186_s12916_019_1268_y crossref_primary_10_3390_ijerph20054358 crossref_primary_10_1016_j_freeradbiomed_2024_11_022 crossref_primary_10_1007_s12265_018_9852_7 crossref_primary_10_3390_ijms22158163 crossref_primary_10_1007_s12265_018_9831_z crossref_primary_10_1152_ajpheart_00586_2021 crossref_primary_10_1152_ajpheart_00925_2020 crossref_primary_10_3390_ijms252212043 crossref_primary_10_3389_fphys_2020_576150 crossref_primary_10_3389_fnagi_2022_942717 crossref_primary_10_1038_s41598_021_92180_5 crossref_primary_10_1152_ajpendo_00215_2020 crossref_primary_10_1007_s40572_021_00327_3 crossref_primary_10_1038_s41392_024_01841_0 crossref_primary_10_1038_s41551_020_00637_1 crossref_primary_10_1177_1074248418788575 crossref_primary_10_1007_s11883_020_00871_7 crossref_primary_10_3389_fphys_2022_1054463 crossref_primary_10_2147_IJN_S407029 crossref_primary_10_3389_fmolb_2023_1154872 crossref_primary_10_1007_s00109_024_02427_7 crossref_primary_10_3389_fphar_2019_00392 crossref_primary_10_3390_jcm10020327 crossref_primary_10_3389_fcell_2021_673677 crossref_primary_10_1038_s41392_022_01153_1 crossref_primary_10_1177_2047487317744364 crossref_primary_10_3389_fnmol_2021_665800 crossref_primary_10_1016_j_freeradbiomed_2020_04_005 crossref_primary_10_3390_ijms232214098 crossref_primary_10_1007_s13105_023_00969_x crossref_primary_10_1016_j_lfs_2024_123079 crossref_primary_10_3389_fphys_2019_00522 crossref_primary_10_3390_ijms26031383 crossref_primary_10_1113_JP284047 crossref_primary_10_1007_s12975_022_01025_4 crossref_primary_10_1007_s10974_019_09555_5 crossref_primary_10_1093_cvr_cvac031 crossref_primary_10_1016_j_smhs_2025_02_010 crossref_primary_10_1111_jcmm_15130 crossref_primary_10_3389_fnut_2022_940673 crossref_primary_10_1007_s12265_024_10498_7 crossref_primary_10_1002_jev2_12151 crossref_primary_10_1016_j_cellsig_2021_110134 crossref_primary_10_1152_ajpheart_00659_2021 crossref_primary_10_1186_s13395_023_00315_1 crossref_primary_10_1161_CIRCRESAHA_118_314635 crossref_primary_10_3390_cancers14081892 crossref_primary_10_1038_s41392_022_01233_2 crossref_primary_10_1016_j_critrevonc_2022_103578 crossref_primary_10_3389_fphys_2020_00199 crossref_primary_10_1152_physrev_00043_2016 crossref_primary_10_3389_fphys_2020_604274 crossref_primary_10_1016_j_freeradbiomed_2018_12_021 crossref_primary_10_1080_19336950_2022_2090667 crossref_primary_10_7554_eLife_89512 crossref_primary_10_3390_nu15133069 crossref_primary_10_4252_wjsc_v10_i8_106 crossref_primary_10_1186_s13578_024_01255_z crossref_primary_10_3390_antiox14010077 crossref_primary_10_3389_fcvm_2022_881526 crossref_primary_10_1155_2018_7807245 |
Cites_doi | 10.1111/jcmm.13078 10.1038/nrd3978 10.1159/000438594 10.1093/cvr/cvu167 10.1007/s00395-016-0558-1 10.1007/s10495-015-1130-4 10.1007/s12020-015-0834-0 10.1126/science.282.5392.1318 10.1016/j.fct.2009.03.044 10.1016/j.ijcard.2015.05.020 10.2174/1381612821666150803150008 10.1159/000430342 10.1016/j.yjmcc.2011.08.027 10.1038/sj.onc.1206261 10.1371/journal.pone.0084153 10.1038/ncb2000 10.1007/s00395-016-0586-x 10.1139/h11-076 10.3402/jev.v4.28239 10.1007/s00395-016-0588-8 10.1007/s10495-007-0090-8 10.1146/annurev-cellbio-101512-122326 10.1074/jbc.M111.336834 10.1016/bs.pmbts.2015.07.002 10.1055/s-0032-1311594 10.1161/CIRCRESAHA.111.241117 10.1038/nrendo.2016.76 10.3389/fphys.2013.00080 10.1016/j.jacc.2015.02.026 10.1006/bbrc.1999.1955 10.1016/j.cardiores.2003.09.024 10.7150/thno.15162 10.1152/ajpheart.00835.2012 10.1371/journal.pone.0125094 10.1113/EP086025 10.18632/oncotarget.7678 10.1161/CIRCRESAHA.116.305348 10.3389/fphys.2014.00039 10.1371/journal.pone.0144678 10.1016/j.vph.2015.02.008 10.1111/jcmm.12589 10.1089/ARS.2009.2453 10.1016/j.cmet.2015.02.014 10.1093/eurheartj/ehw304 10.3390/ijms17010063 10.1007/s00395-016-0559-0 10.1161/CIRCRESAHA.117.305990 10.1152/ajpregu.00538.2010 10.1155/2012/756132 10.1016/j.ceb.2014.05.004 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2017 Basic Research in Cardiology is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Basic Research in Cardiology is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FR3 FYUFA GHDGH K9. M0S M1P M7Z P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00395-017-0628-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central ProQuest One Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1435-1803 |
EndPage | 15 |
ExternalDocumentID | PMC5748384 28534118 10_1007_s00395_017_0628_z |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: UH3 TR000901; U01 HL126497 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Natural Science Foundation of China grantid: 81570362; 91639101; 81400647 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: NHLBI NIH HHS grantid: U01 HL126497 – fundername: NCATS NIH HHS grantid: UH3 TR000901 – fundername: NHLBI NIH HHS grantid: K23 HL127099 – fundername: NHLBI NIH HHS grantid: R01 HL122547 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FD 8FK ABRTQ FR3 K9. M7Z P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-d5d9a45d0b17b3645d3e500af61e186f48d0baf37937471b7227309bf636b27d3 |
IEDL.DBID | 7X7 |
ISSN | 0300-8428 1435-1803 |
IngestDate | Thu Aug 21 14:11:13 EDT 2025 Mon Jul 21 11:29:52 EDT 2025 Sat Aug 16 08:11:48 EDT 2025 Wed Feb 19 02:35:52 EST 2025 Tue Jul 01 02:27:15 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Fri Feb 21 02:35:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Extracellular vesicles Ischemia–reperfusion injury Exercise |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-d5d9a45d0b17b3645d3e500af61e186f48d0baf37937471b7227309bf636b27d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1007/s00395-017-0628-z |
PMID | 28534118 |
PQID | 1901185712 |
PQPubID | 34036 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748384 proquest_miscellaneous_1901768869 proquest_journals_1901185712 pubmed_primary_28534118 crossref_primary_10_1007_s00395_017_0628_z crossref_citationtrail_10_1007_s00395_017_0628_z springer_journals_10_1007_s00395_017_0628_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Basic research in cardiology |
PublicationTitleAbbrev | Basic Res Cardiol |
PublicationTitleAlternate | Basic Res Cardiol |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Cardone, Roy, Stennicke, Salvesen, Franke, Stanbridge, Frisch, Reed (CR10) 1998; 282 Malik, Kott, Poe, Kuo, Chen, Ferrara, Knowlton (CR36) 2013; 304 Emanueli, Shearn, Angelini, Sahoo (CR16) 2015; 71 Safdar, Saleem, Tarnopolsky (CR40) 2016; 12 Vicencio, Yellon, Sivaraman, Das, Boi-Doku, Arjun, Zheng, Riquelme, Kearney, Sharma, Multhoff, Hall, Davidson (CR46) 2015; 65 JanssenDuijghuijsen, Keijer, Mensink, Lenaerts, Ridder, Nierkens, Kartaram, Verschuren, Pieters, Bas, Witkamp, Wichers, van Norren (CR25) 2017; 102 Aoi, Sakuma (CR2) 2014; 5 Shi, Bei, Kong, Liu, Lei, Xu, Wang, Xuan, Chen, Xu, Che, Liu, Zhong, Sluijter, Li, Rosenzweig, Xiao (CR42) 2017; 7 Gorgens, Eckardt, Jensen, Drevon, Eckel (CR20) 2015; 135 Teng, Chen, Chen, Yang, Yang, Shen (CR44) 2015; 37 Barile, Lionetti, Cervio, Matteucci, Gherghiceanu, Popescu, Torre, Siclari, Moccetti, Vassalli (CR3) 2014; 103 Fruhbeis, Helmig, Tug, Simon, Kramer-Albers (CR18) 2015; 4 Colombo, Raposo, Thery (CR13) 2014; 30 Xu, Tang, Bei, Ding, Che, Yao, Wang, Lv, Xiao (CR49) 2016; 7 Cabrera-Fuentes, Aragones, Bernhagen, Boening, Boisvert, Botker, Bulluck, Cook, Di Lisa, Engel, Engelmann, Ferrazzi, Ferdinandy, Fong, Fleming, Gnaiger, Hernandez-Resendiz, Kalkhoran, Kim, Lecour, Liehn, Marber, Mayr, Miura, Ong, Peter, Sedding, Singh, Suleiman, Schnittler, Schulz, Shim, Tello, Vogel, Walker, Li, Yellon, Hausenloy, Preissner (CR8) 2016; 111 Seldin, Peterson, Byerly, Wei, Wong (CR41) 2012; 287 Calvert, Condit, Aragon, Nicholson, Moody, Hood, Sindler, Gundewar, Seals, Barouch, Lefer (CR9) 2011; 108 Bell, Botker, Carr, Davidson, Downey, Dutka, Heusch, Ibanez, Macallister, Stoppe, Ovize, Redington, Walker, Yellon (CR7) 2016; 111 Weston, Balmanno, Chalmers, Hadfield, Molton, Ley, Wagner, Cook (CR48) 2003; 22 Forterre, Jalabert, Berger, Baudet, Chikh, Errazuriz, De Larichaudy, Chanon, Weiss-Gayet, Hesse, Record, Geloen, Lefai, Vidal, Coute, Rome (CR17) 2014; 9 Khan, Nickoloff, Abramova, Johnson, Verma, Krishnamurthy, Mackie, Vaughan, Garikipati, Benedict, Ramirez, Lambers, Ito, Gao, Misener, Luongo, Elrod, Qin, Houser, Koch, Kishore (CR28) 2015; 117 Wang, Zhang, Li, Chen, Wang, Guo, Zhang, Qin, He, Zimmerman, Liu, Kim, Weintraub, Tang (CR47) 2015; 192 Little, Safdar, Benton, Wright (CR32) 2011; 36 Aoi, Ichikawa, Mune, Tanimura, Mizushima, Naito, Yoshikawa (CR1) 2013; 4 Ela, Mager, Breakefield, Wood (CR39) 2013; 12 Jiang, Guo, Zeng, Li, Chen, Du (CR27) 2015; 20 Danielson, Estanislau, Tigges, Toxavidis, Camacho, Felton, Khoory, Kreimer, Ivanov, Mantel, Jones, Akuthota, Das, Ghiran (CR14) 2016; 11 Heusch (CR24) 2015; 116 Barile, Moccetti, Marban, Vassalli (CR4) 2016 Guescini, Canonico, Lucertini, Maggio, Annibalini, Barbieri, Luchetti, Papa, Stocchi (CR21) 2015; 10 Kowal, Tkach, Thery (CR30) 2014; 29 Little, Safdar, Bishop, Tarnopolsky, Gibala (CR33) 2011; 300 Kleindienst, Battault, Belaidi, Tanguy, Rosselin, Boulghobra, Meyer, Gayrard, Walther, Geny, Durand, Cazorla, Reboul (CR29) 2016; 111 Bei, Zhou, Sun, Xiao (CR6) 2015; 21 Earnest, Lupo, Thibodaux, Hollier, Butitta, Lejeune, Johannsen, Gibala, Church (CR15) 2013; 34 Li, Zhang, Zhang (CR31) 2012; 52 Ostrowski, Carmo, Krumeich, Fanget, Raposo, Savina, Moita, Schauer, Hume, Freitas, Goud, Benaroch, Hacohen, Fukuda, Desnos, Seabra, Darchen, Amigorena, Moita, Thery (CR37) 2010; 12 Otani (CR38) 2009; 11 Chaturvedi, Kalani, Medina, Familtseva, Tyagi (CR11) 2015; 19 Chistiakov, Orekhov, Bobryshev (CR12) 2016 Gomes, Silva, de Oliveira (CR19) 2012; 2012 Hausenloy, Yellon (CR23) 2004; 61 Tao, Bei, Lin, Zhang, Zhou, Jiang, Chen, Shen, Xiao, Li (CR43) 2015; 37 Terada, Kaziro, Satoh (CR45) 2000; 267 Hausenloy, Barrabes, Botker, Davidson, Di Lisa, Downey, Engstrom, Ferdinandy, Carbrera-Fuentes, Heusch, Ibanez, Iliodromitis, Inserte, Jennings, Kalia, Kharbanda, Lecour, Marber, Miura, Ovize, Perez-Pinzon, Piper, Przyklenk, Schmidt, Redington, Ruiz-Meana, Vilahur, Vinten-Johansen, Yellon, Garcia-Dorado (CR22) 2016; 111 Liu, Xiao, Zhu, Wei, Platt, Damilano, Xiao, Bezzerides, Bostrom, Che, Zhang, Spiegelman, Rosenzweig (CR34) 2015; 21 Zhang, Liu, Zhang, Zhang, Li, Yu, Guo, Wang, Gao (CR50) 2007; 12 Bei, Fu, Chen, Chen, Zhou, Yu, Yao, Wang, Che, Xu, Xiao (CR5) 2017 Jeong, Ha, Jin, Lee, Kim, Kim, Seo, Lee, Kang, Kim, Chang (CR26) 2009; 47 Lombardi, Sanchis-Gomar, Perego, Sansoni, Banfi (CR35) 2016; 54 C Emanueli (628_CR16) 2015; 71 W Aoi (628_CR2) 2014; 5 G Lombardi (628_CR35) 2016; 54 ZA Malik (628_CR36) 2013; 304 J Xu (628_CR49) 2016; 7 G Heusch (628_CR24) 2015; 116 J Li (628_CR31) 2012; 52 HA Cabrera-Fuentes (628_CR8) 2016; 111 A Kleindienst (628_CR29) 2016; 111 L Barile (628_CR3) 2014; 103 LM JanssenDuijghuijsen (628_CR25) 2017; 102 SW Gorgens (628_CR20) 2015; 135 J Shi (628_CR42) 2017; 7 J Kowal (628_CR30) 2014; 29 DJ Hausenloy (628_CR23) 2004; 61 Y Bei (628_CR6) 2015; 21 C Fruhbeis (628_CR18) 2015; 4 Y Bei (628_CR5) 2017 X Jiang (628_CR27) 2015; 20 CR Weston (628_CR48) 2003; 22 JP Little (628_CR32) 2011; 36 DJ Hausenloy (628_CR22) 2016; 111 MH Cardone (628_CR10) 1998; 282 JP Little (628_CR33) 2011; 300 L Barile (628_CR4) 2016 M Colombo (628_CR13) 2014; 30 DA Chistiakov (628_CR12) 2016 W Aoi (628_CR1) 2013; 4 M Guescini (628_CR21) 2015; 10 S Ela (628_CR39) 2013; 12 MM Seldin (628_CR41) 2012; 287 JM Vicencio (628_CR46) 2015; 65 X Liu (628_CR34) 2015; 21 KM Danielson (628_CR14) 2016; 11 A Forterre (628_CR17) 2014; 9 Y Wang (628_CR47) 2015; 192 EC Gomes (628_CR19) 2012; 2012 JW Calvert (628_CR9) 2011; 108 M Ostrowski (628_CR37) 2010; 12 KR Zhang (628_CR50) 2007; 12 X Teng (628_CR44) 2015; 37 A Safdar (628_CR40) 2016; 12 P Chaturvedi (628_CR11) 2015; 19 RM Bell (628_CR7) 2016; 111 L Tao (628_CR43) 2015; 37 JJ Jeong (628_CR26) 2009; 47 H Otani (628_CR38) 2009; 11 K Terada (628_CR45) 2000; 267 M Khan (628_CR28) 2015; 117 CP Earnest (628_CR15) 2013; 34 |
References_xml | – year: 2017 ident: CR5 article-title: Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury publication-title: J Cell Mol Med doi: 10.1111/jcmm.13078 – volume: 12 start-page: 347 year: 2013 end-page: 357 ident: CR39 article-title: Extracellular vesicles: biology and emerging therapeutic opportunities publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3978 – volume: 37 start-page: 2415 year: 2015 end-page: 2424 ident: CR44 article-title: mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation publication-title: Cell Physiol Biochem doi: 10.1159/000438594 – volume: 103 start-page: 530 year: 2014 end-page: 541 ident: CR3 article-title: Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu167 – volume: 111 start-page: 41 year: 2016 ident: CR7 article-title: 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0558-1 – volume: 20 start-page: 1033 year: 2015 end-page: 1047 ident: CR27 article-title: A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway publication-title: Apoptosis doi: 10.1007/s10495-015-1130-4 – volume: 54 start-page: 284 year: 2016 end-page: 305 ident: CR35 article-title: Implications of exercise-induced adipo-myokines in bone metabolism publication-title: Endocrine doi: 10.1007/s12020-015-0834-0 – volume: 282 start-page: 1318 year: 1998 end-page: 1321 ident: CR10 article-title: Regulation of cell death protease caspase-9 by phosphorylation publication-title: Science doi: 10.1126/science.282.5392.1318 – volume: 47 start-page: 1569 year: 2009 end-page: 1576 ident: CR26 article-title: Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2009.03.044 – volume: 192 start-page: 61 year: 2015 end-page: 69 ident: CR47 article-title: Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2015.05.020 – volume: 21 start-page: 4409 year: 2015 end-page: 4416 ident: CR6 article-title: Exercise as a platform for pharmacotherapy development in cardiac diseases publication-title: Curr Pharm Des doi: 10.2174/1381612821666150803150008 – volume: 37 start-page: 162 year: 2015 end-page: 175 ident: CR43 article-title: Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis publication-title: Cell Physiol Biochem doi: 10.1159/000430342 – volume: 52 start-page: 865 year: 2012 end-page: 872 ident: CR31 article-title: Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2011.08.027 – volume: 22 start-page: 1281 year: 2003 end-page: 1293 ident: CR48 article-title: Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways publication-title: Oncogene doi: 10.1038/sj.onc.1206261 – volume: 9 start-page: e84153 year: 2014 ident: CR17 article-title: Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? publication-title: PLoS One doi: 10.1371/journal.pone.0084153 – volume: 12 start-page: 19 year: 2010 end-page: 30 ident: CR37 article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway publication-title: Nat Cell Biol doi: 10.1038/ncb2000 – volume: 111 start-page: 69 year: 2016 ident: CR8 article-title: From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research” publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0586-x – volume: 36 start-page: 598 year: 2011 end-page: 607 ident: CR32 article-title: Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis publication-title: Appl Physiol Nutr Metab doi: 10.1139/h11-076 – volume: 4 start-page: 28239 year: 2015 ident: CR18 article-title: Physical exercise induces rapid release of small extracellular vesicles into the circulation publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.28239 – volume: 111 start-page: 70 year: 2016 ident: CR22 article-title: Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0588-8 – volume: 12 start-page: 1579 year: 2007 end-page: 1588 ident: CR50 article-title: Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism publication-title: Apoptosis doi: 10.1007/s10495-007-0090-8 – volume: 30 start-page: 255 year: 2014 end-page: 289 ident: CR13 article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-101512-122326 – volume: 287 start-page: 11968 year: 2012 end-page: 11980 ident: CR41 article-title: Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis publication-title: J Biol Chem doi: 10.1074/jbc.M111.336834 – volume: 135 start-page: 313 year: 2015 end-page: 336 ident: CR20 article-title: Exercise and regulation of adipokine and myokine production publication-title: Prog Mol Biol Transl Sci doi: 10.1016/bs.pmbts.2015.07.002 – volume: 34 start-page: 355 year: 2013 end-page: 363 ident: CR15 article-title: Interval training in men at risk for insulin resistance publication-title: Int J Sports Med doi: 10.1055/s-0032-1311594 – volume: 108 start-page: 1448 year: 2011 end-page: 1458 ident: CR9 article-title: Exercise protects against myocardial ischemia–reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.241117 – volume: 12 start-page: 504 year: 2016 end-page: 517 ident: CR40 article-title: The potential of endurance exercise-derived exosomes to treat metabolic diseases publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2016.76 – volume: 4 start-page: 80 year: 2013 ident: CR1 article-title: Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men publication-title: Front Physiol doi: 10.3389/fphys.2013.00080 – volume: 65 start-page: 1525 year: 2015 end-page: 1536 ident: CR46 article-title: Plasma exosomes protect the myocardium from ischemia–reperfusion injury publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.02.026 – volume: 267 start-page: 449 year: 2000 end-page: 455 ident: CR45 article-title: Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivation in hematopoietic cells publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.1955 – volume: 61 start-page: 448 year: 2004 end-page: 460 ident: CR23 article-title: New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2003.09.024 – volume: 7 start-page: 664 year: 2017 end-page: 676 ident: CR42 article-title: miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia–reperfusion injury publication-title: Theranostics doi: 10.7150/thno.15162 – volume: 304 start-page: H954 year: 2013 end-page: H965 ident: CR36 article-title: Cardiac myocyte exosomes: stability, HSP60, and proteomics publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00835.2012 – volume: 10 start-page: e0125094 year: 2015 ident: CR21 article-title: Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream publication-title: PLoS One doi: 10.1371/journal.pone.0125094 – volume: 102 start-page: 86 year: 2017 end-page: 99 ident: CR25 article-title: Adaptation of exercise-induced stress in well-trained healthy young men publication-title: Exp Physiol doi: 10.1113/EP086025 – volume: 7 start-page: 10870 year: 2016 end-page: 10878 ident: CR49 article-title: miR-19b attenuates H O -induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN publication-title: Oncotarget doi: 10.18632/oncotarget.7678 – volume: 116 start-page: 674 year: 2015 end-page: 699 ident: CR24 article-title: Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.305348 – volume: 5 start-page: 39 year: 2014 ident: CR2 article-title: Does regulation of skeletal muscle function involve circulating microRNAs? publication-title: Front Physiol doi: 10.3389/fphys.2014.00039 – volume: 11 start-page: e0144678 year: 2016 ident: CR14 article-title: Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry publication-title: PLoS One doi: 10.1371/journal.pone.0144678 – volume: 71 start-page: 24 year: 2015 end-page: 30 ident: CR16 article-title: Exosomes and exosomal miRNAs in cardiovascular protection and repair publication-title: Vasc Pharmacol doi: 10.1016/j.vph.2015.02.008 – volume: 19 start-page: 2153 year: 2015 end-page: 2161 ident: CR11 article-title: Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise publication-title: J Cell Mol Med doi: 10.1111/jcmm.12589 – volume: 11 start-page: 1913 year: 2009 end-page: 1928 ident: CR38 article-title: The role of nitric oxide in myocardial repair and remodeling publication-title: Antioxid Redox Signal doi: 10.1089/ARS.2009.2453 – volume: 21 start-page: 584 year: 2015 end-page: 595 ident: CR34 article-title: miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling publication-title: Cell Metab doi: 10.1016/j.cmet.2015.02.014 – year: 2016 ident: CR4 article-title: Roles of exosomes in cardioprotection publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw304 – year: 2016 ident: CR12 article-title: Cardiac extracellular vesicles in normal and infarcted heart publication-title: Int J Mol Sci doi: 10.3390/ijms17010063 – volume: 111 start-page: 40 year: 2016 ident: CR29 article-title: Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0559-0 – volume: 117 start-page: 52 year: 2015 end-page: 64 ident: CR28 article-title: Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.305990 – volume: 300 start-page: R1303 year: 2011 end-page: R1310 ident: CR33 article-title: An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00538.2010 – volume: 2012 start-page: 756132 year: 2012 ident: CR19 article-title: Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species publication-title: Oxid Med Cell Longev doi: 10.1155/2012/756132 – volume: 29 start-page: 116 year: 2014 end-page: 125 ident: CR30 article-title: Biogenesis and secretion of exosomes publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2014.05.004 – volume: 12 start-page: 347 year: 2013 ident: 628_CR39 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3978 – volume: 117 start-page: 52 year: 2015 ident: 628_CR28 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.117.305990 – volume: 108 start-page: 1448 year: 2011 ident: 628_CR9 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.241117 – volume: 12 start-page: 1579 year: 2007 ident: 628_CR50 publication-title: Apoptosis doi: 10.1007/s10495-007-0090-8 – volume: 12 start-page: 504 year: 2016 ident: 628_CR40 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2016.76 – volume: 116 start-page: 674 year: 2015 ident: 628_CR24 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.305348 – volume: 21 start-page: 584 year: 2015 ident: 628_CR34 publication-title: Cell Metab doi: 10.1016/j.cmet.2015.02.014 – volume: 282 start-page: 1318 year: 1998 ident: 628_CR10 publication-title: Science doi: 10.1126/science.282.5392.1318 – year: 2017 ident: 628_CR5 publication-title: J Cell Mol Med doi: 10.1111/jcmm.13078 – volume: 37 start-page: 2415 year: 2015 ident: 628_CR44 publication-title: Cell Physiol Biochem doi: 10.1159/000438594 – volume: 11 start-page: 1913 year: 2009 ident: 628_CR38 publication-title: Antioxid Redox Signal doi: 10.1089/ARS.2009.2453 – volume: 9 start-page: e84153 year: 2014 ident: 628_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0084153 – volume: 20 start-page: 1033 year: 2015 ident: 628_CR27 publication-title: Apoptosis doi: 10.1007/s10495-015-1130-4 – volume: 29 start-page: 116 year: 2014 ident: 628_CR30 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2014.05.004 – volume: 10 start-page: e0125094 year: 2015 ident: 628_CR21 publication-title: PLoS One doi: 10.1371/journal.pone.0125094 – volume: 111 start-page: 69 year: 2016 ident: 628_CR8 publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0586-x – volume: 47 start-page: 1569 year: 2009 ident: 628_CR26 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2009.03.044 – volume: 2012 start-page: 756132 year: 2012 ident: 628_CR19 publication-title: Oxid Med Cell Longev doi: 10.1155/2012/756132 – volume: 61 start-page: 448 year: 2004 ident: 628_CR23 publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2003.09.024 – volume: 267 start-page: 449 year: 2000 ident: 628_CR45 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.1955 – volume: 36 start-page: 598 year: 2011 ident: 628_CR32 publication-title: Appl Physiol Nutr Metab doi: 10.1139/h11-076 – volume: 52 start-page: 865 year: 2012 ident: 628_CR31 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2011.08.027 – volume: 4 start-page: 80 year: 2013 ident: 628_CR1 publication-title: Front Physiol doi: 10.3389/fphys.2013.00080 – volume: 111 start-page: 41 year: 2016 ident: 628_CR7 publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0558-1 – volume: 4 start-page: 28239 year: 2015 ident: 628_CR18 publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.28239 – volume: 300 start-page: R1303 year: 2011 ident: 628_CR33 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00538.2010 – volume: 22 start-page: 1281 year: 2003 ident: 628_CR48 publication-title: Oncogene doi: 10.1038/sj.onc.1206261 – volume: 135 start-page: 313 year: 2015 ident: 628_CR20 publication-title: Prog Mol Biol Transl Sci doi: 10.1016/bs.pmbts.2015.07.002 – volume: 103 start-page: 530 year: 2014 ident: 628_CR3 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvu167 – volume: 5 start-page: 39 year: 2014 ident: 628_CR2 publication-title: Front Physiol doi: 10.3389/fphys.2014.00039 – volume: 7 start-page: 10870 year: 2016 ident: 628_CR49 publication-title: Oncotarget doi: 10.18632/oncotarget.7678 – volume: 111 start-page: 40 year: 2016 ident: 628_CR29 publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0559-0 – volume: 54 start-page: 284 year: 2016 ident: 628_CR35 publication-title: Endocrine doi: 10.1007/s12020-015-0834-0 – volume: 7 start-page: 664 year: 2017 ident: 628_CR42 publication-title: Theranostics doi: 10.7150/thno.15162 – volume: 192 start-page: 61 year: 2015 ident: 628_CR47 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2015.05.020 – volume: 30 start-page: 255 year: 2014 ident: 628_CR13 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-101512-122326 – volume: 102 start-page: 86 year: 2017 ident: 628_CR25 publication-title: Exp Physiol doi: 10.1113/EP086025 – volume: 71 start-page: 24 year: 2015 ident: 628_CR16 publication-title: Vasc Pharmacol doi: 10.1016/j.vph.2015.02.008 – volume: 37 start-page: 162 year: 2015 ident: 628_CR43 publication-title: Cell Physiol Biochem doi: 10.1159/000430342 – volume: 287 start-page: 11968 year: 2012 ident: 628_CR41 publication-title: J Biol Chem doi: 10.1074/jbc.M111.336834 – volume: 19 start-page: 2153 year: 2015 ident: 628_CR11 publication-title: J Cell Mol Med doi: 10.1111/jcmm.12589 – volume: 65 start-page: 1525 year: 2015 ident: 628_CR46 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.02.026 – volume: 304 start-page: H954 year: 2013 ident: 628_CR36 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00835.2012 – year: 2016 ident: 628_CR12 publication-title: Int J Mol Sci doi: 10.3390/ijms17010063 – volume: 11 start-page: e0144678 year: 2016 ident: 628_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0144678 – volume: 111 start-page: 70 year: 2016 ident: 628_CR22 publication-title: Basic Res Cardiol doi: 10.1007/s00395-016-0588-8 – volume: 34 start-page: 355 year: 2013 ident: 628_CR15 publication-title: Int J Sports Med doi: 10.1055/s-0032-1311594 – year: 2016 ident: 628_CR4 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw304 – volume: 12 start-page: 19 year: 2010 ident: 628_CR37 publication-title: Nat Cell Biol doi: 10.1038/ncb2000 – volume: 21 start-page: 4409 year: 2015 ident: 628_CR6 publication-title: Curr Pharm Des doi: 10.2174/1381612821666150803150008 |
SSID | ssj0014661 |
Score | 2.548198 |
Snippet | Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the... Extracellular vesicles (EVs) serve an import ant function as mediators of intercellular communication. Exercise is protective for the heart, although the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 38 |
SubjectTerms | Animals Apoptosis Calcium-Binding Proteins - metabolism Cardiology Cardiomyocytes Cell Line Cell signaling Disease Models, Animal Equivalence Exercise Test Extracellular Signal-Regulated MAP Kinases - metabolism Extracellular vesicles Extracellular Vesicles - metabolism Extracellular Vesicles - transplantation Flow cytometry Flow Cytometry - methods Growth factors Heart Heart diseases HSP27 Heat-Shock Proteins - metabolism Hsp27 protein Humans Hydrogen peroxide Injection Injuries Insulin Insulin-like growth factor I Ischemia Male Medicine Medicine & Public Health Mice, Inbred C57BL Myocardial Infarction - blood Myocardial Infarction - pathology Myocardial Infarction - prevention & control Myocardial Reperfusion Injury - blood Myocardial Reperfusion Injury - pathology Myocardial Reperfusion Injury - prevention & control Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Nanotechnology - methods Original Contribution Oxidative Stress Physical Conditioning, Animal - methods Physical Exertion Physical training rab GTP-Binding Proteins - metabolism Rats Reperfusion Rodents Swimming Time Factors Vesicles |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouqNCWBgoyUk-tLMWvxDlWVasKqZxYqbfIr7RBkFbZXQ498R_4h_wSxt4k6raAxNkTO_E3zsx4XgAHJVOmYsrSXOIhlyiiaVWyhgqbc-u15MzGC_2LT8X5TH68VJdDHvd8jHYfXZLpTz0lu8U00hhoFsO1uKZ3T-GZiqY7MvGMH0-uA1mkIqnIvDnFtfToyvzTFOvC6JGG-ThQ8oG3NAmhsy14MWiP5HgF90t4ErpXsHkx-Me3oT0dOihRNLURNE9c27vUoau7Ivgf7k28qY-hp-R7mKeQODKUaiDmyrSoLBKXmMaRFg3f8K01v3787MNt6JtlvFkjbfcFcdiB2dnp55NzOjRToE6JYkG98pWRyueWlTb6Hr0IKs9NU7DAdNFIjUOmEbFeHgosW3JUbPLKNoUoLC-92IWN7qYLe0BkE6wRzkVrQ7LKW224wEkrh7oC8z6DfNzV2g2VxmPDi6_1VCM5AVEjEHUEor7L4HB65HZVZuNfxPsjVPVw4uY1Szm0qmQ8gw_TMJ6VuK2mCzfLFQ2aV7qoMni9QnZajaPeInGGDMo1zCeCWId7faRrr1M9blVKLbTM4Gjkjnuv9bePePNf1G_hOU9sG-OE92Fj0S_DO9SGFvZ94v7fUxEEpQ priority: 102 providerName: Springer Nature |
Title | Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury |
URI | https://link.springer.com/article/10.1007/s00395-017-0628-z https://www.ncbi.nlm.nih.gov/pubmed/28534118 https://www.proquest.com/docview/1901185712 https://www.proquest.com/docview/1901768869 https://pubmed.ncbi.nlm.nih.gov/PMC5748384 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LjtMwFLVgRkJsEG8Cw8hIrEAW8SOvFWpRywg0FUJUKqvIjp0hCNKStixmxT_wh3wJ97pOoIyYVRZ2nMe5tu_L5xLyNOOJLnhiWKxgkivYolmR8ZpJEwtjcyW4QYf-6Sw9mas3i2QRHG7rkFbZr4l-obbLCn3kL7g_I5lkXLxcfWNYNQqjq6GExlVyiNRlmNKVLQaDCxYBz5cKchwzeGzeRzVjTyIq8Wwyx-QvkbPz_X3pgrJ5MWfyn8Cp34-mN8mNoEjS0Q75W-SKa2-Ta6chVH6HNJNQTImB1Q34WVo1XeWLdbVnFJbkTqPTHrNQ6Xe39tlxNLA2UH2mG9AbaeXlp6IN2MDua6N__fjZuZXr6i062WjTfgZI7pL5dPLh1QkLdRVYlch0w2xiC60SGxueGQxDWumSONZ1yh3P01rl0KRridR5sHeZTICOExemTmVqRGblPXLQLlv3gFBVO6NlVaHhoXhhTa6FhEGLCtQGbm1E4v6vllUgHcfaF1_KgS7ZA1ECECUCUZ5H5Nlwy2rHuHFZ56MeqjJMvnX5R1Qi8mRohmmDv1W3brnd9QFLK0-LiNzfITs8TYAKo2CEiGR7mA8dkJJ7v6VtPnlq7iRTucxVRJ730vHXa_3vIx5e_hGPyHXh5RRzhI_IwabbusegCW3MsRf3Y3I4mo7HM7y-_vh2AtfxZPbuPbTOxeg3NlYNGQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiPJcKGAkuIBWrB_7OiAENFVKmwihVupta6-9ZRFswiYB0RP_gf_Bj-KXMPY-IFT01rMdb-z5xp7xjL8BeBTTUKY0VH4gUMkFHtF-GtPC5ypgSieCUWUv9MeTaHQg3hyGh2vws3sLY9Mquz3RbdR6mts78mfUvZEMY8pezD77tmqUja52JTQaWOyab1_RZZs_39lC-T5mbHu4_3rkt1UF_Dzk0cLXoU6lCHWgaKxsEE5zEwaBLCJqaBIVIsEmWXBLHIc7t4oZnvBBqoqIR4rFmuO4F2BdcHRlBrD-ajh5-66PW4jIMbSi5gQ-TjTp4qiBoy3l9jU0telmLPFPVk_CU-bt6SzNf0K17gTcvgpXWtOVvGywtgFrproGF8dtcP46lMO2fJOPfj4iRpO8rHNXHqw6JngI1NKGCWzeK_li5i4fj7Q8EUQeyxItVZI7xOakRK_bfCrlr-8_ajMzdbG013qkrD4gCG7Awbms-U0YVNPK3AYiCqMkz3Pr6giaapVIxnHQNEdDhWrtQdCtapa3NOe22sbHrCdodoLIUBCZFUR24sGT_iezhuPjrM6bnaiyVt3n2R9wevCwb0ZFtcsqKzNdNn3Qt0ui1INbjWT7rzE0mgSO4EG8IvO-gyUBX22pyveODDyMRcIT4cHTDh1__a3_TeLO2ZN4AJdG--O9bG9nsnsXLjOHWZuhvAmDRb0099AOW6j7LfgJHJ23vv0GkaBEaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEP8EChgJLiCr8U_i5IAQol21lFYcqLS3YMdOCYLskt0F0RPvwNvwODwJY28SWCp669leZ-35xp7xjL8BeKRYonOWGBpLVHKJRzTNFauoMDE3NpOcGX-hf3CY7h7JV-NkvAY_-7cwPq2y3xPDRm0npb8j32LhjWSiGN-qurSIN9uj59PP1FeQ8pHWvpzGEiL77ttXdN9mz_a2UdaPOR_tvH25S7sKA7RMRDqnNrG5lomNDVPGB-SscEkc6ypljmVpJTNs0pXwJHK4ixvF8bSPc1OlIjVcWYHjXoCLSiTM65gaD84ebkCBqxV1KKY45ayPqMaBwFT4d9HMJ57xjJ6snomnDN3T-Zr_BG3DWTi6Apc7I5a8WKLuKqy55hpsHHRh-utQ73SFnCh6_IgdS8q6LUOhsOaY4Jq22gcMfAYs-eJmITOPdIwRRB_rGm1WUgbslqRG_9t9qvWv7z9aN3VttfAXfKRuPiAcbsDRuaz4TVhvJo27DURWzmhRlt7pkSy3JtNc4KB5iSYLszaCuF_VouwIz33djY_FQNUcBFGgIAoviOIkgifDT6ZLto-zOm_2oio6xZ8Vf2AawcOhGVXWL6tu3GSx7INeXpbmEdxaSnb4GkfzSeIIEagVmQ8dPB34aktTvw-04ImSmchkBE97dPz1t_43iTtnT-IBbKCWFa_3DvfvwiUeIOtTlTdhfd4u3D00yObmfkA-gXfnrWq_ARbZRzs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise-induced+circulating+extracellular+vesicles+protect+against+cardiac+ischemia-reperfusion+injury&rft.jtitle=Basic+research+in+cardiology&rft.au=Bei%2C+Yihua&rft.au=Xu%2C+Tianzhao&rft.au=Lv%2C+Dongchao&rft.au=Yu%2C+Pujiao&rft.date=2017-07-01&rft.issn=0300-8428&rft.eissn=1435-1803&rft.volume=112&rft.issue=4&rft.spage=38&rft.epage=38&rft_id=info:doi/10.1007%2Fs00395-017-0628-z&rft_id=info%3Apmid%2F28534118&rft.externalDocID=PMC5748384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-8428&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-8428&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-8428&client=summon |