Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury

Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase i...

Full description

Saved in:
Bibliographic Details
Published inBasic research in cardiology Vol. 112; no. 4; pp. 38 - 15
Main Authors Bei, Yihua, Xu, Tianzhao, Lv, Dongchao, Yu, Pujiao, Xu, Jiahong, Che, Lin, Das, Avash, Tigges, John, Toxavidis, Vassilios, Ghiran, Ionita, Shah, Ravi, Li, Yongqin, Zhang, Yuhui, Das, Saumya, Xiao, Junjie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
AbstractList Extracellular vesicles (EVs) serve an import ant function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using a nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85 fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 Swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 (IGF-1) to mimic exercise stimulus in vitro , we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H O -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.
ArticleNumber 38
Author Das, Saumya
Bei, Yihua
Toxavidis, Vassilios
Shah, Ravi
Xu, Jiahong
Tigges, John
Xu, Tianzhao
Che, Lin
Lv, Dongchao
Yu, Pujiao
Xiao, Junjie
Ghiran, Ionita
Li, Yongqin
Das, Avash
Zhang, Yuhui
AuthorAffiliation 3 Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
5 Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
1 Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
4 Beth Israel Deaconess Medical Center, Boston, and Harvard Medical School, Boston, MA 02215, USA
2 Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
AuthorAffiliation_xml – name: 5 Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
– name: 4 Beth Israel Deaconess Medical Center, Boston, and Harvard Medical School, Boston, MA 02215, USA
– name: 3 Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
– name: 1 Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China
– name: 2 Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
Author_xml – sequence: 1
  givenname: Yihua
  surname: Bei
  fullname: Bei, Yihua
  organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University
– sequence: 2
  givenname: Tianzhao
  surname: Xu
  fullname: Xu, Tianzhao
  organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University
– sequence: 3
  givenname: Dongchao
  surname: Lv
  fullname: Lv, Dongchao
  organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University
– sequence: 4
  givenname: Pujiao
  surname: Yu
  fullname: Yu, Pujiao
  organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
– sequence: 5
  givenname: Jiahong
  surname: Xu
  fullname: Xu, Jiahong
  organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
– sequence: 6
  givenname: Lin
  surname: Che
  fullname: Che, Lin
  organization: Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
– sequence: 7
  givenname: Avash
  surname: Das
  fullname: Das, Avash
  organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School
– sequence: 8
  givenname: John
  surname: Tigges
  fullname: Tigges, John
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 9
  givenname: Vassilios
  surname: Toxavidis
  fullname: Toxavidis, Vassilios
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 10
  givenname: Ionita
  surname: Ghiran
  fullname: Ghiran, Ionita
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 11
  givenname: Ravi
  surname: Shah
  fullname: Shah, Ravi
  organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School
– sequence: 12
  givenname: Yongqin
  surname: Li
  fullname: Li, Yongqin
  organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University
– sequence: 13
  givenname: Yuhui
  surname: Zhang
  fullname: Zhang, Yuhui
  organization: Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 14
  givenname: Saumya
  surname: Das
  fullname: Das, Saumya
  organization: Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School
– sequence: 15
  givenname: Junjie
  surname: Xiao
  fullname: Xiao, Junjie
  email: junjiexiao@live.cn
  organization: Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28534118$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi3Uim4LD8AFReLCxdQTO7ZzQUJVoZUqcSlny3EmW6-y9mInVdsT78Ab8iR42VKVSvRky_P9M_P7PyR7IQYk5A2wD8CYOs6M8bahDBRlstb07gVZgOANBc34HlkwzhjVotYH5DDnFWMgpISX5KDWDRcAekH86Q0m5zNSH_rZYV85n9w82smHZYU3U7IOx7E8pOoas3cj5mqT4oRuquzS-pCnytnUe-sqn90Vrr399eNnwg2mYc4-hsqH1ZxuX5H9wY4ZX9-fR-Tb59PLkzN68fXL-cmnC-oaLifaN31rRdOzDlTHZblxbBizgwQELQehS8kOXLVcCQWdqmvFWdsNksuuVj0_Ih93fTdzt8beYSgeRrNJfm3TrYnWm38rwV-ZZbw2jRKaa1EavL9vkOL3GfNk1sVY-QQbMM7ZQFs-XGot24K-e4Ku4pxCsfeHAt0oqAv19vFGD6v8TaEAsANcijknHB4QYGabtNklbcpgs03a3BWNeqJxfiqpxa0pPz6rrHfKXKaEJaZHS_9X9BvGpsDp
CitedBy_id crossref_primary_10_1172_jci_insight_182589
crossref_primary_10_1038_s41598_019_55783_7
crossref_primary_10_31083_j_fbl2705143
crossref_primary_10_3389_fnmol_2019_00081
crossref_primary_10_1039_D3CC00998J
crossref_primary_10_2174_1570161119666201120160619
crossref_primary_10_1021_acs_jproteome_2c00505
crossref_primary_10_1113_JP282849
crossref_primary_10_7554_eLife_89512_3
crossref_primary_10_1111_jcmm_16441
crossref_primary_10_1111_apha_13862
crossref_primary_10_1016_j_freeradbiomed_2023_05_007
crossref_primary_10_3389_fmolb_2021_784080
crossref_primary_10_3390_membranes12050464
crossref_primary_10_1016_j_intimp_2021_107730
crossref_primary_10_1016_j_phrs_2024_107529
crossref_primary_10_1038_s41536_021_00128_0
crossref_primary_10_1016_j_biochi_2021_10_009
crossref_primary_10_1016_j_ghir_2019_01_002
crossref_primary_10_3389_fphys_2023_1190095
crossref_primary_10_1002_jev2_12331
crossref_primary_10_1016_j_exger_2023_112179
crossref_primary_10_3389_fcell_2022_950927
crossref_primary_10_1155_2021_5545416
crossref_primary_10_1002_jev2_12222
crossref_primary_10_1016_j_isci_2025_111752
crossref_primary_10_1161_CIRCRESAHA_121_320458
crossref_primary_10_1007_s12265_018_9791_3
crossref_primary_10_3390_nu14051002
crossref_primary_10_1186_s12885_024_12530_0
crossref_primary_10_3389_fphys_2017_00899
crossref_primary_10_1096_fj_202400007RR
crossref_primary_10_1111_evj_13300
crossref_primary_10_3389_fonc_2021_746040
crossref_primary_10_1139_cjpp_2020_0205
crossref_primary_10_3390_nu13020665
crossref_primary_10_1080_20013078_2019_1615820
crossref_primary_10_1016_j_phrs_2020_105162
crossref_primary_10_1213_ANE_0000000000005655
crossref_primary_10_1080_0886022X_2023_2171886
crossref_primary_10_1016_j_lfs_2022_120806
crossref_primary_10_1002_jcp_30094
crossref_primary_10_1620_tjem_2022_J048
crossref_primary_10_3389_fphys_2021_723931
crossref_primary_10_3390_molecules27123941
crossref_primary_10_1016_j_cmet_2023_10_013
crossref_primary_10_1124_pharmrev_121_000348
crossref_primary_10_1002_jev2_12403
crossref_primary_10_1007_s00441_022_03605_0
crossref_primary_10_3389_fphys_2021_738333
crossref_primary_10_1080_14728222_2025_2454617
crossref_primary_10_3390_ijms24043196
crossref_primary_10_1042_CS20200892
crossref_primary_10_1007_s00395_018_0682_1
crossref_primary_10_3390_cells8101128
crossref_primary_10_1113_JP287400
crossref_primary_10_3390_antiox11010078
crossref_primary_10_1016_j_lfs_2023_122041
crossref_primary_10_1038_s41598_024_62123_x
crossref_primary_10_1016_j_bbcan_2022_188761
crossref_primary_10_3390_ijms25094761
crossref_primary_10_1016_j_addr_2021_114108
crossref_primary_10_1152_ajplung_00040_2023
crossref_primary_10_1249_MSS_0000000000003031
crossref_primary_10_1002_jor_25467
crossref_primary_10_1002_adhm_202300052
crossref_primary_10_1152_ajpendo_00160_2018
crossref_primary_10_1016_j_clnesp_2024_02_024
crossref_primary_10_1053_j_jvca_2020_05_033
crossref_primary_10_1016_j_vph_2020_106790
crossref_primary_10_3390_cells10123331
crossref_primary_10_1249_MSS_0000000000002185
crossref_primary_10_3389_fbioe_2022_903779
crossref_primary_10_3390_biology13090701
crossref_primary_10_1016_j_freeradbiomed_2021_06_007
crossref_primary_10_1186_s12916_019_1268_y
crossref_primary_10_3390_ijerph20054358
crossref_primary_10_1016_j_freeradbiomed_2024_11_022
crossref_primary_10_1007_s12265_018_9852_7
crossref_primary_10_3390_ijms22158163
crossref_primary_10_1007_s12265_018_9831_z
crossref_primary_10_1152_ajpheart_00586_2021
crossref_primary_10_1152_ajpheart_00925_2020
crossref_primary_10_3390_ijms252212043
crossref_primary_10_3389_fphys_2020_576150
crossref_primary_10_3389_fnagi_2022_942717
crossref_primary_10_1038_s41598_021_92180_5
crossref_primary_10_1152_ajpendo_00215_2020
crossref_primary_10_1007_s40572_021_00327_3
crossref_primary_10_1038_s41392_024_01841_0
crossref_primary_10_1038_s41551_020_00637_1
crossref_primary_10_1177_1074248418788575
crossref_primary_10_1007_s11883_020_00871_7
crossref_primary_10_3389_fphys_2022_1054463
crossref_primary_10_2147_IJN_S407029
crossref_primary_10_3389_fmolb_2023_1154872
crossref_primary_10_1007_s00109_024_02427_7
crossref_primary_10_3389_fphar_2019_00392
crossref_primary_10_3390_jcm10020327
crossref_primary_10_3389_fcell_2021_673677
crossref_primary_10_1038_s41392_022_01153_1
crossref_primary_10_1177_2047487317744364
crossref_primary_10_3389_fnmol_2021_665800
crossref_primary_10_1016_j_freeradbiomed_2020_04_005
crossref_primary_10_3390_ijms232214098
crossref_primary_10_1007_s13105_023_00969_x
crossref_primary_10_1016_j_lfs_2024_123079
crossref_primary_10_3389_fphys_2019_00522
crossref_primary_10_3390_ijms26031383
crossref_primary_10_1113_JP284047
crossref_primary_10_1007_s12975_022_01025_4
crossref_primary_10_1007_s10974_019_09555_5
crossref_primary_10_1093_cvr_cvac031
crossref_primary_10_1016_j_smhs_2025_02_010
crossref_primary_10_1111_jcmm_15130
crossref_primary_10_3389_fnut_2022_940673
crossref_primary_10_1007_s12265_024_10498_7
crossref_primary_10_1002_jev2_12151
crossref_primary_10_1016_j_cellsig_2021_110134
crossref_primary_10_1152_ajpheart_00659_2021
crossref_primary_10_1186_s13395_023_00315_1
crossref_primary_10_1161_CIRCRESAHA_118_314635
crossref_primary_10_3390_cancers14081892
crossref_primary_10_1038_s41392_022_01233_2
crossref_primary_10_1016_j_critrevonc_2022_103578
crossref_primary_10_3389_fphys_2020_00199
crossref_primary_10_1152_physrev_00043_2016
crossref_primary_10_3389_fphys_2020_604274
crossref_primary_10_1016_j_freeradbiomed_2018_12_021
crossref_primary_10_1080_19336950_2022_2090667
crossref_primary_10_7554_eLife_89512
crossref_primary_10_3390_nu15133069
crossref_primary_10_4252_wjsc_v10_i8_106
crossref_primary_10_1186_s13578_024_01255_z
crossref_primary_10_3390_antiox14010077
crossref_primary_10_3389_fcvm_2022_881526
crossref_primary_10_1155_2018_7807245
Cites_doi 10.1111/jcmm.13078
10.1038/nrd3978
10.1159/000438594
10.1093/cvr/cvu167
10.1007/s00395-016-0558-1
10.1007/s10495-015-1130-4
10.1007/s12020-015-0834-0
10.1126/science.282.5392.1318
10.1016/j.fct.2009.03.044
10.1016/j.ijcard.2015.05.020
10.2174/1381612821666150803150008
10.1159/000430342
10.1016/j.yjmcc.2011.08.027
10.1038/sj.onc.1206261
10.1371/journal.pone.0084153
10.1038/ncb2000
10.1007/s00395-016-0586-x
10.1139/h11-076
10.3402/jev.v4.28239
10.1007/s00395-016-0588-8
10.1007/s10495-007-0090-8
10.1146/annurev-cellbio-101512-122326
10.1074/jbc.M111.336834
10.1016/bs.pmbts.2015.07.002
10.1055/s-0032-1311594
10.1161/CIRCRESAHA.111.241117
10.1038/nrendo.2016.76
10.3389/fphys.2013.00080
10.1016/j.jacc.2015.02.026
10.1006/bbrc.1999.1955
10.1016/j.cardiores.2003.09.024
10.7150/thno.15162
10.1152/ajpheart.00835.2012
10.1371/journal.pone.0125094
10.1113/EP086025
10.18632/oncotarget.7678
10.1161/CIRCRESAHA.116.305348
10.3389/fphys.2014.00039
10.1371/journal.pone.0144678
10.1016/j.vph.2015.02.008
10.1111/jcmm.12589
10.1089/ARS.2009.2453
10.1016/j.cmet.2015.02.014
10.1093/eurheartj/ehw304
10.3390/ijms17010063
10.1007/s00395-016-0559-0
10.1161/CIRCRESAHA.117.305990
10.1152/ajpregu.00538.2010
10.1155/2012/756132
10.1016/j.ceb.2014.05.004
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Basic Research in Cardiology is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Basic Research in Cardiology is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00395-017-0628-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central
ProQuest One
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1435-1803
EndPage 15
ExternalDocumentID PMC5748384
28534118
10_1007_s00395_017_0628_z
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: UH3 TR000901; U01 HL126497
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Natural Science Foundation of China
  grantid: 81570362; 91639101; 81400647
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: NHLBI NIH HHS
  grantid: U01 HL126497
– fundername: NCATS NIH HHS
  grantid: UH3 TR000901
– fundername: NHLBI NIH HHS
  grantid: K23 HL127099
– fundername: NHLBI NIH HHS
  grantid: R01 HL122547
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FD
8FK
ABRTQ
FR3
K9.
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-d5d9a45d0b17b3645d3e500af61e186f48d0baf37937471b7227309bf636b27d3
IEDL.DBID 7X7
ISSN 0300-8428
1435-1803
IngestDate Thu Aug 21 14:11:13 EDT 2025
Mon Jul 21 11:29:52 EDT 2025
Sat Aug 16 08:11:48 EDT 2025
Wed Feb 19 02:35:52 EST 2025
Tue Jul 01 02:27:15 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Fri Feb 21 02:35:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Extracellular vesicles
Ischemia–reperfusion injury
Exercise
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d5d9a45d0b17b3645d3e500af61e186f48d0baf37937471b7227309bf636b27d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1007/s00395-017-0628-z
PMID 28534118
PQID 1901185712
PQPubID 34036
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5748384
proquest_miscellaneous_1901768869
proquest_journals_1901185712
pubmed_primary_28534118
crossref_primary_10_1007_s00395_017_0628_z
crossref_citationtrail_10_1007_s00395_017_0628_z
springer_journals_10_1007_s00395_017_0628_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Basic research in cardiology
PublicationTitleAbbrev Basic Res Cardiol
PublicationTitleAlternate Basic Res Cardiol
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cardone, Roy, Stennicke, Salvesen, Franke, Stanbridge, Frisch, Reed (CR10) 1998; 282
Malik, Kott, Poe, Kuo, Chen, Ferrara, Knowlton (CR36) 2013; 304
Emanueli, Shearn, Angelini, Sahoo (CR16) 2015; 71
Safdar, Saleem, Tarnopolsky (CR40) 2016; 12
Vicencio, Yellon, Sivaraman, Das, Boi-Doku, Arjun, Zheng, Riquelme, Kearney, Sharma, Multhoff, Hall, Davidson (CR46) 2015; 65
JanssenDuijghuijsen, Keijer, Mensink, Lenaerts, Ridder, Nierkens, Kartaram, Verschuren, Pieters, Bas, Witkamp, Wichers, van Norren (CR25) 2017; 102
Aoi, Sakuma (CR2) 2014; 5
Shi, Bei, Kong, Liu, Lei, Xu, Wang, Xuan, Chen, Xu, Che, Liu, Zhong, Sluijter, Li, Rosenzweig, Xiao (CR42) 2017; 7
Gorgens, Eckardt, Jensen, Drevon, Eckel (CR20) 2015; 135
Teng, Chen, Chen, Yang, Yang, Shen (CR44) 2015; 37
Barile, Lionetti, Cervio, Matteucci, Gherghiceanu, Popescu, Torre, Siclari, Moccetti, Vassalli (CR3) 2014; 103
Fruhbeis, Helmig, Tug, Simon, Kramer-Albers (CR18) 2015; 4
Colombo, Raposo, Thery (CR13) 2014; 30
Xu, Tang, Bei, Ding, Che, Yao, Wang, Lv, Xiao (CR49) 2016; 7
Cabrera-Fuentes, Aragones, Bernhagen, Boening, Boisvert, Botker, Bulluck, Cook, Di Lisa, Engel, Engelmann, Ferrazzi, Ferdinandy, Fong, Fleming, Gnaiger, Hernandez-Resendiz, Kalkhoran, Kim, Lecour, Liehn, Marber, Mayr, Miura, Ong, Peter, Sedding, Singh, Suleiman, Schnittler, Schulz, Shim, Tello, Vogel, Walker, Li, Yellon, Hausenloy, Preissner (CR8) 2016; 111
Seldin, Peterson, Byerly, Wei, Wong (CR41) 2012; 287
Calvert, Condit, Aragon, Nicholson, Moody, Hood, Sindler, Gundewar, Seals, Barouch, Lefer (CR9) 2011; 108
Bell, Botker, Carr, Davidson, Downey, Dutka, Heusch, Ibanez, Macallister, Stoppe, Ovize, Redington, Walker, Yellon (CR7) 2016; 111
Weston, Balmanno, Chalmers, Hadfield, Molton, Ley, Wagner, Cook (CR48) 2003; 22
Forterre, Jalabert, Berger, Baudet, Chikh, Errazuriz, De Larichaudy, Chanon, Weiss-Gayet, Hesse, Record, Geloen, Lefai, Vidal, Coute, Rome (CR17) 2014; 9
Khan, Nickoloff, Abramova, Johnson, Verma, Krishnamurthy, Mackie, Vaughan, Garikipati, Benedict, Ramirez, Lambers, Ito, Gao, Misener, Luongo, Elrod, Qin, Houser, Koch, Kishore (CR28) 2015; 117
Wang, Zhang, Li, Chen, Wang, Guo, Zhang, Qin, He, Zimmerman, Liu, Kim, Weintraub, Tang (CR47) 2015; 192
Little, Safdar, Benton, Wright (CR32) 2011; 36
Aoi, Ichikawa, Mune, Tanimura, Mizushima, Naito, Yoshikawa (CR1) 2013; 4
Ela, Mager, Breakefield, Wood (CR39) 2013; 12
Jiang, Guo, Zeng, Li, Chen, Du (CR27) 2015; 20
Danielson, Estanislau, Tigges, Toxavidis, Camacho, Felton, Khoory, Kreimer, Ivanov, Mantel, Jones, Akuthota, Das, Ghiran (CR14) 2016; 11
Heusch (CR24) 2015; 116
Barile, Moccetti, Marban, Vassalli (CR4) 2016
Guescini, Canonico, Lucertini, Maggio, Annibalini, Barbieri, Luchetti, Papa, Stocchi (CR21) 2015; 10
Kowal, Tkach, Thery (CR30) 2014; 29
Little, Safdar, Bishop, Tarnopolsky, Gibala (CR33) 2011; 300
Kleindienst, Battault, Belaidi, Tanguy, Rosselin, Boulghobra, Meyer, Gayrard, Walther, Geny, Durand, Cazorla, Reboul (CR29) 2016; 111
Bei, Zhou, Sun, Xiao (CR6) 2015; 21
Earnest, Lupo, Thibodaux, Hollier, Butitta, Lejeune, Johannsen, Gibala, Church (CR15) 2013; 34
Li, Zhang, Zhang (CR31) 2012; 52
Ostrowski, Carmo, Krumeich, Fanget, Raposo, Savina, Moita, Schauer, Hume, Freitas, Goud, Benaroch, Hacohen, Fukuda, Desnos, Seabra, Darchen, Amigorena, Moita, Thery (CR37) 2010; 12
Otani (CR38) 2009; 11
Chaturvedi, Kalani, Medina, Familtseva, Tyagi (CR11) 2015; 19
Chistiakov, Orekhov, Bobryshev (CR12) 2016
Gomes, Silva, de Oliveira (CR19) 2012; 2012
Hausenloy, Yellon (CR23) 2004; 61
Tao, Bei, Lin, Zhang, Zhou, Jiang, Chen, Shen, Xiao, Li (CR43) 2015; 37
Terada, Kaziro, Satoh (CR45) 2000; 267
Hausenloy, Barrabes, Botker, Davidson, Di Lisa, Downey, Engstrom, Ferdinandy, Carbrera-Fuentes, Heusch, Ibanez, Iliodromitis, Inserte, Jennings, Kalia, Kharbanda, Lecour, Marber, Miura, Ovize, Perez-Pinzon, Piper, Przyklenk, Schmidt, Redington, Ruiz-Meana, Vilahur, Vinten-Johansen, Yellon, Garcia-Dorado (CR22) 2016; 111
Liu, Xiao, Zhu, Wei, Platt, Damilano, Xiao, Bezzerides, Bostrom, Che, Zhang, Spiegelman, Rosenzweig (CR34) 2015; 21
Zhang, Liu, Zhang, Zhang, Li, Yu, Guo, Wang, Gao (CR50) 2007; 12
Bei, Fu, Chen, Chen, Zhou, Yu, Yao, Wang, Che, Xu, Xiao (CR5) 2017
Jeong, Ha, Jin, Lee, Kim, Kim, Seo, Lee, Kang, Kim, Chang (CR26) 2009; 47
Lombardi, Sanchis-Gomar, Perego, Sansoni, Banfi (CR35) 2016; 54
C Emanueli (628_CR16) 2015; 71
W Aoi (628_CR2) 2014; 5
G Lombardi (628_CR35) 2016; 54
ZA Malik (628_CR36) 2013; 304
J Xu (628_CR49) 2016; 7
G Heusch (628_CR24) 2015; 116
J Li (628_CR31) 2012; 52
HA Cabrera-Fuentes (628_CR8) 2016; 111
A Kleindienst (628_CR29) 2016; 111
L Barile (628_CR3) 2014; 103
LM JanssenDuijghuijsen (628_CR25) 2017; 102
SW Gorgens (628_CR20) 2015; 135
J Shi (628_CR42) 2017; 7
J Kowal (628_CR30) 2014; 29
DJ Hausenloy (628_CR23) 2004; 61
Y Bei (628_CR6) 2015; 21
C Fruhbeis (628_CR18) 2015; 4
Y Bei (628_CR5) 2017
X Jiang (628_CR27) 2015; 20
CR Weston (628_CR48) 2003; 22
JP Little (628_CR32) 2011; 36
DJ Hausenloy (628_CR22) 2016; 111
MH Cardone (628_CR10) 1998; 282
JP Little (628_CR33) 2011; 300
L Barile (628_CR4) 2016
M Colombo (628_CR13) 2014; 30
DA Chistiakov (628_CR12) 2016
W Aoi (628_CR1) 2013; 4
M Guescini (628_CR21) 2015; 10
S Ela (628_CR39) 2013; 12
MM Seldin (628_CR41) 2012; 287
JM Vicencio (628_CR46) 2015; 65
X Liu (628_CR34) 2015; 21
KM Danielson (628_CR14) 2016; 11
A Forterre (628_CR17) 2014; 9
Y Wang (628_CR47) 2015; 192
EC Gomes (628_CR19) 2012; 2012
JW Calvert (628_CR9) 2011; 108
M Ostrowski (628_CR37) 2010; 12
KR Zhang (628_CR50) 2007; 12
X Teng (628_CR44) 2015; 37
A Safdar (628_CR40) 2016; 12
P Chaturvedi (628_CR11) 2015; 19
RM Bell (628_CR7) 2016; 111
L Tao (628_CR43) 2015; 37
JJ Jeong (628_CR26) 2009; 47
H Otani (628_CR38) 2009; 11
K Terada (628_CR45) 2000; 267
M Khan (628_CR28) 2015; 117
CP Earnest (628_CR15) 2013; 34
References_xml – year: 2017
  ident: CR5
  article-title: Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13078
– volume: 12
  start-page: 347
  year: 2013
  end-page: 357
  ident: CR39
  article-title: Extracellular vesicles: biology and emerging therapeutic opportunities
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3978
– volume: 37
  start-page: 2415
  year: 2015
  end-page: 2424
  ident: CR44
  article-title: mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000438594
– volume: 103
  start-page: 530
  year: 2014
  end-page: 541
  ident: CR3
  article-title: Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvu167
– volume: 111
  start-page: 41
  year: 2016
  ident: CR7
  article-title: 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0558-1
– volume: 20
  start-page: 1033
  year: 2015
  end-page: 1047
  ident: CR27
  article-title: A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway
  publication-title: Apoptosis
  doi: 10.1007/s10495-015-1130-4
– volume: 54
  start-page: 284
  year: 2016
  end-page: 305
  ident: CR35
  article-title: Implications of exercise-induced adipo-myokines in bone metabolism
  publication-title: Endocrine
  doi: 10.1007/s12020-015-0834-0
– volume: 282
  start-page: 1318
  year: 1998
  end-page: 1321
  ident: CR10
  article-title: Regulation of cell death protease caspase-9 by phosphorylation
  publication-title: Science
  doi: 10.1126/science.282.5392.1318
– volume: 47
  start-page: 1569
  year: 2009
  end-page: 1576
  ident: CR26
  article-title: Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2009.03.044
– volume: 192
  start-page: 61
  year: 2015
  end-page: 69
  ident: CR47
  article-title: Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2015.05.020
– volume: 21
  start-page: 4409
  year: 2015
  end-page: 4416
  ident: CR6
  article-title: Exercise as a platform for pharmacotherapy development in cardiac diseases
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612821666150803150008
– volume: 37
  start-page: 162
  year: 2015
  end-page: 175
  ident: CR43
  article-title: Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000430342
– volume: 52
  start-page: 865
  year: 2012
  end-page: 872
  ident: CR31
  article-title: Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2011.08.027
– volume: 22
  start-page: 1281
  year: 2003
  end-page: 1293
  ident: CR48
  article-title: Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206261
– volume: 9
  start-page: e84153
  year: 2014
  ident: CR17
  article-title: Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0084153
– volume: 12
  start-page: 19
  year: 2010
  end-page: 30
  ident: CR37
  article-title: Rab27a and Rab27b control different steps of the exosome secretion pathway
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2000
– volume: 111
  start-page: 69
  year: 2016
  ident: CR8
  article-title: From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0586-x
– volume: 36
  start-page: 598
  year: 2011
  end-page: 607
  ident: CR32
  article-title: Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/h11-076
– volume: 4
  start-page: 28239
  year: 2015
  ident: CR18
  article-title: Physical exercise induces rapid release of small extracellular vesicles into the circulation
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v4.28239
– volume: 111
  start-page: 70
  year: 2016
  ident: CR22
  article-title: Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0588-8
– volume: 12
  start-page: 1579
  year: 2007
  end-page: 1588
  ident: CR50
  article-title: Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism
  publication-title: Apoptosis
  doi: 10.1007/s10495-007-0090-8
– volume: 30
  start-page: 255
  year: 2014
  end-page: 289
  ident: CR13
  article-title: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-101512-122326
– volume: 287
  start-page: 11968
  year: 2012
  end-page: 11980
  ident: CR41
  article-title: Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.336834
– volume: 135
  start-page: 313
  year: 2015
  end-page: 336
  ident: CR20
  article-title: Exercise and regulation of adipokine and myokine production
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/bs.pmbts.2015.07.002
– volume: 34
  start-page: 355
  year: 2013
  end-page: 363
  ident: CR15
  article-title: Interval training in men at risk for insulin resistance
  publication-title: Int J Sports Med
  doi: 10.1055/s-0032-1311594
– volume: 108
  start-page: 1448
  year: 2011
  end-page: 1458
  ident: CR9
  article-title: Exercise protects against myocardial ischemia–reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.241117
– volume: 12
  start-page: 504
  year: 2016
  end-page: 517
  ident: CR40
  article-title: The potential of endurance exercise-derived exosomes to treat metabolic diseases
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2016.76
– volume: 4
  start-page: 80
  year: 2013
  ident: CR1
  article-title: Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00080
– volume: 65
  start-page: 1525
  year: 2015
  end-page: 1536
  ident: CR46
  article-title: Plasma exosomes protect the myocardium from ischemia–reperfusion injury
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.02.026
– volume: 267
  start-page: 449
  year: 2000
  end-page: 455
  ident: CR45
  article-title: Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivation in hematopoietic cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.1955
– volume: 61
  start-page: 448
  year: 2004
  end-page: 460
  ident: CR23
  article-title: New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2003.09.024
– volume: 7
  start-page: 664
  year: 2017
  end-page: 676
  ident: CR42
  article-title: miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia–reperfusion injury
  publication-title: Theranostics
  doi: 10.7150/thno.15162
– volume: 304
  start-page: H954
  year: 2013
  end-page: H965
  ident: CR36
  article-title: Cardiac myocyte exosomes: stability, HSP60, and proteomics
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00835.2012
– volume: 10
  start-page: e0125094
  year: 2015
  ident: CR21
  article-title: Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125094
– volume: 102
  start-page: 86
  year: 2017
  end-page: 99
  ident: CR25
  article-title: Adaptation of exercise-induced stress in well-trained healthy young men
  publication-title: Exp Physiol
  doi: 10.1113/EP086025
– volume: 7
  start-page: 10870
  year: 2016
  end-page: 10878
  ident: CR49
  article-title: miR-19b attenuates H O -induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7678
– volume: 116
  start-page: 674
  year: 2015
  end-page: 699
  ident: CR24
  article-title: Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.305348
– volume: 5
  start-page: 39
  year: 2014
  ident: CR2
  article-title: Does regulation of skeletal muscle function involve circulating microRNAs?
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00039
– volume: 11
  start-page: e0144678
  year: 2016
  ident: CR14
  article-title: Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144678
– volume: 71
  start-page: 24
  year: 2015
  end-page: 30
  ident: CR16
  article-title: Exosomes and exosomal miRNAs in cardiovascular protection and repair
  publication-title: Vasc Pharmacol
  doi: 10.1016/j.vph.2015.02.008
– volume: 19
  start-page: 2153
  year: 2015
  end-page: 2161
  ident: CR11
  article-title: Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12589
– volume: 11
  start-page: 1913
  year: 2009
  end-page: 1928
  ident: CR38
  article-title: The role of nitric oxide in myocardial repair and remodeling
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ARS.2009.2453
– volume: 21
  start-page: 584
  year: 2015
  end-page: 595
  ident: CR34
  article-title: miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.02.014
– year: 2016
  ident: CR4
  article-title: Roles of exosomes in cardioprotection
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw304
– year: 2016
  ident: CR12
  article-title: Cardiac extracellular vesicles in normal and infarcted heart
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17010063
– volume: 111
  start-page: 40
  year: 2016
  ident: CR29
  article-title: Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0559-0
– volume: 117
  start-page: 52
  year: 2015
  end-page: 64
  ident: CR28
  article-title: Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.305990
– volume: 300
  start-page: R1303
  year: 2011
  end-page: R1310
  ident: CR33
  article-title: An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00538.2010
– volume: 2012
  start-page: 756132
  year: 2012
  ident: CR19
  article-title: Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2012/756132
– volume: 29
  start-page: 116
  year: 2014
  end-page: 125
  ident: CR30
  article-title: Biogenesis and secretion of exosomes
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2014.05.004
– volume: 12
  start-page: 347
  year: 2013
  ident: 628_CR39
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3978
– volume: 117
  start-page: 52
  year: 2015
  ident: 628_CR28
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.305990
– volume: 108
  start-page: 1448
  year: 2011
  ident: 628_CR9
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.241117
– volume: 12
  start-page: 1579
  year: 2007
  ident: 628_CR50
  publication-title: Apoptosis
  doi: 10.1007/s10495-007-0090-8
– volume: 12
  start-page: 504
  year: 2016
  ident: 628_CR40
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2016.76
– volume: 116
  start-page: 674
  year: 2015
  ident: 628_CR24
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.305348
– volume: 21
  start-page: 584
  year: 2015
  ident: 628_CR34
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.02.014
– volume: 282
  start-page: 1318
  year: 1998
  ident: 628_CR10
  publication-title: Science
  doi: 10.1126/science.282.5392.1318
– year: 2017
  ident: 628_CR5
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13078
– volume: 37
  start-page: 2415
  year: 2015
  ident: 628_CR44
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000438594
– volume: 11
  start-page: 1913
  year: 2009
  ident: 628_CR38
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ARS.2009.2453
– volume: 9
  start-page: e84153
  year: 2014
  ident: 628_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0084153
– volume: 20
  start-page: 1033
  year: 2015
  ident: 628_CR27
  publication-title: Apoptosis
  doi: 10.1007/s10495-015-1130-4
– volume: 29
  start-page: 116
  year: 2014
  ident: 628_CR30
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2014.05.004
– volume: 10
  start-page: e0125094
  year: 2015
  ident: 628_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125094
– volume: 111
  start-page: 69
  year: 2016
  ident: 628_CR8
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0586-x
– volume: 47
  start-page: 1569
  year: 2009
  ident: 628_CR26
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2009.03.044
– volume: 2012
  start-page: 756132
  year: 2012
  ident: 628_CR19
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2012/756132
– volume: 61
  start-page: 448
  year: 2004
  ident: 628_CR23
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2003.09.024
– volume: 267
  start-page: 449
  year: 2000
  ident: 628_CR45
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.1955
– volume: 36
  start-page: 598
  year: 2011
  ident: 628_CR32
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/h11-076
– volume: 52
  start-page: 865
  year: 2012
  ident: 628_CR31
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2011.08.027
– volume: 4
  start-page: 80
  year: 2013
  ident: 628_CR1
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00080
– volume: 111
  start-page: 41
  year: 2016
  ident: 628_CR7
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0558-1
– volume: 4
  start-page: 28239
  year: 2015
  ident: 628_CR18
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v4.28239
– volume: 300
  start-page: R1303
  year: 2011
  ident: 628_CR33
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00538.2010
– volume: 22
  start-page: 1281
  year: 2003
  ident: 628_CR48
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206261
– volume: 135
  start-page: 313
  year: 2015
  ident: 628_CR20
  publication-title: Prog Mol Biol Transl Sci
  doi: 10.1016/bs.pmbts.2015.07.002
– volume: 103
  start-page: 530
  year: 2014
  ident: 628_CR3
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvu167
– volume: 5
  start-page: 39
  year: 2014
  ident: 628_CR2
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00039
– volume: 7
  start-page: 10870
  year: 2016
  ident: 628_CR49
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7678
– volume: 111
  start-page: 40
  year: 2016
  ident: 628_CR29
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0559-0
– volume: 54
  start-page: 284
  year: 2016
  ident: 628_CR35
  publication-title: Endocrine
  doi: 10.1007/s12020-015-0834-0
– volume: 7
  start-page: 664
  year: 2017
  ident: 628_CR42
  publication-title: Theranostics
  doi: 10.7150/thno.15162
– volume: 192
  start-page: 61
  year: 2015
  ident: 628_CR47
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2015.05.020
– volume: 30
  start-page: 255
  year: 2014
  ident: 628_CR13
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-101512-122326
– volume: 102
  start-page: 86
  year: 2017
  ident: 628_CR25
  publication-title: Exp Physiol
  doi: 10.1113/EP086025
– volume: 71
  start-page: 24
  year: 2015
  ident: 628_CR16
  publication-title: Vasc Pharmacol
  doi: 10.1016/j.vph.2015.02.008
– volume: 37
  start-page: 162
  year: 2015
  ident: 628_CR43
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000430342
– volume: 287
  start-page: 11968
  year: 2012
  ident: 628_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.336834
– volume: 19
  start-page: 2153
  year: 2015
  ident: 628_CR11
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12589
– volume: 65
  start-page: 1525
  year: 2015
  ident: 628_CR46
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.02.026
– volume: 304
  start-page: H954
  year: 2013
  ident: 628_CR36
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00835.2012
– year: 2016
  ident: 628_CR12
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17010063
– volume: 11
  start-page: e0144678
  year: 2016
  ident: 628_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144678
– volume: 111
  start-page: 70
  year: 2016
  ident: 628_CR22
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-016-0588-8
– volume: 34
  start-page: 355
  year: 2013
  ident: 628_CR15
  publication-title: Int J Sports Med
  doi: 10.1055/s-0032-1311594
– year: 2016
  ident: 628_CR4
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw304
– volume: 12
  start-page: 19
  year: 2010
  ident: 628_CR37
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2000
– volume: 21
  start-page: 4409
  year: 2015
  ident: 628_CR6
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612821666150803150008
SSID ssj0014661
Score 2.548198
Snippet Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the...
Extracellular vesicles (EVs) serve an import ant function as mediators of intercellular communication. Exercise is protective for the heart, although the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 38
SubjectTerms Animals
Apoptosis
Calcium-Binding Proteins - metabolism
Cardiology
Cardiomyocytes
Cell Line
Cell signaling
Disease Models, Animal
Equivalence
Exercise Test
Extracellular Signal-Regulated MAP Kinases - metabolism
Extracellular vesicles
Extracellular Vesicles - metabolism
Extracellular Vesicles - transplantation
Flow cytometry
Flow Cytometry - methods
Growth factors
Heart
Heart diseases
HSP27 Heat-Shock Proteins - metabolism
Hsp27 protein
Humans
Hydrogen peroxide
Injection
Injuries
Insulin
Insulin-like growth factor I
Ischemia
Male
Medicine
Medicine & Public Health
Mice, Inbred C57BL
Myocardial Infarction - blood
Myocardial Infarction - pathology
Myocardial Infarction - prevention & control
Myocardial Reperfusion Injury - blood
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - prevention & control
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
Nanotechnology - methods
Original Contribution
Oxidative Stress
Physical Conditioning, Animal - methods
Physical Exertion
Physical training
rab GTP-Binding Proteins - metabolism
Rats
Reperfusion
Rodents
Swimming
Time Factors
Vesicles
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouqNCWBgoyUk-tLMWvxDlWVasKqZxYqbfIr7RBkFbZXQ498R_4h_wSxt4k6raAxNkTO_E3zsx4XgAHJVOmYsrSXOIhlyiiaVWyhgqbc-u15MzGC_2LT8X5TH68VJdDHvd8jHYfXZLpTz0lu8U00hhoFsO1uKZ3T-GZiqY7MvGMH0-uA1mkIqnIvDnFtfToyvzTFOvC6JGG-ThQ8oG3NAmhsy14MWiP5HgF90t4ErpXsHkx-Me3oT0dOihRNLURNE9c27vUoau7Ivgf7k28qY-hp-R7mKeQODKUaiDmyrSoLBKXmMaRFg3f8K01v3787MNt6JtlvFkjbfcFcdiB2dnp55NzOjRToE6JYkG98pWRyueWlTb6Hr0IKs9NU7DAdNFIjUOmEbFeHgosW3JUbPLKNoUoLC-92IWN7qYLe0BkE6wRzkVrQ7LKW224wEkrh7oC8z6DfNzV2g2VxmPDi6_1VCM5AVEjEHUEor7L4HB65HZVZuNfxPsjVPVw4uY1Szm0qmQ8gw_TMJ6VuK2mCzfLFQ2aV7qoMni9QnZajaPeInGGDMo1zCeCWId7faRrr1M9blVKLbTM4Gjkjnuv9bePePNf1G_hOU9sG-OE92Fj0S_DO9SGFvZ94v7fUxEEpQ
  priority: 102
  providerName: Springer Nature
Title Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury
URI https://link.springer.com/article/10.1007/s00395-017-0628-z
https://www.ncbi.nlm.nih.gov/pubmed/28534118
https://www.proquest.com/docview/1901185712
https://www.proquest.com/docview/1901768869
https://pubmed.ncbi.nlm.nih.gov/PMC5748384
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LjtMwFLVgRkJsEG8Cw8hIrEAW8SOvFWpRywg0FUJUKqvIjp0hCNKStixmxT_wh3wJ97pOoIyYVRZ2nMe5tu_L5xLyNOOJLnhiWKxgkivYolmR8ZpJEwtjcyW4QYf-6Sw9mas3i2QRHG7rkFbZr4l-obbLCn3kL7g_I5lkXLxcfWNYNQqjq6GExlVyiNRlmNKVLQaDCxYBz5cKchwzeGzeRzVjTyIq8Wwyx-QvkbPz_X3pgrJ5MWfyn8Cp34-mN8mNoEjS0Q75W-SKa2-Ta6chVH6HNJNQTImB1Q34WVo1XeWLdbVnFJbkTqPTHrNQ6Xe39tlxNLA2UH2mG9AbaeXlp6IN2MDua6N__fjZuZXr6i062WjTfgZI7pL5dPLh1QkLdRVYlch0w2xiC60SGxueGQxDWumSONZ1yh3P01rl0KRridR5sHeZTICOExemTmVqRGblPXLQLlv3gFBVO6NlVaHhoXhhTa6FhEGLCtQGbm1E4v6vllUgHcfaF1_KgS7ZA1ECECUCUZ5H5Nlwy2rHuHFZ56MeqjJMvnX5R1Qi8mRohmmDv1W3brnd9QFLK0-LiNzfITs8TYAKo2CEiGR7mA8dkJJ7v6VtPnlq7iRTucxVRJ730vHXa_3vIx5e_hGPyHXh5RRzhI_IwabbusegCW3MsRf3Y3I4mo7HM7y-_vh2AtfxZPbuPbTOxeg3NlYNGQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiPJcKGAkuIBWrB_7OiAENFVKmwihVupta6-9ZRFswiYB0RP_gf_Bj-KXMPY-IFT01rMdb-z5xp7xjL8BeBTTUKY0VH4gUMkFHtF-GtPC5ypgSieCUWUv9MeTaHQg3hyGh2vws3sLY9Mquz3RbdR6mts78mfUvZEMY8pezD77tmqUja52JTQaWOyab1_RZZs_39lC-T5mbHu4_3rkt1UF_Dzk0cLXoU6lCHWgaKxsEE5zEwaBLCJqaBIVIsEmWXBLHIc7t4oZnvBBqoqIR4rFmuO4F2BdcHRlBrD-ajh5-66PW4jIMbSi5gQ-TjTp4qiBoy3l9jU0telmLPFPVk_CU-bt6SzNf0K17gTcvgpXWtOVvGywtgFrproGF8dtcP46lMO2fJOPfj4iRpO8rHNXHqw6JngI1NKGCWzeK_li5i4fj7Q8EUQeyxItVZI7xOakRK_bfCrlr-8_ajMzdbG013qkrD4gCG7Awbms-U0YVNPK3AYiCqMkz3Pr6giaapVIxnHQNEdDhWrtQdCtapa3NOe22sbHrCdodoLIUBCZFUR24sGT_iezhuPjrM6bnaiyVt3n2R9wevCwb0ZFtcsqKzNdNn3Qt0ui1INbjWT7rzE0mgSO4EG8IvO-gyUBX22pyveODDyMRcIT4cHTDh1__a3_TeLO2ZN4AJdG--O9bG9nsnsXLjOHWZuhvAmDRb0099AOW6j7LfgJHJ23vv0GkaBEaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEP8EChgJLiCr8U_i5IAQol21lFYcqLS3YMdOCYLskt0F0RPvwNvwODwJY28SWCp669leZ-35xp7xjL8BeKRYonOWGBpLVHKJRzTNFauoMDE3NpOcGX-hf3CY7h7JV-NkvAY_-7cwPq2y3xPDRm0npb8j32LhjWSiGN-qurSIN9uj59PP1FeQ8pHWvpzGEiL77ttXdN9mz_a2UdaPOR_tvH25S7sKA7RMRDqnNrG5lomNDVPGB-SscEkc6ypljmVpJTNs0pXwJHK4ixvF8bSPc1OlIjVcWYHjXoCLSiTM65gaD84ebkCBqxV1KKY45ayPqMaBwFT4d9HMJ57xjJ6snomnDN3T-Zr_BG3DWTi6Apc7I5a8WKLuKqy55hpsHHRh-utQ73SFnCh6_IgdS8q6LUOhsOaY4Jq22gcMfAYs-eJmITOPdIwRRB_rGm1WUgbslqRG_9t9qvWv7z9aN3VttfAXfKRuPiAcbsDRuaz4TVhvJo27DURWzmhRlt7pkSy3JtNc4KB5iSYLszaCuF_VouwIz33djY_FQNUcBFGgIAoviOIkgifDT6ZLto-zOm_2oio6xZ8Vf2AawcOhGVXWL6tu3GSx7INeXpbmEdxaSnb4GkfzSeIIEagVmQ8dPB34aktTvw-04ImSmchkBE97dPz1t_43iTtnT-IBbKCWFa_3DvfvwiUeIOtTlTdhfd4u3D00yObmfkA-gXfnrWq_ARbZRzs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise-induced+circulating+extracellular+vesicles+protect+against+cardiac+ischemia-reperfusion+injury&rft.jtitle=Basic+research+in+cardiology&rft.au=Bei%2C+Yihua&rft.au=Xu%2C+Tianzhao&rft.au=Lv%2C+Dongchao&rft.au=Yu%2C+Pujiao&rft.date=2017-07-01&rft.issn=0300-8428&rft.eissn=1435-1803&rft.volume=112&rft.issue=4&rft.spage=38&rft.epage=38&rft_id=info:doi/10.1007%2Fs00395-017-0628-z&rft_id=info%3Apmid%2F28534118&rft.externalDocID=PMC5748384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-8428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-8428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-8428&client=summon