Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence
Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 2; p. 476 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%. |
---|---|
AbstractList | Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%. Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%. |
Audience | Academic |
Author | Narmatha, C. Chilamkurti, Naveen Aborokbah, Majed Mohammed Almoamari, Hani Alzaheb, Riyadh A. Manimurugan, S. Ganesan, Subramaniam Almutairi, Saad |
AuthorAffiliation | 2 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; ganesan@oakland.edu 1 Industrial Innovation & Robotics Center, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia; s.almutairi@ut.edu.sa (S.A.); m.aborokbah@ut.edu.sa (M.M.A.); narmatha@ut.edu.sa (C.N.) 5 Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia; hani.almoamari@iu.edu.sa 3 Department of Computer Science and IT, La Trobe University, Melbourne 3086, Australia; n.chilamkurti@latrobe.edu.au 4 Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia; ralzaheb@ut.edu.sa |
AuthorAffiliation_xml | – name: 4 Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia; ralzaheb@ut.edu.sa – name: 3 Department of Computer Science and IT, La Trobe University, Melbourne 3086, Australia; n.chilamkurti@latrobe.edu.au – name: 2 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; ganesan@oakland.edu – name: 5 Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia; hani.almoamari@iu.edu.sa – name: 1 Industrial Innovation & Robotics Center, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia; s.almutairi@ut.edu.sa (S.A.); m.aborokbah@ut.edu.sa (M.M.A.); narmatha@ut.edu.sa (C.N.) |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-1837-6797 surname: Manimurugan fullname: Manimurugan, S. – sequence: 2 givenname: Saad surname: Almutairi fullname: Almutairi, Saad – sequence: 3 givenname: Majed Mohammed orcidid: 0000-0001-7376-1458 surname: Aborokbah fullname: Aborokbah, Majed Mohammed – sequence: 4 givenname: C. surname: Narmatha fullname: Narmatha, C. – sequence: 5 givenname: Subramaniam orcidid: 0000-0003-0233-9940 surname: Ganesan fullname: Ganesan, Subramaniam – sequence: 6 givenname: Naveen orcidid: 0000-0002-5396-8897 surname: Chilamkurti fullname: Chilamkurti, Naveen – sequence: 7 givenname: Riyadh A. surname: Alzaheb fullname: Alzaheb, Riyadh A. – sequence: 8 givenname: Hani surname: Almoamari fullname: Almoamari, Hani |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35062437$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuWyEQho-qVM2lXfQFKqRu2oUTGM4FNpUs9xJLiVqpzhphGE6IjiGF41Z9-2I7SeO0YgEM_3www39cHYQYsKpeM3rKuaRnGYACrbv2WXXEaqgnogQOHq0Pq-OcbygFzrl4UR3yhrZQ8-6o8otfcfJ91D2S2aBz9s4bPfoYyGW0OBAXExmvkXxLaL3ZHkRHzlGnkXz0GXVGcpV96Mk8Xi6IDpZM07iheD2QeRhxGHyPweDL6rnTQ8ZXd_NJdfX502J2Prn4-mU-m15MTMPbcWKZFFxwECglbxh1mhsqjaUcGHRtC66zWi610UCF4czVlgMC160sGyb4STXfcW3UN-o2-ZVOv1XUXm0DMfWqPN6bAZVgLdW0MaBLNyhIzSxwWnO3lCABl4X1Yce6XS9XaA2GMelhD7p_Evy16uNPJbpONG1XAO_uACn-WGMe1cpnU3qiA8Z1VtACgBCN3Lz77RPpTVynUFq1UbHtl7V_Vb0uBfjgYrnXbKBq2gkGknXQFNXpf1RlWFx5U8zjfInvJbx5XOhDhfdGKYKzncCkmHNCp4wft0YpZD8oRtXGiurBiiXj_ZOMe-i_2j-kMNmU |
CitedBy_id | crossref_primary_10_1080_23742917_2024_2411021 crossref_primary_10_1166_jno_2022_3355 crossref_primary_10_1016_j_compbiomed_2025_109835 crossref_primary_10_1109_TCSS_2022_3170375 crossref_primary_10_21015_vtcs_v12i1_1781 crossref_primary_10_3390_s24165224 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_3390_s22062348 crossref_primary_10_1007_s00521_023_09293_3 crossref_primary_10_1007_s11227_023_05583_8 crossref_primary_10_1080_23080477_2024_2370211 crossref_primary_10_1016_j_aej_2023_08_010 crossref_primary_10_1016_j_bbe_2022_10_001 crossref_primary_10_1155_2022_9112634 crossref_primary_10_1049_cit2_12356 crossref_primary_10_7717_peerj_cs_2364 crossref_primary_10_3390_electronics13010163 crossref_primary_10_36548_rrrj_2024_1_005 crossref_primary_10_1080_10255842_2023_2245521 crossref_primary_10_1007_s44196_024_00635_0 crossref_primary_10_1155_2022_9060340 crossref_primary_10_1016_j_rineng_2024_103787 crossref_primary_10_3390_biomedicines10112796 crossref_primary_10_7717_peerj_cs_1917 crossref_primary_10_3390_app13031911 crossref_primary_10_3390_app122312080 crossref_primary_10_1038_s41538_023_00205_2 crossref_primary_10_1109_JIOT_2023_3240536 crossref_primary_10_36548_jaicn_2024_2_006 crossref_primary_10_1142_S0218001424570118 crossref_primary_10_3934_mbe_2023597 crossref_primary_10_1007_s11334_022_00512_z crossref_primary_10_1038_s41598_025_85561_7 crossref_primary_10_4028_p_Cbr55F crossref_primary_10_1016_j_bspc_2024_105988 crossref_primary_10_3390_su142114208 crossref_primary_10_37391_ijeer_110203 crossref_primary_10_32604_iasc_2023_034885 crossref_primary_10_1155_2023_5881769 crossref_primary_10_3390_s23020828 |
Cites_doi | 10.1007/s13369-020-05105-1 10.1109/ACCESS.2020.2974687 10.1109/ACCESS.2020.2997831 10.35940/ijitee.C9009.019320 10.1109/ACCESS.2020.3006424 10.1016/j.future.2019.12.028 10.1109/STA.2016.7952041 10.1109/ACCESS.2020.3026214 10.1038/s41746-018-0065-x 10.1109/CVPR.2018.00745 10.1109/ACCESS.2020.2981337 10.1016/j.comcom.2020.08.011 10.1016/j.inffus.2020.06.008 10.1007/s00500-021-05865-4 10.1109/ICDCS48716.2020.243558 10.1109/ACCESS.2020.3007561 10.1016/j.knosys.2018.12.031 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22020476 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8160a05c2a624029a1d23043fb9292eb PMC8778567 A781291725 35062437 10_3390_s22020476 |
Genre | Journal Article |
GeographicLocations | Saudi Arabia Ohio |
GeographicLocations_xml | – name: Saudi Arabia – name: Ohio |
GrantInformation_xml | – fundername: University of Tabuk grantid: 0186-1441-S |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c536t-d19838328e993510fa3c09cd032127662f7da9baca208c31f4d32e23a6931f183 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:23:01 EDT 2025 Thu Aug 21 17:56:34 EDT 2025 Thu Jul 10 23:41:58 EDT 2025 Sat Aug 23 14:52:57 EDT 2025 Tue Jun 17 22:23:18 EDT 2025 Tue Jun 10 21:15:26 EDT 2025 Wed Feb 19 02:26:54 EST 2025 Tue Jul 01 02:41:41 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cloud medical image hybrid Faster R-CNN with SE-ResNet-101 hybrid linear discriminant analysis with modified ant lion optimization heart disease prediction Internet of Medical Things |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-d19838328e993510fa3c09cd032127662f7da9baca208c31f4d32e23a6931f183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5396-8897 0000-0001-7376-1458 0000-0003-1837-6797 0000-0003-0233-9940 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22020476 |
PMID | 35062437 |
PQID | 2621350626 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8160a05c2a624029a1d23043fb9292eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778567 proquest_miscellaneous_2622288598 proquest_journals_2621350626 gale_infotracmisc_A781291725 gale_infotracacademiconefile_A781291725 pubmed_primary_35062437 crossref_citationtrail_10_3390_s22020476 crossref_primary_10_3390_s22020476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Mehmood (ref_13) 2021; 46 Ali (ref_20) 2020; 63 Yaacoub (ref_4) 2020; 105 Raj (ref_12) 2020; 8 Deperlioglu (ref_10) 2020; 162 ref_21 Madani (ref_22) 2018; 1 Sun (ref_6) 2016; 8 ref_3 Wang (ref_15) 2019; 168 ref_19 ref_18 ref_17 Su (ref_5) 2021; 8 ref_16 Khan (ref_9) 2020; 8 Khan (ref_7) 2020; 8 Gatouillat (ref_2) 2018; 5 Pan (ref_11) 2020; 8 Fatima (ref_1) 2021; 8 Simanta (ref_8) 2020; 8 Basheer (ref_14) 2021; 25 |
References_xml | – volume: 8 start-page: 3660 year: 2021 ident: ref_1 article-title: A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Health care publication-title: IEEE Access – volume: 46 start-page: 3409 year: 2021 ident: ref_13 article-title: Prediction of Heart Diseases Using Deep Convolutional Neural Network publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-05105-1 – volume: 8 start-page: 34717 year: 2020 ident: ref_9 article-title: An IoT Framework for Heart Diseases Predictions Based on MDCNN Classifier publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974687 – volume: 8 start-page: 101079 year: 2016 ident: ref_6 article-title: Edge-Cloud Computing and Artificial Intelligences in Internet of Medical Things: Architectures, Technology and Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997831 – ident: ref_19 doi: 10.35940/ijitee.C9009.019320 – volume: 8 start-page: 122259 year: 2020 ident: ref_7 article-title: A Health Care Monitoring System for the Diagnosis of Heart Diseases in the IoMT Cloud Environments Using MSSO-ANFIS publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006424 – volume: 105 start-page: 581 year: 2020 ident: ref_4 article-title: Securing Internet of Medical Things System: Limitations, Issue and Recommendation publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.12.028 – ident: ref_16 doi: 10.1109/STA.2016.7952041 – volume: 8 start-page: 189503 year: 2020 ident: ref_11 article-title: Enhanced Deep Learning Assisted Convolutional Neural Networks for Heart Diseases Predictions on the Internet of Medical Things Platforms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026214 – volume: 8 start-page: 16921 year: 2021 ident: ref_5 article-title: Deep Learning Method in Internet of Medical Things for Valvular Heart Diseases Screening Systems publication-title: IEEE IoT J. – volume: 1 start-page: 59 year: 2018 ident: ref_22 article-title: Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0065-x – ident: ref_17 doi: 10.1109/CVPR.2018.00745 – volume: 8 start-page: 58006 year: 2020 ident: ref_12 article-title: Optimal Features Selections-Based Medical Images Classifications Using Deep Learning Models in Internet of Medical Things publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981337 – volume: 162 start-page: 31 year: 2020 ident: ref_10 article-title: Diagnosis of heart disease by a secure Internet of Health Things system based on Autoencoder Deep Neural Networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.08.011 – volume: 63 start-page: 208 year: 2020 ident: ref_20 article-title: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.06.008 – volume: 25 start-page: 12145 year: 2021 ident: ref_14 article-title: Real-time monitoring systems for early predictions of heart diseases using Internet of Things publication-title: Soft Comput. doi: 10.1007/s00500-021-05865-4 – ident: ref_18 – volume: 5 start-page: 3810 year: 2018 ident: ref_2 article-title: Internet of Medical Things: A Review of Recent Contribution Dealing with Cyber-Physical System in Medicines publication-title: IEEE IoT J. – ident: ref_3 doi: 10.1109/ICDCS48716.2020.243558 – ident: ref_21 – volume: 8 start-page: 135784 year: 2020 ident: ref_8 article-title: An Efficient IoT-Based Patient Monitoring and Heart Diseases Predictions Systems Using Deep Learning Modified Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007561 – volume: 168 start-page: 39 year: 2019 ident: ref_15 article-title: A feature selections approach for hyperspectral images based on modified ant lion optimizer publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.12.031 |
SSID | ssj0023338 |
Score | 2.5278869 |
Snippet | Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 476 |
SubjectTerms | Artificial Intelligence Cardiovascular disease Classification cloud Decision making Deep learning Delivery of Health Care Discriminant analysis Feature selection Heart heart disease prediction Heart diseases Heart Diseases - diagnostic imaging Humans hybrid Faster R-CNN with SE-ResNet-101 hybrid linear discriminant analysis with modified ant lion optimization Information management Internet Internet of Medical Things Internet of Things Medical advice systems Medical equipment medical image Medical research Medicine, Experimental Mobile communications networks Neural networks Optimization techniques Patients Prognosis Sensors Telemedicine Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQT3BAQFkCLXIRElyiJna8HQu0ekUq4vAq9WZ5C1Sqkqp9FX-_M05elAgkLj0mHideZjwz9vgbQj5WnHvFQixbk3jZMB9L440vvXZKuyCFyTjdZz_k6rz5fiEuZqm-MCZsgAceBu5Q17JylQjMSTwIMK6OuI_JWw-KnSWPqy_ovK0zNbpaHDyvAUeIg1N_eMsYXgJFYJGZ9skg_X8vxTNdtIyTnCmek2fk6Wgx0qOhpc_Jo9S9IE9mOIK75HL9py_BbPyVaE5yieE_ecQppjq7omCYUjD06M8bPJbJBX1LV8DkG_ptOKGhOXaAnvZna-q6mH83gEvQ0xlq50tyfnK8_roqxxwKZRBcbspYGw1OKNMJDBGQv9bxUJkQK47Q7lKyVkVnvAuOVTrwum0iZ4lxJw08gLy_Ijtd36U3hLbOq1glZZJwDVOIHJaMhG9Hmbhs64J83o6tDSPAOOa5uLLgaOA02GkaCvJhIr0eUDX-RfQFJ2giQCDs_ALYw47sYf_HHgX5hNNrUVyhMcGNtw6gSwh8ZY8UWDjgsjJRkL0FJYhZWBZvGcSOYn5rmWQ1FxU4hQU5mIqxJoaudam_yzSMaS2MLsjrgZ-mLuW6DVcFUQtOW_R5WdJd_s4g4FopLaR6-xCD9I48ZnirI-8s7ZGdzc1d2gdba-PfZ7G6B5h-JD8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIcIma2IkfJ1Qe1RapiMNW2pvlV0qlKim7W_XvM-Nk00QgjhtPsnFmxv7GHn9DyPuCcyeZD3mjI88r5kKunXa5U1Yq60WtE0_36Q-xOKu-r-rVsOC2GdIqd2NiGqhD53GN_JAJVvK6APz96ep3jlWjcHd1KKFxl9xD6jJM6ZKr24CLQ_zVswlxCO0PN4zhUVCkF5nMQYmq_-8BeTIjzbMlJ9PP8SPycMCN9KhX9GNyJ7ZPyIMJm-BTcrG86XIAj-eRplKXmASUvjvFgmeXFOApBbhHf65xcyY1dA1dgKlv6dd-n4amDAJ60p0uqW1D-rueYoKeTLg7n5Gz42_LL4t8qKSQ-5qLbR5KrSAUZSoCHAEvbCz3hfah4EjwLgRrZLDaWW9ZoTwvmypwFhm3QsMP8PrnZK_t2viS0MY6GYoodaxtxSTyh0Ut4NlBRC6aMiMfd9_W-IFmHKtdXBoIN1ANZlRDRt6Nolc9t8a_hD6jgkYBpMNOF7r1uRm8y6hSFLaoPbMCd4u0LQMudvPGAfpj0WXkA6rXoNPCy3g7nD2ALiH9lTmSgHMgcGV1Rg5mkuBsft68MxAzOPvG3JpmRt6OzXgnJrC1sbtOMowpVWuVkRe9PY1dSvdWXGZEzixt1ud5S3vxK1GBKylVLeT-_1_rFbnP8NRGWjk6IHvb9XV8DVhq694kh_kDBQoc6g priority: 102 providerName: ProQuest |
Title | Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35062437 https://www.proquest.com/docview/2621350626 https://www.proquest.com/docview/2622288598 https://pubmed.ncbi.nlm.nih.gov/PMC8778567 https://doaj.org/article/8160a05c2a624029a1d23043fb9292eb |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t1AWRmEBJdAYid-HBBqocsWaasK7Up7i5zEKZVWSbvdCvj3zDjZaCN64BIp8TiOPTOZGT--AXgbCZErXpRhZZwIE56XoclNHubaKm0LmRqP0z09k5N58n2RLnZgk2OzG8CbO0M7yic1Xy0__L7-8xkV_hNFnBiyf7zhnI54KrkL-2iQFOnnNOkXE7gQPqE1nekK0R5GLcDQsOrALHn0_n__0VtGariBcssijR_Cg86VZEct7x_Bjqsfw_0tgMEncDn71YToT1445rNf0r4gzwpGOdCWDD1Whh4gO1_Reo0vaCo2Qelfs6_t0g3zmwrYaTOdMVuXvrkWdYKdbsF5PoX5-GT2ZRJ2yRXCIhVyHZax0Ridcu3QQ0HFrKwoIlOUkSDMdyl5pUprcltYHulCxFVSCu64sNLgDf4InsFe3dTuAFhlc1VGThmX2oQrghRzRuK7S-mErOIA3m_GNis65HFKgLHMMAIhNmQ9GwJ405NetXAbdxEdE4N6AkLI9g-a1UXWKVymYxnZKC24lbSAZGxc0vy3qHJ0CLnLA3hH7M1IsvBjCtsdR8AuESJWdqTQ9cFYlqcBHA4oUf-KYfFGQLKN-GZc8likEUaLAbzui6km7WmrXXPraTjXOjU6gOetPPVd8nUToQJQA0kb9HlYUl_-9OjgWimdSvXiP9p9Cfc4nebwM0qHsLde3bpX6GOt8xHsqoXCqx5_G8H-8cnZ-Y-Rn68Yed36CypdJqA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sTd2fECoUKpd2q04bKW9pY7tlEpVUna3qvhT_EZmnOx2IxC3HhNPHvbMeGbs8TcAbxMhSsWtiyvtRTzgpYt1qcu4zI3KjZWZDjjd40M5PBp8m2bTDfi9PAtDaZXLOTFM1K6xtEa-zSVPRZag__3p_GdMVaNod3VZQqMVi33_6xJDtvnH0S7y9x3ne18nX4ZxV1UgtpmQi9hhmI1hGc89mmaUyMoIm2jrEkFg51LySjmjS2MNT3Ir0mrgBPdcGKnxAjUA33sDbqLhTUij1PQqwBMY77XoRULoZHvOOR09JTiTNZsXSgP8bQDWLGA_O3PN3O3dg7udn8p2WsG6Dxu-fgB31tALH8Lp5LKJ0Vk98SyU1qSko8BnRgXWzhi6wwzdS_Z9RptBoaGp2BDHcMF2230hFjIW2KgZT5ipXfhcC2nBRmtYoY_g6FrG-DFs1k3tnwKrTKlc4pX2mRlwRXhlXkt8t5NeyCqN4MNybAvbwZpTdY2zAsMbYkOxYkMEb1ak5y2Wx7-IPhODVgQEvx1uNLOTotPmIk9lYpLMciNpd0qb1NHiuqhK9Da5LyN4T-wtaJLAn7GmO-uAXSK4rWJHoV-FgTLPItjqUaJy237zUkCKbnKZF1eqEMHrVTM9SQlztW8uAg3neZ7pPIInrTytuhSeHQgVgepJWq_P_Zb69EeAHs-VyjOpnv3_t17BreFkfFAcjA73n8NtTidGwqrVFmwuZhf-Bfpxi_JlUB4Gx9etrX8A-kFX-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NISF4QPwnMMAgELxETe3Gjh8QGpSqZWzaQyf1LXNsZ0yaktF2mvhqfDrunLRrBOJtj43Paey7893Z598BvE2EKBS3Li61F_GAFy7WhS7iIjMqM1amOuB07x_I8dHg2yydbcHv1V0YSqtcrYlhoXa1pT3yHpe8L9IE_e9e2aZFHA5Hn85_xlRBik5aV-U0GhHZ878uMXxbfJwMkdfvOB99nX4Zx22FgdimQi5jhyE3hmg882imUTpLI2yirUsEAZ9LyUvljC6MNTzJrOiXAye458JIjT9QG_C9N-Cmwr6kY2p2FewJjP0aJCMhdNJbcE7XUAnaZMP-hTIBfxuDDWvYzdTcMH2je3C39VnZbiNk92HLVw_gzgaS4UM4nV7WMTquJ56FMpuUgBR4zqjY2hlD15ihq8kO53QwFBrqko1xDpds2JwRsZC9wCb1_pSZyoW_a-At2GQDN_QRHF3LHD-G7aqu_FNgpSmUS7zSPjUDrgi7zGuJ73bSC1n2I_iwmtvcthDnVGnjLMdQh9iQr9kQwZs16XmD6_Evos_EoDUBQXGHB_X8JG81O8_6MjFJarmRdFKlTd_RRrsoC_Q8uS8ieE_szWnBwI-xpr33gEMi6K18V6GPhUEzTyPY6VCiottu80pA8nahWeRXahHB63Uz9aTkucrXF4GG8yxLdRbBk0ae1kMKfQdCRaA6ktYZc7elOv0RYMgzpbJUqmf__6xXcAv1NP8-Odh7Drc5XR4JG1g7sL2cX_gX6NIti5dBdxgcX7ey_gEkeFwv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Classification+Model+for+the+Prediction+of+Heart+Disease+Using+IoMT+and+Artificial+Intelligence&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Manimurugan%2C+S&rft.au=Almutairi%2C+Saad&rft.au=Aborokbah%2C+Majed+Mohammed&rft.au=Narmatha%2C+C&rft.date=2022-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fs22020476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |