Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 2; p. 476
Main Authors Manimurugan, S., Almutairi, Saad, Aborokbah, Majed Mohammed, Narmatha, C., Ganesan, Subramaniam, Chilamkurti, Naveen, Alzaheb, Riyadh A., Almoamari, Hani
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.
AbstractList Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.
Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.
Audience Academic
Author Narmatha, C.
Chilamkurti, Naveen
Aborokbah, Majed Mohammed
Almoamari, Hani
Alzaheb, Riyadh A.
Manimurugan, S.
Ganesan, Subramaniam
Almutairi, Saad
AuthorAffiliation 2 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; ganesan@oakland.edu
1 Industrial Innovation & Robotics Center, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia; s.almutairi@ut.edu.sa (S.A.); m.aborokbah@ut.edu.sa (M.M.A.); narmatha@ut.edu.sa (C.N.)
5 Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia; hani.almoamari@iu.edu.sa
3 Department of Computer Science and IT, La Trobe University, Melbourne 3086, Australia; n.chilamkurti@latrobe.edu.au
4 Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia; ralzaheb@ut.edu.sa
AuthorAffiliation_xml – name: 4 Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia; ralzaheb@ut.edu.sa
– name: 3 Department of Computer Science and IT, La Trobe University, Melbourne 3086, Australia; n.chilamkurti@latrobe.edu.au
– name: 2 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; ganesan@oakland.edu
– name: 5 Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia; hani.almoamari@iu.edu.sa
– name: 1 Industrial Innovation & Robotics Center, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia; s.almutairi@ut.edu.sa (S.A.); m.aborokbah@ut.edu.sa (M.M.A.); narmatha@ut.edu.sa (C.N.)
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-1837-6797
  surname: Manimurugan
  fullname: Manimurugan, S.
– sequence: 2
  givenname: Saad
  surname: Almutairi
  fullname: Almutairi, Saad
– sequence: 3
  givenname: Majed Mohammed
  orcidid: 0000-0001-7376-1458
  surname: Aborokbah
  fullname: Aborokbah, Majed Mohammed
– sequence: 4
  givenname: C.
  surname: Narmatha
  fullname: Narmatha, C.
– sequence: 5
  givenname: Subramaniam
  orcidid: 0000-0003-0233-9940
  surname: Ganesan
  fullname: Ganesan, Subramaniam
– sequence: 6
  givenname: Naveen
  orcidid: 0000-0002-5396-8897
  surname: Chilamkurti
  fullname: Chilamkurti, Naveen
– sequence: 7
  givenname: Riyadh A.
  surname: Alzaheb
  fullname: Alzaheb, Riyadh A.
– sequence: 8
  givenname: Hani
  surname: Almoamari
  fullname: Almoamari, Hani
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062437$$D View this record in MEDLINE/PubMed
BookMark eNptkstuWyEQho-qVM2lXfQFKqRu2oUTGM4FNpUs9xJLiVqpzhphGE6IjiGF41Z9-2I7SeO0YgEM_3www39cHYQYsKpeM3rKuaRnGYACrbv2WXXEaqgnogQOHq0Pq-OcbygFzrl4UR3yhrZQ8-6o8otfcfJ91D2S2aBz9s4bPfoYyGW0OBAXExmvkXxLaL3ZHkRHzlGnkXz0GXVGcpV96Mk8Xi6IDpZM07iheD2QeRhxGHyPweDL6rnTQ8ZXd_NJdfX502J2Prn4-mU-m15MTMPbcWKZFFxwECglbxh1mhsqjaUcGHRtC66zWi610UCF4czVlgMC160sGyb4STXfcW3UN-o2-ZVOv1XUXm0DMfWqPN6bAZVgLdW0MaBLNyhIzSxwWnO3lCABl4X1Yce6XS9XaA2GMelhD7p_Evy16uNPJbpONG1XAO_uACn-WGMe1cpnU3qiA8Z1VtACgBCN3Lz77RPpTVynUFq1UbHtl7V_Vb0uBfjgYrnXbKBq2gkGknXQFNXpf1RlWFx5U8zjfInvJbx5XOhDhfdGKYKzncCkmHNCp4wft0YpZD8oRtXGiurBiiXj_ZOMe-i_2j-kMNmU
CitedBy_id crossref_primary_10_1080_23742917_2024_2411021
crossref_primary_10_1166_jno_2022_3355
crossref_primary_10_1016_j_compbiomed_2025_109835
crossref_primary_10_1109_TCSS_2022_3170375
crossref_primary_10_21015_vtcs_v12i1_1781
crossref_primary_10_3390_s24165224
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_3390_s22062348
crossref_primary_10_1007_s00521_023_09293_3
crossref_primary_10_1007_s11227_023_05583_8
crossref_primary_10_1080_23080477_2024_2370211
crossref_primary_10_1016_j_aej_2023_08_010
crossref_primary_10_1016_j_bbe_2022_10_001
crossref_primary_10_1155_2022_9112634
crossref_primary_10_1049_cit2_12356
crossref_primary_10_7717_peerj_cs_2364
crossref_primary_10_3390_electronics13010163
crossref_primary_10_36548_rrrj_2024_1_005
crossref_primary_10_1080_10255842_2023_2245521
crossref_primary_10_1007_s44196_024_00635_0
crossref_primary_10_1155_2022_9060340
crossref_primary_10_1016_j_rineng_2024_103787
crossref_primary_10_3390_biomedicines10112796
crossref_primary_10_7717_peerj_cs_1917
crossref_primary_10_3390_app13031911
crossref_primary_10_3390_app122312080
crossref_primary_10_1038_s41538_023_00205_2
crossref_primary_10_1109_JIOT_2023_3240536
crossref_primary_10_36548_jaicn_2024_2_006
crossref_primary_10_1142_S0218001424570118
crossref_primary_10_3934_mbe_2023597
crossref_primary_10_1007_s11334_022_00512_z
crossref_primary_10_1038_s41598_025_85561_7
crossref_primary_10_4028_p_Cbr55F
crossref_primary_10_1016_j_bspc_2024_105988
crossref_primary_10_3390_su142114208
crossref_primary_10_37391_ijeer_110203
crossref_primary_10_32604_iasc_2023_034885
crossref_primary_10_1155_2023_5881769
crossref_primary_10_3390_s23020828
Cites_doi 10.1007/s13369-020-05105-1
10.1109/ACCESS.2020.2974687
10.1109/ACCESS.2020.2997831
10.35940/ijitee.C9009.019320
10.1109/ACCESS.2020.3006424
10.1016/j.future.2019.12.028
10.1109/STA.2016.7952041
10.1109/ACCESS.2020.3026214
10.1038/s41746-018-0065-x
10.1109/CVPR.2018.00745
10.1109/ACCESS.2020.2981337
10.1016/j.comcom.2020.08.011
10.1016/j.inffus.2020.06.008
10.1007/s00500-021-05865-4
10.1109/ICDCS48716.2020.243558
10.1109/ACCESS.2020.3007561
10.1016/j.knosys.2018.12.031
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22020476
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8160a05c2a624029a1d23043fb9292eb
PMC8778567
A781291725
35062437
10_3390_s22020476
Genre Journal Article
GeographicLocations Saudi Arabia
Ohio
GeographicLocations_xml – name: Saudi Arabia
– name: Ohio
GrantInformation_xml – fundername: University of Tabuk
  grantid: 0186-1441-S
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c536t-d19838328e993510fa3c09cd032127662f7da9baca208c31f4d32e23a6931f183
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:23:01 EDT 2025
Thu Aug 21 17:56:34 EDT 2025
Thu Jul 10 23:41:58 EDT 2025
Sat Aug 23 14:52:57 EDT 2025
Tue Jun 17 22:23:18 EDT 2025
Tue Jun 10 21:15:26 EDT 2025
Wed Feb 19 02:26:54 EST 2025
Tue Jul 01 02:41:41 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cloud
medical image
hybrid Faster R-CNN with SE-ResNet-101
hybrid linear discriminant analysis with modified ant lion optimization
heart disease prediction
Internet of Medical Things
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-d19838328e993510fa3c09cd032127662f7da9baca208c31f4d32e23a6931f183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5396-8897
0000-0001-7376-1458
0000-0003-1837-6797
0000-0003-0233-9940
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22020476
PMID 35062437
PQID 2621350626
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8160a05c2a624029a1d23043fb9292eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778567
proquest_miscellaneous_2622288598
proquest_journals_2621350626
gale_infotracmisc_A781291725
gale_infotracacademiconefile_A781291725
pubmed_primary_35062437
crossref_citationtrail_10_3390_s22020476
crossref_primary_10_3390_s22020476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mehmood (ref_13) 2021; 46
Ali (ref_20) 2020; 63
Yaacoub (ref_4) 2020; 105
Raj (ref_12) 2020; 8
Deperlioglu (ref_10) 2020; 162
ref_21
Madani (ref_22) 2018; 1
Sun (ref_6) 2016; 8
ref_3
Wang (ref_15) 2019; 168
ref_19
ref_18
ref_17
Su (ref_5) 2021; 8
ref_16
Khan (ref_9) 2020; 8
Khan (ref_7) 2020; 8
Gatouillat (ref_2) 2018; 5
Pan (ref_11) 2020; 8
Fatima (ref_1) 2021; 8
Simanta (ref_8) 2020; 8
Basheer (ref_14) 2021; 25
References_xml – volume: 8
  start-page: 3660
  year: 2021
  ident: ref_1
  article-title: A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Health care
  publication-title: IEEE Access
– volume: 46
  start-page: 3409
  year: 2021
  ident: ref_13
  article-title: Prediction of Heart Diseases Using Deep Convolutional Neural Network
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-05105-1
– volume: 8
  start-page: 34717
  year: 2020
  ident: ref_9
  article-title: An IoT Framework for Heart Diseases Predictions Based on MDCNN Classifier
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974687
– volume: 8
  start-page: 101079
  year: 2016
  ident: ref_6
  article-title: Edge-Cloud Computing and Artificial Intelligences in Internet of Medical Things: Architectures, Technology and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997831
– ident: ref_19
  doi: 10.35940/ijitee.C9009.019320
– volume: 8
  start-page: 122259
  year: 2020
  ident: ref_7
  article-title: A Health Care Monitoring System for the Diagnosis of Heart Diseases in the IoMT Cloud Environments Using MSSO-ANFIS
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006424
– volume: 105
  start-page: 581
  year: 2020
  ident: ref_4
  article-title: Securing Internet of Medical Things System: Limitations, Issue and Recommendation
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.12.028
– ident: ref_16
  doi: 10.1109/STA.2016.7952041
– volume: 8
  start-page: 189503
  year: 2020
  ident: ref_11
  article-title: Enhanced Deep Learning Assisted Convolutional Neural Networks for Heart Diseases Predictions on the Internet of Medical Things Platforms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026214
– volume: 8
  start-page: 16921
  year: 2021
  ident: ref_5
  article-title: Deep Learning Method in Internet of Medical Things for Valvular Heart Diseases Screening Systems
  publication-title: IEEE IoT J.
– volume: 1
  start-page: 59
  year: 2018
  ident: ref_22
  article-title: Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0065-x
– ident: ref_17
  doi: 10.1109/CVPR.2018.00745
– volume: 8
  start-page: 58006
  year: 2020
  ident: ref_12
  article-title: Optimal Features Selections-Based Medical Images Classifications Using Deep Learning Models in Internet of Medical Things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981337
– volume: 162
  start-page: 31
  year: 2020
  ident: ref_10
  article-title: Diagnosis of heart disease by a secure Internet of Health Things system based on Autoencoder Deep Neural Networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.08.011
– volume: 63
  start-page: 208
  year: 2020
  ident: ref_20
  article-title: A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.06.008
– volume: 25
  start-page: 12145
  year: 2021
  ident: ref_14
  article-title: Real-time monitoring systems for early predictions of heart diseases using Internet of Things
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05865-4
– ident: ref_18
– volume: 5
  start-page: 3810
  year: 2018
  ident: ref_2
  article-title: Internet of Medical Things: A Review of Recent Contribution Dealing with Cyber-Physical System in Medicines
  publication-title: IEEE IoT J.
– ident: ref_3
  doi: 10.1109/ICDCS48716.2020.243558
– ident: ref_21
– volume: 8
  start-page: 135784
  year: 2020
  ident: ref_8
  article-title: An Efficient IoT-Based Patient Monitoring and Heart Diseases Predictions Systems Using Deep Learning Modified Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007561
– volume: 168
  start-page: 39
  year: 2019
  ident: ref_15
  article-title: A feature selections approach for hyperspectral images based on modified ant lion optimizer
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.12.031
SSID ssj0023338
Score 2.5278869
Snippet Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 476
SubjectTerms Artificial Intelligence
Cardiovascular disease
Classification
cloud
Decision making
Deep learning
Delivery of Health Care
Discriminant analysis
Feature selection
Heart
heart disease prediction
Heart diseases
Heart Diseases - diagnostic imaging
Humans
hybrid Faster R-CNN with SE-ResNet-101
hybrid linear discriminant analysis with modified ant lion optimization
Information management
Internet
Internet of Medical Things
Internet of Things
Medical advice systems
Medical equipment
medical image
Medical research
Medicine, Experimental
Mobile communications networks
Neural networks
Optimization techniques
Patients
Prognosis
Sensors
Telemedicine
Ultrasonic imaging
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQT3BAQFkCLXIRElyiJna8HQu0ekUq4vAq9WZ5C1Sqkqp9FX-_M05elAgkLj0mHideZjwz9vgbQj5WnHvFQixbk3jZMB9L440vvXZKuyCFyTjdZz_k6rz5fiEuZqm-MCZsgAceBu5Q17JylQjMSTwIMK6OuI_JWw-KnSWPqy_ovK0zNbpaHDyvAUeIg1N_eMsYXgJFYJGZ9skg_X8vxTNdtIyTnCmek2fk6Wgx0qOhpc_Jo9S9IE9mOIK75HL9py_BbPyVaE5yieE_ecQppjq7omCYUjD06M8bPJbJBX1LV8DkG_ptOKGhOXaAnvZna-q6mH83gEvQ0xlq50tyfnK8_roqxxwKZRBcbspYGw1OKNMJDBGQv9bxUJkQK47Q7lKyVkVnvAuOVTrwum0iZ4lxJw08gLy_Ijtd36U3hLbOq1glZZJwDVOIHJaMhG9Hmbhs64J83o6tDSPAOOa5uLLgaOA02GkaCvJhIr0eUDX-RfQFJ2giQCDs_ALYw47sYf_HHgX5hNNrUVyhMcGNtw6gSwh8ZY8UWDjgsjJRkL0FJYhZWBZvGcSOYn5rmWQ1FxU4hQU5mIqxJoaudam_yzSMaS2MLsjrgZ-mLuW6DVcFUQtOW_R5WdJd_s4g4FopLaR6-xCD9I48ZnirI-8s7ZGdzc1d2gdba-PfZ7G6B5h-JD8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIcIma2IkfJ1Qe1RapiMNW2pvlV0qlKim7W_XvM-Nk00QgjhtPsnFmxv7GHn9DyPuCcyeZD3mjI88r5kKunXa5U1Yq60WtE0_36Q-xOKu-r-rVsOC2GdIqd2NiGqhD53GN_JAJVvK6APz96ep3jlWjcHd1KKFxl9xD6jJM6ZKr24CLQ_zVswlxCO0PN4zhUVCkF5nMQYmq_-8BeTIjzbMlJ9PP8SPycMCN9KhX9GNyJ7ZPyIMJm-BTcrG86XIAj-eRplKXmASUvjvFgmeXFOApBbhHf65xcyY1dA1dgKlv6dd-n4amDAJ60p0uqW1D-rueYoKeTLg7n5Gz42_LL4t8qKSQ-5qLbR5KrSAUZSoCHAEvbCz3hfah4EjwLgRrZLDaWW9ZoTwvmypwFhm3QsMP8PrnZK_t2viS0MY6GYoodaxtxSTyh0Ut4NlBRC6aMiMfd9_W-IFmHKtdXBoIN1ANZlRDRt6Nolc9t8a_hD6jgkYBpMNOF7r1uRm8y6hSFLaoPbMCd4u0LQMudvPGAfpj0WXkA6rXoNPCy3g7nD2ALiH9lTmSgHMgcGV1Rg5mkuBsft68MxAzOPvG3JpmRt6OzXgnJrC1sbtOMowpVWuVkRe9PY1dSvdWXGZEzixt1ud5S3vxK1GBKylVLeT-_1_rFbnP8NRGWjk6IHvb9XV8DVhq694kh_kDBQoc6g
  priority: 102
  providerName: ProQuest
Title Two-Stage Classification Model for the Prediction of Heart Disease Using IoMT and Artificial Intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/35062437
https://www.proquest.com/docview/2621350626
https://www.proquest.com/docview/2622288598
https://pubmed.ncbi.nlm.nih.gov/PMC8778567
https://doaj.org/article/8160a05c2a624029a1d23043fb9292eb
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t1AWRmEBJdAYid-HBBqocsWaasK7Up7i5zEKZVWSbvdCvj3zDjZaCN64BIp8TiOPTOZGT--AXgbCZErXpRhZZwIE56XoclNHubaKm0LmRqP0z09k5N58n2RLnZgk2OzG8CbO0M7yic1Xy0__L7-8xkV_hNFnBiyf7zhnI54KrkL-2iQFOnnNOkXE7gQPqE1nekK0R5GLcDQsOrALHn0_n__0VtGariBcssijR_Cg86VZEct7x_Bjqsfw_0tgMEncDn71YToT1445rNf0r4gzwpGOdCWDD1Whh4gO1_Reo0vaCo2Qelfs6_t0g3zmwrYaTOdMVuXvrkWdYKdbsF5PoX5-GT2ZRJ2yRXCIhVyHZax0Ridcu3QQ0HFrKwoIlOUkSDMdyl5pUprcltYHulCxFVSCu64sNLgDf4InsFe3dTuAFhlc1VGThmX2oQrghRzRuK7S-mErOIA3m_GNis65HFKgLHMMAIhNmQ9GwJ405NetXAbdxEdE4N6AkLI9g-a1UXWKVymYxnZKC24lbSAZGxc0vy3qHJ0CLnLA3hH7M1IsvBjCtsdR8AuESJWdqTQ9cFYlqcBHA4oUf-KYfFGQLKN-GZc8likEUaLAbzui6km7WmrXXPraTjXOjU6gOetPPVd8nUToQJQA0kb9HlYUl_-9OjgWimdSvXiP9p9Cfc4nebwM0qHsLde3bpX6GOt8xHsqoXCqx5_G8H-8cnZ-Y-Rn68Yed36CypdJqA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sTd2fECoUKpd2q04bKW9pY7tlEpVUna3qvhT_EZmnOx2IxC3HhNPHvbMeGbs8TcAbxMhSsWtiyvtRTzgpYt1qcu4zI3KjZWZDjjd40M5PBp8m2bTDfi9PAtDaZXLOTFM1K6xtEa-zSVPRZag__3p_GdMVaNod3VZQqMVi33_6xJDtvnH0S7y9x3ne18nX4ZxV1UgtpmQi9hhmI1hGc89mmaUyMoIm2jrEkFg51LySjmjS2MNT3Ir0mrgBPdcGKnxAjUA33sDbqLhTUij1PQqwBMY77XoRULoZHvOOR09JTiTNZsXSgP8bQDWLGA_O3PN3O3dg7udn8p2WsG6Dxu-fgB31tALH8Lp5LKJ0Vk98SyU1qSko8BnRgXWzhi6wwzdS_Z9RptBoaGp2BDHcMF2230hFjIW2KgZT5ipXfhcC2nBRmtYoY_g6FrG-DFs1k3tnwKrTKlc4pX2mRlwRXhlXkt8t5NeyCqN4MNybAvbwZpTdY2zAsMbYkOxYkMEb1ak5y2Wx7-IPhODVgQEvx1uNLOTotPmIk9lYpLMciNpd0qb1NHiuqhK9Da5LyN4T-wtaJLAn7GmO-uAXSK4rWJHoV-FgTLPItjqUaJy237zUkCKbnKZF1eqEMHrVTM9SQlztW8uAg3neZ7pPIInrTytuhSeHQgVgepJWq_P_Zb69EeAHs-VyjOpnv3_t17BreFkfFAcjA73n8NtTidGwqrVFmwuZhf-Bfpxi_JlUB4Gx9etrX8A-kFX-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NISF4QPwnMMAgELxETe3Gjh8QGpSqZWzaQyf1LXNsZ0yaktF2mvhqfDrunLRrBOJtj43Paey7893Z598BvE2EKBS3Li61F_GAFy7WhS7iIjMqM1amOuB07x_I8dHg2yydbcHv1V0YSqtcrYlhoXa1pT3yHpe8L9IE_e9e2aZFHA5Hn85_xlRBik5aV-U0GhHZ878uMXxbfJwMkdfvOB99nX4Zx22FgdimQi5jhyE3hmg882imUTpLI2yirUsEAZ9LyUvljC6MNTzJrOiXAye458JIjT9QG_C9N-Cmwr6kY2p2FewJjP0aJCMhdNJbcE7XUAnaZMP-hTIBfxuDDWvYzdTcMH2je3C39VnZbiNk92HLVw_gzgaS4UM4nV7WMTquJ56FMpuUgBR4zqjY2hlD15ihq8kO53QwFBrqko1xDpds2JwRsZC9wCb1_pSZyoW_a-At2GQDN_QRHF3LHD-G7aqu_FNgpSmUS7zSPjUDrgi7zGuJ73bSC1n2I_iwmtvcthDnVGnjLMdQh9iQr9kQwZs16XmD6_Evos_EoDUBQXGHB_X8JG81O8_6MjFJarmRdFKlTd_RRrsoC_Q8uS8ieE_szWnBwI-xpr33gEMi6K18V6GPhUEzTyPY6VCiottu80pA8nahWeRXahHB63Uz9aTkucrXF4GG8yxLdRbBk0ae1kMKfQdCRaA6ktYZc7elOv0RYMgzpbJUqmf__6xXcAv1NP8-Odh7Drc5XR4JG1g7sL2cX_gX6NIti5dBdxgcX7ey_gEkeFwv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Classification+Model+for+the+Prediction+of+Heart+Disease+Using+IoMT+and+Artificial+Intelligence&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Manimurugan%2C+S&rft.au=Almutairi%2C+Saad&rft.au=Aborokbah%2C+Majed+Mohammed&rft.au=Narmatha%2C+C&rft.date=2022-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fs22020476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon