Machine learning for medical ultrasound: status, methods, and future opportunities

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportun...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 43; no. 4; pp. 786 - 799
Main Authors Brattain, Laura J., Telfer, Brian A., Dhyani, Manish, Grajo, Joseph R., Samir, Anthony E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2366-004X
2366-0058
2366-0058
DOI10.1007/s00261-018-1517-0

Cover

Loading…
Abstract Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
AbstractList Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
Author Dhyani, Manish
Brattain, Laura J.
Telfer, Brian A.
Grajo, Joseph R.
Samir, Anthony E.
Author_xml – sequence: 1
  givenname: Laura J.
  surname: Brattain
  fullname: Brattain, Laura J.
  email: brattainl@ll.mit.edu
  organization: MIT Lincoln Laboratory
– sequence: 2
  givenname: Brian A.
  surname: Telfer
  fullname: Telfer, Brian A.
  organization: MIT Lincoln Laboratory
– sequence: 3
  givenname: Manish
  surname: Dhyani
  fullname: Dhyani, Manish
  organization: Department of Internal Medicine, Steward Carney Hospital, Division of Ultrasound, Department of Radiology, Center for Ultrasound Research & Translation, Massachusetts General Hospital
– sequence: 4
  givenname: Joseph R.
  surname: Grajo
  fullname: Grajo, Joseph R.
  organization: Department of Radiology, Division of Abdominal Imaging, University of Florida College of Medicine
– sequence: 5
  givenname: Anthony E.
  surname: Samir
  fullname: Samir, Anthony E.
  organization: Division of Ultrasound, Department of Radiology, Center for Ultrasound Research & Translation, Massachusetts General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29492605$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNUbK39Ad7IgDdeOHpOMslkvChIqR9QEUTBu5DJZHZTZpM1H4L_vlm3rlrQq5xwnvfkPXkfkiMfvCXkMcILBOhfJgAqsAWULXLsW7hHTigTogXg8uhQd1-PyVlK1wCAgiNS_oAc06EbqAB-Qj590GbtvG0Wq6N3ftXMITYbOzmjl6YsOeoUip9eNSnrXNLz2svrMNVC-6mZSy7RNmG7DTEX77Kz6RG5P-sl2bPb85R8eXP5-eJde_Xx7fuL11et4Uzk1gyjGIBpOVImrZxnIzXXdNBoKeAgBOoeO-SSUT6yYepGai0zE53rrdOGnZLz_dxtGathY301u6htdBsdf6ignfq7491arcJ3xaUUErEOeHY7IIZvxaasNi4Zuyza21CSogADF5L3XUWf3kGvQ4m-rveToowD9pV68qejg5Vf310B3AMmhpSinQ8Igtqlqvapqpqq2qWqoGr6OxrjahQu7JZyy3-VdK9M9RW_svG36X-LbgB0CrYN
CitedBy_id crossref_primary_10_3390_s23042226
crossref_primary_10_1016_j_ultrasmedbio_2023_03_024
crossref_primary_10_1109_TIM_2023_3243675
crossref_primary_10_1109_TMI_2020_3021560
crossref_primary_10_3390_diagnostics14161761
crossref_primary_10_1038_s41746_019_0094_0
crossref_primary_10_3390_jimaging9100225
crossref_primary_10_1016_j_femme_2019_09_001
crossref_primary_10_1007_s13721_024_00491_0
crossref_primary_10_1002_mp_15856
crossref_primary_10_3390_s24051664
crossref_primary_10_13181_mji_oa_236765
crossref_primary_10_1016_j_clinimag_2022_09_010
crossref_primary_10_1038_s41598_023_42000_9
crossref_primary_10_3389_fmed_2022_945698
crossref_primary_10_3390_diagnostics11101859
crossref_primary_10_1016_j_jacr_2019_06_004
crossref_primary_10_1371_journal_pone_0246611
crossref_primary_10_1002_ird3_114
crossref_primary_10_1080_17434440_2023_2243208
crossref_primary_10_3389_fimmu_2025_1460673
crossref_primary_10_1016_j_clinph_2019_01_024
crossref_primary_10_1002_uog_22087
crossref_primary_10_1016_j_medengphy_2022_103877
crossref_primary_10_1016_j_jconrel_2023_08_035
crossref_primary_10_1007_s11548_024_03309_6
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_3390_cancers13040738
crossref_primary_10_1155_2022_7451185
crossref_primary_10_1016_j_adengl_2021_11_007
crossref_primary_10_1016_j_media_2020_101793
crossref_primary_10_1080_1448837X_2024_2429920
crossref_primary_10_3390_app14052152
crossref_primary_10_1016_j_iswa_2023_200183
crossref_primary_10_1109_TUFFC_2020_3002249
crossref_primary_10_3390_diagnostics13040740
crossref_primary_10_1016_j_compmedimag_2023_102290
crossref_primary_10_2174_1574887115666200621183459
crossref_primary_10_1002_mp_16339
crossref_primary_10_1002_jum_16194
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1016_j_ultrasmedbio_2022_06_011
crossref_primary_10_2139_ssrn_4157385
crossref_primary_10_1007_s10278_022_00625_8
crossref_primary_10_1016_j_ultrasmedbio_2020_05_016
crossref_primary_10_3390_ai3030043
crossref_primary_10_1016_j_addr_2021_114043
crossref_primary_10_3390_diagnostics13243665
crossref_primary_10_1016_j_imavis_2024_105338
crossref_primary_10_3389_fonc_2024_1438923
crossref_primary_10_1016_j_iliver_2022_11_001
crossref_primary_10_1016_j_ymeth_2022_03_014
crossref_primary_10_1038_s41598_023_37319_2
crossref_primary_10_1155_2022_2645607
crossref_primary_10_1039_D4RA04987J
crossref_primary_10_1109_ACCESS_2020_2977962
crossref_primary_10_1016_j_theriogenology_2024_12_021
crossref_primary_10_1016_j_ultrasmedbio_2023_01_006
crossref_primary_10_1007_s11548_018_1788_5
crossref_primary_10_1016_j_artmed_2023_102541
crossref_primary_10_1001_jamanetworkopen_2022_17854
crossref_primary_10_1002_admt_202301732
crossref_primary_10_3390_cancers13040790
crossref_primary_10_1002_acm2_13724
crossref_primary_10_1002_mp_16568
crossref_primary_10_1021_acsanm_3c01442
crossref_primary_10_1016_j_media_2020_101819
crossref_primary_10_1515_bmt_2022_0489
crossref_primary_10_1002_jum_15819
crossref_primary_10_1080_03772063_2025_2462790
crossref_primary_10_1097_RUQ_0000000000000683
crossref_primary_10_1155_2022_8482022
crossref_primary_10_1016_j_compbiomed_2023_107872
crossref_primary_10_3389_fmed_2021_777142
crossref_primary_10_3389_fonc_2023_1154200
crossref_primary_10_3390_s22010245
crossref_primary_10_5005_jp_journals_10009_1702
crossref_primary_10_1002_jum_15403
crossref_primary_10_3390_diagnostics9020061
crossref_primary_10_1097_TA_0000000000004425
crossref_primary_10_3390_diagnostics11020292
crossref_primary_10_1016_j_survophthal_2018_09_002
crossref_primary_10_1002_mp_13521
crossref_primary_10_3390_app13148427
crossref_primary_10_3390_bios11120522
crossref_primary_10_1002_jmri_29294
crossref_primary_10_1038_s41598_022_21724_0
crossref_primary_10_1038_s41746_023_00774_2
crossref_primary_10_1080_07357907_2024_2403088
crossref_primary_10_1038_s41587_023_01800_0
crossref_primary_10_3389_fonc_2023_1197447
crossref_primary_10_3390_biomedicines13040784
crossref_primary_10_1109_TUFFC_2023_3264832
crossref_primary_10_3390_app11031127
crossref_primary_10_1002_jum_16045
crossref_primary_10_1002_uog_23530
crossref_primary_10_3390_app11041690
crossref_primary_10_32604_iasc_2023_023474
crossref_primary_10_1177_01617346231220000
crossref_primary_10_3389_fonc_2024_1440881
crossref_primary_10_3389_fendo_2023_1137700
crossref_primary_10_3390_s24237568
crossref_primary_10_33590_emjreprohealth_20_00100
crossref_primary_10_3390_make2030010
crossref_primary_10_1007_s00330_021_07850_9
crossref_primary_10_1016_j_cmpb_2021_106382
crossref_primary_10_4103_jmu_jmu_182_21
crossref_primary_10_33151_ajp_19_948
crossref_primary_10_1080_16878507_2021_1984150
crossref_primary_10_1155_2022_9042954
crossref_primary_10_1155_2022_5918686
crossref_primary_10_1080_21681163_2023_2179343
crossref_primary_10_1111_exsy_12789
crossref_primary_10_1142_S2196888824500210
crossref_primary_10_1007_s10278_020_00356_8
crossref_primary_10_1007_s00772_020_00670_z
crossref_primary_10_1088_1361_6560_abae06
crossref_primary_10_1007_s40620_023_01878_4
crossref_primary_10_1145_3447243
crossref_primary_10_2174_1573405620666230529112655
crossref_primary_10_1007_s10439_024_03615_9
crossref_primary_10_3390_diagnostics13030417
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1016_j_ad_2021_07_003
crossref_primary_10_1117_1_JMI_11_4_044505
crossref_primary_10_1177_1742271X211072473
crossref_primary_10_3390_diagnostics14111158
crossref_primary_10_2174_1573405619666230306101012
crossref_primary_10_1007_s00330_020_07181_1
crossref_primary_10_1038_s41597_025_04464_4
crossref_primary_10_1109_TBCAS_2021_3120886
crossref_primary_10_3390_biomedinformatics4010002
crossref_primary_10_1002_jum_15868
crossref_primary_10_1109_TETCI_2024_3377676
crossref_primary_10_3233_CH_221521
crossref_primary_10_1136_archdischild_2018_316263
crossref_primary_10_1007_s42600_020_00118_z
crossref_primary_10_1109_TVCG_2021_3114797
crossref_primary_10_1186_s43166_024_00238_9
crossref_primary_10_1021_acssensors_4c00124
crossref_primary_10_1109_OJEMB_2024_3414974
crossref_primary_10_1038_s44222_024_00245_7
crossref_primary_10_3390_cancers16091700
crossref_primary_10_3389_fped_2021_634092
crossref_primary_10_1007_s00404_024_07479_1
crossref_primary_10_1016_j_ad_2021_07_014
crossref_primary_10_3390_metabo14010011
crossref_primary_10_1371_journal_pone_0263106
Cites_doi 10.1016/j.ultrasmedbio.2016.03.022
10.1016/S0893-6080(05)80131-5
10.2214/AJR.14.14203
10.1371/journal.pone.0108337
10.1587/transinf.2013EDP7464
10.7150/thno.18650
10.1016/j.media.2014.12.006
10.1148/radiol.14140434
10.1016/0169-7439(87)80084-9
10.1016/j.compbiomed.2013.10.029
10.1109/36.752194
10.1111/rssa.12227
10.1118/1.3267037
10.1016/j.ultrasmedbio.2011.10.022
10.1016/j.media.2013.04.001
10.1007/978-3-319-44100-9_8
10.1146/annurev-bioeng-071812-152416
10.1109/TMI.2006.877092
10.1038/s41598-017-02187-0
10.1155/2016/7987212
10.1016/0893-6080(89)90020-8
10.1016/j.media.2012.02.005
10.2214/AJR.15.14676
10.1016/j.media.2013.10.002
10.1002/jcu.22382
10.1148/radiol.14140839
10.1016/j.neucom.2016.01.074
10.1089/thy.2016.0372
10.1016/j.ejrad.2011.01.110
10.1016/j.cviu.2017.04.002
10.1007/s10278-014-9757-1
10.1162/neco.2009.10-08-881
10.1016/j.ultrasmedbio.2015.11.016
10.1007/978-1-4899-4467-2
10.1007/978-3-319-43775-0_26
10.1148/rg.2017160116
10.1016/S0893-6080(03)00115-1
10.1016/j.ultrasmedbio.2016.01.013
10.1016/j.jhep.2012.12.021
10.1016/j.ultrasmedbio.2015.01.001
10.1109/72.554195
10.1016/0893-6080(90)90004-5
10.1007/BF01000274
10.1007/978-3-319-60964-5_6
10.1016/j.ultras.2016.08.004
10.1016/j.ultrasmedbio.2015.11.014
10.1109/JBHI.2016.2631401
10.1214/09-SS054
10.1109/JBHI.2016.2636665
10.1016/j.ultrasmedbio.2013.09.032
10.1007/s10278-016-9929-2
10.1016/j.ejrad.2010.12.013
10.1038/nature14539
10.1007/978-0-387-31439-6_308
10.1177/016173469301500401
10.1055/s-2008-1027806
10.1146/annurev-bioeng-071516-044442
10.1016/j.ejrad.2014.01.011
10.1016/j.ultrasmedbio.2014.09.003
10.1016/j.clinbiomech.2014.11.011
10.1017/S026988899700101X
10.1007/s11548-014-1133-6
10.1016/j.jhep.2014.04.044
10.7863/ultra.15.11017
10.1016/j.ultrasmedbio.2015.10.024
10.1016/j.ejrad.2014.11.019
10.3748/wjg.v20.i13.3590
10.1007/s00330-016-4534-9
10.1007/s00330-016-4427-y
10.1212/WNL.0b013e3182604395
10.1023/A:1018628609742
10.1016/j.neunet.2014.09.003
10.1016/j.ultrasmedbio.2015.05.015
10.1016/j.ijleo.2014.01.114
10.1109/TIP.2011.2169273
10.1007/s10462-007-9052-3
10.1016/j.ultrasmedbio.2017.05.002
10.1007/s10278-014-9754-4
10.1016/j.media.2016.10.007
10.4103/0973-1482.147382
10.1016/S0169-023X(97)00053-0
10.1148/radiology.143.1.7063747
10.1118/1.4862508
10.1243/09544119JEIM604
10.2214/AJR.17.18056
10.1016/j.inffus.2016.11.007
10.7863/ultra.33.2.197
10.1016/j.ultrasmedbio.2016.10.004
10.4111/kju.2014.55.9.587
10.1016/j.neucom.2014.09.066
10.1109/TUFFC.2012.2377
10.1016/j.phpro.2015.08.263
10.7863/ultra.32.12.2185
10.1016/j.ultrasmedbio.2014.11.010
10.1016/j.eswa.2016.09.006
10.1007/s00330-017-5192-2
10.1109/CVPR.2015.7298594
10.1016/j.media.2017.07.005
10.1109/ISBI.2017.7950609
10.1109/BIBM.2016.7822557
10.1109/ISBI.2017.7950519
10.1155/2014/708279
10.1002/mp.12453
10.1109/SPMB.2016.7846873
10.1007/978-3-319-46723-8_24
10.1007/978-3-319-24553-9_62
10.1117/12.912188
10.1117/12.2254581
10.1109/CVPR.2015.7298965
10.1109/ICRCICN.2015.7434224
10.1109/ISBI.2016.7493384
10.1145/2671188.2749408
10.1117/12.2216396
10.1007/978-3-319-24574-4_82
10.1109/CVPR.2013.465
10.1007/978-3-319-60964-5_9
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Abdominal Radiology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Abdominal Radiology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00261-018-1517-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Computer Science Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 799
ExternalDocumentID PMC5886811
29492605
10_1007_s00261_018_1517_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: HHSN268201300071 C; K23 EB020710
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: NIBIB NIH HHS
  grantid: K23 EB020710
– fundername: NIBIB NIH HHS
  grantid: HHSN268201300071 C
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJOOF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c536t-c9b6903a8b238e8ffc8a5a29a1e2019661a714158325b39d4b2ee3cd2fb394ac3
IEDL.DBID AGYKE
ISSN 2366-004X
2366-0058
IngestDate Thu Aug 21 14:14:32 EDT 2025
Tue Aug 05 11:38:50 EDT 2025
Fri Jul 25 19:39:58 EDT 2025
Thu Apr 03 07:06:12 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Tue Jul 01 02:12:28 EDT 2025
Fri Feb 21 02:43:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Sonography
Medical ultrasound
Elastography
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-c9b6903a8b238e8ffc8a5a29a1e2019661a714158325b39d4b2ee3cd2fb394ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Suggested reviewers
Nando de Freitas (nandodefreitas@google.com)
Note – the authors know some of the reviewers, but have not approached any of them regarding this review
Julien Cornebise (julien@cornebise.com)
Brian Garra (bgarra@gmail.com)
Alison Noble (alison.noble@eng.ox.ac.uk)
Johnathan Scalera (Jonathan.Scalera@bmc.org)
Mark Palmeri (mark.palmeri@duke.edu)
OpenAccessLink https://link.springer.com/content/pdf/10.1007%2Fs00261-018-1517-0.pdf
PMID 29492605
PQID 2009235017
PQPubID 31175
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5886811
proquest_miscellaneous_2009568574
proquest_journals_2009235017
pubmed_primary_29492605
crossref_primary_10_1007_s00261_018_1517_0
crossref_citationtrail_10_1007_s00261_018_1517_0
springer_journals_10_1007_s00261_018_1517_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Oh, Lee, Seo (CR28) 2014; 55
Antropova, Huynh, Giger (CR74) 2017
De Mantaras, Armengol (CR34) 1998; 25
Nascimento, Silva, da Silva, Pereira, Costa, Costa Filho (CR118) 2016; 32
Shi, Zhou, Liu, Zhang, Lu, Wang (CR114) 2016; 194
Sang, Wang, Xu, Cai (CR22) 2017; 7
Namburete, Stebbing, Kemp, Yaqub, Papageorghiou, Noble (CR77) 2015; 21
Zhang, Ng, Lee, Fu (CR20) 2014; 9
Singh, Verma, Thoke (CR115) 2016; 66
Yuan, Quan, Yunxiao, Jian, Zhu (CR29) 2015; 11
Menchón-Lara, Sancho-Gómez (CR89) 2015; 151
Taljanovic (CR18) 2017; 37
Yu, Tan, Sng, Li, Sia (CR129) 2015; 41
Rouvière (CR21) 2017; 27
Wold, Esbensen, Geladi (CR41) 1987; 2
Poynard (CR7) 2013; 58
Hwang, Lee, Kim, Jiang, Kim (CR121) 2015; 26
Torresani (CR37) 2014
Aramendía-Vidaurreta, Cabeza, Villanueva, Navallas, Alcázar (CR131) 2016; 42
Milletari (CR92) 2017; 164
Mohri, Rostamizadeh, Talwalkar (CR38) 2012
Woo, Suh, Kim, Cho, Kim (CR23) 2017; 209
Zhang (CR111) 2016; 72
Soh, Tsatsoulis (CR39) 1999; 37
Khamis, Zurakhov, Azar, Raz, Friedman, Adam (CR102) 2017; 36
CR40
Arlot, Celisse (CR61) 2010; 4
Wang, Guo, Shi, Pan, Bai, Ai (CR106) 2012; 81
Kohavi (CR60) 1995; 14
Sultan, Xiong, Zafar, Schultz, Langer, Sehgal (CR84) 2015; 41
Mitchell (CR33) 1997
Wang, Summers (CR1) 2012; 16
Chauhan, Sultan, Furth, Jones, Khungar, Sehgal (CR85) 2016; 44
Lawrence, Giles, Tsoi, Back (CR55) 1997; 8
Ghose (CR83) 2013; 17
Gatos (CR109) 2017; 43
Baur (CR31) 2017
Samir (CR8) 2014; 274
CR59
Maclin, Dempsey (CR64) 1992; 16
CR57
Shen, Wu, Suk (CR2) 2017; 19
CR54
CR53
Giger, Karssemeijer, Schnabel (CR65) 2013; 15
CR52
CR51
CR50
Chen, Wu, Liao, Zheng, Liao, Jannin, Cattin, Lee (CR93) 2016
Turaga (CR58) 2010; 22
Shan, Alam, Garra, Zhang, Ahmed (CR66) 2016; 42
Kotsiantis, Zaharakis, Pintelas (CR36) 2006; 26
Bishop (CR32) 2006
LeCun, Bengio, Hinton (CR49) 2015; 521
Kim, Jang (CR25) 2014; 20
Noble (CR80) 2010; 224
Hanley, McNeil (CR62) 1982; 143
CR69
Takagi, Kondo, Nakamura, Takiguchi (CR133) 2014; E97D
Park, Son, Han, Youk, Kim, Park (CR15) 2015; 84
Xiao (CR107) 2014; 40
Wu, Chen, Ding (CR112) 2014; 125
Dutton, Conroy (CR35) 1997; 12
Noe (CR86) 2017; 34
Suykens, Vandewalle (CR44) 1999; 9
Torbati, Ayatollahi, Kermani (CR81) 2014; 44
Wang, Li, Wan, Li, Tang (CR11) 2017; 43
Leshno, Lin, Pinkus, Schocken (CR47) 1993; 6
Yang, Rossi, Jani, Mao, Curran, Liu (CR82) 2016
Eby (CR16) 2015; 30
Sjogren, Leo, Feldman, Gwin (CR135) 2016; 35
Cheng, Malhi (CR73) 2017; 30
Kalyan, Jakhia, Lele, Joshi, Chowdhary (CR123) 2014
Wu, Lin, Moon (CR116) 2015; 28
Pass, Jafari, Rowbotham, Hensor, Gupta, Robinson (CR17) 2017; 27
Sigrist, Liau, El Kaffas, Chammas, Willmann (CR103) 2017; 7
CR75
Srivastava, Darras, Wu, Rutkove (CR127) 2012; 79
Lekadir (CR72) 2017; 21
Westwood (CR27) 2013; 17
Dhyani, Li, Samir, Stephen (CR13) 2017
Zeng, Ustun, Rudin (CR113) 2017; 180
Subramanya, Kumar, Mukherjee, Saini (CR132) 2015; 28
Anvari, Dhyani, Stephen, Samir (CR12) 2016; 206
Konig, Steffen, Rak, Neumann, von Rohden, Tonnies (CR126) 2015; 10
Shan, Cheng, Wang (CR117) 2012; 38
CR3
Sheet (CR128) 2014; 18
Liu (CR9) 2016; 42
CR130
Hornik, Stinchcombe, White (CR46) 1989; 2
Brattain, Telfer, Liteplo, Noble (CR124) 2013; 32
CR87
Pellot-Barakat, Lefort, Chami, Labit, Frouin, Lucidarme (CR105) 2015; 41
Garra, Krasner, Horii, Ascher, Mun, Zeman (CR63) 1993; 15
Cunningham, Harding, Loram, Hernández, González-Castro, González-Castro (CR76) 2017
Schmidhuber (CR67) 2015; 61
White (CR45) 1990; 3
Cary, Reamer, Sultan, Mohler, Sehgal (CR78) 2014; 41
Choi (CR70) 2017; 27
Strobel (CR26) 2008; 29
Cortes, Vapnik (CR43) 1995; 20
Hiramatsu, Muramatsu, Kobayashi, Hara, Fujita (CR71) 2017
Aubry, Nueffer, Tanter, Becce, Vidal, Michel (CR19) 2014; 274
Veeramani, Muthusamy (CR125) 2016; 29
Wang (CR10) 2017; 43
CR99
CR98
Liaw, Wiener (CR42) 2002; 2
CR97
Rouze, Wang, Palmeri, Nightingale (CR104) 2012; 59
CR96
CR95
CR94
Caxinha (CR134) 2015; 70
CR91
CR90
Ferraioli, Parekh, Levitov, Filice (CR6) 2014; 33
Noble, Boukerroui (CR79) 2006; 25
Ding, Cheng, Huang, Zhang, Liu (CR14) 2012; 81
Geisser (CR48) 1993
Jamieson, Giger, Drukker, Li, Yuan, Bhooshan (CR120) 2009; 37
Cassinotto (CR5) 2014; 61
Ravi (CR4) 2017; 21
Suganya, Kirubakaran, Rajaram (CR122) 2014
Bhatia, Lam, Pang, Wang, Ahuja (CR108) 2016; 42
Marcomini, Carneiro, Schiabel (CR119) 2016; 2016
Carneiro, Nascimento, Freitas (CR88) 2012; 21
Gao, Li, Loomes, Wang (CR100) 2017; 36
CR101
Zhang, Xiao, Chen, Wang, Zheng (CR110) 2015; 41
Li (CR30) 2014; 83
Matsugu, Mori, Mitari, Kaneda (CR56) 2003; 16
Carbonell, Michalski, Mitchell (CR68) 1983
D’Onofrio, Crosara, De Robertis, Canestrini, Mucelli (CR24) 2015; 205
TW Cary (1517_CR78) 2014; 41
MH Noe (1517_CR86) 2017; 34
ADJ Baur (1517_CR31) 2017
K Lekadir (1517_CR72) 2017; 21
Y Xiao (1517_CR107) 2014; 40
M D’Onofrio (1517_CR24) 2015; 205
F Milletari (1517_CR92) 2017; 164
M Matsugu (1517_CR56) 2003; 16
T Poynard (1517_CR7) 2013; 58
R Kohavi (1517_CR60) 1995; 14
S Woo (1517_CR23) 2017; 209
Y LeCun (1517_CR49) 2015; 521
S Ghose (1517_CR83) 2013; 17
JA Noble (1517_CR80) 2010; 224
Y Hiramatsu (1517_CR71) 2017
SK Veeramani (1517_CR125) 2016; 29
A Chauhan (1517_CR85) 2016; 44
Q Zhang (1517_CR110) 2015; 41
J Shan (1517_CR117) 2012; 38
B Liu (1517_CR9) 2016; 42
T Srivastava (1517_CR127) 2012; 79
AI Namburete (1517_CR77) 2015; 21
S Arlot (1517_CR61) 2010; 4
SB Kotsiantis (1517_CR36) 2006; 26
M Mohri (1517_CR38) 2012
C Pellot-Barakat (1517_CR105) 2015; 41
N Antropova (1517_CR74) 2017
H Khamis (1517_CR102) 2017; 36
SF Eby (1517_CR16) 2015; 30
G Carneiro (1517_CR88) 2012; 21
K Wu (1517_CR112) 2014; 125
CM Bishop (1517_CR32) 2006
JA Noble (1517_CR79) 2006; 25
ZL Wang (1517_CR11) 2017; 43
YN Hwang (1517_CR121) 2015; 26
S Geisser (1517_CR48) 1993
RM Menchón-Lara (1517_CR89) 2015; 151
M Caxinha (1517_CR134) 2015; 70
M Wang (1517_CR10) 2017; 43
S Aubry (1517_CR19) 2014; 274
S Yu (1517_CR129) 2015; 41
K Hornik (1517_CR46) 1989; 2
K Takagi (1517_CR133) 2014; E97D
J Shan (1517_CR66) 2016; 42
PS Maclin (1517_CR64) 1992; 16
ZJ Zhang (1517_CR20) 2014; 9
TM Mitchell (1517_CR33) 1997
N Torbati (1517_CR81) 2014; 44
L Sang (1517_CR22) 2017; 7
D Shen (1517_CR2) 2017; 19
TK Kim (1517_CR25) 2014; 20
1517_CR101
J Schmidhuber (1517_CR67) 2015; 61
A Anvari (1517_CR12) 2016; 206
LR Sultan (1517_CR84) 2015; 41
1517_CR99
TH Oh (1517_CR28) 2014; 55
1517_CR96
RM Sigrist (1517_CR103) 2017; 7
KD Marcomini (1517_CR119) 2016; 2016
1517_CR95
1517_CR98
1517_CR97
1517_CR91
1517_CR94
1517_CR90
S Wang (1517_CR1) 2012; 16
H White (1517_CR45) 1990; 3
J Zeng (1517_CR113) 2017; 180
JA Suykens (1517_CR44) 1999; 9
D Strobel (1517_CR26) 2008; 29
R Suganya (1517_CR122) 2014
NC Rouze (1517_CR104) 2012; 59
C Cortes (1517_CR43) 1995; 20
O Rouvière (1517_CR21) 2017; 27
1517_CR87
X Yang (1517_CR82) 2016
S Wold (1517_CR41) 1987; 2
M Leshno (1517_CR47) 1993; 6
KSS Bhatia (1517_CR108) 2016; 42
J Ding (1517_CR14) 2012; 81
ML Giger (1517_CR65) 2013; 15
C Cassinotto (1517_CR5) 2014; 61
D Sheet (1517_CR128) 2014; 18
D Ravi (1517_CR4) 2017; 21
B Pass (1517_CR17) 2017; 27
AR Jamieson (1517_CR120) 2009; 37
LJ Brattain (1517_CR124) 2013; 32
1517_CR75
X Gao (1517_CR100) 2017; 36
CDL Nascimento (1517_CR118) 2016; 32
Q Zhang (1517_CR111) 2016; 72
JG Carbonell (1517_CR68) 1983
K Kalyan (1517_CR123) 2014
PM Cheng (1517_CR73) 2017; 30
I Gatos (1517_CR109) 2017; 43
G Ferraioli (1517_CR6) 2014; 33
Z Yuan (1517_CR29) 2015; 11
1517_CR69
1517_CR3
L Torresani (1517_CR37) 2014
AE Samir (1517_CR8) 2014; 274
M Westwood (1517_CR27) 2013; 17
L-K Soh (1517_CR39) 1999; 37
BS Garra (1517_CR63) 1993; 15
AR Sjogren (1517_CR135) 2016; 35
W Li (1517_CR30) 2014; 83
SC Turaga (1517_CR58) 2010; 22
V Aramendía-Vidaurreta (1517_CR131) 2016; 42
1517_CR59
RL De Mantaras (1517_CR34) 1998; 25
1517_CR57
1517_CR52
S Lawrence (1517_CR55) 1997; 8
1517_CR51
1517_CR54
MS Taljanovic (1517_CR18) 2017; 37
1517_CR53
WJ Wu (1517_CR116) 2015; 28
A Liaw (1517_CR42) 2002; 2
J Wang (1517_CR106) 2012; 81
M Dhyani (1517_CR13) 2017
1517_CR50
BK Singh (1517_CR115) 2016; 66
R Cunningham (1517_CR76) 2017
AY Park (1517_CR15) 2015; 84
YJ Choi (1517_CR70) 2017; 27
F Chen (1517_CR93) 2016
MB Subramanya (1517_CR132) 2015; 28
J Shi (1517_CR114) 2016; 194
1517_CR130
1517_CR40
JA Hanley (1517_CR62) 1982; 143
T Konig (1517_CR126) 2015; 10
DM Dutton (1517_CR35) 1997; 12
References_xml – volume: 43
  start-page: 83
  issue: 1
  year: 2017
  end-page: 90
  ident: CR11
  article-title: Shear-wave elastography: could it be helpful for the diagnosis of non-mass-like breast lesions?
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.03.022
– volume: 6
  start-page: 861
  issue: 6
  year: 1993
  end-page: 867
  ident: CR47
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– ident: CR97
– year: 2017
  ident: CR71
  article-title: Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network
  publication-title: Med Imaging
– start-page: 253
  year: 2014
  end-page: 261
  ident: CR122
  publication-title: Classification and retrieval of focal and diffuse liver from ultrasound images using machine learning techniques
– ident: CR51
– volume: 205
  start-page: W56
  issue: 1
  year: 2015
  end-page: W66
  ident: CR24
  article-title: Contrast-enhanced ultrasound of focal liver lesions
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.14.14203
– volume: 9
  start-page: e108337
  issue: 10
  year: 2014
  ident: CR20
  article-title: Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0108337
– volume: E97D
  start-page: 2947
  issue: 11
  year: 2014
  end-page: 2954
  ident: CR133
  article-title: Lesion type classification by applying machine-learning technique to contrast-enhanced ultrasound images
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2013EDP7464
– ident: CR54
– volume: 7
  start-page: 1303
  issue: 5
  year: 2017
  ident: CR103
  article-title: Ultrasound elastography: review of techniques and clinical applications
  publication-title: Theranostics
  doi: 10.7150/thno.18650
– volume: 26
  start-page: S1599
  year: 2015
  end-page: S1611
  ident: CR121
  article-title: Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network
  publication-title: Biomed Mater Eng
– volume: 21
  start-page: 72
  issue: 1
  year: 2015
  end-page: 86
  ident: CR77
  article-title: Learning-based prediction of gestational age from ultrasound images of the fetal brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.12.006
– volume: 274
  start-page: 821
  issue: 3
  year: 2014
  end-page: 829
  ident: CR19
  article-title: Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography
  publication-title: Radiology
  doi: 10.1148/radiol.14140434
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  end-page: 52
  ident: CR41
  article-title: Principal component analysis
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(87)80084-9
– volume: 44
  start-page: 76
  year: 2014
  end-page: 87
  ident: CR81
  article-title: An efficient neural network based method for medical image segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.029
– ident: CR101
– volume: 37
  start-page: 780
  issue: 2
  year: 1999
  end-page: 795
  ident: CR39
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.752194
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  ident: CR42
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 180
  start-page: 689
  issue: 3
  year: 2017
  end-page: 722
  ident: CR113
  article-title: Interpretable classification models for recidivism prediction
  publication-title: J R Stat Soc Ser A
  doi: 10.1111/rssa.12227
– year: 2016
  ident: CR82
  article-title: 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework
  publication-title: Med Imaging
– ident: CR57
– volume: 37
  start-page: 339
  issue: 1
  year: 2009
  end-page: 351
  ident: CR120
  article-title: Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE: nonlinear dimension reduction and representation in breast CADx
  publication-title: Med Phys
  doi: 10.1118/1.3267037
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR43
  article-title: Support vector machine
  publication-title: Mach Learn
– volume: 38
  start-page: 262
  issue: 2
  year: 2012
  end-page: 275
  ident: CR117
  article-title: Completely automated segmentation approach for breast ultrasound images using multiple-domain features
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2011.10.022
– volume: 17
  start-page: 587
  issue: 6
  year: 2013
  end-page: 600
  ident: CR83
  article-title: A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.04.001
– start-page: 67
  year: 2017
  end-page: 73
  ident: CR13
  article-title: Elastography: applications and limitations of a new technology
  publication-title: Advanced thyroid and parathyroid ultrasound
  doi: 10.1007/978-3-319-44100-9_8
– volume: 15
  start-page: 327
  issue: 1
  year: 2013
  end-page: 357
  ident: CR65
  article-title: Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071812-152416
– volume: 25
  start-page: 987
  issue: 8
  year: 2006
  end-page: 1010
  ident: CR79
  article-title: Ultrasound image segmentation: a survey
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.877092
– volume: 7
  start-page: 1947
  issue: 1
  year: 2017
  ident: CR22
  article-title: Accuracy of shear wave elastography for the diagnosis of prostate cancer: a meta-analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02187-0
– volume: 2016
  start-page: 13
  year: 2016
  ident: CR119
  article-title: Application of artificial neural network models in segmentation and classification of nodules in breast ultrasound digital images
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2016/7987212
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  ident: CR46
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– ident: CR91
– volume: 16
  start-page: 933
  issue: 5
  year: 2012
  end-page: 951
  ident: CR1
  article-title: Machine learning and radiology
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.02.005
– volume: 206
  start-page: 609
  issue: 3
  year: 2016
  end-page: 616
  ident: CR12
  article-title: Reliability of shear-wave elastography estimates of the young modulus of tissue in follicular thyroid neoplasms
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.15.14676
– volume: 18
  start-page: 103
  issue: 1
  year: 2014
  end-page: 117
  ident: CR128
  article-title: Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.10.002
– year: 2012
  ident: CR38
  publication-title: Foundations of machine learning
– volume: 44
  start-page: 580
  issue: 9
  year: 2016
  end-page: 586
  ident: CR85
  article-title: Diagnostic accuracy of hepatorenal index in the detection and grading of hepatic steatosis: factors affecting the accuracy of HRI
  publication-title: J Clin Ultrasound
  doi: 10.1002/jcu.22382
– volume: 34
  start-page: 136
  issue: 2
  year: 2017
  end-page: 141
  ident: CR86
  article-title: High frequency ultrasound: a novel instrument to quantify granuloma burden in cutaneous sarcoidosis
  publication-title: Sarcoidosis Vasc Diffuse Lung Dis
– volume: 274
  start-page: 888
  issue: 3
  year: 2014
  end-page: 896
  ident: CR8
  article-title: Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement
  publication-title: Radiology
  doi: 10.1148/radiol.14140839
– volume: 194
  start-page: 87
  year: 2016
  end-page: 94
  ident: CR114
  article-title: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.074
– volume: 27
  start-page: 546
  issue: 4
  year: 2017
  end-page: 552
  ident: CR70
  article-title: A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment
  publication-title: Thyroid
  doi: 10.1089/thy.2016.0372
– volume: 81
  start-page: 800
  issue: 4
  year: 2012
  end-page: 805
  ident: CR14
  article-title: An improved quantitative measurement for thyroid cancer detection based on elastography
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2011.01.110
– volume: 164
  start-page: 92
  year: 2017
  end-page: 102
  ident: CR92
  article-title: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.04.002
– volume: 28
  start-page: 576
  issue: 5
  year: 2015
  end-page: 585
  ident: CR116
  article-title: An artificial immune system-based support vector machine approach for classifying ultrasound breast tumor images
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9757-1
– volume: 22
  start-page: 511
  issue: 2
  year: 2010
  end-page: 538
  ident: CR58
  article-title: Convolutional networks can learn to generate affinity graphs for image segmentation
  publication-title: Neural Comput
  doi: 10.1162/neco.2009.10-08-881
– volume: 42
  start-page: 980
  issue: 4
  year: 2016
  end-page: 988
  ident: CR66
  article-title: Computer-aided diagnosis for breast ultrasound using computerized BI-RADS features and machine learning methods
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.11.016
– year: 1993
  ident: CR48
  publication-title: Predictive inference: an introduction
  doi: 10.1007/978-1-4899-4467-2
– ident: CR69
– ident: CR94
– year: 1997
  ident: CR33
  publication-title: Machine learning. WCB
– start-page: 292
  year: 2016
  end-page: 301
  ident: CR93
  article-title: Registration of CT and ultrasound images of the spine with neural network and orientation code mutual information
  publication-title: Medical imaging and augmented reality
  doi: 10.1007/978-3-319-43775-0_26
– volume: 37
  start-page: 855
  issue: 3
  year: 2017
  end-page: 870
  ident: CR18
  article-title: Shear-wave elastography: basic physics and musculoskeletal applications
  publication-title: RadioGraphics
  doi: 10.1148/rg.2017160116
– volume: 16
  start-page: 555
  issue: 5
  year: 2003
  end-page: 559
  ident: CR56
  article-title: Subject independent facial expression recognition with robust face detection using a convolutional neural network
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00115-1
– ident: CR3
– volume: 14
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: CR60
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Ijcai
– ident: CR52
– volume: 42
  start-page: 1671
  issue: 7
  year: 2016
  end-page: 1680
  ident: CR108
  article-title: Feasibility study of texture analysis using ultrasound shear wave elastography to predict malignancy in thyroid nodules
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.01.013
– volume: 58
  start-page: 928
  issue: 5
  year: 2013
  end-page: 935
  ident: CR7
  article-title: Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.12.021
– volume: 41
  start-page: 1287
  issue: 5
  year: 2015
  end-page: 1293
  ident: CR84
  article-title: Vascularity assessment of thyroid nodules by quantitative color doppler ultrasound
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.01.001
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  end-page: 113
  ident: CR55
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 3
  start-page: 535
  issue: 5
  year: 1990
  end-page: 549
  ident: CR45
  article-title: Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(90)90004-5
– volume: 16
  start-page: 215
  issue: 5
  year: 1992
  end-page: 225
  ident: CR64
  article-title: Using an artificial neural network to diagnose hepatic masses
  publication-title: J Med Syst
  doi: 10.1007/BF01000274
– start-page: 63
  year: 2017
  end-page: 73
  ident: CR76
  article-title: Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images
  publication-title: Medical image understanding and analysis
  doi: 10.1007/978-3-319-60964-5_6
– volume: 72
  start-page: 150
  year: 2016
  end-page: 157
  ident: CR111
  article-title: Deep learning based classification of breast tumors with shear-wave elastography
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.08.004
– start-page: 3
  year: 1983
  end-page: 23
  ident: CR68
  article-title: An overview of machine learning
  publication-title: Machine learning
– volume: 42
  start-page: 742
  issue: 3
  year: 2016
  end-page: 752
  ident: CR131
  article-title: Ultrasound image discrimination between benign and malignant adnexal masses based on a neural network approach
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.11.014
– volume: 21
  start-page: 48
  issue: 1
  year: 2017
  end-page: 55
  ident: CR72
  article-title: A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2631401
– ident: CR87
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: CR61
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat Surv
  doi: 10.1214/09-SS054
– volume: 21
  start-page: 4
  issue: 1
  year: 2017
  end-page: 21
  ident: CR4
  article-title: Deep Learning for health informatics
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2636665
– volume: 40
  start-page: 275
  issue: 2
  year: 2014
  end-page: 286
  ident: CR107
  article-title: Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2013.09.032
– volume: 30
  start-page: 234
  issue: 2
  year: 2017
  end-page: 243
  ident: CR73
  article-title: Transfer learning with convolutional neural networks for classification of abdominal ultrasound images
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9929-2
– volume: 81
  start-page: e31
  issue: 1
  year: 2012
  end-page: e36
  ident: CR106
  article-title: Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2010.12.013
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR49
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 883
  year: 2014
  end-page: 885
  ident: CR37
  article-title: Weakly supervised learning”
  publication-title: Computer vision
  doi: 10.1007/978-0-387-31439-6_308
– volume: 15
  start-page: 267
  issue: 4
  year: 1993
  end-page: 285
  ident: CR63
  article-title: Improving the distinction between benign and malignant breast lesions: the value of sonographic texture analysis
  publication-title: Ultrason Imaging
  doi: 10.1177/016173469301500401
– volume: 29
  start-page: 1844
  issue: 11
  year: 2016
  end-page: 1852
  ident: CR125
  article-title: Detection of abnormalities in ultrasound lung image using multi-level RVM classification
  publication-title: J Matern Fetal Neonatal Med
– volume: 29
  start-page: 499
  issue: 5
  year: 2008
  end-page: 505
  ident: CR26
  article-title: Contrast-enhanced ultrasound for the characterization of focal liver lesions–diagnostic accuracy in clinical practice (DEGUM multicenter trial)
  publication-title: Ultraschall Med Stuttg Ger
  doi: 10.1055/s-2008-1027806
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: CR2
  article-title: Deep learning in medical image analysis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 83
  start-page: 646
  issue: 4
  year: 2014
  end-page: 653
  ident: CR30
  article-title: Real-time contrast enhanced ultrasound imaging of focal splenic lesions
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.01.011
– volume: 41
  start-page: 588
  issue: 2
  year: 2015
  end-page: 600
  ident: CR110
  article-title: Quantification of elastic heterogeneity using contourlet-based texture analysis in shear-wave elastography for breast tumor classification
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.09.003
– volume: 30
  start-page: 22
  issue: 1
  year: 2015
  end-page: 27
  ident: CR16
  article-title: Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2014.11.011
– volume: 12
  start-page: 341
  issue: 4
  year: 1997
  end-page: 367
  ident: CR35
  article-title: A review of machine learning
  publication-title: Knowl Eng Rev
  doi: 10.1017/S026988899700101X
– ident: CR96
– ident: CR75
– ident: CR50
– volume: 10
  start-page: 1493
  issue: 9
  year: 2015
  end-page: 1503
  ident: CR126
  article-title: Ultrasound texture-based CAD system for detecting neuromuscular diseases
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-014-1133-6
– volume: 61
  start-page: 550
  issue: 3
  year: 2014
  end-page: 557
  ident: CR5
  article-title: Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2014.04.044
– volume: 35
  start-page: 2501
  issue: 11
  year: 2016
  end-page: 2509
  ident: CR135
  article-title: Image segmentation and machine learning for detection of abdominal free fluid in focused assessment with sonography for trauma examinations: a pilot study
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.15.11017
– volume: 42
  start-page: 835
  issue: 4
  year: 2016
  end-page: 847
  ident: CR9
  article-title: Breast lesions: quantitative diagnosis using ultrasound shear wave elastography—a systematic review and meta-analysis
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.10.024
– volume: 84
  start-page: 407
  issue: 3
  year: 2015
  end-page: 412
  ident: CR15
  article-title: Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.11.019
– volume: 20
  start-page: 3590
  issue: 13
  year: 2014
  end-page: 3596
  ident: CR25
  article-title: Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i13.3590
– volume: 27
  start-page: 1858
  issue: 5
  year: 2017
  end-page: 1866
  ident: CR21
  article-title: Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4534-9
– year: 2017
  ident: CR74
  article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets
  publication-title: Med Phys
– volume: 27
  start-page: 723
  issue: 2
  year: 2017
  end-page: 731
  ident: CR17
  article-title: Do quantitative and qualitative shear wave elastography have a role in evaluating musculoskeletal soft tissue masses?
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4427-y
– ident: CR99
– year: 2006
  ident: CR32
  publication-title: Pattern recognition and machine learning
– volume: 79
  start-page: 358
  issue: 4
  year: 2012
  end-page: 364
  ident: CR127
  article-title: Machine learning algorithms to classify spinal muscular atrophy subtypes
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182604395
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR44
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR67
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– ident: CR95
– volume: 41
  start-page: 2677
  issue: 10
  year: 2015
  end-page: 2689
  ident: CR129
  article-title: Lumbar ultrasound image feature extraction and classification with support vector machine
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.05.015
– volume: 17
  start-page: 1
  issue: 16
  year: 2013
  end-page: 243
  ident: CR27
  article-title: Contrast-enhanced ultrasound using SonoVue (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis
  publication-title: Health Technol Assess Winch Engl
– year: 2017
  ident: CR31
  article-title: A direct comparison of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer detection and prediction of aggressiveness
  publication-title: Eur Radiol
– volume: 125
  start-page: 4057
  issue: 15
  year: 2014
  end-page: 4063
  ident: CR112
  article-title: Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound
  publication-title: Opt-Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2014.01.114
– ident: CR53
– volume: 21
  start-page: 968
  issue: 3
  year: 2012
  end-page: 982
  ident: CR88
  article-title: The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2169273
– volume: 26
  start-page: 159
  issue: 3
  year: 2006
  end-page: 190
  ident: CR36
  article-title: Machine learning: a review of classification and combining techniques
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-007-9052-3
– volume: 43
  start-page: 1797
  year: 2017
  end-page: 1810
  ident: CR109
  article-title: A machine-learning algorithm toward color analysis for chronic liver disease classification, employing ultrasound shear wave elastography
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.05.002
– volume: 28
  start-page: 448
  issue: 4
  year: 2015
  end-page: 458
  ident: CR132
  article-title: SVM-based CAC system for B-mode kidney ultrasound images
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9754-4
– volume: 36
  start-page: 15
  year: 2017
  end-page: 21
  ident: CR102
  article-title: Automatic apical view classification of echocardiograms using a discriminative learning dictionary
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.007
– year: 2014
  ident: CR123
  article-title: Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images
  publication-title: Adv Bioinforma
– volume: 11
  start-page: 41
  issue: 1
  year: 2015
  end-page: 45
  ident: CR29
  article-title: Contrast-enhanced ultrasound in the diagnosis of solitary thyroid nodules
  publication-title: J Cancer Res Ther
  doi: 10.4103/0973-1482.147382
– volume: 25
  start-page: 99
  issue: 1–2
  year: 1998
  end-page: 123
  ident: CR34
  article-title: Machine learning from examples: inductive and lazy methods
  publication-title: Data Knowl Eng
  doi: 10.1016/S0169-023X(97)00053-0
– ident: CR40
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  ident: CR62
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: CR98
– volume: 41
  start-page: 022901
  issue: 2
  year: 2014
  ident: CR78
  article-title: Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound: brachial artery vasomotion and transducer pressure effect
  publication-title: Med Phys
  doi: 10.1118/1.4862508
– volume: 224
  start-page: 307
  issue: 2
  year: 2010
  end-page: 316
  ident: CR80
  article-title: Ultrasound image segmentation and tissue characterization
  publication-title: Proc Inst Mech Eng Part H
  doi: 10.1243/09544119JEIM604
– volume: 209
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR23
  article-title: Shear-wave elastography for detection of prostate cancer: a systematic review and diagnostic meta-analysis
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.17.18056
– ident: CR90
– volume: 32
  start-page: 283
  issue: 3
  year: 2016
  end-page: 292
  ident: CR118
  article-title: Breast tumor classification in ultrasound images using support vector machines and neural networks
  publication-title: Rev Bras Eng Biomed
– ident: CR130
– volume: 36
  start-page: 103
  year: 2017
  end-page: 113
  ident: CR100
  article-title: A fused deep learning architecture for viewpoint classification of echocardiography
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2016.11.007
– volume: 33
  start-page: 197
  issue: 2
  year: 2014
  end-page: 203
  ident: CR6
  article-title: Shear wave elastography for evaluation of liver fibrosis
  publication-title: J. Ultrasound Med
  doi: 10.7863/ultra.33.2.197
– volume: 43
  start-page: 601
  issue: 3
  year: 2017
  end-page: 606
  ident: CR10
  article-title: Differential diagnosis of breast category 3 and 4 nodules through BI-RADS classification in conjunction with shear wave elastography
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.10.004
– volume: 55
  start-page: 587
  issue: 9
  year: 2014
  end-page: 592
  ident: CR28
  article-title: Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses
  publication-title: Korean J Urol
  doi: 10.4111/kju.2014.55.9.587
– volume: 151
  start-page: 161
  issue: P1
  year: 2015
  end-page: 167
  ident: CR89
  article-title: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.066
– volume: 59
  start-page: 1729
  year: 2012
  end-page: 1740
  ident: CR104
  article-title: Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2012.2377
– ident: CR59
– volume: 70
  start-page: 1221
  year: 2015
  end-page: 1224
  ident: CR134
  article-title: Automatic cataract classification based on ultrasound technique using machine learning: a comparative study
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2015.08.263
– volume: 32
  start-page: 2185
  issue: 12
  year: 2013
  end-page: 2190
  ident: CR124
  article-title: Automated B-line scoring on thoracic sonography
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.32.12.2185
– volume: 41
  start-page: 936
  issue: 4
  year: 2015
  end-page: 943
  ident: CR105
  article-title: Automatic assessment of shear wave elastography quality and measurement reliability in the liver
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.11.010
– volume: 66
  start-page: 114
  year: 2016
  end-page: 123
  ident: CR115
  article-title: Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.006
– volume: 274
  start-page: 821
  issue: 3
  year: 2014
  ident: 1517_CR19
  publication-title: Radiology
  doi: 10.1148/radiol.14140434
– volume: 83
  start-page: 646
  issue: 4
  year: 2014
  ident: 1517_CR30
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.01.011
– volume: 32
  start-page: 2185
  issue: 12
  year: 2013
  ident: 1517_CR124
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.32.12.2185
– volume: 34
  start-page: 136
  issue: 2
  year: 2017
  ident: 1517_CR86
  publication-title: Sarcoidosis Vasc Diffuse Lung Dis
– volume: 28
  start-page: 576
  issue: 5
  year: 2015
  ident: 1517_CR116
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9757-1
– volume: 10
  start-page: 1493
  issue: 9
  year: 2015
  ident: 1517_CR126
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-014-1133-6
– volume: 151
  start-page: 161
  issue: P1
  year: 2015
  ident: 1517_CR89
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.066
– volume: 274
  start-page: 888
  issue: 3
  year: 2014
  ident: 1517_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.14140839
– volume: 15
  start-page: 327
  issue: 1
  year: 2013
  ident: 1517_CR65
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071812-152416
– volume: 21
  start-page: 72
  issue: 1
  year: 2015
  ident: 1517_CR77
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.12.006
– ident: 1517_CR97
– year: 2017
  ident: 1517_CR31
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5192-2
– ident: 1517_CR54
– start-page: 253
  volume-title: Classification and retrieval of focal and diffuse liver from ultrasound images using machine learning techniques
  year: 2014
  ident: 1517_CR122
– volume: 43
  start-page: 601
  issue: 3
  year: 2017
  ident: 1517_CR10
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.10.004
– volume: 26
  start-page: 159
  issue: 3
  year: 2006
  ident: 1517_CR36
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-007-9052-3
– ident: 1517_CR51
  doi: 10.1109/CVPR.2015.7298594
– volume: 9
  start-page: e108337
  issue: 10
  year: 2014
  ident: 1517_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0108337
– volume: 22
  start-page: 511
  issue: 2
  year: 2010
  ident: 1517_CR58
  publication-title: Neural Comput
  doi: 10.1162/neco.2009.10-08-881
– volume: 3
  start-page: 535
  issue: 5
  year: 1990
  ident: 1517_CR45
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(90)90004-5
– volume: 12
  start-page: 341
  issue: 4
  year: 1997
  ident: 1517_CR35
  publication-title: Knowl Eng Rev
  doi: 10.1017/S026988899700101X
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1517_CR43
  publication-title: Mach Learn
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 1517_CR46
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 883
  volume-title: Computer vision
  year: 2014
  ident: 1517_CR37
  doi: 10.1007/978-0-387-31439-6_308
– volume: 205
  start-page: W56
  issue: 1
  year: 2015
  ident: 1517_CR24
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.14.14203
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 1517_CR55
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 81
  start-page: e31
  issue: 1
  year: 2012
  ident: 1517_CR106
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2010.12.013
– volume: 79
  start-page: 358
  issue: 4
  year: 2012
  ident: 1517_CR127
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182604395
– volume: 19
  start-page: 221
  year: 2017
  ident: 1517_CR2
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 206
  start-page: 609
  issue: 3
  year: 2016
  ident: 1517_CR12
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.15.14676
– volume: 16
  start-page: 215
  issue: 5
  year: 1992
  ident: 1517_CR64
  publication-title: J Med Syst
  doi: 10.1007/BF01000274
– volume: 81
  start-page: 800
  issue: 4
  year: 2012
  ident: 1517_CR14
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2011.01.110
– ident: 1517_CR40
– volume: 224
  start-page: 307
  issue: 2
  year: 2010
  ident: 1517_CR80
  publication-title: Proc Inst Mech Eng Part H
  doi: 10.1243/09544119JEIM604
– ident: 1517_CR3
  doi: 10.1016/j.media.2017.07.005
– start-page: 67
  volume-title: Advanced thyroid and parathyroid ultrasound
  year: 2017
  ident: 1517_CR13
  doi: 10.1007/978-3-319-44100-9_8
– volume: 43
  start-page: 1797
  year: 2017
  ident: 1517_CR109
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.05.002
– volume: 40
  start-page: 275
  issue: 2
  year: 2014
  ident: 1517_CR107
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2013.09.032
– volume: 55
  start-page: 587
  issue: 9
  year: 2014
  ident: 1517_CR28
  publication-title: Korean J Urol
  doi: 10.4111/kju.2014.55.9.587
– volume: 36
  start-page: 103
  year: 2017
  ident: 1517_CR100
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2016.11.007
– ident: 1517_CR101
  doi: 10.1109/ISBI.2017.7950609
– volume: 42
  start-page: 980
  issue: 4
  year: 2016
  ident: 1517_CR66
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.11.016
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 1517_CR62
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 27
  start-page: 546
  issue: 4
  year: 2017
  ident: 1517_CR70
  publication-title: Thyroid
  doi: 10.1089/thy.2016.0372
– start-page: 63
  volume-title: Medical image understanding and analysis
  year: 2017
  ident: 1517_CR76
  doi: 10.1007/978-3-319-60964-5_6
– volume: 33
  start-page: 197
  issue: 2
  year: 2014
  ident: 1517_CR6
  publication-title: J. Ultrasound Med
  doi: 10.7863/ultra.33.2.197
– volume: 17
  start-page: 587
  issue: 6
  year: 2013
  ident: 1517_CR83
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.04.001
– volume: 29
  start-page: 1844
  issue: 11
  year: 2016
  ident: 1517_CR125
  publication-title: J Matern Fetal Neonatal Med
– volume: 41
  start-page: 588
  issue: 2
  year: 2015
  ident: 1517_CR110
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.09.003
– volume: 58
  start-page: 928
  issue: 5
  year: 2013
  ident: 1517_CR7
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2012.12.021
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  ident: 1517_CR41
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(87)80084-9
– ident: 1517_CR90
  doi: 10.1109/BIBM.2016.7822557
– volume: 72
  start-page: 150
  year: 2016
  ident: 1517_CR111
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.08.004
– volume: 15
  start-page: 267
  issue: 4
  year: 1993
  ident: 1517_CR63
  publication-title: Ultrason Imaging
  doi: 10.1177/016173469301500401
– volume: 38
  start-page: 262
  issue: 2
  year: 2012
  ident: 1517_CR117
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2011.10.022
– volume: 43
  start-page: 83
  issue: 1
  year: 2017
  ident: 1517_CR11
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.03.022
– ident: 1517_CR91
  doi: 10.1109/ISBI.2017.7950519
– year: 2014
  ident: 1517_CR123
  publication-title: Adv Bioinforma
  doi: 10.1155/2014/708279
– volume: E97D
  start-page: 2947
  issue: 11
  year: 2014
  ident: 1517_CR133
  publication-title: IEICE Trans Inf Syst
  doi: 10.1587/transinf.2013EDP7464
– volume: 194
  start-page: 87
  year: 2016
  ident: 1517_CR114
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.074
– volume: 209
  start-page: 1
  year: 2017
  ident: 1517_CR23
  publication-title: Am J Roentgenol
  doi: 10.2214/AJR.17.18056
– volume: 41
  start-page: 022901
  issue: 2
  year: 2014
  ident: 1517_CR78
  publication-title: Med Phys
  doi: 10.1118/1.4862508
– volume: 42
  start-page: 835
  issue: 4
  year: 2016
  ident: 1517_CR9
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.10.024
– volume: 27
  start-page: 1858
  issue: 5
  year: 2017
  ident: 1517_CR21
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4534-9
– volume-title: Foundations of machine learning
  year: 2012
  ident: 1517_CR38
– year: 2017
  ident: 1517_CR74
  publication-title: Med Phys
  doi: 10.1002/mp.12453
– volume: 61
  start-page: 550
  issue: 3
  year: 2014
  ident: 1517_CR5
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2014.04.044
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 1517_CR42
  publication-title: R News
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1517_CR49
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 1137
  year: 1995
  ident: 1517_CR60
  publication-title: Ijcai
– ident: 1517_CR69
  doi: 10.1109/SPMB.2016.7846873
– volume: 21
  start-page: 48
  issue: 1
  year: 2017
  ident: 1517_CR72
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2631401
– volume: 44
  start-page: 580
  issue: 9
  year: 2016
  ident: 1517_CR85
  publication-title: J Clin Ultrasound
  doi: 10.1002/jcu.22382
– volume: 42
  start-page: 742
  issue: 3
  year: 2016
  ident: 1517_CR131
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.11.014
– ident: 1517_CR96
  doi: 10.1007/978-3-319-46723-8_24
– ident: 1517_CR53
– ident: 1517_CR98
  doi: 10.1007/978-3-319-24553-9_62
– volume: 36
  start-page: 15
  year: 2017
  ident: 1517_CR102
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.007
– volume: 37
  start-page: 780
  issue: 2
  year: 1999
  ident: 1517_CR39
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.752194
– volume: 41
  start-page: 1287
  issue: 5
  year: 2015
  ident: 1517_CR84
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.01.001
– volume: 41
  start-page: 936
  issue: 4
  year: 2015
  ident: 1517_CR105
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2014.11.010
– volume: 164
  start-page: 92
  year: 2017
  ident: 1517_CR92
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.04.002
– volume: 84
  start-page: 407
  issue: 3
  year: 2015
  ident: 1517_CR15
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2014.11.019
– volume: 37
  start-page: 855
  issue: 3
  year: 2017
  ident: 1517_CR18
  publication-title: RadioGraphics
  doi: 10.1148/rg.2017160116
– ident: 1517_CR94
  doi: 10.1117/12.912188
– volume: 29
  start-page: 499
  issue: 5
  year: 2008
  ident: 1517_CR26
  publication-title: Ultraschall Med Stuttg Ger
  doi: 10.1055/s-2008-1027806
– volume: 42
  start-page: 1671
  issue: 7
  year: 2016
  ident: 1517_CR108
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2016.01.013
– volume: 30
  start-page: 234
  issue: 2
  year: 2017
  ident: 1517_CR73
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-016-9929-2
– volume: 59
  start-page: 1729
  year: 2012
  ident: 1517_CR104
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2012.2377
– year: 2017
  ident: 1517_CR71
  publication-title: Med Imaging
  doi: 10.1117/12.2254581
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 1517_CR32
– volume: 25
  start-page: 987
  issue: 8
  year: 2006
  ident: 1517_CR79
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.877092
– volume: 7
  start-page: 1303
  issue: 5
  year: 2017
  ident: 1517_CR103
  publication-title: Theranostics
  doi: 10.7150/thno.18650
– volume: 21
  start-page: 4
  issue: 1
  year: 2017
  ident: 1517_CR4
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2636665
– ident: 1517_CR50
– volume: 20
  start-page: 3590
  issue: 13
  year: 2014
  ident: 1517_CR25
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i13.3590
– ident: 1517_CR87
– volume: 18
  start-page: 103
  issue: 1
  year: 2014
  ident: 1517_CR128
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.10.002
– start-page: 3
  volume-title: Machine learning
  year: 1983
  ident: 1517_CR68
– volume: 125
  start-page: 4057
  issue: 15
  year: 2014
  ident: 1517_CR112
  publication-title: Opt-Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2014.01.114
– volume: 21
  start-page: 968
  issue: 3
  year: 2012
  ident: 1517_CR88
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2169273
– volume: 30
  start-page: 22
  issue: 1
  year: 2015
  ident: 1517_CR16
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2014.11.011
– ident: 1517_CR59
  doi: 10.1109/CVPR.2015.7298965
– volume: 32
  start-page: 283
  issue: 3
  year: 2016
  ident: 1517_CR118
  publication-title: Rev Bras Eng Biomed
– volume: 70
  start-page: 1221
  year: 2015
  ident: 1517_CR134
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2015.08.263
– volume: 66
  start-page: 114
  year: 2016
  ident: 1517_CR115
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.09.006
– volume-title: Machine learning. WCB
  year: 1997
  ident: 1517_CR33
– volume: 27
  start-page: 723
  issue: 2
  year: 2017
  ident: 1517_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4427-y
– ident: 1517_CR130
  doi: 10.1109/ICRCICN.2015.7434224
– ident: 1517_CR95
  doi: 10.1109/ISBI.2016.7493384
– volume: 41
  start-page: 2677
  issue: 10
  year: 2015
  ident: 1517_CR129
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.05.015
– ident: 1517_CR57
  doi: 10.1145/2671188.2749408
– year: 2016
  ident: 1517_CR82
  publication-title: Med Imaging
  doi: 10.1117/12.2216396
– volume: 4
  start-page: 40
  year: 2010
  ident: 1517_CR61
  publication-title: Stat Surv
  doi: 10.1214/09-SS054
– ident: 1517_CR99
  doi: 10.1007/978-3-319-24574-4_82
– volume: 28
  start-page: 448
  issue: 4
  year: 2015
  ident: 1517_CR132
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9754-4
– ident: 1517_CR52
  doi: 10.1109/CVPR.2013.465
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 1517_CR44
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 25
  start-page: 99
  issue: 1–2
  year: 1998
  ident: 1517_CR34
  publication-title: Data Knowl Eng
  doi: 10.1016/S0169-023X(97)00053-0
– volume: 2016
  start-page: 13
  year: 2016
  ident: 1517_CR119
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2016/7987212
– start-page: 292
  volume-title: Medical imaging and augmented reality
  year: 2016
  ident: 1517_CR93
  doi: 10.1007/978-3-319-43775-0_26
– volume: 180
  start-page: 689
  issue: 3
  year: 2017
  ident: 1517_CR113
  publication-title: J R Stat Soc Ser A
  doi: 10.1111/rssa.12227
– volume: 17
  start-page: 1
  issue: 16
  year: 2013
  ident: 1517_CR27
  publication-title: Health Technol Assess Winch Engl
– volume: 26
  start-page: S1599
  year: 2015
  ident: 1517_CR121
  publication-title: Biomed Mater Eng
– volume: 16
  start-page: 555
  issue: 5
  year: 2003
  ident: 1517_CR56
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00115-1
– volume: 37
  start-page: 339
  issue: 1
  year: 2009
  ident: 1517_CR120
  publication-title: Med Phys
  doi: 10.1118/1.3267037
– volume: 7
  start-page: 1947
  issue: 1
  year: 2017
  ident: 1517_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02187-0
– volume: 6
  start-page: 861
  issue: 6
  year: 1993
  ident: 1517_CR47
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– volume-title: Predictive inference: an introduction
  year: 1993
  ident: 1517_CR48
  doi: 10.1007/978-1-4899-4467-2
– ident: 1517_CR75
  doi: 10.1007/978-3-319-60964-5_9
– volume: 35
  start-page: 2501
  issue: 11
  year: 2016
  ident: 1517_CR135
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.15.11017
– volume: 44
  start-page: 76
  year: 2014
  ident: 1517_CR81
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.029
– volume: 61
  start-page: 85
  year: 2015
  ident: 1517_CR67
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 16
  start-page: 933
  issue: 5
  year: 2012
  ident: 1517_CR1
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2012.02.005
– volume: 11
  start-page: 41
  issue: 1
  year: 2015
  ident: 1517_CR29
  publication-title: J Cancer Res Ther
  doi: 10.4103/0973-1482.147382
SSID ssj0001651125
ssj0008379
Score 2.5867848
SecondaryResourceType review_article
Snippet Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 786
SubjectTerms Abdomen - diagnostic imaging
Artificial intelligence
Computation
Computer applications
Deep learning
Diagnostic systems
Forecasting
Gastroenterology
Hepatology
Humans
Image acquisition
Image enhancement
Image processing
Image quality
Imaging
Invited Article
Learning algorithms
Machine Learning
Medicine
Medicine & Public Health
Miniaturization
Quality control
Radiology
Ultrasonic imaging
Ultrasonic testing
Ultrasonography - methods
Ultrasound
Workflow
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0QvGl-FE1tcoKPqnBZL-S-CIiHodwPoiFewu7m01buObO3uX_78xmk3IW-5aQzcfOx87MzuQ3AO8LtGmtbWTKbWNSyb1OjfBtWgjhuXfoJAQkpsUvPT-TP5dqGTfctrGsclwTw0LdrB3tkX8O6ECUBSu-bv6m1DWKsquxhcZDeETQZVTSVSyngAu9i4C1x4XGqDmTyzGrmQUQUdp5yXKMoRQu1Nm-XbrjbN6tmfwncRrs0ewJHEVHkn0bOP8UHvjuGRwuYqr8OfxehDJJz2JfiHOG7im7GvIyrF_h47fUUukLo3-K-u0nNjSTxgPTNWzAGmHrDfnnfRdwV4_hbPbjz_d5GhsopE4JvUtdZTH4Faa0aJh92bauNMrwyuSeEy6Ozk2RowVHrVZWVI203HvhGt7imTROvICDbt35V8CKUljZoPI6J6VX2rZV5Ty3TjtqEVMlkI3kq11EF6cmF6t6wkUOFK-R4jVRvM4S-DDdshmgNe4bfDrypI5atq1vZSKBd9Nl1A9KepjOr_thjNKlKmQCLwcWTm_jFcElZiqBYo-50wDC3t6_0l1eBAxuVZa6zPMEPo5icPtZ_53Eyf2TeA2POQlkqAs6hYPdde_foMuzs2-DXN8Aef_9Fw
  priority: 102
  providerName: ProQuest
Title Machine learning for medical ultrasound: status, methods, and future opportunities
URI https://link.springer.com/article/10.1007/s00261-018-1517-0
https://www.ncbi.nlm.nih.gov/pubmed/29492605
https://www.proquest.com/docview/2009235017
https://www.proquest.com/docview/2009568574
https://pubmed.ncbi.nlm.nih.gov/PMC5886811
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB7BVkK8cB-BdmUknoBUic-Et27VbQXaFapaaXmKbMcpiJKt2M1Lf33HzgHbAlJfcshO4mNsf5MZfwPwVuGaVpmSx9SUOubUyVgzV8WKMUedRZAQmJhmc3l0yj8txKLbx73qvd17k2SYqYfNbkFdQNUXtR6BUyvq6VsIPxI-gq29w6-f__i1Ij2KECGsnER9OeGL3p75t_dsrkg3YOZNb8lrJtOwEk0fwklfh9YB5cdusza79vIaveMtK_kIHnTIlOy1ovQY7rj6Cdybdbb3p3A8C36XjnSBJs4I4l3yszX0kOYcS73yMZo-Er9JqVl9IG10arzQdUla8hKyvPCAv6kDkeszOJ0enOwfxV1EhtgKJtexzQ1q00xnBld6l1WVzbTQNNepo55oR6ZapQgJcJoQhuUlN9Q5Zkta4R3Xlj2HUb2s3UsgKmOGlzgbWMu5E9JUeW4dNVZaH3MmjyDpe6WwHV25j5pxXgxEy6GtCmyrwrdVkUTwbnjkouXq-F_m7b6ri27YropAQeVNrSqCN0MyDjhvRdG1WzZtHiEzoXgEL1rJGL5Gc8-_mIgI1IbMDBk8mfdmSv39WyD1FlkmszSN4H0vGL-L9c9KvLpV7tdwn3rJCn5H2zBa_2rcDkKqtRnDXbVQeMymh2McTtPJZD7uhhWeJwfzL8dXxyEb1g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXBOUVKGCkcgEiEr_iICGEoMv2sT2gVtpbajtOi1SyC7sR4k_xGxk7j2qp6K23RHGceDxPj_0NwFaGNq0yJY-pKXXMqZOxZq6KM8YcdRadhIDENDmQ4yO-OxXTNfjTn4Xx2yp7nRgUdTmzfo38bUAH8lmw7MP8R-yrRvnsal9Co2WLPff7F4Zsi_c7n3F-X1I62j78NI67qgKxFUwuY5sbjAiZVgatlVNVZZUWmuY6ddSDxchUZymaNWR1YVheckOdY7akFd5xbRn2ew2uc8ZyL1Fq9GXQ_KrF9qNMYpSe8GmfRU0CaKlf6UlSjNkEGoZk1Q5ecG4v7tH8J1Eb7N_oDtzuHFfyseW0u7Dm6g24MelS8_fg6yRsy3Skq0NxQtAdJt_bPBBpzrD7hS_h9I74M0zN4g1pi1fjha5L0mKbkNncxwNNHXBe78PRlZD2AazXs9o9ApIpZniJysJazp2Qpspz66ix0vqSNHkESU--wnZo5r6oxlkx4DAHihdI8cJTvEgieDW8Mm-hPC5rvNnPSdFJ9aI458EIXgyPUR59kkXXbta0bYRUIuMRPGyncPgazT08YyIiyFYmd2jgsb5Xn9TfTgPmt1BKqjSN4HXPBue_9d9BPL58EM_h5vhwsl_s7xzsPYFb1DNn2JO0CevLn417iu7W0jwLPE7g-KqF6i-4ojnG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkCZeEN8UBgQJXoBqbT6aFgkhxDhtjJsQYtK9dUmaAtLoHdxViH-Nvw47_ZiOib3trVXTtHHs2I6dnwGeaNRpta1kzG1lYsl9Fhvh61gL4bl3aCQEJKbpYbZ3JN_P1GwD_gxnYSitclgTw0JdzR3tke8EdCCKgumduk-L-Lg7eb34EVMFKYq0DuU0OhY58L9_ofu2fLW_i3P9lPPJu89v9-K-wkDslMhWsSsseofC5BY1l8_r2uVGGV6Y1HMCjslSo1NUccj2yoqikpZ7L1zFa7yTxgns9xJc1kKlJGN6Njp7aNkEnD8uMvTYEzkbIqpJADClXZ8kRf9NoZJI1nXiGUP3bL7mP0HboAsn1-Bqb8SyNx3XXYcN39yArWkfpr8Jn6YhRdOzvibFF4amMfvexYRYe4LdL6mc00tG55na5QvWFbLGC9NUrMM5YfMF-QZtEzBfb8HRhZD2Nmw288bfBaZzYWWFC4dzUnqV2boonOfWZY7K0xQRJAP5Stcjm1OBjZNyxGQOFC-R4iVRvEwieDa-suhgPc5rvD3MSdlL-LI85ccIHo-PUTYp4GIaP2-7NirLlZYR3OmmcPwaLwiqMVER6LXJHRsQ7vf6k-bb14D_rfI8y9M0gucDG5z-1n8Hce_8QTyCLRSn8sP-4cF9uMKJN0N60jZsrn62_gFaXiv7MLA4g-OLlqm_SaY98w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+medical+ultrasound%3A+status%2C+methods%2C+and+future+opportunities&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Brattain%2C+Laura+J&rft.au=Telfer%2C+Brian+A&rft.au=Dhyani%2C+Manish&rft.au=Grajo%2C+Joseph+R&rft.date=2018-04-01&rft.issn=2366-0058&rft.eissn=2366-0058&rft.volume=43&rft.issue=4&rft.spage=786&rft_id=info:doi/10.1007%2Fs00261-018-1517-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon