Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI
Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy c...
Saved in:
Published in | Schizophrenia research Vol. 214; pp. 11 - 17 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose. |
---|---|
AbstractList | Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose. AbstractAlthough regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness ( p< 0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose. Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose. |
Author | Tao, Bo Yan, Zhihan Xiao, Yuan Gong, Qiyong Chandan, Shah Zhao, Youjin Lui, Su Zhang, Wenjing Liu, Jieke Yao, Li Sun, Huaiqiang Li, Fei Sweeney, John A. |
Author_xml | – sequence: 1 givenname: Yuan surname: Xiao fullname: Xiao, Yuan organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 2 givenname: Zhihan surname: Yan fullname: Yan, Zhihan organization: Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China – sequence: 3 givenname: Youjin surname: Zhao fullname: Zhao, Youjin organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 4 givenname: Bo surname: Tao fullname: Tao, Bo organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 5 givenname: Huaiqiang surname: Sun fullname: Sun, Huaiqiang organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 6 givenname: Fei surname: Li fullname: Li, Fei organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 7 givenname: Li surname: Yao fullname: Yao, Li organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 8 givenname: Wenjing surname: Zhang fullname: Zhang, Wenjing organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 9 givenname: Shah surname: Chandan fullname: Chandan, Shah organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 10 givenname: Jieke surname: Liu fullname: Liu, Jieke organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 11 givenname: Qiyong surname: Gong fullname: Gong, Qiyong organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 12 givenname: John A. surname: Sweeney fullname: Sweeney, John A. organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China – sequence: 13 givenname: Su orcidid: 0000-0003-3541-1769 surname: Lui fullname: Lui, Su email: lusuwcums@tom.com organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29208422$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkt9qFDEUxoNU7Lb6BiK59GbW_JlJOiJCKf4pVASr1yGTnHSzziZjkllY38Cn8SF8MbNueyNI8SoX5_u-HL7fOUFHIQZA6CklS0qoeLFeZrNKkJeMULmkdEm4fIAWtJO8YR3pj9CC9Iw0fS_aY3SS85oQQjsiH6FjVgdnLWML9ON6nqaYCt6CKTHhjTYrH6AZdAaLzahz9s4bXXwMODrsfMoFw-RztIBtmm-aoH_93AKu2_jvcaorBa_xVB0QSsY6WLwCPZbVDpsYSopjxnP24QbnkmZT5qRH_OHT5WP00Okxw5Pb9xR9efvm88X75urju8uL86vGdFyUZrBnYnCiF5RZbkDKVnbEGqsHybqBEEOE1MINnA8EGFjeOcMNFda2g3PS8VP0_JA7pfhthlzUxmcD46gDxDkr2kvedoIIXqXPbqXzsAGrpuQ3Ou3UXX1V8PIgMCnmnMAp48ufrkrSflSUqD0rtVYHVmrPSlGqKqtqbv8y3-XfY3t9sEEtaeshVVGt2oD1qTJUNvr_DTCjD5Xx-BV2kNdxTqECUFRlpoi63l_R_oio5ETyjtaAV_8OuP__3y473kY |
CitedBy_id | crossref_primary_10_1016_j_neulet_2022_136566 crossref_primary_10_1038_s41386_024_02021_y crossref_primary_10_1002_mpr_1818 crossref_primary_10_1038_s41398_022_01939_5 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_1093_schbul_sbab110 crossref_primary_10_1016_j_psychres_2023_115122 crossref_primary_10_1016_j_schres_2023_01_014 crossref_primary_10_1007_s12264_024_01214_1 crossref_primary_10_1017_S0033291720001683 crossref_primary_10_1371_journal_pone_0239615 crossref_primary_10_1016_j_schres_2019_08_032 crossref_primary_10_1007_s12264_025_01385_5 crossref_primary_10_3389_fnins_2021_697168 crossref_primary_10_1016_j_pscychresns_2023_111696 crossref_primary_10_1038_s41598_025_93912_7 crossref_primary_10_1016_j_ajp_2020_101977 crossref_primary_10_1038_s41380_023_02195_9 crossref_primary_10_3389_fpsyt_2020_542394 crossref_primary_10_1111_acps_12964 crossref_primary_10_1093_schbul_sbae175 crossref_primary_10_3389_fpsyt_2022_1075564 crossref_primary_10_3389_fpsyt_2020_00016 crossref_primary_10_1016_j_bionps_2020_100029 crossref_primary_10_1186_s12888_020_02886_5 crossref_primary_10_1038_s41598_022_06651_4 crossref_primary_10_1155_2021_9963824 crossref_primary_10_1155_2020_6405930 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_ebiom_2021_103749 crossref_primary_10_1007_s42979_023_01947_2 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1016_j_clinph_2021_06_030 crossref_primary_10_1016_j_heliyon_2022_e12276 crossref_primary_10_3390_app12052571 crossref_primary_10_1002_cpe_7512 crossref_primary_10_3390_brainsci10080562 crossref_primary_10_1017_S0033291718003781 crossref_primary_10_1186_s12868_023_00841_0 crossref_primary_10_5498_wjp_v14_i6_804 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_1093_schbul_sbac094 crossref_primary_10_1016_j_nicl_2021_102860 crossref_primary_10_1093_schbul_sbae110 crossref_primary_10_32604_iasc_2021_015049 crossref_primary_10_1093_schizbullopen_sgac034 crossref_primary_10_1007_s13365_020_00930_4 crossref_primary_10_1093_schbul_sby189 crossref_primary_10_2174_2211555204666220131112639 crossref_primary_10_3389_fnhum_2021_736155 |
Cites_doi | 10.1016/j.schres.2007.08.023 10.1148/radiol.2016160938 10.1016/j.schres.2007.01.027 10.1016/j.schres.2010.07.020 10.1016/j.tics.2011.08.003 10.1007/s00702-011-0693-7 10.1126/science.1194144 10.1016/S0022-3956(97)00038-1 10.1176/appi.ajp.2008.08020183 10.1038/npp.2013.80 10.1093/schbul/sbt037 10.1097/MD.0000000000006223 10.1016/j.schres.2015.03.017 10.1371/journal.pone.0147204 10.1093/schbul/sbp131 10.1016/S0140-6736(94)90599-1 10.1093/cercor/bhp026 10.1016/j.neuroimage.2015.12.007 10.1017/S0033291716000878 10.1016/j.neuroimage.2011.03.051 10.1016/j.biopsych.2005.03.043 10.1093/cercor/5.1.56 10.1016/j.biopsych.2010.03.019 10.1016/j.nicl.2013.09.003 10.1176/appi.ajp.2013.12091148 10.1007/7854_2010_53 10.1006/nimg.1998.0395 10.1016/j.schres.2017.06.043 10.1038/nbt1206-1565 10.1176/ajp.2007.164.3.450 10.3389/fnhum.2010.00192 10.1093/brain/awt310 10.1016/j.neuroimage.2008.11.007 10.1017/S0033291717000642 10.1007/s00702-014-1324-x 10.1016/S0079-6123(08)60494-X 10.1001/archgenpsychiatry.2010.84 10.1016/j.schres.2013.06.025 10.1016/j.neubiorev.2007.07.012 10.31887/DCNS.2010.12.3/mshenton 10.1038/3738 10.1093/schbul/sbt177 10.1007/s12264-016-0090-1 10.1016/j.biopsych.2010.12.012 10.1148/radiol.09090339 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.schres.2017.11.037 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1573-2509 |
EndPage | 17 |
ExternalDocumentID | 29208422 10_1016_j_schres_2017_11_037 S0920996417307351 1_s2_0_S0920996417307351 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 4H- 53G 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABOYX ABWVN ABXDB ACDAQ ACGFS ACHQT ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HMW HVGLF HZ~ IHE J1W KOM M29 M2V M39 M3V M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPS SSB SSH SSN SSY SSZ T5K WUQ Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU EFLBG LCYCR AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c536t-bd86bf69612d3ce774750dcdab725b00c067a6fb33b0e2ed35fc3c16dd4bff7f3 |
IEDL.DBID | .~1 |
ISSN | 0920-9964 1573-2509 |
IngestDate | Fri Jul 11 06:07:51 EDT 2025 Thu Apr 03 07:05:30 EDT 2025 Tue Jul 01 03:58:50 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 23 02:49:29 EST 2024 Sun Feb 23 10:19:47 EST 2025 Tue Aug 26 17:09:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector machine (SVM) Cortical thickness ROC Classification Schizophrenia SVM Surface area AUC area under curve support vector machine receiver operating characteristic |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-bd86bf69612d3ce774750dcdab725b00c067a6fb33b0e2ed35fc3c16dd4bff7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3541-1769 |
PMID | 29208422 |
PQID | 1973456063 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1973456063 pubmed_primary_29208422 crossref_citationtrail_10_1016_j_schres_2017_11_037 crossref_primary_10_1016_j_schres_2017_11_037 elsevier_sciencedirect_doi_10_1016_j_schres_2017_11_037 elsevier_clinicalkeyesjournals_1_s2_0_S0920996417307351 elsevier_clinicalkey_doi_10_1016_j_schres_2017_11_037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Schizophrenia research |
PublicationTitleAlternate | Schizophr Res |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Panizzon, Fennema-Notestine, Eyler, Jernigan, Prom-Wormley, Neale, Jacobson, Lyons, Grant, Franz, Xian, Tsuang, Fischl, Seidman, Dale, Kremen (bb0185) 2009; 19 Guo, Liu, Chen, Wu, Li, Zhang, Chen, Zhao (bb0090) 2017; 96 Ren, Lui, Deng, Li, Li, Huang, Wang, Li, Sweeney, Gong (bb0215) 2013; 170 Palaniyappan, Mallikarjun, Joseph, White, Liddle (bb0175) 2011; 69 Goghari, Smith, Honer, Kopala, Thornton, Su, Macewan, Lang (bb0080) 2013; 149 Hu, Zong, Mann, Zheng, Liao, Li, He, Chen, Tang (bb0105) 2017; 33 Zarogianni, Moorhead, Lawrie (bb0260) 2013; 3 Armstrong, Schleicher, Omran, Curtis, Zilles (bb0015) 1995; 5 Fan, Liu, Wu, Hao, Liu, Liu, Jiang (bb0065) 2011; 56 Pohl, Sabuncu (bb0200) 2009 Shenton, Whitford, Kubicki (bb0220) 2010; 12 Gutierrez-Galve, Wheeler-Kingshott, Altmann, Price, Chu, Leeson, Lobo, Barker, Barnes, Joyce, Ron (bb0095) 2010; 68 Keshavan, Haas, Kahn, Aguilar, Dick, Schooler, Sweeney, Pettegrew (bb0115) 1998; 32 Menon (bb0145) 2011; 15 Lui, Deng, Huang, Jiang, Ma, Chen, Zhang, Li, Li, Zou, Tang, Zhou, Mechelli, Collier, Sweeney, Li, Gong (bb0130) 2009; 166 Fan, Shen, Davatzikos (bb0060) 2005; 8 (Pt 1) Dale, Fischl, Sereno (bb0045) 1999; 9 Narr, Toga, Szeszko, Thompson, Woods, Robinson, Sevy, Wang, Schrock, Bilder (bb0155) 2005; 58 Xiao, Lui, Deng, Yao, Zhang, Li, Wu, Xie, He, Huang, Hu, Bi, Li, Gong (bb0245) 2015; 41 Cui, Liu, Guo, Chen, Chen, Xi, Qin, Sun, Li, Xi, Wang, Yin (bb0040) 2017; 283 Ojala, Garriga (bb0165) 2010; 11 Camchong, MacDonald, Bell, Mueller, Lim (bb0025) 2011; 37 Allen, Laroi, McGuire, Aleman (bb0010) 2008; 32 Palaniyappan, Al-Radaideh, Mougin, Gowland, Liddle (bb0180) 2013; 38 Squarcina, Castellani, Bellani, Perlini, Lasalvia, Dusi, Bonetto, Cristofalo, Tosato, Rambaldelli, Alessandrini, Zoccatelli, Pozzi-Mucelli, Lamonaca, Ceccato, Pileggi, Mazzi, Santonastaso, Ruggeri, Brambilla (bb0230) 2017; 145 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bb0050) 2010; 329 Keshavan, Bagwell, Haas, Sweeney, Schooler, Pettegrew (bb0110) 1994; 344 Lui, Li, Deng, Jiang, Wu, Tang, Yue, Huang, Chan, Collier, Meda, Pearlson, Mechelli, Sweeney, Gong (bb0135) 2010; 67 Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bb0075) 2007; 164 Noble (bb0160) 2006; 24 Hu, Zong, Zheng, Pantazatos, Miller, Li, Liao, He, Zhou, Sang, Zhao, Lv, Tang, Mann, Chen (bb0100) 2016; 6 Squarcina, Perlini, Peruzzo, Castellani, Marinelli, Bellani, Rambaldelli, Lasalvia, Tosato, De Santi, Spagnolli, Cerini, Ruggeri, Brambilla (bb0225) 2015; 165 Clark, Mittal, Bernard, Ahmadi, King, Turner (bb0035) 2018; 193 Manoliu, Riedl, Zherdin, Muhlau, Schwerthoffer, Scherr, Peters, Zimmer, Forstl, Bauml, Wohlschlager, Sorg (bb0140) 2014; 40 Peruzzo, Castellani, Perlini, Bellani, Marinelli, Rambaldelli, Lasalvia, Tosato, De Santi, Murino, Ruggeri, Brambilla (bb0195) 2015; 122 Pereira, Mitchell, Botvinick (bb0190) 2009; 45 Yue, Kong, Wang, Li, Tan, Su, Xu (bb0255) 2016; 11 Emsley, Asmal, du Plessis, Chiliza, Phahladira, Kilian (bb0055) 2017; 47 Reis Marques, Taylor, Chaddock, Dell'acqua, Handley, Reinders, Mondelli, Bonaccorso, Diforti, Simmons, David, Murray, Pariante, Kapur, Dazzan (bb0210) 2014; 137 Castellani, Rossato, Murino, Bellani, Rambaldelli, Perlini, Tomelleri, Tansella, Brambilla (bb0030) 2012; 119 Ffytche, Howard, Brammer, David, Woodruff, Williams (bb0070) 1998; 1 Good (bb0085) 2000 Torrey (bb0235) 2007; 97 Rakic (bb0205) 1988; 73 Levitt, Bobrow, Lucia, Srinivasan (bb0125) 2010; 4 Kohavi (bb0120) 1995; Volume 2 Yang, Liu, Sui, Pearlson, Calhoun (bb0250) 2010; 4 White, Joseph, Francis, Liddle (bb0240) 2010; 123 Agarwal, Port, Bazzocchi, Renshaw (bb0005) 2010; 255 Asmal, du Plessis, Vink, Chiliza, Kilian, Emsley (bb0020) 2016 Onitsuka, McCarley, Kuroki, Dickey, Kubicki, Demeo, Frumin, Kikinis, Jolesz, Shenton (bb0170) 2007; 92 Mikolas, Melicher, Skoch, Matejka, Slovakova, Bakstein, Hajek, Spaniel (bb0150) 2016; 46 Hu (10.1016/j.schres.2017.11.037_bb0105) 2017; 33 Rakic (10.1016/j.schres.2017.11.037_bb0205) 1988; 73 Keshavan (10.1016/j.schres.2017.11.037_bb0110) 1994; 344 Armstrong (10.1016/j.schres.2017.11.037_bb0015) 1995; 5 Hu (10.1016/j.schres.2017.11.037_bb0100) 2016; 6 Panizzon (10.1016/j.schres.2017.11.037_bb0185) 2009; 19 Menon (10.1016/j.schres.2017.11.037_bb0145) 2011; 15 Goghari (10.1016/j.schres.2017.11.037_bb0080) 2013; 149 Reis Marques (10.1016/j.schres.2017.11.037_bb0210) 2014; 137 Narr (10.1016/j.schres.2017.11.037_bb0155) 2005; 58 Peruzzo (10.1016/j.schres.2017.11.037_bb0195) 2015; 122 Levitt (10.1016/j.schres.2017.11.037_bb0125) 2010; 4 Onitsuka (10.1016/j.schres.2017.11.037_bb0170) 2007; 92 Noble (10.1016/j.schres.2017.11.037_bb0160) 2006; 24 Castellani (10.1016/j.schres.2017.11.037_bb0030) 2012; 119 Garrity (10.1016/j.schres.2017.11.037_bb0075) 2007; 164 Good (10.1016/j.schres.2017.11.037_bb0085) 2000 Palaniyappan (10.1016/j.schres.2017.11.037_bb0175) 2011; 69 Squarcina (10.1016/j.schres.2017.11.037_bb0225) 2015; 165 Cui (10.1016/j.schres.2017.11.037_bb0040) 2017; 283 Pohl (10.1016/j.schres.2017.11.037_bb0200) 2009 Asmal (10.1016/j.schres.2017.11.037_bb0020) 2016 Shenton (10.1016/j.schres.2017.11.037_bb0220) 2010; 12 Squarcina (10.1016/j.schres.2017.11.037_bb0230) 2017; 145 White (10.1016/j.schres.2017.11.037_bb0240) 2010; 123 Torrey (10.1016/j.schres.2017.11.037_bb0235) 2007; 97 Dosenbach (10.1016/j.schres.2017.11.037_bb0050) 2010; 329 Yang (10.1016/j.schres.2017.11.037_bb0250) 2010; 4 Emsley (10.1016/j.schres.2017.11.037_bb0055) 2017; 47 Agarwal (10.1016/j.schres.2017.11.037_bb0005) 2010; 255 Allen (10.1016/j.schres.2017.11.037_bb0010) 2008; 32 Camchong (10.1016/j.schres.2017.11.037_bb0025) 2011; 37 Xiao (10.1016/j.schres.2017.11.037_bb0245) 2015; 41 Fan (10.1016/j.schres.2017.11.037_bb0060) 2005; 8 (Pt 1) Yue (10.1016/j.schres.2017.11.037_bb0255) 2016; 11 Mikolas (10.1016/j.schres.2017.11.037_bb0150) 2016; 46 Ffytche (10.1016/j.schres.2017.11.037_bb0070) 1998; 1 Fan (10.1016/j.schres.2017.11.037_bb0065) 2011; 56 Kohavi (10.1016/j.schres.2017.11.037_bb0120) 1995; Volume 2 Dale (10.1016/j.schres.2017.11.037_bb0045) 1999; 9 Zarogianni (10.1016/j.schres.2017.11.037_bb0260) 2013; 3 Keshavan (10.1016/j.schres.2017.11.037_bb0115) 1998; 32 Manoliu (10.1016/j.schres.2017.11.037_bb0140) 2014; 40 Gutierrez-Galve (10.1016/j.schres.2017.11.037_bb0095) 2010; 68 Ojala (10.1016/j.schres.2017.11.037_bb0165) 2010; 11 Guo (10.1016/j.schres.2017.11.037_bb0090) 2017; 96 Lui (10.1016/j.schres.2017.11.037_bb0135) 2010; 67 Ren (10.1016/j.schres.2017.11.037_bb0215) 2013; 170 Clark (10.1016/j.schres.2017.11.037_bb0035) 2018; 193 Palaniyappan (10.1016/j.schres.2017.11.037_bb0180) 2013; 38 Lui (10.1016/j.schres.2017.11.037_bb0130) 2009; 166 Pereira (10.1016/j.schres.2017.11.037_bb0190) 2009; 45 |
References_xml | – volume: 69 start-page: 974 year: 2011 end-page: 979 ident: bb0175 article-title: Folding of the prefrontal cortex in schizophrenia: regional differences in gyrification publication-title: Biol. Psychiatry – volume: 12 start-page: 317 year: 2010 end-page: 332 ident: bb0220 article-title: Structural neuroimaging in schizophrenia: from methods to insights to treatments publication-title: Dialogues Clin. Neurosci. – volume: 4 start-page: 192 year: 2010 ident: bb0250 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. – volume: 33 start-page: 73 year: 2017 end-page: 84 ident: bb0105 article-title: A review of the functional and anatomical default mode network in schizophrenia publication-title: Neurosci. Bull. – volume: 193 start-page: 244 year: 2018 end-page: 250 ident: bb0035 article-title: Stronger default mode network connectivity is associated with poorer clinical insight in youth at ultra high-risk for psychotic disorders publication-title: Schizophr. Res. – volume: 5 start-page: 56 year: 1995 end-page: 63 ident: bb0015 article-title: The ontogeny of human gyrification publication-title: Cereb. Cortex – year: 2016 ident: bb0020 article-title: Symptom attribution and frontal cortical thickness in first-episode schizophrenia publication-title: Early Intervention in Psychiatry – volume: 38 start-page: 1808 year: 2013 end-page: 1815 ident: bb0180 article-title: Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia publication-title: Neuropsychopharmacology – volume: 47 start-page: 2187 year: 2017 end-page: 2196 ident: bb0055 article-title: Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment publication-title: Psychol. Med. – volume: 19 start-page: 2728 year: 2009 end-page: 2735 ident: bb0185 article-title: Distinct genetic influences on cortical surface area and cortical thickness publication-title: Cereb. Cortex – volume: 344 start-page: 1434 year: 1994 ident: bb0110 article-title: Changes in caudate volume with neuroleptic treatment publication-title: Lancet (London, England) – volume: 73 start-page: 15 year: 1988 end-page: 37 ident: bb0205 article-title: Defects of neuronal migration and the pathogenesis of cortical malformations publication-title: Prog. Brain Res. – volume: 15 start-page: 483 year: 2011 end-page: 506 ident: bb0145 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cogn. Sci. – volume: 11 start-page: 1833 year: 2010 end-page: 1863 ident: bb0165 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – year: 2000 ident: bb0085 article-title: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses – volume: 164 start-page: 450 year: 2007 end-page: 457 ident: bb0075 article-title: Aberrant "default mode" functional connectivity in schizophrenia publication-title: Am. J. Psychiatry – volume: 119 start-page: 395 year: 2012 end-page: 404 ident: bb0030 article-title: Classification of schizophrenia using feature-based morphometry publication-title: J. Neural Transm. – volume: 4 start-page: 243 year: 2010 end-page: 281 ident: bb0125 article-title: A selective review of volumetric and morphometric imaging in schizophrenia publication-title: Curr. Top. Behav. Neurosci. – volume: 283 start-page: 810 year: 2017 end-page: 819 ident: bb0040 article-title: Disturbed brain activity in resting-state networks of patients with first-episode schizophrenia with auditory verbal hallucinations: a cross-sectional functional MR imaging study publication-title: Radiology – volume: 123 start-page: 105 year: 2010 end-page: 115 ident: bb0240 article-title: Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia publication-title: Schizophr. Res. – volume: 45 start-page: S199 year: 2009 end-page: 209 ident: bb0190 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage – volume: 165 start-page: 38 year: 2015 end-page: 44 ident: bb0225 article-title: The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis publication-title: Schizophr. Res. – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0045 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 145 start-page: 238 year: 2017 end-page: 245 ident: bb0230 article-title: Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques publication-title: NeuroImage – volume: Volume 2 start-page: 1137 year: 1995 end-page: 1143 ident: bb0120 article-title: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proceedings of the 14th International Joint Conference on Artificial Intelligence – volume: 1 start-page: 738 year: 1998 end-page: 742 ident: bb0070 article-title: The anatomy of conscious vision: an fMRI study of visual hallucinations publication-title: Nat. Neurosci. – volume: 68 start-page: 51 year: 2010 end-page: 60 ident: bb0095 article-title: Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis publication-title: Biol. Psychiatry – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bb0050 article-title: Prediction of individual brain maturity using fMRI publication-title: Science (New York, N.Y.) – volume: 46 start-page: 2695 year: 2016 end-page: 2704 ident: bb0150 article-title: Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study publication-title: Psychol. Med. – volume: 122 start-page: 897 year: 2015 end-page: 905 ident: bb0195 article-title: Classification of first-episode psychosis: a multi-modal multi-feature approach integrating structural and diffusion imaging publication-title: J. Neural Transm. – volume: 96 year: 2017 ident: bb0090 article-title: Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case-control and traditional case-control designs publication-title: Medicine (Baltimore) – volume: 32 start-page: 175 year: 2008 end-page: 191 ident: bb0010 article-title: The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations publication-title: Neurosci. Biobehav. Rev. – volume: 255 start-page: 23 year: 2010 end-page: 41 ident: bb0005 article-title: Update on the use of MR for assessment and diagnosis of psychiatric diseases publication-title: Radiology – volume: 170 start-page: 1308 year: 2013 end-page: 1316 ident: bb0215 article-title: Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia publication-title: Am. J. Psychiatry – volume: 67 start-page: 783 year: 2010 end-page: 792 ident: bb0135 article-title: Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging publication-title: Arch. Gen. Psychiatry – volume: 97 start-page: 215 year: 2007 end-page: 225 ident: bb0235 article-title: Schizophrenia and the inferior parietal lobule publication-title: Schizophr. Res. – volume: 166 start-page: 196 year: 2009 end-page: 205 ident: bb0130 article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study publication-title: Am. J. Psychiatry – volume: 92 start-page: 197 year: 2007 end-page: 206 ident: bb0170 article-title: Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study publication-title: Schizophr. Res. – volume: 32 start-page: 161 year: 1998 end-page: 167 ident: bb0115 article-title: Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? publication-title: J. Psychiatr. Res. – volume: 6 year: 2016 ident: bb0100 article-title: Short-term effects of risperidone monotherapy on spontaneous brain activity in first-episode treatment-naive schizophrenia patients: a longitudinal fMRI study publication-title: Sci. Rep. – start-page: 300 year: 2009 end-page: 313 ident: bb0200 article-title: A unified framework for MR based disease classification publication-title: Information Processing in Medical Imaging: Proceedings of the … Conference – volume: 58 start-page: 32 year: 2005 end-page: 40 ident: bb0155 article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia publication-title: Biol. Psychiatry – volume: 11 year: 2016 ident: bb0255 article-title: Regional abnormality of grey matter in schizophrenia: effect from the illness or treatment? publication-title: PLoS One – volume: 149 start-page: 149 year: 2013 end-page: 155 ident: bb0080 article-title: Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naive first-episode psychosis patients publication-title: Schizophr. Res. – volume: 137 start-page: 172 year: 2014 end-page: 182 ident: bb0210 article-title: White matter integrity as a predictor of response to treatment in first episode psychosis publication-title: Brain – volume: 41 start-page: 201 year: 2015 end-page: 210 ident: bb0245 article-title: Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia publication-title: Schizophr. Bull. – volume: 40 start-page: 428 year: 2014 end-page: 437 ident: bb0140 article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia publication-title: Schizophr. Bull. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: bb0160 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. – volume: 8 (Pt 1) start-page: 1 year: 2005 end-page: 8 ident: bb0060 article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM publication-title: Medical Image Computing and Computer-Assisted Intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 3 start-page: 279 year: 2013 end-page: 289 ident: bb0260 article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level publication-title: NeuroImage – volume: 37 start-page: 640 year: 2011 end-page: 650 ident: bb0025 article-title: Altered functional and anatomical connectivity in schizophrenia publication-title: Schizophr. Bull. – volume: 56 start-page: 2058 year: 2011 end-page: 2067 ident: bb0065 article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold publication-title: NeuroImage – volume: 97 start-page: 215 issue: 1–3 year: 2007 ident: 10.1016/j.schres.2017.11.037_bb0235 article-title: Schizophrenia and the inferior parietal lobule publication-title: Schizophr. Res. doi: 10.1016/j.schres.2007.08.023 – volume: 283 start-page: 810 issue: 3 year: 2017 ident: 10.1016/j.schres.2017.11.037_bb0040 article-title: Disturbed brain activity in resting-state networks of patients with first-episode schizophrenia with auditory verbal hallucinations: a cross-sectional functional MR imaging study publication-title: Radiology doi: 10.1148/radiol.2016160938 – volume: 92 start-page: 197 issue: 1–3 year: 2007 ident: 10.1016/j.schres.2017.11.037_bb0170 article-title: Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study publication-title: Schizophr. Res. doi: 10.1016/j.schres.2007.01.027 – volume: 123 start-page: 105 issue: 2–3 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0240 article-title: Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia publication-title: Schizophr. Res. doi: 10.1016/j.schres.2010.07.020 – volume: 15 start-page: 483 issue: 10 year: 2011 ident: 10.1016/j.schres.2017.11.037_bb0145 article-title: Large-scale brain networks and psychopathology: a unifying triple network model publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2011.08.003 – volume: 6 year: 2016 ident: 10.1016/j.schres.2017.11.037_bb0100 article-title: Short-term effects of risperidone monotherapy on spontaneous brain activity in first-episode treatment-naive schizophrenia patients: a longitudinal fMRI study publication-title: Sci. Rep. – volume: 119 start-page: 395 issue: 3 year: 2012 ident: 10.1016/j.schres.2017.11.037_bb0030 article-title: Classification of schizophrenia using feature-based morphometry publication-title: J. Neural Transm. doi: 10.1007/s00702-011-0693-7 – volume: 329 start-page: 1358 issue: 5997 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0050 article-title: Prediction of individual brain maturity using fMRI publication-title: Science (New York, N.Y.) doi: 10.1126/science.1194144 – volume: 32 start-page: 161 issue: 3–4 year: 1998 ident: 10.1016/j.schres.2017.11.037_bb0115 article-title: Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? publication-title: J. Psychiatr. Res. doi: 10.1016/S0022-3956(97)00038-1 – volume: 166 start-page: 196 issue: 2 year: 2009 ident: 10.1016/j.schres.2017.11.037_bb0130 article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2008.08020183 – volume: 38 start-page: 1808 issue: 9 year: 2013 ident: 10.1016/j.schres.2017.11.037_bb0180 article-title: Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.80 – volume: 40 start-page: 428 issue: 2 year: 2014 ident: 10.1016/j.schres.2017.11.037_bb0140 article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbt037 – volume: 96 issue: 13 year: 2017 ident: 10.1016/j.schres.2017.11.037_bb0090 article-title: Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case-control and traditional case-control designs publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000006223 – volume: 165 start-page: 38 issue: 1 year: 2015 ident: 10.1016/j.schres.2017.11.037_bb0225 article-title: The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis publication-title: Schizophr. Res. doi: 10.1016/j.schres.2015.03.017 – year: 2016 ident: 10.1016/j.schres.2017.11.037_bb0020 article-title: Symptom attribution and frontal cortical thickness in first-episode schizophrenia – year: 2000 ident: 10.1016/j.schres.2017.11.037_bb0085 – volume: 11 issue: 1 year: 2016 ident: 10.1016/j.schres.2017.11.037_bb0255 article-title: Regional abnormality of grey matter in schizophrenia: effect from the illness or treatment? publication-title: PLoS One doi: 10.1371/journal.pone.0147204 – volume: 37 start-page: 640 issue: 3 year: 2011 ident: 10.1016/j.schres.2017.11.037_bb0025 article-title: Altered functional and anatomical connectivity in schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbp131 – volume: 344 start-page: 1434 issue: 8934 year: 1994 ident: 10.1016/j.schres.2017.11.037_bb0110 article-title: Changes in caudate volume with neuroleptic treatment publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(94)90599-1 – volume: 19 start-page: 2728 issue: 11 year: 2009 ident: 10.1016/j.schres.2017.11.037_bb0185 article-title: Distinct genetic influences on cortical surface area and cortical thickness publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp026 – volume: 145 start-page: 238 issue: Pt B year: 2017 ident: 10.1016/j.schres.2017.11.037_bb0230 article-title: Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.007 – volume: 46 start-page: 2695 issue: 13 year: 2016 ident: 10.1016/j.schres.2017.11.037_bb0150 article-title: Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study publication-title: Psychol. Med. doi: 10.1017/S0033291716000878 – volume: 56 start-page: 2058 issue: 4 year: 2011 ident: 10.1016/j.schres.2017.11.037_bb0065 article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.051 – volume: 58 start-page: 32 issue: 1 year: 2005 ident: 10.1016/j.schres.2017.11.037_bb0155 article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2005.03.043 – start-page: 300 year: 2009 ident: 10.1016/j.schres.2017.11.037_bb0200 article-title: A unified framework for MR based disease classification – volume: 5 start-page: 56 issue: 1 year: 1995 ident: 10.1016/j.schres.2017.11.037_bb0015 article-title: The ontogeny of human gyrification publication-title: Cereb. Cortex doi: 10.1093/cercor/5.1.56 – volume: 68 start-page: 51 issue: 1 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0095 article-title: Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.03.019 – volume: 3 start-page: 279 year: 2013 ident: 10.1016/j.schres.2017.11.037_bb0260 article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level publication-title: NeuroImage doi: 10.1016/j.nicl.2013.09.003 – volume: 170 start-page: 1308 issue: 11 year: 2013 ident: 10.1016/j.schres.2017.11.037_bb0215 article-title: Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2013.12091148 – volume: 4 start-page: 243 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0125 article-title: A selective review of volumetric and morphometric imaging in schizophrenia publication-title: Curr. Top. Behav. Neurosci. doi: 10.1007/7854_2010_53 – volume: 9 start-page: 179 issue: 2 year: 1999 ident: 10.1016/j.schres.2017.11.037_bb0045 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 193 start-page: 244 year: 2018 ident: 10.1016/j.schres.2017.11.037_bb0035 article-title: Stronger default mode network connectivity is associated with poorer clinical insight in youth at ultra high-risk for psychotic disorders publication-title: Schizophr. Res. doi: 10.1016/j.schres.2017.06.043 – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.schres.2017.11.037_bb0160 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 164 start-page: 450 issue: 3 year: 2007 ident: 10.1016/j.schres.2017.11.037_bb0075 article-title: Aberrant "default mode" functional connectivity in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/ajp.2007.164.3.450 – volume: 4 start-page: 192 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0250 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00192 – volume: 137 start-page: 172 issue: Pt 1 year: 2014 ident: 10.1016/j.schres.2017.11.037_bb0210 article-title: White matter integrity as a predictor of response to treatment in first episode psychosis publication-title: Brain doi: 10.1093/brain/awt310 – volume: 45 start-page: S199 issue: 1 Suppl year: 2009 ident: 10.1016/j.schres.2017.11.037_bb0190 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 47 start-page: 2187 issue: 12 year: 2017 ident: 10.1016/j.schres.2017.11.037_bb0055 article-title: Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment publication-title: Psychol. Med. doi: 10.1017/S0033291717000642 – volume: 8 (Pt 1) start-page: 1 year: 2005 ident: 10.1016/j.schres.2017.11.037_bb0060 article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM – volume: 122 start-page: 897 issue: 6 year: 2015 ident: 10.1016/j.schres.2017.11.037_bb0195 article-title: Classification of first-episode psychosis: a multi-modal multi-feature approach integrating structural and diffusion imaging publication-title: J. Neural Transm. doi: 10.1007/s00702-014-1324-x – volume: 11 start-page: 1833 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0165 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – volume: 73 start-page: 15 year: 1988 ident: 10.1016/j.schres.2017.11.037_bb0205 article-title: Defects of neuronal migration and the pathogenesis of cortical malformations publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(08)60494-X – volume: 67 start-page: 783 issue: 8 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0135 article-title: Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2010.84 – volume: Volume 2 start-page: 1137 year: 1995 ident: 10.1016/j.schres.2017.11.037_bb0120 – volume: 149 start-page: 149 issue: 1–3 year: 2013 ident: 10.1016/j.schres.2017.11.037_bb0080 article-title: Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naive first-episode psychosis patients publication-title: Schizophr. Res. doi: 10.1016/j.schres.2013.06.025 – volume: 32 start-page: 175 issue: 1 year: 2008 ident: 10.1016/j.schres.2017.11.037_bb0010 article-title: The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2007.07.012 – volume: 12 start-page: 317 issue: 3 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0220 article-title: Structural neuroimaging in schizophrenia: from methods to insights to treatments publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2010.12.3/mshenton – volume: 1 start-page: 738 issue: 8 year: 1998 ident: 10.1016/j.schres.2017.11.037_bb0070 article-title: The anatomy of conscious vision: an fMRI study of visual hallucinations publication-title: Nat. Neurosci. doi: 10.1038/3738 – volume: 41 start-page: 201 issue: 1 year: 2015 ident: 10.1016/j.schres.2017.11.037_bb0245 article-title: Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbt177 – volume: 33 start-page: 73 issue: 1 year: 2017 ident: 10.1016/j.schres.2017.11.037_bb0105 article-title: A review of the functional and anatomical default mode network in schizophrenia publication-title: Neurosci. Bull. doi: 10.1007/s12264-016-0090-1 – volume: 69 start-page: 974 issue: 10 year: 2011 ident: 10.1016/j.schres.2017.11.037_bb0175 article-title: Folding of the prefrontal cortex in schizophrenia: regional differences in gyrification publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.12.012 – volume: 255 start-page: 23 issue: 1 year: 2010 ident: 10.1016/j.schres.2017.11.037_bb0005 article-title: Update on the use of MR for assessment and diagnosis of psychiatric diseases publication-title: Radiology doi: 10.1148/radiol.09090339 |
SSID | ssj0001507 |
Score | 2.5147426 |
Snippet | Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely... AbstractAlthough regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Classification Cortical thickness Psychiatric/Mental Health Schizophrenia Support vector machine (SVM) Surface area |
Title | Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0920996417307351 https://www.clinicalkey.es/playcontent/1-s2.0-S0920996417307351 https://dx.doi.org/10.1016/j.schres.2017.11.037 https://www.ncbi.nlm.nih.gov/pubmed/29208422 https://www.proquest.com/docview/1973456063 |
Volume | 214 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQvfRSFRXa7Q8yUq9ms7HjrI8IFS2t4FCKxM3yL9qqza4aQOqFe5-mD9EX64ztUBAgUI-JMrLjGc98Tr6ZIeQ9BEmA4apiSjnJRFCOWRMdiypCvDLe5mLVB4dydiw-njQnK2R3yIVBWmXx_dmnJ29d7ozLao6X8_n4qFKY9inFpEU7TWnUQrRo5duX_2geCHhSvb0a5yPFkD6XOF5wgIRDLRK82m2s5Ynd0O8OT_fBzxSG9p6TZwU_0p08xTWyEroX5Bf25gQcTS_SN3j6PTEkA8MQ5alDgIyMoKQEuog0zgHz0bCc9wsfqP9xfso68-f3RaD9dQ4eLUVXe2o6T3PG5E9ayO09Rcr8Kc0FaLF4Bz34vL9Ojvc-fNmdsdJjgbmGyzNm_VTaKBUAHc9dADAIEMI7b0BJDWxJB9HMyGg5t1Wog-dNdNxNpPfCxthGvkFWu0UXXhEaANtUPoAPAVggpJ0GHhQ3cAA3xglvR4QPS6tdKUCOfTC-6YFp9lVnhWhUCJxNNChkRNiV1DIX4Hjg-WbQmh6SS8EdaogQD8i1d8mFvuzpXk90X-tK37K765I3TPcRY24NZqVhV-OvGtOFxTmMpVoO0Bbw44i8zPZ29fbYX2wq6vr1f4_7hjyFK5VZOW_JKhhKeAfY6sxups2zSZ7s7H-aHf4Fo4EoZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbQciiXqlUpbFuokbiazcaJsz4iVLRb2D1QkLhZ_kVb0eyqAaQ-Qp-mD9EXYyZ2VqBSUfWaxHKSGc98Tr75hpB9SJIAw2XGpLSCFV5aZnSwLMgA-Uo7E8WqpzMxvig-X5aXa-Soq4VBWmWK_TGmt9E6HRmktzlYzueDL5nEsk9RDCv0UyyjXkd1qrJH1g8nJ-PZKiAj5mkl93K8JVF0FXQtzQv2kLCvRY5XdYByntgQ_ekM9TcE2mai41fkZYKQ9DDe5Wuy5us35Ce25wQoTe_az_D0W0uS9AyzlKMWMTKSglo70EWgYQ6wj_rlvFk4T9332ytW69-_7jxtHtLwaNJdbaiuHY1Fkz9o4rc3FFnzVzRq0KJ-B52eTTbJxfGn86MxS20WmC25uGHGjYQJQgLWcdx6wIOAIpx1GuxUwqq0kNC0CIZzk_ncO14Gy-1QOFeYEKrA35Jevaj9NqEe4E3mPIQRQAaFMCPPveQa9uBa28KZPuHdq1U2aZBjK4xr1ZHNvqpoEIUGge2JAoP0CVuNWkYNjmeuLzurqa6-FCKigiTxzLjqqXG-Scu6UUPV5CpTf7jew5GPvPcf5tzr3ErBwsa_Nbr2i1uYS1Yc0C1AyD7Ziv62enpsMTYq8vzdf8_7kbwYn09P1elkdvKebMAZGUk6H0gPnMbvANS6MbtpKd0DqIIrFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine-based+classification+of+first+episode+drug-na%C3%AFve+schizophrenia+patients+and+healthy+controls+using+structural+MRI&rft.jtitle=Schizophrenia+research&rft.au=Xiao%2C+Yuan&rft.au=Yan%2C+Zhihan&rft.au=Zhao%2C+Youjin&rft.au=Tao%2C+Bo&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0920-9964&rft.eissn=1573-2509&rft.volume=214&rft.spage=11&rft.epage=17&rft_id=info:doi/10.1016%2Fj.schres.2017.11.037&rft.externalDocID=S0920996417307351 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09209964%2FS0920996419X00110%2Fcov150h.gif |