Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI

Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy c...

Full description

Saved in:
Bibliographic Details
Published inSchizophrenia research Vol. 214; pp. 11 - 17
Main Authors Xiao, Yuan, Yan, Zhihan, Zhao, Youjin, Tao, Bo, Sun, Huaiqiang, Li, Fei, Yao, Li, Zhang, Wenjing, Chandan, Shah, Liu, Jieke, Gong, Qiyong, Sweeney, John A., Lui, Su
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.
AbstractList Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.
AbstractAlthough regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness ( p< 0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.
Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely unanswered is whether the complex and subtle deficits revealed by MRI could be used as objective biomarkers to discriminate patients from healthy controls individually. To address this question, a total of 326 right-handed participants were recruited, including 163 drug-naïve first-episode schizophrenia (FES) patients and 163 demographically matched healthy controls. High-resolution anatomic data were acquired from all subjects and processed via Freesurfer software to obtain cortical thickness and surface area measurements. Subsequently, the Support Vector Machine (SVM) was used to explore the potential utility for cortical thickness and surface area measurements in the differentiation of individual patients and healthy controls. The accuracy of correct classification of patients and controls was 85.0% (specificity 87.0%, sensitivity 83.0%) for surface area and 81.8% (specificity 85.0%, sensitivity 76.9%) for cortical thickness (p<0.001 after permutation testing). Regions contributing to classification accuracy mainly included the gray matter in default mode, central executive, salience, and visual networks. Current findings, in a sample of never-treated FES patients, suggest that the patterns of illness-related gray matter changes has potential as a biomarker for identifying structural brain alterations in individuals with schizophrenia. Future prospective studies are needed to evaluate the utility of imaging biomarkers for research and potentially for clinical purpose.
Author Tao, Bo
Yan, Zhihan
Xiao, Yuan
Gong, Qiyong
Chandan, Shah
Zhao, Youjin
Lui, Su
Zhang, Wenjing
Liu, Jieke
Yao, Li
Sun, Huaiqiang
Li, Fei
Sweeney, John A.
Author_xml – sequence: 1
  givenname: Yuan
  surname: Xiao
  fullname: Xiao, Yuan
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 2
  givenname: Zhihan
  surname: Yan
  fullname: Yan, Zhihan
  organization: Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China
– sequence: 3
  givenname: Youjin
  surname: Zhao
  fullname: Zhao, Youjin
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 4
  givenname: Bo
  surname: Tao
  fullname: Tao, Bo
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 5
  givenname: Huaiqiang
  surname: Sun
  fullname: Sun, Huaiqiang
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 6
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 7
  givenname: Li
  surname: Yao
  fullname: Yao, Li
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 8
  givenname: Wenjing
  surname: Zhang
  fullname: Zhang, Wenjing
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 9
  givenname: Shah
  surname: Chandan
  fullname: Chandan, Shah
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 10
  givenname: Jieke
  surname: Liu
  fullname: Liu, Jieke
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 11
  givenname: Qiyong
  surname: Gong
  fullname: Gong, Qiyong
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 12
  givenname: John A.
  surname: Sweeney
  fullname: Sweeney, John A.
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
– sequence: 13
  givenname: Su
  orcidid: 0000-0003-3541-1769
  surname: Lui
  fullname: Lui, Su
  email: lusuwcums@tom.com
  organization: Department of Radiology, the Center for Medical Imaging, West China Hospital of Sichuan University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29208422$$D View this record in MEDLINE/PubMed
BookMark eNqVkt9qFDEUxoNU7Lb6BiK59GbW_JlJOiJCKf4pVASr1yGTnHSzziZjkllY38Cn8SF8MbNueyNI8SoX5_u-HL7fOUFHIQZA6CklS0qoeLFeZrNKkJeMULmkdEm4fIAWtJO8YR3pj9CC9Iw0fS_aY3SS85oQQjsiH6FjVgdnLWML9ON6nqaYCt6CKTHhjTYrH6AZdAaLzahz9s4bXXwMODrsfMoFw-RztIBtmm-aoH_93AKu2_jvcaorBa_xVB0QSsY6WLwCPZbVDpsYSopjxnP24QbnkmZT5qRH_OHT5WP00Okxw5Pb9xR9efvm88X75urju8uL86vGdFyUZrBnYnCiF5RZbkDKVnbEGqsHybqBEEOE1MINnA8EGFjeOcMNFda2g3PS8VP0_JA7pfhthlzUxmcD46gDxDkr2kvedoIIXqXPbqXzsAGrpuQ3Ou3UXX1V8PIgMCnmnMAp48ufrkrSflSUqD0rtVYHVmrPSlGqKqtqbv8y3-XfY3t9sEEtaeshVVGt2oD1qTJUNvr_DTCjD5Xx-BV2kNdxTqECUFRlpoi63l_R_oio5ETyjtaAV_8OuP__3y473kY
CitedBy_id crossref_primary_10_1016_j_neulet_2022_136566
crossref_primary_10_1038_s41386_024_02021_y
crossref_primary_10_1002_mpr_1818
crossref_primary_10_1038_s41398_022_01939_5
crossref_primary_10_3389_fnins_2021_785595
crossref_primary_10_1093_schbul_sbab110
crossref_primary_10_1016_j_psychres_2023_115122
crossref_primary_10_1016_j_schres_2023_01_014
crossref_primary_10_1007_s12264_024_01214_1
crossref_primary_10_1017_S0033291720001683
crossref_primary_10_1371_journal_pone_0239615
crossref_primary_10_1016_j_schres_2019_08_032
crossref_primary_10_1007_s12264_025_01385_5
crossref_primary_10_3389_fnins_2021_697168
crossref_primary_10_1016_j_pscychresns_2023_111696
crossref_primary_10_1038_s41598_025_93912_7
crossref_primary_10_1016_j_ajp_2020_101977
crossref_primary_10_1038_s41380_023_02195_9
crossref_primary_10_3389_fpsyt_2020_542394
crossref_primary_10_1111_acps_12964
crossref_primary_10_1093_schbul_sbae175
crossref_primary_10_3389_fpsyt_2022_1075564
crossref_primary_10_3389_fpsyt_2020_00016
crossref_primary_10_1016_j_bionps_2020_100029
crossref_primary_10_1186_s12888_020_02886_5
crossref_primary_10_1038_s41598_022_06651_4
crossref_primary_10_1155_2021_9963824
crossref_primary_10_1155_2020_6405930
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_ebiom_2021_103749
crossref_primary_10_1007_s42979_023_01947_2
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1016_j_clinph_2021_06_030
crossref_primary_10_1016_j_heliyon_2022_e12276
crossref_primary_10_3390_app12052571
crossref_primary_10_1002_cpe_7512
crossref_primary_10_3390_brainsci10080562
crossref_primary_10_1017_S0033291718003781
crossref_primary_10_1186_s12868_023_00841_0
crossref_primary_10_5498_wjp_v14_i6_804
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1093_schbul_sbac094
crossref_primary_10_1016_j_nicl_2021_102860
crossref_primary_10_1093_schbul_sbae110
crossref_primary_10_32604_iasc_2021_015049
crossref_primary_10_1093_schizbullopen_sgac034
crossref_primary_10_1007_s13365_020_00930_4
crossref_primary_10_1093_schbul_sby189
crossref_primary_10_2174_2211555204666220131112639
crossref_primary_10_3389_fnhum_2021_736155
Cites_doi 10.1016/j.schres.2007.08.023
10.1148/radiol.2016160938
10.1016/j.schres.2007.01.027
10.1016/j.schres.2010.07.020
10.1016/j.tics.2011.08.003
10.1007/s00702-011-0693-7
10.1126/science.1194144
10.1016/S0022-3956(97)00038-1
10.1176/appi.ajp.2008.08020183
10.1038/npp.2013.80
10.1093/schbul/sbt037
10.1097/MD.0000000000006223
10.1016/j.schres.2015.03.017
10.1371/journal.pone.0147204
10.1093/schbul/sbp131
10.1016/S0140-6736(94)90599-1
10.1093/cercor/bhp026
10.1016/j.neuroimage.2015.12.007
10.1017/S0033291716000878
10.1016/j.neuroimage.2011.03.051
10.1016/j.biopsych.2005.03.043
10.1093/cercor/5.1.56
10.1016/j.biopsych.2010.03.019
10.1016/j.nicl.2013.09.003
10.1176/appi.ajp.2013.12091148
10.1007/7854_2010_53
10.1006/nimg.1998.0395
10.1016/j.schres.2017.06.043
10.1038/nbt1206-1565
10.1176/ajp.2007.164.3.450
10.3389/fnhum.2010.00192
10.1093/brain/awt310
10.1016/j.neuroimage.2008.11.007
10.1017/S0033291717000642
10.1007/s00702-014-1324-x
10.1016/S0079-6123(08)60494-X
10.1001/archgenpsychiatry.2010.84
10.1016/j.schres.2013.06.025
10.1016/j.neubiorev.2007.07.012
10.31887/DCNS.2010.12.3/mshenton
10.1038/3738
10.1093/schbul/sbt177
10.1007/s12264-016-0090-1
10.1016/j.biopsych.2010.12.012
10.1148/radiol.09090339
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.schres.2017.11.037
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1573-2509
EndPage 17
ExternalDocumentID 29208422
10_1016_j_schres_2017_11_037
S0920996417307351
1_s2_0_S0920996417307351
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
4H-
53G
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMQ
HMW
HVGLF
HZ~
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPS
SSB
SSH
SSN
SSY
SSZ
T5K
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AFYLN
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c536t-bd86bf69612d3ce774750dcdab725b00c067a6fb33b0e2ed35fc3c16dd4bff7f3
IEDL.DBID .~1
ISSN 0920-9964
1573-2509
IngestDate Fri Jul 11 06:07:51 EDT 2025
Thu Apr 03 07:05:30 EDT 2025
Tue Jul 01 03:58:50 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Fri Feb 23 02:49:29 EST 2024
Sun Feb 23 10:19:47 EST 2025
Tue Aug 26 17:09:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine (SVM)
Cortical thickness
ROC
Classification
Schizophrenia
SVM
Surface area
AUC
area under curve
support vector machine
receiver operating characteristic
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-bd86bf69612d3ce774750dcdab725b00c067a6fb33b0e2ed35fc3c16dd4bff7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3541-1769
PMID 29208422
PQID 1973456063
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1973456063
pubmed_primary_29208422
crossref_citationtrail_10_1016_j_schres_2017_11_037
crossref_primary_10_1016_j_schres_2017_11_037
elsevier_sciencedirect_doi_10_1016_j_schres_2017_11_037
elsevier_clinicalkeyesjournals_1_s2_0_S0920996417307351
elsevier_clinicalkey_doi_10_1016_j_schres_2017_11_037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Schizophrenia research
PublicationTitleAlternate Schizophr Res
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Panizzon, Fennema-Notestine, Eyler, Jernigan, Prom-Wormley, Neale, Jacobson, Lyons, Grant, Franz, Xian, Tsuang, Fischl, Seidman, Dale, Kremen (bb0185) 2009; 19
Guo, Liu, Chen, Wu, Li, Zhang, Chen, Zhao (bb0090) 2017; 96
Ren, Lui, Deng, Li, Li, Huang, Wang, Li, Sweeney, Gong (bb0215) 2013; 170
Palaniyappan, Mallikarjun, Joseph, White, Liddle (bb0175) 2011; 69
Goghari, Smith, Honer, Kopala, Thornton, Su, Macewan, Lang (bb0080) 2013; 149
Hu, Zong, Mann, Zheng, Liao, Li, He, Chen, Tang (bb0105) 2017; 33
Zarogianni, Moorhead, Lawrie (bb0260) 2013; 3
Armstrong, Schleicher, Omran, Curtis, Zilles (bb0015) 1995; 5
Fan, Liu, Wu, Hao, Liu, Liu, Jiang (bb0065) 2011; 56
Pohl, Sabuncu (bb0200) 2009
Shenton, Whitford, Kubicki (bb0220) 2010; 12
Gutierrez-Galve, Wheeler-Kingshott, Altmann, Price, Chu, Leeson, Lobo, Barker, Barnes, Joyce, Ron (bb0095) 2010; 68
Keshavan, Haas, Kahn, Aguilar, Dick, Schooler, Sweeney, Pettegrew (bb0115) 1998; 32
Menon (bb0145) 2011; 15
Lui, Deng, Huang, Jiang, Ma, Chen, Zhang, Li, Li, Zou, Tang, Zhou, Mechelli, Collier, Sweeney, Li, Gong (bb0130) 2009; 166
Fan, Shen, Davatzikos (bb0060) 2005; 8 (Pt 1)
Dale, Fischl, Sereno (bb0045) 1999; 9
Narr, Toga, Szeszko, Thompson, Woods, Robinson, Sevy, Wang, Schrock, Bilder (bb0155) 2005; 58
Xiao, Lui, Deng, Yao, Zhang, Li, Wu, Xie, He, Huang, Hu, Bi, Li, Gong (bb0245) 2015; 41
Cui, Liu, Guo, Chen, Chen, Xi, Qin, Sun, Li, Xi, Wang, Yin (bb0040) 2017; 283
Ojala, Garriga (bb0165) 2010; 11
Camchong, MacDonald, Bell, Mueller, Lim (bb0025) 2011; 37
Allen, Laroi, McGuire, Aleman (bb0010) 2008; 32
Palaniyappan, Al-Radaideh, Mougin, Gowland, Liddle (bb0180) 2013; 38
Squarcina, Castellani, Bellani, Perlini, Lasalvia, Dusi, Bonetto, Cristofalo, Tosato, Rambaldelli, Alessandrini, Zoccatelli, Pozzi-Mucelli, Lamonaca, Ceccato, Pileggi, Mazzi, Santonastaso, Ruggeri, Brambilla (bb0230) 2017; 145
Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bb0050) 2010; 329
Keshavan, Bagwell, Haas, Sweeney, Schooler, Pettegrew (bb0110) 1994; 344
Lui, Li, Deng, Jiang, Wu, Tang, Yue, Huang, Chan, Collier, Meda, Pearlson, Mechelli, Sweeney, Gong (bb0135) 2010; 67
Garrity, Pearlson, McKiernan, Lloyd, Kiehl, Calhoun (bb0075) 2007; 164
Noble (bb0160) 2006; 24
Hu, Zong, Zheng, Pantazatos, Miller, Li, Liao, He, Zhou, Sang, Zhao, Lv, Tang, Mann, Chen (bb0100) 2016; 6
Squarcina, Perlini, Peruzzo, Castellani, Marinelli, Bellani, Rambaldelli, Lasalvia, Tosato, De Santi, Spagnolli, Cerini, Ruggeri, Brambilla (bb0225) 2015; 165
Clark, Mittal, Bernard, Ahmadi, King, Turner (bb0035) 2018; 193
Manoliu, Riedl, Zherdin, Muhlau, Schwerthoffer, Scherr, Peters, Zimmer, Forstl, Bauml, Wohlschlager, Sorg (bb0140) 2014; 40
Peruzzo, Castellani, Perlini, Bellani, Marinelli, Rambaldelli, Lasalvia, Tosato, De Santi, Murino, Ruggeri, Brambilla (bb0195) 2015; 122
Pereira, Mitchell, Botvinick (bb0190) 2009; 45
Yue, Kong, Wang, Li, Tan, Su, Xu (bb0255) 2016; 11
Emsley, Asmal, du Plessis, Chiliza, Phahladira, Kilian (bb0055) 2017; 47
Reis Marques, Taylor, Chaddock, Dell'acqua, Handley, Reinders, Mondelli, Bonaccorso, Diforti, Simmons, David, Murray, Pariante, Kapur, Dazzan (bb0210) 2014; 137
Castellani, Rossato, Murino, Bellani, Rambaldelli, Perlini, Tomelleri, Tansella, Brambilla (bb0030) 2012; 119
Ffytche, Howard, Brammer, David, Woodruff, Williams (bb0070) 1998; 1
Good (bb0085) 2000
Torrey (bb0235) 2007; 97
Rakic (bb0205) 1988; 73
Levitt, Bobrow, Lucia, Srinivasan (bb0125) 2010; 4
Kohavi (bb0120) 1995; Volume 2
Yang, Liu, Sui, Pearlson, Calhoun (bb0250) 2010; 4
White, Joseph, Francis, Liddle (bb0240) 2010; 123
Agarwal, Port, Bazzocchi, Renshaw (bb0005) 2010; 255
Asmal, du Plessis, Vink, Chiliza, Kilian, Emsley (bb0020) 2016
Onitsuka, McCarley, Kuroki, Dickey, Kubicki, Demeo, Frumin, Kikinis, Jolesz, Shenton (bb0170) 2007; 92
Mikolas, Melicher, Skoch, Matejka, Slovakova, Bakstein, Hajek, Spaniel (bb0150) 2016; 46
Hu (10.1016/j.schres.2017.11.037_bb0105) 2017; 33
Rakic (10.1016/j.schres.2017.11.037_bb0205) 1988; 73
Keshavan (10.1016/j.schres.2017.11.037_bb0110) 1994; 344
Armstrong (10.1016/j.schres.2017.11.037_bb0015) 1995; 5
Hu (10.1016/j.schres.2017.11.037_bb0100) 2016; 6
Panizzon (10.1016/j.schres.2017.11.037_bb0185) 2009; 19
Menon (10.1016/j.schres.2017.11.037_bb0145) 2011; 15
Goghari (10.1016/j.schres.2017.11.037_bb0080) 2013; 149
Reis Marques (10.1016/j.schres.2017.11.037_bb0210) 2014; 137
Narr (10.1016/j.schres.2017.11.037_bb0155) 2005; 58
Peruzzo (10.1016/j.schres.2017.11.037_bb0195) 2015; 122
Levitt (10.1016/j.schres.2017.11.037_bb0125) 2010; 4
Onitsuka (10.1016/j.schres.2017.11.037_bb0170) 2007; 92
Noble (10.1016/j.schres.2017.11.037_bb0160) 2006; 24
Castellani (10.1016/j.schres.2017.11.037_bb0030) 2012; 119
Garrity (10.1016/j.schres.2017.11.037_bb0075) 2007; 164
Good (10.1016/j.schres.2017.11.037_bb0085) 2000
Palaniyappan (10.1016/j.schres.2017.11.037_bb0175) 2011; 69
Squarcina (10.1016/j.schres.2017.11.037_bb0225) 2015; 165
Cui (10.1016/j.schres.2017.11.037_bb0040) 2017; 283
Pohl (10.1016/j.schres.2017.11.037_bb0200) 2009
Asmal (10.1016/j.schres.2017.11.037_bb0020) 2016
Shenton (10.1016/j.schres.2017.11.037_bb0220) 2010; 12
Squarcina (10.1016/j.schres.2017.11.037_bb0230) 2017; 145
White (10.1016/j.schres.2017.11.037_bb0240) 2010; 123
Torrey (10.1016/j.schres.2017.11.037_bb0235) 2007; 97
Dosenbach (10.1016/j.schres.2017.11.037_bb0050) 2010; 329
Yang (10.1016/j.schres.2017.11.037_bb0250) 2010; 4
Emsley (10.1016/j.schres.2017.11.037_bb0055) 2017; 47
Agarwal (10.1016/j.schres.2017.11.037_bb0005) 2010; 255
Allen (10.1016/j.schres.2017.11.037_bb0010) 2008; 32
Camchong (10.1016/j.schres.2017.11.037_bb0025) 2011; 37
Xiao (10.1016/j.schres.2017.11.037_bb0245) 2015; 41
Fan (10.1016/j.schres.2017.11.037_bb0060) 2005; 8 (Pt 1)
Yue (10.1016/j.schres.2017.11.037_bb0255) 2016; 11
Mikolas (10.1016/j.schres.2017.11.037_bb0150) 2016; 46
Ffytche (10.1016/j.schres.2017.11.037_bb0070) 1998; 1
Fan (10.1016/j.schres.2017.11.037_bb0065) 2011; 56
Kohavi (10.1016/j.schres.2017.11.037_bb0120) 1995; Volume 2
Dale (10.1016/j.schres.2017.11.037_bb0045) 1999; 9
Zarogianni (10.1016/j.schres.2017.11.037_bb0260) 2013; 3
Keshavan (10.1016/j.schres.2017.11.037_bb0115) 1998; 32
Manoliu (10.1016/j.schres.2017.11.037_bb0140) 2014; 40
Gutierrez-Galve (10.1016/j.schres.2017.11.037_bb0095) 2010; 68
Ojala (10.1016/j.schres.2017.11.037_bb0165) 2010; 11
Guo (10.1016/j.schres.2017.11.037_bb0090) 2017; 96
Lui (10.1016/j.schres.2017.11.037_bb0135) 2010; 67
Ren (10.1016/j.schres.2017.11.037_bb0215) 2013; 170
Clark (10.1016/j.schres.2017.11.037_bb0035) 2018; 193
Palaniyappan (10.1016/j.schres.2017.11.037_bb0180) 2013; 38
Lui (10.1016/j.schres.2017.11.037_bb0130) 2009; 166
Pereira (10.1016/j.schres.2017.11.037_bb0190) 2009; 45
References_xml – volume: 69
  start-page: 974
  year: 2011
  end-page: 979
  ident: bb0175
  article-title: Folding of the prefrontal cortex in schizophrenia: regional differences in gyrification
  publication-title: Biol. Psychiatry
– volume: 12
  start-page: 317
  year: 2010
  end-page: 332
  ident: bb0220
  article-title: Structural neuroimaging in schizophrenia: from methods to insights to treatments
  publication-title: Dialogues Clin. Neurosci.
– volume: 4
  start-page: 192
  year: 2010
  ident: bb0250
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
– volume: 33
  start-page: 73
  year: 2017
  end-page: 84
  ident: bb0105
  article-title: A review of the functional and anatomical default mode network in schizophrenia
  publication-title: Neurosci. Bull.
– volume: 193
  start-page: 244
  year: 2018
  end-page: 250
  ident: bb0035
  article-title: Stronger default mode network connectivity is associated with poorer clinical insight in youth at ultra high-risk for psychotic disorders
  publication-title: Schizophr. Res.
– volume: 5
  start-page: 56
  year: 1995
  end-page: 63
  ident: bb0015
  article-title: The ontogeny of human gyrification
  publication-title: Cereb. Cortex
– year: 2016
  ident: bb0020
  article-title: Symptom attribution and frontal cortical thickness in first-episode schizophrenia
  publication-title: Early Intervention in Psychiatry
– volume: 38
  start-page: 1808
  year: 2013
  end-page: 1815
  ident: bb0180
  article-title: Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia
  publication-title: Neuropsychopharmacology
– volume: 47
  start-page: 2187
  year: 2017
  end-page: 2196
  ident: bb0055
  article-title: Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment
  publication-title: Psychol. Med.
– volume: 19
  start-page: 2728
  year: 2009
  end-page: 2735
  ident: bb0185
  article-title: Distinct genetic influences on cortical surface area and cortical thickness
  publication-title: Cereb. Cortex
– volume: 344
  start-page: 1434
  year: 1994
  ident: bb0110
  article-title: Changes in caudate volume with neuroleptic treatment
  publication-title: Lancet (London, England)
– volume: 73
  start-page: 15
  year: 1988
  end-page: 37
  ident: bb0205
  article-title: Defects of neuronal migration and the pathogenesis of cortical malformations
  publication-title: Prog. Brain Res.
– volume: 15
  start-page: 483
  year: 2011
  end-page: 506
  ident: bb0145
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cogn. Sci.
– volume: 11
  start-page: 1833
  year: 2010
  end-page: 1863
  ident: bb0165
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– year: 2000
  ident: bb0085
  article-title: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses
– volume: 164
  start-page: 450
  year: 2007
  end-page: 457
  ident: bb0075
  article-title: Aberrant "default mode" functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 119
  start-page: 395
  year: 2012
  end-page: 404
  ident: bb0030
  article-title: Classification of schizophrenia using feature-based morphometry
  publication-title: J. Neural Transm.
– volume: 4
  start-page: 243
  year: 2010
  end-page: 281
  ident: bb0125
  article-title: A selective review of volumetric and morphometric imaging in schizophrenia
  publication-title: Curr. Top. Behav. Neurosci.
– volume: 283
  start-page: 810
  year: 2017
  end-page: 819
  ident: bb0040
  article-title: Disturbed brain activity in resting-state networks of patients with first-episode schizophrenia with auditory verbal hallucinations: a cross-sectional functional MR imaging study
  publication-title: Radiology
– volume: 123
  start-page: 105
  year: 2010
  end-page: 115
  ident: bb0240
  article-title: Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia
  publication-title: Schizophr. Res.
– volume: 45
  start-page: S199
  year: 2009
  end-page: 209
  ident: bb0190
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
– volume: 165
  start-page: 38
  year: 2015
  end-page: 44
  ident: bb0225
  article-title: The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis
  publication-title: Schizophr. Res.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bb0045
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 145
  start-page: 238
  year: 2017
  end-page: 245
  ident: bb0230
  article-title: Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
  publication-title: NeuroImage
– volume: Volume 2
  start-page: 1137
  year: 1995
  end-page: 1143
  ident: bb0120
  article-title: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proceedings of the 14th International Joint Conference on Artificial Intelligence
– volume: 1
  start-page: 738
  year: 1998
  end-page: 742
  ident: bb0070
  article-title: The anatomy of conscious vision: an fMRI study of visual hallucinations
  publication-title: Nat. Neurosci.
– volume: 68
  start-page: 51
  year: 2010
  end-page: 60
  ident: bb0095
  article-title: Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis
  publication-title: Biol. Psychiatry
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bb0050
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science (New York, N.Y.)
– volume: 46
  start-page: 2695
  year: 2016
  end-page: 2704
  ident: bb0150
  article-title: Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study
  publication-title: Psychol. Med.
– volume: 122
  start-page: 897
  year: 2015
  end-page: 905
  ident: bb0195
  article-title: Classification of first-episode psychosis: a multi-modal multi-feature approach integrating structural and diffusion imaging
  publication-title: J. Neural Transm.
– volume: 96
  year: 2017
  ident: bb0090
  article-title: Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case-control and traditional case-control designs
  publication-title: Medicine (Baltimore)
– volume: 32
  start-page: 175
  year: 2008
  end-page: 191
  ident: bb0010
  article-title: The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations
  publication-title: Neurosci. Biobehav. Rev.
– volume: 255
  start-page: 23
  year: 2010
  end-page: 41
  ident: bb0005
  article-title: Update on the use of MR for assessment and diagnosis of psychiatric diseases
  publication-title: Radiology
– volume: 170
  start-page: 1308
  year: 2013
  end-page: 1316
  ident: bb0215
  article-title: Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 67
  start-page: 783
  year: 2010
  end-page: 792
  ident: bb0135
  article-title: Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging
  publication-title: Arch. Gen. Psychiatry
– volume: 97
  start-page: 215
  year: 2007
  end-page: 225
  ident: bb0235
  article-title: Schizophrenia and the inferior parietal lobule
  publication-title: Schizophr. Res.
– volume: 166
  start-page: 196
  year: 2009
  end-page: 205
  ident: bb0130
  article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study
  publication-title: Am. J. Psychiatry
– volume: 92
  start-page: 197
  year: 2007
  end-page: 206
  ident: bb0170
  article-title: Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study
  publication-title: Schizophr. Res.
– volume: 32
  start-page: 161
  year: 1998
  end-page: 167
  ident: bb0115
  article-title: Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible?
  publication-title: J. Psychiatr. Res.
– volume: 6
  year: 2016
  ident: bb0100
  article-title: Short-term effects of risperidone monotherapy on spontaneous brain activity in first-episode treatment-naive schizophrenia patients: a longitudinal fMRI study
  publication-title: Sci. Rep.
– start-page: 300
  year: 2009
  end-page: 313
  ident: bb0200
  article-title: A unified framework for MR based disease classification
  publication-title: Information Processing in Medical Imaging: Proceedings of the … Conference
– volume: 58
  start-page: 32
  year: 2005
  end-page: 40
  ident: bb0155
  article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia
  publication-title: Biol. Psychiatry
– volume: 11
  year: 2016
  ident: bb0255
  article-title: Regional abnormality of grey matter in schizophrenia: effect from the illness or treatment?
  publication-title: PLoS One
– volume: 149
  start-page: 149
  year: 2013
  end-page: 155
  ident: bb0080
  article-title: Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naive first-episode psychosis patients
  publication-title: Schizophr. Res.
– volume: 137
  start-page: 172
  year: 2014
  end-page: 182
  ident: bb0210
  article-title: White matter integrity as a predictor of response to treatment in first episode psychosis
  publication-title: Brain
– volume: 41
  start-page: 201
  year: 2015
  end-page: 210
  ident: bb0245
  article-title: Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 40
  start-page: 428
  year: 2014
  end-page: 437
  ident: bb0140
  article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: bb0160
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 8 (Pt 1)
  start-page: 1
  year: 2005
  end-page: 8
  ident: bb0060
  article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM
  publication-title: Medical Image Computing and Computer-Assisted Intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 3
  start-page: 279
  year: 2013
  end-page: 289
  ident: bb0260
  article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage
– volume: 37
  start-page: 640
  year: 2011
  end-page: 650
  ident: bb0025
  article-title: Altered functional and anatomical connectivity in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 56
  start-page: 2058
  year: 2011
  end-page: 2067
  ident: bb0065
  article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold
  publication-title: NeuroImage
– volume: 97
  start-page: 215
  issue: 1–3
  year: 2007
  ident: 10.1016/j.schres.2017.11.037_bb0235
  article-title: Schizophrenia and the inferior parietal lobule
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2007.08.023
– volume: 283
  start-page: 810
  issue: 3
  year: 2017
  ident: 10.1016/j.schres.2017.11.037_bb0040
  article-title: Disturbed brain activity in resting-state networks of patients with first-episode schizophrenia with auditory verbal hallucinations: a cross-sectional functional MR imaging study
  publication-title: Radiology
  doi: 10.1148/radiol.2016160938
– volume: 92
  start-page: 197
  issue: 1–3
  year: 2007
  ident: 10.1016/j.schres.2017.11.037_bb0170
  article-title: Occipital lobe gray matter volume in male patients with chronic schizophrenia: a quantitative MRI study
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2007.01.027
– volume: 123
  start-page: 105
  issue: 2–3
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0240
  article-title: Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2010.07.020
– volume: 15
  start-page: 483
  issue: 10
  year: 2011
  ident: 10.1016/j.schres.2017.11.037_bb0145
  article-title: Large-scale brain networks and psychopathology: a unifying triple network model
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2011.08.003
– volume: 6
  year: 2016
  ident: 10.1016/j.schres.2017.11.037_bb0100
  article-title: Short-term effects of risperidone monotherapy on spontaneous brain activity in first-episode treatment-naive schizophrenia patients: a longitudinal fMRI study
  publication-title: Sci. Rep.
– volume: 119
  start-page: 395
  issue: 3
  year: 2012
  ident: 10.1016/j.schres.2017.11.037_bb0030
  article-title: Classification of schizophrenia using feature-based morphometry
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-011-0693-7
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0050
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1194144
– volume: 32
  start-page: 161
  issue: 3–4
  year: 1998
  ident: 10.1016/j.schres.2017.11.037_bb0115
  article-title: Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible?
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/S0022-3956(97)00038-1
– volume: 166
  start-page: 196
  issue: 2
  year: 2009
  ident: 10.1016/j.schres.2017.11.037_bb0130
  article-title: Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2008.08020183
– volume: 38
  start-page: 1808
  issue: 9
  year: 2013
  ident: 10.1016/j.schres.2017.11.037_bb0180
  article-title: Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.80
– volume: 40
  start-page: 428
  issue: 2
  year: 2014
  ident: 10.1016/j.schres.2017.11.037_bb0140
  article-title: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbt037
– volume: 96
  issue: 13
  year: 2017
  ident: 10.1016/j.schres.2017.11.037_bb0090
  article-title: Hyperactivity of the default-mode network in first-episode, drug-naive schizophrenia at rest revealed by family-based case-control and traditional case-control designs
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000006223
– volume: 165
  start-page: 38
  issue: 1
  year: 2015
  ident: 10.1016/j.schres.2017.11.037_bb0225
  article-title: The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2015.03.017
– year: 2016
  ident: 10.1016/j.schres.2017.11.037_bb0020
  article-title: Symptom attribution and frontal cortical thickness in first-episode schizophrenia
– year: 2000
  ident: 10.1016/j.schres.2017.11.037_bb0085
– volume: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.schres.2017.11.037_bb0255
  article-title: Regional abnormality of grey matter in schizophrenia: effect from the illness or treatment?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147204
– volume: 37
  start-page: 640
  issue: 3
  year: 2011
  ident: 10.1016/j.schres.2017.11.037_bb0025
  article-title: Altered functional and anatomical connectivity in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbp131
– volume: 344
  start-page: 1434
  issue: 8934
  year: 1994
  ident: 10.1016/j.schres.2017.11.037_bb0110
  article-title: Changes in caudate volume with neuroleptic treatment
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(94)90599-1
– volume: 19
  start-page: 2728
  issue: 11
  year: 2009
  ident: 10.1016/j.schres.2017.11.037_bb0185
  article-title: Distinct genetic influences on cortical surface area and cortical thickness
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp026
– volume: 145
  start-page: 238
  issue: Pt B
  year: 2017
  ident: 10.1016/j.schres.2017.11.037_bb0230
  article-title: Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.007
– volume: 46
  start-page: 2695
  issue: 13
  year: 2016
  ident: 10.1016/j.schres.2017.11.037_bb0150
  article-title: Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291716000878
– volume: 56
  start-page: 2058
  issue: 4
  year: 2011
  ident: 10.1016/j.schres.2017.11.037_bb0065
  article-title: Discriminant analysis of functional connectivity patterns on Grassmann manifold
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.051
– volume: 58
  start-page: 32
  issue: 1
  year: 2005
  ident: 10.1016/j.schres.2017.11.037_bb0155
  article-title: Cortical thinning in cingulate and occipital cortices in first episode schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2005.03.043
– start-page: 300
  year: 2009
  ident: 10.1016/j.schres.2017.11.037_bb0200
  article-title: A unified framework for MR based disease classification
– volume: 5
  start-page: 56
  issue: 1
  year: 1995
  ident: 10.1016/j.schres.2017.11.037_bb0015
  article-title: The ontogeny of human gyrification
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/5.1.56
– volume: 68
  start-page: 51
  issue: 1
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0095
  article-title: Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.03.019
– volume: 3
  start-page: 279
  year: 2013
  ident: 10.1016/j.schres.2017.11.037_bb0260
  article-title: Towards the identification of imaging biomarkers in schizophrenia, using multivariate pattern classification at a single-subject level
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2013.09.003
– volume: 170
  start-page: 1308
  issue: 11
  year: 2013
  ident: 10.1016/j.schres.2017.11.037_bb0215
  article-title: Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2013.12091148
– volume: 4
  start-page: 243
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0125
  article-title: A selective review of volumetric and morphometric imaging in schizophrenia
  publication-title: Curr. Top. Behav. Neurosci.
  doi: 10.1007/7854_2010_53
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  ident: 10.1016/j.schres.2017.11.037_bb0045
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0395
– volume: 193
  start-page: 244
  year: 2018
  ident: 10.1016/j.schres.2017.11.037_bb0035
  article-title: Stronger default mode network connectivity is associated with poorer clinical insight in youth at ultra high-risk for psychotic disorders
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2017.06.043
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 10.1016/j.schres.2017.11.037_bb0160
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 164
  start-page: 450
  issue: 3
  year: 2007
  ident: 10.1016/j.schres.2017.11.037_bb0075
  article-title: Aberrant "default mode" functional connectivity in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.2007.164.3.450
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0250
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00192
– volume: 137
  start-page: 172
  issue: Pt 1
  year: 2014
  ident: 10.1016/j.schres.2017.11.037_bb0210
  article-title: White matter integrity as a predictor of response to treatment in first episode psychosis
  publication-title: Brain
  doi: 10.1093/brain/awt310
– volume: 45
  start-page: S199
  issue: 1 Suppl
  year: 2009
  ident: 10.1016/j.schres.2017.11.037_bb0190
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 47
  start-page: 2187
  issue: 12
  year: 2017
  ident: 10.1016/j.schres.2017.11.037_bb0055
  article-title: Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291717000642
– volume: 8 (Pt 1)
  start-page: 1
  year: 2005
  ident: 10.1016/j.schres.2017.11.037_bb0060
  article-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM
– volume: 122
  start-page: 897
  issue: 6
  year: 2015
  ident: 10.1016/j.schres.2017.11.037_bb0195
  article-title: Classification of first-episode psychosis: a multi-modal multi-feature approach integrating structural and diffusion imaging
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-014-1324-x
– volume: 11
  start-page: 1833
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0165
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– volume: 73
  start-page: 15
  year: 1988
  ident: 10.1016/j.schres.2017.11.037_bb0205
  article-title: Defects of neuronal migration and the pathogenesis of cortical malformations
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(08)60494-X
– volume: 67
  start-page: 783
  issue: 8
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0135
  article-title: Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by "resting state" functional magnetic resonance imaging
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.84
– volume: Volume 2
  start-page: 1137
  year: 1995
  ident: 10.1016/j.schres.2017.11.037_bb0120
– volume: 149
  start-page: 149
  issue: 1–3
  year: 2013
  ident: 10.1016/j.schres.2017.11.037_bb0080
  article-title: Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naive first-episode psychosis patients
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2013.06.025
– volume: 32
  start-page: 175
  issue: 1
  year: 2008
  ident: 10.1016/j.schres.2017.11.037_bb0010
  article-title: The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2007.07.012
– volume: 12
  start-page: 317
  issue: 3
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0220
  article-title: Structural neuroimaging in schizophrenia: from methods to insights to treatments
  publication-title: Dialogues Clin. Neurosci.
  doi: 10.31887/DCNS.2010.12.3/mshenton
– volume: 1
  start-page: 738
  issue: 8
  year: 1998
  ident: 10.1016/j.schres.2017.11.037_bb0070
  article-title: The anatomy of conscious vision: an fMRI study of visual hallucinations
  publication-title: Nat. Neurosci.
  doi: 10.1038/3738
– volume: 41
  start-page: 201
  issue: 1
  year: 2015
  ident: 10.1016/j.schres.2017.11.037_bb0245
  article-title: Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbt177
– volume: 33
  start-page: 73
  issue: 1
  year: 2017
  ident: 10.1016/j.schres.2017.11.037_bb0105
  article-title: A review of the functional and anatomical default mode network in schizophrenia
  publication-title: Neurosci. Bull.
  doi: 10.1007/s12264-016-0090-1
– volume: 69
  start-page: 974
  issue: 10
  year: 2011
  ident: 10.1016/j.schres.2017.11.037_bb0175
  article-title: Folding of the prefrontal cortex in schizophrenia: regional differences in gyrification
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.12.012
– volume: 255
  start-page: 23
  issue: 1
  year: 2010
  ident: 10.1016/j.schres.2017.11.037_bb0005
  article-title: Update on the use of MR for assessment and diagnosis of psychiatric diseases
  publication-title: Radiology
  doi: 10.1148/radiol.09090339
SSID ssj0001507
Score 2.5147426
Snippet Although regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains largely...
AbstractAlthough regional brain deficits have been demonstrated in schizophrenia patients by structural MRI studies, one important question that remains...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Classification
Cortical thickness
Psychiatric/Mental Health
Schizophrenia
Support vector machine (SVM)
Surface area
Title Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0920996417307351
https://www.clinicalkey.es/playcontent/1-s2.0-S0920996417307351
https://dx.doi.org/10.1016/j.schres.2017.11.037
https://www.ncbi.nlm.nih.gov/pubmed/29208422
https://www.proquest.com/docview/1973456063
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQvfRSFRXa7Q8yUq9ms7HjrI8IFS2t4FCKxM3yL9qqza4aQOqFe5-mD9EX64ztUBAgUI-JMrLjGc98Tr6ZIeQ9BEmA4apiSjnJRFCOWRMdiypCvDLe5mLVB4dydiw-njQnK2R3yIVBWmXx_dmnJ29d7ozLao6X8_n4qFKY9inFpEU7TWnUQrRo5duX_2geCHhSvb0a5yPFkD6XOF5wgIRDLRK82m2s5Ynd0O8OT_fBzxSG9p6TZwU_0p08xTWyEroX5Bf25gQcTS_SN3j6PTEkA8MQ5alDgIyMoKQEuog0zgHz0bCc9wsfqP9xfso68-f3RaD9dQ4eLUVXe2o6T3PG5E9ayO09Rcr8Kc0FaLF4Bz34vL9Ojvc-fNmdsdJjgbmGyzNm_VTaKBUAHc9dADAIEMI7b0BJDWxJB9HMyGg5t1Wog-dNdNxNpPfCxthGvkFWu0UXXhEaANtUPoAPAVggpJ0GHhQ3cAA3xglvR4QPS6tdKUCOfTC-6YFp9lVnhWhUCJxNNChkRNiV1DIX4Hjg-WbQmh6SS8EdaogQD8i1d8mFvuzpXk90X-tK37K765I3TPcRY24NZqVhV-OvGtOFxTmMpVoO0Bbw44i8zPZ29fbYX2wq6vr1f4_7hjyFK5VZOW_JKhhKeAfY6sxups2zSZ7s7H-aHf4Fo4EoZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELbQciiXqlUpbFuokbiazcaJsz4iVLRb2D1QkLhZ_kVb0eyqAaQ-Qp-mD9EXYyZ2VqBSUfWaxHKSGc98Tr75hpB9SJIAw2XGpLSCFV5aZnSwLMgA-Uo7E8WqpzMxvig-X5aXa-Soq4VBWmWK_TGmt9E6HRmktzlYzueDL5nEsk9RDCv0UyyjXkd1qrJH1g8nJ-PZKiAj5mkl93K8JVF0FXQtzQv2kLCvRY5XdYByntgQ_ekM9TcE2mai41fkZYKQ9DDe5Wuy5us35Ce25wQoTe_az_D0W0uS9AyzlKMWMTKSglo70EWgYQ6wj_rlvFk4T9332ytW69-_7jxtHtLwaNJdbaiuHY1Fkz9o4rc3FFnzVzRq0KJ-B52eTTbJxfGn86MxS20WmC25uGHGjYQJQgLWcdx6wIOAIpx1GuxUwqq0kNC0CIZzk_ncO14Gy-1QOFeYEKrA35Jevaj9NqEe4E3mPIQRQAaFMCPPveQa9uBa28KZPuHdq1U2aZBjK4xr1ZHNvqpoEIUGge2JAoP0CVuNWkYNjmeuLzurqa6-FCKigiTxzLjqqXG-Scu6UUPV5CpTf7jew5GPvPcf5tzr3ErBwsa_Nbr2i1uYS1Yc0C1AyD7Ziv62enpsMTYq8vzdf8_7kbwYn09P1elkdvKebMAZGUk6H0gPnMbvANS6MbtpKd0DqIIrFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machine-based+classification+of+first+episode+drug-na%C3%AFve+schizophrenia+patients+and+healthy+controls+using+structural+MRI&rft.jtitle=Schizophrenia+research&rft.au=Xiao%2C+Yuan&rft.au=Yan%2C+Zhihan&rft.au=Zhao%2C+Youjin&rft.au=Tao%2C+Bo&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0920-9964&rft.eissn=1573-2509&rft.volume=214&rft.spage=11&rft.epage=17&rft_id=info:doi/10.1016%2Fj.schres.2017.11.037&rft.externalDocID=S0920996417307351
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09209964%2FS0920996419X00110%2Fcov150h.gif