DNA origami protection and molecular interfacing through engineered sequence-defined peptoids
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 12; pp. 6339 - 6348 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.03.2020
|
Series | From the Cover |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications. |
---|---|
AbstractList | DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications. DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs; however, their use in biomedical applications is challenging due the limited structural integrity in complex biological fluids. Here, we report a class of tailorable molecular coatings, peptoids, which can efficiently stabilize three-dimensional wireframed DNA constructs under a variety of biomedically relevant conditions, including magnesium-ion depletion and presence of degrading nuclease. Furthermore, we show that peptoid-coated DNA constructs offer a controllable anticancer drug release and an ability to display functional biomolecules on the DNA surfaces. Our study demonstrates an approach for building multifunctional and environmentally robust DNA-based molecular structures for nanomedicine and biosensing. DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications. DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications. DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications. |
Author | Wang, Shih-Ting Lin, Yiyang Todorova, Nevena Xuan, Sunting Byrnes, James Zuckermann, Ronald N. Gray, Melissa A. Gang, Oleg Stevens, Molly M. Nguyen, Andy I. Bertozzi, Carolyn R. |
Author_xml | – sequence: 1 givenname: Shih-Ting surname: Wang fullname: Wang, Shih-Ting – sequence: 2 givenname: Melissa A. surname: Gray fullname: Gray, Melissa A. – sequence: 3 givenname: Sunting surname: Xuan fullname: Xuan, Sunting – sequence: 4 givenname: Yiyang surname: Lin fullname: Lin, Yiyang – sequence: 5 givenname: James surname: Byrnes fullname: Byrnes, James – sequence: 6 givenname: Andy I. surname: Nguyen fullname: Nguyen, Andy I. – sequence: 7 givenname: Nevena surname: Todorova fullname: Todorova, Nevena – sequence: 8 givenname: Molly M. surname: Stevens fullname: Stevens, Molly M. – sequence: 9 givenname: Carolyn R. surname: Bertozzi fullname: Bertozzi, Carolyn R. – sequence: 10 givenname: Ronald N. surname: Zuckermann fullname: Zuckermann, Ronald N. – sequence: 11 givenname: Oleg surname: Gang fullname: Gang, Oleg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32165539$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1604260$$D View this record in Osti.gov |
BookMark | eNp9kk1v1DAQhi1URLeFMydQBJde0npix44vSFWhgFTBBY7IcpxJ1qvEDnaCxL_Hqy0L9MDJ0vh55-OdOSMnPngk5DnQS6CSXc3epEtQoCRXAPIR2QBVUAqu6AnZUFrJsuEVPyVnKe0opapu6BNyyioQdc3Uhnx7--m6CNENZnLFHMOCdnHBF8Z3xRRGtOtoYuH8grE31vmhWLYxrMO2QD84jxixKxJ-X9FbLDvsc6wrZpyX4Lr0lDzuzZjw2f17Tr7evvty86G8-_z-4831XWlrJpayNX3LwIBFxRoQLZO2Z1JIIRS2DSqkrJYtqJrXtOtUBx1wq4BjZWwFtWDn5M0h77y2E3YW_RLNqOfoJhN_6mCc_vfHu60ewg8tgXLGeU7w6pAgpMXpZF32YWuD99kODYLyStAMXdxXiSEPnBY9uWRxHI3HsCZdMSkZpw2ojL5-gO7CGn32IFMNqzPCm0y9_LvtY7-_15OBqwNgY0gpYn9EgOr9Aej9Aeg_B5AV9QNFnsXsV5rnduN_dC8Oul1aQjyWqYSq9razX8DUv4U |
CitedBy_id | crossref_primary_10_1002_chem_202003145 crossref_primary_10_1016_j_ijbiomac_2023_128703 crossref_primary_10_1002_anie_202311727 crossref_primary_10_1021_acs_bioconjchem_2c00311 crossref_primary_10_3390_app11062624 crossref_primary_10_1063_5_0088109 crossref_primary_10_1002_advs_202003775 crossref_primary_10_1038_s41598_024_78399_y crossref_primary_10_3390_polym12071603 crossref_primary_10_1021_acsnano_1c04304 crossref_primary_10_1038_s43586_020_00009_8 crossref_primary_10_1016_j_mtphys_2024_101406 crossref_primary_10_3390_ijms21249458 crossref_primary_10_1021_acspolymersau_2c00036 crossref_primary_10_1016_j_jhazmat_2020_123418 crossref_primary_10_1016_j_bioactmat_2021_02_012 crossref_primary_10_1088_2516_1091_abb008 crossref_primary_10_1126_science_abg9901 crossref_primary_10_1038_s41467_021_23966_4 crossref_primary_10_1002_smll_202204711 crossref_primary_10_1515_ntrev_2023_0135 crossref_primary_10_1002_smll_202202253 crossref_primary_10_1021_jacs_0c07263 crossref_primary_10_1021_acs_langmuir_1c01194 crossref_primary_10_1016_j_cocis_2020_101411 crossref_primary_10_3389_fmolb_2023_1239952 crossref_primary_10_3390_molecules25081823 crossref_primary_10_1002_anie_202215332 crossref_primary_10_1021_acs_chemmater_0c03846 crossref_primary_10_1021_jacs_0c12970 crossref_primary_10_1021_acscentsci_1c01272 crossref_primary_10_1002_adma_202007504 crossref_primary_10_1021_acs_jpcb_3c01424 crossref_primary_10_1016_j_chempr_2020_10_025 crossref_primary_10_1021_acs_jpcc_0c11238 crossref_primary_10_1063_5_0121820 crossref_primary_10_1021_acspolymersau_4c00085 crossref_primary_10_1021_acs_chemrev_0c01074 crossref_primary_10_1021_acs_nanolett_4c01735 crossref_primary_10_1002_cpnc_115 crossref_primary_10_1016_j_polymer_2020_122691 crossref_primary_10_1016_j_addr_2023_114898 crossref_primary_10_1002_wnan_1729 crossref_primary_10_1021_acs_nanolett_1c03314 crossref_primary_10_1021_acsabm_2c01045 crossref_primary_10_1021_acsami_3c18068 crossref_primary_10_1364_OME_446697 crossref_primary_10_1021_jacs_2c00743 crossref_primary_10_1039_D2TB00605G crossref_primary_10_1002_smll_202103877 crossref_primary_10_1016_j_matt_2021_06_019 crossref_primary_10_1038_s41570_021_00251_y crossref_primary_10_1063_5_0025776 crossref_primary_10_1002_smll_202406128 crossref_primary_10_1002_anie_202005907 crossref_primary_10_1016_j_talanta_2024_127401 crossref_primary_10_1038_s41427_023_00470_3 crossref_primary_10_1002_anie_202006044 crossref_primary_10_1021_acs_chemmater_3c02386 crossref_primary_10_1021_acsanm_3c01185 crossref_primary_10_1002_smll_202206228 crossref_primary_10_1038_s41578_022_00517_x crossref_primary_10_1016_j_actbio_2023_03_006 crossref_primary_10_1016_j_nxmate_2024_100336 crossref_primary_10_3390_nano11082003 crossref_primary_10_1002_cplu_202100548 crossref_primary_10_1002_ange_202215332 crossref_primary_10_1002_advs_202401617 crossref_primary_10_1039_D0CS01281E crossref_primary_10_1039_D0PY01777A crossref_primary_10_1002_ange_202006044 crossref_primary_10_1002_ange_202107829 crossref_primary_10_1039_D2NR05429A crossref_primary_10_1002_ange_202005907 crossref_primary_10_1002_pol_20210366 crossref_primary_10_1016_j_isci_2022_104389 crossref_primary_10_3390_nano11061413 crossref_primary_10_1021_acsnano_1c11575 crossref_primary_10_1080_2314808X_2023_2301281 crossref_primary_10_1002_anie_202107829 crossref_primary_10_1002_smll_202301058 crossref_primary_10_1021_acsnano_1c10084 crossref_primary_10_1002_mabi_202200248 crossref_primary_10_3390_pharmaceutics16050674 crossref_primary_10_1002_smll_202402631 crossref_primary_10_1021_jacs_1c02298 crossref_primary_10_3390_biom12050622 crossref_primary_10_1016_j_semcancer_2022_09_003 crossref_primary_10_1039_D2NR03948F crossref_primary_10_1039_D1SM01171E crossref_primary_10_3390_ijms25158271 crossref_primary_10_1002_ange_202311727 crossref_primary_10_1038_s41598_023_39777_0 crossref_primary_10_1016_j_ijbiomac_2024_129495 crossref_primary_10_1039_D0AN02160A crossref_primary_10_1021_acsnano_0c10240 crossref_primary_10_1093_nar_gkab097 |
Cites_doi | 10.1021/ar200295q 10.1126/science.1214081 10.1039/C6CC08197E 10.1002/chem.201705340 10.1126/science.aaf4388 10.1017/S0033583510000181 10.1021/ja304263n 10.1021/jm070603m 10.1021/ja961482a 10.1002/adhm.201700692 10.1021/acs.chemmater.6b02546 10.1021/acsnano.8b04148 10.1073/pnas.95.4.1517 10.1021/jacs.6b08369 10.1021/ja00163a021 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V 10.1038/nature06560 10.1002/anie.201608873 10.1038/ncomms15654 10.1038/s41467-017-01072-8 10.1021/ja0522534 10.1002/anie.201802890 10.1016/j.bios.2011.12.007 10.1021/ja061267m 10.1002/anie.201811713 10.1038/nature01406 10.1038/382609a0 10.1007/s10895-012-1059-8 10.1073/pnas.1608069113 10.1073/pnas.1909992116 10.1073/pnas.97.24.13003 10.1126/sciadv.aau1157 10.1038/nature14586 10.1038/nnano.2015.105 10.1016/j.ymeth.2013.11.002 10.1021/acs.biomac.6b01824 10.1038/nmat4571 10.1021/ja5088024 10.1126/science.1071247 10.1093/nar/gnh101 10.1002/tcr.201700019 10.1038/nature04586 10.1021/jm0105676 10.1021/bi9820154 10.1021/nn4015714 10.26434/chemrxiv.8187146.v1 10.1021/bi802324w 10.1002/adma.201703658 10.1038/nnano.2014.58 10.1021/cm5019663 10.2210/pdb1s0q/pdb 10.1038/nnano.2011.187 10.1038/382607a0 10.1038/nnano.2013.209 10.1039/C5NR08355A 10.1016/0022-2836(91)90502-W 10.1002/adma.201300875 10.1038/nature08016 10.1021/bi020440y 10.1107/S1600576717011438 10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F 10.1021/nl500677j 10.1021/nn503513p 10.1016/S0076-6879(96)67027-X 10.1002/anie.201500561 10.1021/nn502058j 10.1021/nn203161y 10.1016/S0960-894X(01)80691-0 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Mar 24, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Mar 24, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OTOTI 5PM |
DOI | 10.1073/pnas.1919749117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6348 |
ExternalDocumentID | PMC7104344 1604260 32165539 10_1073_pnas_1919749117 26929545 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM120007 – fundername: NIH HHS grantid: S10 OD012331 – fundername: NIGMS NIH HHS grantid: R37 GM058867 – fundername: NIGMS NIH HHS grantid: P41 GM111244 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: P41 GM111244 – fundername: U.S. Department of Energy (DOE) grantid: DE-AC02-05CH11231 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0012704 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0008772 – fundername: U.S. Department of Energy (DOE) grantid: KP1605010 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B ADACV ADZLD ASUFR DNJUQ DOOOF DWIUU OTOTI RHF VQA ZA5 5PM |
ID | FETCH-LOGICAL-c536t-bafb31a1ce93816b37cf3767669eb8e9e0357b195450dd9d1d14c914e2ac21563 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:03:24 EDT 2025 Mon Apr 01 04:54:45 EDT 2024 Thu Jul 10 18:55:31 EDT 2025 Mon Jun 30 08:20:19 EDT 2025 Thu Apr 03 07:08:12 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Jul 01 03:40:18 EDT 2025 Thu May 29 09:12:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | peptoid DNA nanotechnology molecular coating |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-bafb31a1ce93816b37cf3767669eb8e9e0357b195450dd9d1d14c914e2ac21563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704; AC02-05CH11231; SC0008772; KP1605010 BNL-213757-2020-JAAM Author contributions: S.-T.W., C.R.B., R.N.Z., and O.G. designed research; S.-T.W., M.A.G., S.X., Y.L., J.B., A.I.N., N.T., and R.N.Z. performed research; S.X., Y.L., J.B., A.I.N., and M.M.S. contributed new reagents/analytic tools; S.-T.W., M.A.G., N.T., and O.G. analyzed data; and S.-T.W. and O.G. wrote the paper. Edited by Joanna Aizenberg, Harvard University, Cambridge, MA, and approved February 7, 2020 (received for review November 10, 2019) |
ORCID | 0000-0001-6499-9122 0000-0003-4482-2754 0000-0002-3055-8860 0000-0001-6358-2974 0000000344822754 0000000164999122 0000000163582974 0000000230558860 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7104344 |
PMID | 32165539 |
PQID | 2383519348 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104344 osti_scitechconnect_1604260 proquest_miscellaneous_2377340819 proquest_journals_2383519348 pubmed_primary_32165539 crossref_primary_10_1073_pnas_1919749117 crossref_citationtrail_10_1073_pnas_1919749117 jstor_primary_26929545 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 Jun H. (e_1_3_3_34_2) 2019; 13 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_16_2 doi: 10.1021/ar200295q – ident: e_1_3_3_19_2 doi: 10.1126/science.1214081 – ident: e_1_3_3_23_2 doi: 10.1039/C6CC08197E – ident: e_1_3_3_44_2 doi: 10.1002/chem.201705340 – ident: e_1_3_3_33_2 doi: 10.1126/science.aaf4388 – ident: e_1_3_3_63_2 doi: 10.1017/S0033583510000181 – ident: e_1_3_3_24_2 doi: 10.1021/ja304263n – ident: e_1_3_3_49_2 doi: 10.1021/jm070603m – ident: e_1_3_3_58_2 doi: 10.1021/ja961482a – ident: e_1_3_3_41_2 doi: 10.1002/adhm.201700692 – ident: e_1_3_3_12_2 doi: 10.1021/acs.chemmater.6b02546 – ident: e_1_3_3_32_2 doi: 10.1021/acsnano.8b04148 – ident: e_1_3_3_50_2 doi: 10.1073/pnas.95.4.1517 – ident: e_1_3_3_20_2 doi: 10.1021/jacs.6b08369 – ident: e_1_3_3_64_2 doi: 10.1021/ja00163a021 – ident: e_1_3_3_8_2 doi: 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V – ident: e_1_3_3_10_2 doi: 10.1038/nature06560 – ident: e_1_3_3_39_2 doi: 10.1002/anie.201608873 – ident: e_1_3_3_37_2 doi: 10.1038/ncomms15654 – ident: e_1_3_3_22_2 doi: 10.1038/s41467-017-01072-8 – ident: e_1_3_3_53_2 doi: 10.1021/ja0522534 – ident: e_1_3_3_29_2 doi: 10.1002/anie.201802890 – ident: e_1_3_3_65_2 doi: 10.1016/j.bios.2011.12.007 – ident: e_1_3_3_61_2 doi: 10.1021/ja061267m – ident: e_1_3_3_13_2 doi: 10.1002/anie.201811713 – ident: e_1_3_3_1_2 doi: 10.1038/nature01406 – ident: e_1_3_3_9_2 doi: 10.1038/382609a0 – ident: e_1_3_3_55_2 doi: 10.1007/s10895-012-1059-8 – ident: e_1_3_3_66_2 doi: 10.1073/pnas.1608069113 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.1909992116 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.97.24.13003 – ident: e_1_3_3_35_2 doi: 10.1126/sciadv.aau1157 – ident: e_1_3_3_31_2 doi: 10.1038/nature14586 – ident: e_1_3_3_51_2 doi: 10.1038/nnano.2015.105 – ident: e_1_3_3_60_2 doi: 10.1016/j.ymeth.2013.11.002 – ident: e_1_3_3_54_2 doi: 10.1021/acs.biomac.6b01824 – ident: e_1_3_3_52_2 doi: 10.1038/nmat4571 – ident: e_1_3_3_26_2 doi: 10.1021/ja5088024 – ident: e_1_3_3_7_2 doi: 10.1126/science.1071247 – ident: e_1_3_3_56_2 doi: 10.1093/nar/gnh101 – ident: e_1_3_3_14_2 doi: 10.1002/tcr.201700019 – ident: e_1_3_3_4_2 doi: 10.1038/nature04586 – ident: e_1_3_3_48_2 doi: 10.1021/jm0105676 – ident: e_1_3_3_59_2 doi: 10.1021/bi9820154 – volume: 13 start-page: 2083 year: 2019 ident: e_1_3_3_34_2 article-title: Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges publication-title: ACS Nano – ident: e_1_3_3_42_2 doi: 10.1021/nn4015714 – ident: e_1_3_3_67_2 doi: 10.26434/chemrxiv.8187146.v1 – ident: e_1_3_3_2_2 doi: 10.1021/bi802324w – ident: e_1_3_3_15_2 doi: 10.1002/adma.201703658 – ident: e_1_3_3_18_2 doi: 10.1038/nnano.2014.58 – ident: e_1_3_3_30_2 doi: 10.1021/cm5019663 – ident: e_1_3_3_69_2 doi: 10.2210/pdb1s0q/pdb – ident: e_1_3_3_3_2 doi: 10.1038/nnano.2011.187 – ident: e_1_3_3_5_2 doi: 10.1038/382607a0 – ident: e_1_3_3_11_2 doi: 10.1038/nnano.2013.209 – ident: e_1_3_3_38_2 doi: 10.1039/C5NR08355A – ident: e_1_3_3_68_2 doi: 10.1016/0022-2836(91)90502-W – ident: e_1_3_3_17_2 doi: 10.1002/adma.201300875 – ident: e_1_3_3_27_2 doi: 10.1038/nature08016 – ident: e_1_3_3_57_2 doi: 10.1021/bi020440y – ident: e_1_3_3_62_2 doi: 10.1107/S1600576717011438 – ident: e_1_3_3_6_2 doi: 10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F – ident: e_1_3_3_40_2 doi: 10.1021/nl500677j – ident: e_1_3_3_28_2 doi: 10.1021/nn503513p – ident: e_1_3_3_43_2 doi: 10.1016/S0076-6879(96)67027-X – ident: e_1_3_3_36_2 doi: 10.1002/anie.201500561 – ident: e_1_3_3_25_2 doi: 10.1021/nn502058j – ident: e_1_3_3_21_2 doi: 10.1021/nn203161y – ident: e_1_3_3_46_2 doi: 10.1016/S0960-894X(01)80691-0 |
SSID | ssj0009580 |
Score | 2.600013 |
Snippet | DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick... DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs; however, their use in biomedical applications is... DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick... DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6339 |
SubjectTerms | Alkynes Antibodies Biological Sciences Biomedical materials Biosensors Deoxyribonucleic acid DNA DNA - chemistry DNA Nanotechnology Drug delivery Drug Delivery Systems Dynamic stability Electrostatic properties Gene transfer MATERIALS SCIENCE Medical imaging Molecular Coating Molecular dynamics Molecular Dynamics Simulation Molecular Structure Monomers Nanostructures - administration & dosage Nanostructures - chemistry Nanotechnology Nucleotide sequence Peptoid Peptoids - chemical synthesis Peptoids - chemistry Physical Sciences Proteins Proteolysis Static Electricity |
Title | DNA origami protection and molecular interfacing through engineered sequence-defined peptoids |
URI | https://www.jstor.org/stable/26929545 https://www.ncbi.nlm.nih.gov/pubmed/32165539 https://www.proquest.com/docview/2383519348 https://www.proquest.com/docview/2377340819 https://www.osti.gov/biblio/1604260 https://pubmed.ncbi.nlm.nih.gov/PMC7104344 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKkNAuiAGDsIGMxGGoSklix06OFT80IVbt0IlyQJHjOGqlNa3W9ABH_nKeYztJyyYBl6hyHEfK9_XlPee97yH0hshScJ5CbMKLwKckoX6uIukXScyKkgNFSl3vfDFh51f08yyeDQa_ellL2zofyZ-31pX8D6owBrjqKtl_QLZdFAbgN-ALR0AYjn-F8YfJeKg7W4nlYmgFF1x28dK1vW0EIW5KIU1dlOnKo6wKIXibLpfaL1QJY8Vwrdb1amHqf53betm-5jYuqWDidhHHXU2KNRSboT-8nHQdjr-6Pen5Yu5P3bvSlGk3GF-oa8BfdPuqs63dlzWNLNzwFyN48G3xQ9hBu18BwWlAfFMmPVLGxoKL4jNquoS2RthUcDq2RT2byoiRO_rD2IN10h2KK7EZQdQJgVFqV-lBv1422JMoZHFs1tnT13an7qH7EYQaUWPc-8LNSeAkoTh5t3e3Q_TAXb_j2JjcVnjNr8BQ3xa87Ofg9pya6SP00EYjeGyodYQGqnqMjhyM-MyKkr99gr4D17DlGu64hoFruOUa7nENW67hjmt4n2vYce0puvr0cfr-3LetOXwZE1b7uShzEopQqlR_ec4Jl6XWBWIsVXmiUhWQmOdaTTAOiiItwiKkMg2pioQEJ5ORY3RQrSr1HGGVUplDGFDEUtA4yYUoSiaDSKVN-yHhoZF7rpm0uvW6fcp11uRPcJJpTLIOEw-dtResjWTL3VOPG6DaeRFL9Yfv2EMnGrkM3FCtpSx10pmss5A1HR08dOoAzaw52GTg--pml4QmHnrdngZjrb_AiUqttnoO54RqL9xDzwz-7a0djzzEd5jRTtBC8LtnqsW8EYSHKIESSl_cueYJOuz-iqfooL7ZqpfgTNf5q4btvwGYO8wz |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+origami+protection+and+molecular+interfacing+through+engineered+sequence-defined+peptoids&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Shih-Ting&rft.au=Gray%2C+Melissa+A&rft.au=Xuan%2C+Sunting&rft.au=Lin%2C+Yiyang&rft.date=2020-03-24&rft.eissn=1091-6490&rft.volume=117&rft.issue=12&rft.spage=6339&rft_id=info:doi/10.1073%2Fpnas.1919749117&rft_id=info%3Apmid%2F32165539&rft.externalDocID=32165539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |