DNA origami protection and molecular interfacing through engineered sequence-defined peptoids

DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 12; pp. 6339 - 6348
Main Authors Wang, Shih-Ting, Gray, Melissa A., Xuan, Sunting, Lin, Yiyang, Byrnes, James, Nguyen, Andy I., Todorova, Nevena, Stevens, Molly M., Bertozzi, Carolyn R., Zuckermann, Ronald N., Gang, Oleg
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.03.2020
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
AbstractList DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs; however, their use in biomedical applications is challenging due the limited structural integrity in complex biological fluids. Here, we report a class of tailorable molecular coatings, peptoids, which can efficiently stabilize three-dimensional wireframed DNA constructs under a variety of biomedically relevant conditions, including magnesium-ion depletion and presence of degrading nuclease. Furthermore, we show that peptoid-coated DNA constructs offer a controllable anticancer drug release and an ability to display functional biomolecules on the DNA surfaces. Our study demonstrates an approach for building multifunctional and environmentally robust DNA-based molecular structures for nanomedicine and biosensing. DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.
Author Wang, Shih-Ting
Lin, Yiyang
Todorova, Nevena
Xuan, Sunting
Byrnes, James
Zuckermann, Ronald N.
Gray, Melissa A.
Gang, Oleg
Stevens, Molly M.
Nguyen, Andy I.
Bertozzi, Carolyn R.
Author_xml – sequence: 1
  givenname: Shih-Ting
  surname: Wang
  fullname: Wang, Shih-Ting
– sequence: 2
  givenname: Melissa A.
  surname: Gray
  fullname: Gray, Melissa A.
– sequence: 3
  givenname: Sunting
  surname: Xuan
  fullname: Xuan, Sunting
– sequence: 4
  givenname: Yiyang
  surname: Lin
  fullname: Lin, Yiyang
– sequence: 5
  givenname: James
  surname: Byrnes
  fullname: Byrnes, James
– sequence: 6
  givenname: Andy I.
  surname: Nguyen
  fullname: Nguyen, Andy I.
– sequence: 7
  givenname: Nevena
  surname: Todorova
  fullname: Todorova, Nevena
– sequence: 8
  givenname: Molly M.
  surname: Stevens
  fullname: Stevens, Molly M.
– sequence: 9
  givenname: Carolyn R.
  surname: Bertozzi
  fullname: Bertozzi, Carolyn R.
– sequence: 10
  givenname: Ronald N.
  surname: Zuckermann
  fullname: Zuckermann, Ronald N.
– sequence: 11
  givenname: Oleg
  surname: Gang
  fullname: Gang, Oleg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32165539$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1604260$$D View this record in Osti.gov
BookMark eNp9kk1v1DAQhi1URLeFMydQBJde0npix44vSFWhgFTBBY7IcpxJ1qvEDnaCxL_Hqy0L9MDJ0vh55-OdOSMnPngk5DnQS6CSXc3epEtQoCRXAPIR2QBVUAqu6AnZUFrJsuEVPyVnKe0opapu6BNyyioQdc3Uhnx7--m6CNENZnLFHMOCdnHBF8Z3xRRGtOtoYuH8grE31vmhWLYxrMO2QD84jxixKxJ-X9FbLDvsc6wrZpyX4Lr0lDzuzZjw2f17Tr7evvty86G8-_z-4831XWlrJpayNX3LwIBFxRoQLZO2Z1JIIRS2DSqkrJYtqJrXtOtUBx1wq4BjZWwFtWDn5M0h77y2E3YW_RLNqOfoJhN_6mCc_vfHu60ewg8tgXLGeU7w6pAgpMXpZF32YWuD99kODYLyStAMXdxXiSEPnBY9uWRxHI3HsCZdMSkZpw2ojL5-gO7CGn32IFMNqzPCm0y9_LvtY7-_15OBqwNgY0gpYn9EgOr9Aej9Aeg_B5AV9QNFnsXsV5rnduN_dC8Oul1aQjyWqYSq9razX8DUv4U
CitedBy_id crossref_primary_10_1002_chem_202003145
crossref_primary_10_1016_j_ijbiomac_2023_128703
crossref_primary_10_1002_anie_202311727
crossref_primary_10_1021_acs_bioconjchem_2c00311
crossref_primary_10_3390_app11062624
crossref_primary_10_1063_5_0088109
crossref_primary_10_1002_advs_202003775
crossref_primary_10_1038_s41598_024_78399_y
crossref_primary_10_3390_polym12071603
crossref_primary_10_1021_acsnano_1c04304
crossref_primary_10_1038_s43586_020_00009_8
crossref_primary_10_1016_j_mtphys_2024_101406
crossref_primary_10_3390_ijms21249458
crossref_primary_10_1021_acspolymersau_2c00036
crossref_primary_10_1016_j_jhazmat_2020_123418
crossref_primary_10_1016_j_bioactmat_2021_02_012
crossref_primary_10_1088_2516_1091_abb008
crossref_primary_10_1126_science_abg9901
crossref_primary_10_1038_s41467_021_23966_4
crossref_primary_10_1002_smll_202204711
crossref_primary_10_1515_ntrev_2023_0135
crossref_primary_10_1002_smll_202202253
crossref_primary_10_1021_jacs_0c07263
crossref_primary_10_1021_acs_langmuir_1c01194
crossref_primary_10_1016_j_cocis_2020_101411
crossref_primary_10_3389_fmolb_2023_1239952
crossref_primary_10_3390_molecules25081823
crossref_primary_10_1002_anie_202215332
crossref_primary_10_1021_acs_chemmater_0c03846
crossref_primary_10_1021_jacs_0c12970
crossref_primary_10_1021_acscentsci_1c01272
crossref_primary_10_1002_adma_202007504
crossref_primary_10_1021_acs_jpcb_3c01424
crossref_primary_10_1016_j_chempr_2020_10_025
crossref_primary_10_1021_acs_jpcc_0c11238
crossref_primary_10_1063_5_0121820
crossref_primary_10_1021_acspolymersau_4c00085
crossref_primary_10_1021_acs_chemrev_0c01074
crossref_primary_10_1021_acs_nanolett_4c01735
crossref_primary_10_1002_cpnc_115
crossref_primary_10_1016_j_polymer_2020_122691
crossref_primary_10_1016_j_addr_2023_114898
crossref_primary_10_1002_wnan_1729
crossref_primary_10_1021_acs_nanolett_1c03314
crossref_primary_10_1021_acsabm_2c01045
crossref_primary_10_1021_acsami_3c18068
crossref_primary_10_1364_OME_446697
crossref_primary_10_1021_jacs_2c00743
crossref_primary_10_1039_D2TB00605G
crossref_primary_10_1002_smll_202103877
crossref_primary_10_1016_j_matt_2021_06_019
crossref_primary_10_1038_s41570_021_00251_y
crossref_primary_10_1063_5_0025776
crossref_primary_10_1002_smll_202406128
crossref_primary_10_1002_anie_202005907
crossref_primary_10_1016_j_talanta_2024_127401
crossref_primary_10_1038_s41427_023_00470_3
crossref_primary_10_1002_anie_202006044
crossref_primary_10_1021_acs_chemmater_3c02386
crossref_primary_10_1021_acsanm_3c01185
crossref_primary_10_1002_smll_202206228
crossref_primary_10_1038_s41578_022_00517_x
crossref_primary_10_1016_j_actbio_2023_03_006
crossref_primary_10_1016_j_nxmate_2024_100336
crossref_primary_10_3390_nano11082003
crossref_primary_10_1002_cplu_202100548
crossref_primary_10_1002_ange_202215332
crossref_primary_10_1002_advs_202401617
crossref_primary_10_1039_D0CS01281E
crossref_primary_10_1039_D0PY01777A
crossref_primary_10_1002_ange_202006044
crossref_primary_10_1002_ange_202107829
crossref_primary_10_1039_D2NR05429A
crossref_primary_10_1002_ange_202005907
crossref_primary_10_1002_pol_20210366
crossref_primary_10_1016_j_isci_2022_104389
crossref_primary_10_3390_nano11061413
crossref_primary_10_1021_acsnano_1c11575
crossref_primary_10_1080_2314808X_2023_2301281
crossref_primary_10_1002_anie_202107829
crossref_primary_10_1002_smll_202301058
crossref_primary_10_1021_acsnano_1c10084
crossref_primary_10_1002_mabi_202200248
crossref_primary_10_3390_pharmaceutics16050674
crossref_primary_10_1002_smll_202402631
crossref_primary_10_1021_jacs_1c02298
crossref_primary_10_3390_biom12050622
crossref_primary_10_1016_j_semcancer_2022_09_003
crossref_primary_10_1039_D2NR03948F
crossref_primary_10_1039_D1SM01171E
crossref_primary_10_3390_ijms25158271
crossref_primary_10_1002_ange_202311727
crossref_primary_10_1038_s41598_023_39777_0
crossref_primary_10_1016_j_ijbiomac_2024_129495
crossref_primary_10_1039_D0AN02160A
crossref_primary_10_1021_acsnano_0c10240
crossref_primary_10_1093_nar_gkab097
Cites_doi 10.1021/ar200295q
10.1126/science.1214081
10.1039/C6CC08197E
10.1002/chem.201705340
10.1126/science.aaf4388
10.1017/S0033583510000181
10.1021/ja304263n
10.1021/jm070603m
10.1021/ja961482a
10.1002/adhm.201700692
10.1021/acs.chemmater.6b02546
10.1021/acsnano.8b04148
10.1073/pnas.95.4.1517
10.1021/jacs.6b08369
10.1021/ja00163a021
10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V
10.1038/nature06560
10.1002/anie.201608873
10.1038/ncomms15654
10.1038/s41467-017-01072-8
10.1021/ja0522534
10.1002/anie.201802890
10.1016/j.bios.2011.12.007
10.1021/ja061267m
10.1002/anie.201811713
10.1038/nature01406
10.1038/382609a0
10.1007/s10895-012-1059-8
10.1073/pnas.1608069113
10.1073/pnas.1909992116
10.1073/pnas.97.24.13003
10.1126/sciadv.aau1157
10.1038/nature14586
10.1038/nnano.2015.105
10.1016/j.ymeth.2013.11.002
10.1021/acs.biomac.6b01824
10.1038/nmat4571
10.1021/ja5088024
10.1126/science.1071247
10.1093/nar/gnh101
10.1002/tcr.201700019
10.1038/nature04586
10.1021/jm0105676
10.1021/bi9820154
10.1021/nn4015714
10.26434/chemrxiv.8187146.v1
10.1021/bi802324w
10.1002/adma.201703658
10.1038/nnano.2014.58
10.1021/cm5019663
10.2210/pdb1s0q/pdb
10.1038/nnano.2011.187
10.1038/382607a0
10.1038/nnano.2013.209
10.1039/C5NR08355A
10.1016/0022-2836(91)90502-W
10.1002/adma.201300875
10.1038/nature08016
10.1021/bi020440y
10.1107/S1600576717011438
10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F
10.1021/nl500677j
10.1021/nn503513p
10.1016/S0076-6879(96)67027-X
10.1002/anie.201500561
10.1021/nn502058j
10.1021/nn203161y
10.1016/S0960-894X(01)80691-0
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Mar 24, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Mar 24, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1073/pnas.1919749117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6348
ExternalDocumentID PMC7104344
1604260
32165539
10_1073_pnas_1919749117
26929545
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM120007
– fundername: NIH HHS
  grantid: S10 OD012331
– fundername: NIGMS NIH HHS
  grantid: R37 GM058867
– fundername: NIGMS NIH HHS
  grantid: P41 GM111244
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: P41 GM111244
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-AC02-05CH11231
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0012704
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0008772
– fundername: U.S. Department of Energy (DOE)
  grantid: KP1605010
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
ADACV
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
OTOTI
RHF
VQA
ZA5
5PM
ID FETCH-LOGICAL-c536t-bafb31a1ce93816b37cf3767669eb8e9e0357b195450dd9d1d14c914e2ac21563
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:03:24 EDT 2025
Mon Apr 01 04:54:45 EDT 2024
Thu Jul 10 18:55:31 EDT 2025
Mon Jun 30 08:20:19 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 03:40:18 EDT 2025
Thu May 29 09:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords peptoid
DNA nanotechnology
molecular coating
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-bafb31a1ce93816b37cf3767669eb8e9e0357b195450dd9d1d14c914e2ac21563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704; AC02-05CH11231; SC0008772; KP1605010
BNL-213757-2020-JAAM
Author contributions: S.-T.W., C.R.B., R.N.Z., and O.G. designed research; S.-T.W., M.A.G., S.X., Y.L., J.B., A.I.N., N.T., and R.N.Z. performed research; S.X., Y.L., J.B., A.I.N., and M.M.S. contributed new reagents/analytic tools; S.-T.W., M.A.G., N.T., and O.G. analyzed data; and S.-T.W. and O.G. wrote the paper.
Edited by Joanna Aizenberg, Harvard University, Cambridge, MA, and approved February 7, 2020 (received for review November 10, 2019)
ORCID 0000-0001-6499-9122
0000-0003-4482-2754
0000-0002-3055-8860
0000-0001-6358-2974
0000000344822754
0000000164999122
0000000163582974
0000000230558860
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7104344
PMID 32165539
PQID 2383519348
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104344
osti_scitechconnect_1604260
proquest_miscellaneous_2377340819
proquest_journals_2383519348
pubmed_primary_32165539
crossref_primary_10_1073_pnas_1919749117
crossref_citationtrail_10_1073_pnas_1919749117
jstor_primary_26929545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
Jun H. (e_1_3_3_34_2) 2019; 13
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_16_2
  doi: 10.1021/ar200295q
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1214081
– ident: e_1_3_3_23_2
  doi: 10.1039/C6CC08197E
– ident: e_1_3_3_44_2
  doi: 10.1002/chem.201705340
– ident: e_1_3_3_33_2
  doi: 10.1126/science.aaf4388
– ident: e_1_3_3_63_2
  doi: 10.1017/S0033583510000181
– ident: e_1_3_3_24_2
  doi: 10.1021/ja304263n
– ident: e_1_3_3_49_2
  doi: 10.1021/jm070603m
– ident: e_1_3_3_58_2
  doi: 10.1021/ja961482a
– ident: e_1_3_3_41_2
  doi: 10.1002/adhm.201700692
– ident: e_1_3_3_12_2
  doi: 10.1021/acs.chemmater.6b02546
– ident: e_1_3_3_32_2
  doi: 10.1021/acsnano.8b04148
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.95.4.1517
– ident: e_1_3_3_20_2
  doi: 10.1021/jacs.6b08369
– ident: e_1_3_3_64_2
  doi: 10.1021/ja00163a021
– ident: e_1_3_3_8_2
  doi: 10.1002/1521-4095(200112)13:23<1793::AID-ADMA1793>3.0.CO;2-V
– ident: e_1_3_3_10_2
  doi: 10.1038/nature06560
– ident: e_1_3_3_39_2
  doi: 10.1002/anie.201608873
– ident: e_1_3_3_37_2
  doi: 10.1038/ncomms15654
– ident: e_1_3_3_22_2
  doi: 10.1038/s41467-017-01072-8
– ident: e_1_3_3_53_2
  doi: 10.1021/ja0522534
– ident: e_1_3_3_29_2
  doi: 10.1002/anie.201802890
– ident: e_1_3_3_65_2
  doi: 10.1016/j.bios.2011.12.007
– ident: e_1_3_3_61_2
  doi: 10.1021/ja061267m
– ident: e_1_3_3_13_2
  doi: 10.1002/anie.201811713
– ident: e_1_3_3_1_2
  doi: 10.1038/nature01406
– ident: e_1_3_3_9_2
  doi: 10.1038/382609a0
– ident: e_1_3_3_55_2
  doi: 10.1007/s10895-012-1059-8
– ident: e_1_3_3_66_2
  doi: 10.1073/pnas.1608069113
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.1909992116
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.97.24.13003
– ident: e_1_3_3_35_2
  doi: 10.1126/sciadv.aau1157
– ident: e_1_3_3_31_2
  doi: 10.1038/nature14586
– ident: e_1_3_3_51_2
  doi: 10.1038/nnano.2015.105
– ident: e_1_3_3_60_2
  doi: 10.1016/j.ymeth.2013.11.002
– ident: e_1_3_3_54_2
  doi: 10.1021/acs.biomac.6b01824
– ident: e_1_3_3_52_2
  doi: 10.1038/nmat4571
– ident: e_1_3_3_26_2
  doi: 10.1021/ja5088024
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1071247
– ident: e_1_3_3_56_2
  doi: 10.1093/nar/gnh101
– ident: e_1_3_3_14_2
  doi: 10.1002/tcr.201700019
– ident: e_1_3_3_4_2
  doi: 10.1038/nature04586
– ident: e_1_3_3_48_2
  doi: 10.1021/jm0105676
– ident: e_1_3_3_59_2
  doi: 10.1021/bi9820154
– volume: 13
  start-page: 2083
  year: 2019
  ident: e_1_3_3_34_2
  article-title: Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges
  publication-title: ACS Nano
– ident: e_1_3_3_42_2
  doi: 10.1021/nn4015714
– ident: e_1_3_3_67_2
  doi: 10.26434/chemrxiv.8187146.v1
– ident: e_1_3_3_2_2
  doi: 10.1021/bi802324w
– ident: e_1_3_3_15_2
  doi: 10.1002/adma.201703658
– ident: e_1_3_3_18_2
  doi: 10.1038/nnano.2014.58
– ident: e_1_3_3_30_2
  doi: 10.1021/cm5019663
– ident: e_1_3_3_69_2
  doi: 10.2210/pdb1s0q/pdb
– ident: e_1_3_3_3_2
  doi: 10.1038/nnano.2011.187
– ident: e_1_3_3_5_2
  doi: 10.1038/382607a0
– ident: e_1_3_3_11_2
  doi: 10.1038/nnano.2013.209
– ident: e_1_3_3_38_2
  doi: 10.1039/C5NR08355A
– ident: e_1_3_3_68_2
  doi: 10.1016/0022-2836(91)90502-W
– ident: e_1_3_3_17_2
  doi: 10.1002/adma.201300875
– ident: e_1_3_3_27_2
  doi: 10.1038/nature08016
– ident: e_1_3_3_57_2
  doi: 10.1021/bi020440y
– ident: e_1_3_3_62_2
  doi: 10.1107/S1600576717011438
– ident: e_1_3_3_6_2
  doi: 10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F
– ident: e_1_3_3_40_2
  doi: 10.1021/nl500677j
– ident: e_1_3_3_28_2
  doi: 10.1021/nn503513p
– ident: e_1_3_3_43_2
  doi: 10.1016/S0076-6879(96)67027-X
– ident: e_1_3_3_36_2
  doi: 10.1002/anie.201500561
– ident: e_1_3_3_25_2
  doi: 10.1021/nn502058j
– ident: e_1_3_3_21_2
  doi: 10.1021/nn203161y
– ident: e_1_3_3_46_2
  doi: 10.1016/S0960-894X(01)80691-0
SSID ssj0009580
Score 2.600013
Snippet DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson—Crick...
DNA nanotechnology provides a structural toolkit for the fabrication of programmable DNA nano-constructs; however, their use in biomedical applications is...
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick...
DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6339
SubjectTerms Alkynes
Antibodies
Biological Sciences
Biomedical materials
Biosensors
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA Nanotechnology
Drug delivery
Drug Delivery Systems
Dynamic stability
Electrostatic properties
Gene transfer
MATERIALS SCIENCE
Medical imaging
Molecular Coating
Molecular dynamics
Molecular Dynamics Simulation
Molecular Structure
Monomers
Nanostructures - administration & dosage
Nanostructures - chemistry
Nanotechnology
Nucleotide sequence
Peptoid
Peptoids - chemical synthesis
Peptoids - chemistry
Physical Sciences
Proteins
Proteolysis
Static Electricity
Title DNA origami protection and molecular interfacing through engineered sequence-defined peptoids
URI https://www.jstor.org/stable/26929545
https://www.ncbi.nlm.nih.gov/pubmed/32165539
https://www.proquest.com/docview/2383519348
https://www.proquest.com/docview/2377340819
https://www.osti.gov/biblio/1604260
https://pubmed.ncbi.nlm.nih.gov/PMC7104344
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKkNAuiAGDsIGMxGGoSklix06OFT80IVbt0IlyQJHjOGqlNa3W9ABH_nKeYztJyyYBl6hyHEfK9_XlPee97yH0hshScJ5CbMKLwKckoX6uIukXScyKkgNFSl3vfDFh51f08yyeDQa_ellL2zofyZ-31pX8D6owBrjqKtl_QLZdFAbgN-ALR0AYjn-F8YfJeKg7W4nlYmgFF1x28dK1vW0EIW5KIU1dlOnKo6wKIXibLpfaL1QJY8Vwrdb1amHqf53betm-5jYuqWDidhHHXU2KNRSboT-8nHQdjr-6Pen5Yu5P3bvSlGk3GF-oa8BfdPuqs63dlzWNLNzwFyN48G3xQ9hBu18BwWlAfFMmPVLGxoKL4jNquoS2RthUcDq2RT2byoiRO_rD2IN10h2KK7EZQdQJgVFqV-lBv1422JMoZHFs1tnT13an7qH7EYQaUWPc-8LNSeAkoTh5t3e3Q_TAXb_j2JjcVnjNr8BQ3xa87Ofg9pya6SP00EYjeGyodYQGqnqMjhyM-MyKkr99gr4D17DlGu64hoFruOUa7nENW67hjmt4n2vYce0puvr0cfr-3LetOXwZE1b7uShzEopQqlR_ec4Jl6XWBWIsVXmiUhWQmOdaTTAOiiItwiKkMg2pioQEJ5ORY3RQrSr1HGGVUplDGFDEUtA4yYUoSiaDSKVN-yHhoZF7rpm0uvW6fcp11uRPcJJpTLIOEw-dtResjWTL3VOPG6DaeRFL9Yfv2EMnGrkM3FCtpSx10pmss5A1HR08dOoAzaw52GTg--pml4QmHnrdngZjrb_AiUqttnoO54RqL9xDzwz-7a0djzzEd5jRTtBC8LtnqsW8EYSHKIESSl_cueYJOuz-iqfooL7ZqpfgTNf5q4btvwGYO8wz
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+origami+protection+and+molecular+interfacing+through+engineered+sequence-defined+peptoids&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Shih-Ting&rft.au=Gray%2C+Melissa+A&rft.au=Xuan%2C+Sunting&rft.au=Lin%2C+Yiyang&rft.date=2020-03-24&rft.eissn=1091-6490&rft.volume=117&rft.issue=12&rft.spage=6339&rft_id=info:doi/10.1073%2Fpnas.1919749117&rft_id=info%3Apmid%2F32165539&rft.externalDocID=32165539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon