Waterproof molecular monolayers stabilize 2D materials

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these mat...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 42; pp. 20844 - 20849
Main Authors Su, Cong, Yin, Zongyou, Yan, Qing-Bo, Wang, Zegao, Lin, Hongtao, Sun, Lei, Xu, Wenshuo, Yamada, Tetsuya, Ji, Xiang, Zettsu, Nobuyuki, Teshima, Katsuya, Warner, Jamie H., Dincă, Mircea, Hu, Juejun, Dong, Mingdong, Su, Gang, Kong, Jing, Li, Ju
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.10.2019
Proceedings of the National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS₂, 1T′-MoTe₂, WTe₂, WSe₂, TaS₂, and NbSe₂). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H₂ annealing, and organic solvents, but can be removed by certain organic acids.
AbstractList Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-C m H2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T'-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-C m H2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T'-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.
Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.
A family of strong yet removable 1- to 2-nm-thick ultrathin monolayer is developed as a corrosion inhibitor for 2-dimensional materials that significantly prolong lifetime while protecting optoelectronic properties in both ambient and harsh chemical or thermal environments. This method is low in toxicity and can be applied to arbitrary substrate with no size limit. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n -C m H 2 m +1 NH 2 , with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS 2 , 1T′-MoTe 2 , WTe 2 , WSe 2 , TaS 2 , and NbSe 2 ). As a representative example, n -hexylamine ( m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H 2 annealing, and organic solvents, but can be removed by certain organic acids.
Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS₂, 1T′-MoTe₂, WTe₂, WSe₂, TaS₂, and NbSe₂). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H₂ annealing, and organic solvents, but can be removed by certain organic acids.
Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines -C H NH , with = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS , 1T'-MoTe , WTe , WSe , TaS , and NbSe ). As a representative example, -hexylamine ( = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H annealing, and organic solvents, but can be removed by certain organic acids.
Author Zettsu, Nobuyuki
Kong, Jing
Teshima, Katsuya
Su, Cong
Dincă, Mircea
Dong, Mingdong
Yan, Qing-Bo
Xu, Wenshuo
Ji, Xiang
Wang, Zegao
Warner, Jamie H.
Li, Ju
Lin, Hongtao
Yamada, Tetsuya
Hu, Juejun
Sun, Lei
Su, Gang
Yin, Zongyou
Author_xml – sequence: 1
  givenname: Cong
  surname: Su
  fullname: Su, Cong
– sequence: 2
  givenname: Zongyou
  surname: Yin
  fullname: Yin, Zongyou
– sequence: 3
  givenname: Qing-Bo
  surname: Yan
  fullname: Yan, Qing-Bo
– sequence: 4
  givenname: Zegao
  surname: Wang
  fullname: Wang, Zegao
– sequence: 5
  givenname: Hongtao
  surname: Lin
  fullname: Lin, Hongtao
– sequence: 6
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
– sequence: 7
  givenname: Wenshuo
  surname: Xu
  fullname: Xu, Wenshuo
– sequence: 8
  givenname: Tetsuya
  surname: Yamada
  fullname: Yamada, Tetsuya
– sequence: 9
  givenname: Xiang
  surname: Ji
  fullname: Ji, Xiang
– sequence: 10
  givenname: Nobuyuki
  surname: Zettsu
  fullname: Zettsu, Nobuyuki
– sequence: 11
  givenname: Katsuya
  surname: Teshima
  fullname: Teshima, Katsuya
– sequence: 12
  givenname: Jamie H.
  surname: Warner
  fullname: Warner, Jamie H.
– sequence: 13
  givenname: Mircea
  surname: Dincă
  fullname: Dincă, Mircea
– sequence: 14
  givenname: Juejun
  surname: Hu
  fullname: Hu, Juejun
– sequence: 15
  givenname: Mingdong
  surname: Dong
  fullname: Dong, Mingdong
– sequence: 16
  givenname: Gang
  surname: Su
  fullname: Su, Gang
– sequence: 17
  givenname: Jing
  surname: Kong
  fullname: Kong, Jing
– sequence: 18
  givenname: Ju
  surname: Li
  fullname: Li, Ju
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31575741$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1567962$$D View this record in Osti.gov
BookMark eNp9kb1vFDEQxS0URC6Bmgp0goZmk_F6_dVEQglfUiQaEKXl9c0Sn3btw_Yihb8-Xl04IAXVWPLvvZl5c0KOQgxIyHMKZxQkO98Fm8-oBs0BKBWPyIqCpo3oNByRFUArG9W13TE5yXkLUDkFT8gxo1xy2dEVEd9swbRLMQ7rKY7o5tGm-gpxtLeY8joX2_vR_8J1e7WeFtjbMT8lj4da8Nl9PSVf37_7cvmxuf784dPl2-vGcSZK02sLUinZi0EAE0i7jZPYS7DaadXCoJzTHaquo9wCcqtaWafsuUQttd6wU3Kx993N_YQbh6EkO5pd8pNNtyZab_79Cf7GfI8_jVAArFPV4NXeIObiTXa-oLtxMQR0xVAupBZthd7cd0nxx4y5mMlnh-NoA8Y5m5bVdKVqKavo6wfoNs4p1AwWSlImqKaVevn32Id5f-degfM94FLMOeFwQCiY5bJmuaz5c9mq4A8UdRdbfFz29uN_dC_2um0uMR3atEJxKYVidw3SsD0
CitedBy_id crossref_primary_10_1021_acsnano_0c08668
crossref_primary_10_1002_adfm_202105339
crossref_primary_10_1021_acs_jpcc_3c00825
crossref_primary_10_1063_5_0073650
crossref_primary_10_1016_j_talanta_2021_123036
crossref_primary_10_1021_acsami_0c11129
crossref_primary_10_1002_sstr_202400240
crossref_primary_10_1038_s41598_022_11943_w
crossref_primary_10_1002_adma_202207774
crossref_primary_10_1021_jacs_1c08906
crossref_primary_10_1038_s42004_023_00899_1
crossref_primary_10_1002_adfm_202111057
crossref_primary_10_1021_acs_nanolett_0c03263
crossref_primary_10_1002_smll_202005573
crossref_primary_10_1039_D2TC02734H
crossref_primary_10_1063_5_0205749
crossref_primary_10_1088_1361_6528_ad8e6c
crossref_primary_10_1002_inf2_12093
crossref_primary_10_1021_acs_jpcc_0c06542
crossref_primary_10_1002_adma_202106041
crossref_primary_10_1016_j_cclet_2021_06_078
crossref_primary_10_1007_s40242_020_0159_2
crossref_primary_10_1016_j_xcrp_2021_100482
crossref_primary_10_1016_j_cclet_2021_08_086
crossref_primary_10_1002_admi_202001290
crossref_primary_10_1039_D1NR00351H
crossref_primary_10_1002_adma_202203332
crossref_primary_10_1021_acsnano_3c10665
crossref_primary_10_1038_s41578_021_00304_0
crossref_primary_10_1021_acs_jpcc_2c04290
crossref_primary_10_1039_D2TA01932A
crossref_primary_10_1557_s43580_021_00007_2
crossref_primary_10_1002_admi_202200347
crossref_primary_10_1016_j_surfin_2021_101371
crossref_primary_10_1021_acsanm_1c02593
crossref_primary_10_1002_adma_202416160
Cites_doi 10.1038/nmat4384
10.1039/C5TA01010A
10.1103/PhysRevLett.105.136805
10.1126/science.1256815
10.1016/0009-2614(92)85069-M
10.1103/PhysRevB.59.1758
10.1021/nl3026357
10.1002/adfm.201101956
10.1351/pac199971060951
10.1021/acsnano.5b01341
10.1063/1.3553716
10.1021/nn501150r
10.1038/nnano.2014.35
10.1038/nnano.2014.323
10.1021/nl5032293
10.1088/2053-1583/1/2/025001
10.1063/1.3273396
10.1038/nnano.2014.26
10.1039/C8TA08497A
10.1038/nnano.2015.112
10.1038/nmat4299
10.1021/acsami.5b01297
10.1103/PhysRevLett.77.3865
10.1073/pnas.1416581112
10.1023/A:1018441032374
10.1038/nature12385
10.1038/nnano.2014.325
10.1021/nn5074435
10.1103/PhysRevB.54.11169
10.1088/0953-8984/21/8/084204
10.1063/1.4868132
10.1021/acsnano.6b00714
10.1021/acsami.8b00853
10.1021/nn403454e
10.1021/ed100468u
10.1063/1.3382344
10.1021/nn401429w
10.1103/PhysRevB.16.1748
10.1103/PhysRevB.90.081408
10.1021/j150531a020
10.1021/acsnano.5b07677
10.1023/A:1004036430497
10.1038/nnano.2013.277
ContentType Journal Article
Copyright Copyright National Academy of Sciences Oct 15, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Oct 15, 2019
– notice: 2019
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1073/pnas.1909500116
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20849
ExternalDocumentID PMC6800348
1567962
31575741
10_1073_pnas_1909500116
26857768
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11474279
– fundername: Chinese Academy of Sciences (CAS)
  grantid: XDB07010100
– fundername: NSF | ENG | Division of Electrical, Communications and Cyber Systems (ECCS)
  grantid: 1610806
– fundername: Australian National University (ANU)
  grantid: Q4601024
– fundername: National Science Foundation (NSF)
  grantid: 1453218
– fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0001088
– fundername: DOD | United States Army | RDECOM | Army Research Office (ARO)
  grantid: 023674
– fundername: MOST | Department of S and T for Social Development (Department of S&T for Social Development)
  grantid: 2013CB933401
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
ADACV
ADZLD
ASUFR
DNJUQ
DWIUU
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c536t-b9a07887b6f6036e14dc7eb70a9c9820f8cc94e84415a0e5a827000b57e9799d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:23:52 EDT 2025
Mon Apr 01 04:52:56 EDT 2024
Fri Jul 11 06:43:06 EDT 2025
Mon Jun 30 08:27:08 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 03:40:09 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Thu May 29 13:25:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords multilayer 2D materials
anticorrosion
molecular monolayer stabilizer
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-b9a07887b6f6036e14dc7eb70a9c9820f8cc94e84415a0e5a827000b57e9799d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0001088; ECCS-1610806; DP190100295; Q4601024; 2013CB933401; 11474279; XDB07010100; 1453218; 023674
Ministry of Science and Technology of China
Chinese Academy of Sciences
USDOE Office of Science (SC), Basic Energy Sciences (BES)
US Army Research Office (ARO)
National Science Foundation of China
National Science Foundation (NSF)
Australian National University
Australian Research Council
Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved September 11, 2019 (received for review June 4, 2019)
1C.S., Z.Y., and Q.-B.Y. contributed equally to this work.
Author contributions: C.S., Z.Y., and J.L. designed research; C.S., Z.Y., Q.-B.Y., Z.W., H.L., W.X., T.Y., and X.J. performed research; C.S., Z.Y., L.S., N.Z., K.T., J.H.W., M. Dincă, J.H., M. Dong, G.S., J.K., and J.L. analyzed data; N.Z., K.T., J.H.W., M. Dincă, J.H., M. Dong, G.S., J.K., and J.L. supervised the project; and C.S., Z.Y., and J.L. wrote the paper.
ORCID 0000-0002-1001-1390
0000-0002-1262-1264
0000-0003-0551-1208
0000-0003-2838-3165
0000000328383165
0000000210011390
0000000212621264
0000000305511208
OpenAccessLink https://www.pnas.org/content/pnas/116/42/20844.full.pdf
PMID 31575741
PQID 2307136191
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800348
osti_scitechconnect_1567962
proquest_miscellaneous_2300178213
proquest_journals_2307136191
pubmed_primary_31575741
crossref_primary_10_1073_pnas_1909500116
crossref_citationtrail_10_1073_pnas_1909500116
jstor_primary_26857768
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-15
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Proceedings of the National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
– name: Proceedings of the National Academy of Sciences
References Williams D. L. (e_1_3_3_30_2) 2010; 101
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
Zhao Y. (e_1_3_3_25_2) 2017; 29
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_11_2
  doi: 10.1038/nmat4384
– ident: e_1_3_3_20_2
  doi: 10.1039/C5TA01010A
– volume: 101
  start-page: 2502
  year: 2010
  ident: e_1_3_3_30_2
  article-title: Computerised measurement of contact angles
  publication-title: Galvanotechnik
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1256815
– ident: e_1_3_3_45_2
  doi: 10.1016/0009-2614(92)85069-M
– ident: e_1_3_3_34_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_3_3_2
  doi: 10.1021/nl3026357
– ident: e_1_3_3_42_2
  doi: 10.1002/adfm.201101956
– ident: e_1_3_3_1_2
  doi: 10.1351/pac199971060951
– ident: e_1_3_3_21_2
  doi: 10.1021/acsnano.5b01341
– ident: e_1_3_3_38_2
  doi: 10.1063/1.3553716
– ident: e_1_3_3_24_2
  doi: 10.1021/nn501150r
– ident: e_1_3_3_10_2
  doi: 10.1038/nnano.2014.35
– ident: e_1_3_3_7_2
  doi: 10.1038/nnano.2014.323
– ident: e_1_3_3_14_2
  doi: 10.1021/nl5032293
– ident: e_1_3_3_18_2
  doi: 10.1088/2053-1583/1/2/025001
– ident: e_1_3_3_23_2
  doi: 10.1063/1.3273396
– ident: e_1_3_3_5_2
  doi: 10.1038/nnano.2014.26
– ident: e_1_3_3_12_2
  doi: 10.1039/C8TA08497A
– ident: e_1_3_3_40_2
  doi: 10.1038/nnano.2015.112
– ident: e_1_3_3_9_2
  doi: 10.1038/nmat4299
– volume: 29
  year: 2017
  ident: e_1_3_3_25_2
  article-title: Passivation of black phosphorus via self-assembled organic monolayers by van der Waals epitaxy
  publication-title: Adv. Mater.
– ident: e_1_3_3_31_2
  doi: 10.1021/acsami.5b01297
– ident: e_1_3_3_33_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_3_43_2
  doi: 10.1073/pnas.1416581112
– ident: e_1_3_3_44_2
  doi: 10.1023/A:1018441032374
– ident: e_1_3_3_13_2
  doi: 10.1038/nature12385
– ident: e_1_3_3_8_2
  doi: 10.1038/nnano.2014.325
– ident: e_1_3_3_27_2
  doi: 10.1021/nn5074435
– ident: e_1_3_3_32_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_3_37_2
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_3_3_17_2
  doi: 10.1063/1.4868132
– ident: e_1_3_3_28_2
  doi: 10.1021/acsnano.6b00714
– ident: e_1_3_3_26_2
  doi: 10.1021/acsami.8b00853
– ident: e_1_3_3_16_2
  doi: 10.1021/nn403454e
– ident: e_1_3_3_29_2
  doi: 10.1021/ed100468u
– ident: e_1_3_3_35_2
  doi: 10.1063/1.3382344
– ident: e_1_3_3_22_2
  doi: 10.1021/nn401429w
– ident: e_1_3_3_36_2
  doi: 10.1103/PhysRevB.16.1748
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevB.90.081408
– ident: e_1_3_3_15_2
  doi: 10.1021/j150531a020
– ident: e_1_3_3_19_2
  doi: 10.1021/acsnano.5b07677
– ident: e_1_3_3_41_2
  doi: 10.1023/A:1004036430497
– ident: e_1_3_3_4_2
  doi: 10.1038/nnano.2013.277
SSID ssj0009580
Score 2.4792254
Snippet Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we...
A family of strong yet removable 1- to 2-nm-thick ultrathin monolayer is developed as a corrosion inhibitor for 2-dimensional materials that significantly...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20844
SubjectTerms Alkylamines
anticorrosion
Drying
MATERIALS SCIENCE
molecular monolayer stabilizer
Monolayers
multilayer 2D materials
Optoelectronics
Organic acids
Organic solvents
Phosphorus
Physical Sciences
Protective coatings
Theoretical analysis
Transition metal compounds
Two dimensional materials
Water chemistry
Title Waterproof molecular monolayers stabilize 2D materials
URI https://www.jstor.org/stable/26857768
https://www.ncbi.nlm.nih.gov/pubmed/31575741
https://www.proquest.com/docview/2307136191
https://www.proquest.com/docview/2300178213
https://www.osti.gov/biblio/1567962
https://pubmed.ncbi.nlm.nih.gov/PMC6800348
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkNBeJgYMwgYKEg9DVUqdOHb8ODZQhbSqiE1Me4ls1x1ILJnW9oH9Ff4sd3HipFWRYC9R6jh1mruevzvffSbkLTUzC36HjsQ0VRGThkZKSB0BltXcYNqixnjH6ZiPztnni_Si1_vdyVpaLvTA3G2sK7mPVKEN5IpVsv8hWf-l0ADnIF84goTh-E8y_qaqjMES18ibbW7hrAB3FZE0xgkw9_XO9uOT_jV2xmfq4tGJn7_mTbbAuAkPHrXFJrUFmPej_mTcbl38dVnFWct69kPj4SgJLqHpV7n0rS7K-gWGiT6UbQzf2ZlLe6XKbvSBSjTbrv6yS9698ZG6ZjeGqZC5YumBdZYWgErEmdsr1JtiV3dZ65yj3Wos6zBjrDNN42e5cQ4Ao4UbFxdqPgC0I9NqranbE4R4c12pREIBrQrHvLVGuz05PeYZsvdkD8jDGHyQKmt01GV0zlx9U_3bGt4okbxfG3ubPGoGWkE_LgEWsEAJ1nyTh7OeqNtBPmePyU7tsoRHTv92Sc8WT8hu8_7Dw5q5_N1TwluFDL1Chq1Chl4hw_gk9Ar5jJx_-nh2PIrqjTkikyZ8EWmphpiFqvmMAwKylE2NsFoMlTQSIOUsM0Yym6GvroY2VRmmNwx1KiyuIk-TPbJVlIV9QcKEspTZqdZsZlmaTTWVGjwpaxOjZlyLgAyaF5abmrUeN0_5mVfZEyLJ8WXn7csOyKG_4cYRtvy9614lAd8v5lkqwP8OyD6KJAcQikzKBlPOzCKnKQZd44AcNJLKa2Mwz7GegiacShqQN_4ymGpcf1OFLZdVH5j_spgmAXnuBOuHbhQkIGJF5L4D0sCvXil-fK_o4Gs1fXnvO_fJdvvXPiBbi9ulfQVQe6FfVyr_B07-0lg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waterproof+molecular+monolayers+stabilize+2D+materials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Su%2C+Cong&rft.au=Yin%2C+Zongyou&rft.au=Yan%2C+Qing-Bo&rft.au=Wang%2C+Zegao&rft.date=2019-10-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=42&rft.spage=20844&rft.epage=20849&rft_id=info:doi/10.1073%2Fpnas.1909500116&rft_id=info%3Apmid%2F31575741&rft.externalDocID=PMC6800348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon