Waterproof molecular monolayers stabilize 2D materials
Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these mat...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 42; pp. 20844 - 20849 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.10.2019
Proceedings of the National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm
H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS₂, 1T′-MoTe₂, WTe₂, WSe₂, TaS₂, and NbSe₂). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H₂ annealing, and organic solvents, but can be removed by certain organic acids. |
---|---|
AbstractList | Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-C m H2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T'-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-C m H2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T'-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids. A family of strong yet removable 1- to 2-nm-thick ultrathin monolayer is developed as a corrosion inhibitor for 2-dimensional materials that significantly prolong lifetime while protecting optoelectronic properties in both ambient and harsh chemical or thermal environments. This method is low in toxicity and can be applied to arbitrary substrate with no size limit. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n -C m H 2 m +1 NH 2 , with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS 2 , 1T′-MoTe 2 , WTe 2 , WSe 2 , TaS 2 , and NbSe 2 ). As a representative example, n -hexylamine ( m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H 2 annealing, and organic solvents, but can be removed by certain organic acids. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-Cm H2m+1NH₂, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS₂, 1T′-MoTe₂, WTe₂, WSe₂, TaS₂, and NbSe₂). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H₂ annealing, and organic solvents, but can be removed by certain organic acids. Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines -C H NH , with = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS , 1T'-MoTe , WTe , WSe , TaS , and NbSe ). As a representative example, -hexylamine ( = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP's lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H annealing, and organic solvents, but can be removed by certain organic acids. |
Author | Zettsu, Nobuyuki Kong, Jing Teshima, Katsuya Su, Cong Dincă, Mircea Dong, Mingdong Yan, Qing-Bo Xu, Wenshuo Ji, Xiang Wang, Zegao Warner, Jamie H. Li, Ju Lin, Hongtao Yamada, Tetsuya Hu, Juejun Sun, Lei Su, Gang Yin, Zongyou |
Author_xml | – sequence: 1 givenname: Cong surname: Su fullname: Su, Cong – sequence: 2 givenname: Zongyou surname: Yin fullname: Yin, Zongyou – sequence: 3 givenname: Qing-Bo surname: Yan fullname: Yan, Qing-Bo – sequence: 4 givenname: Zegao surname: Wang fullname: Wang, Zegao – sequence: 5 givenname: Hongtao surname: Lin fullname: Lin, Hongtao – sequence: 6 givenname: Lei surname: Sun fullname: Sun, Lei – sequence: 7 givenname: Wenshuo surname: Xu fullname: Xu, Wenshuo – sequence: 8 givenname: Tetsuya surname: Yamada fullname: Yamada, Tetsuya – sequence: 9 givenname: Xiang surname: Ji fullname: Ji, Xiang – sequence: 10 givenname: Nobuyuki surname: Zettsu fullname: Zettsu, Nobuyuki – sequence: 11 givenname: Katsuya surname: Teshima fullname: Teshima, Katsuya – sequence: 12 givenname: Jamie H. surname: Warner fullname: Warner, Jamie H. – sequence: 13 givenname: Mircea surname: Dincă fullname: Dincă, Mircea – sequence: 14 givenname: Juejun surname: Hu fullname: Hu, Juejun – sequence: 15 givenname: Mingdong surname: Dong fullname: Dong, Mingdong – sequence: 16 givenname: Gang surname: Su fullname: Su, Gang – sequence: 17 givenname: Jing surname: Kong fullname: Kong, Jing – sequence: 18 givenname: Ju surname: Li fullname: Li, Ju |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31575741$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1567962$$D View this record in Osti.gov |
BookMark | eNp9kb1vFDEQxS0URC6Bmgp0goZmk_F6_dVEQglfUiQaEKXl9c0Sn3btw_Yihb8-Xl04IAXVWPLvvZl5c0KOQgxIyHMKZxQkO98Fm8-oBs0BKBWPyIqCpo3oNByRFUArG9W13TE5yXkLUDkFT8gxo1xy2dEVEd9swbRLMQ7rKY7o5tGm-gpxtLeY8joX2_vR_8J1e7WeFtjbMT8lj4da8Nl9PSVf37_7cvmxuf784dPl2-vGcSZK02sLUinZi0EAE0i7jZPYS7DaadXCoJzTHaquo9wCcqtaWafsuUQttd6wU3Kx993N_YQbh6EkO5pd8pNNtyZab_79Cf7GfI8_jVAArFPV4NXeIObiTXa-oLtxMQR0xVAupBZthd7cd0nxx4y5mMlnh-NoA8Y5m5bVdKVqKavo6wfoNs4p1AwWSlImqKaVevn32Id5f-degfM94FLMOeFwQCiY5bJmuaz5c9mq4A8UdRdbfFz29uN_dC_2um0uMR3atEJxKYVidw3SsD0 |
CitedBy_id | crossref_primary_10_1021_acsnano_0c08668 crossref_primary_10_1002_adfm_202105339 crossref_primary_10_1021_acs_jpcc_3c00825 crossref_primary_10_1063_5_0073650 crossref_primary_10_1016_j_talanta_2021_123036 crossref_primary_10_1021_acsami_0c11129 crossref_primary_10_1002_sstr_202400240 crossref_primary_10_1038_s41598_022_11943_w crossref_primary_10_1002_adma_202207774 crossref_primary_10_1021_jacs_1c08906 crossref_primary_10_1038_s42004_023_00899_1 crossref_primary_10_1002_adfm_202111057 crossref_primary_10_1021_acs_nanolett_0c03263 crossref_primary_10_1002_smll_202005573 crossref_primary_10_1039_D2TC02734H crossref_primary_10_1063_5_0205749 crossref_primary_10_1088_1361_6528_ad8e6c crossref_primary_10_1002_inf2_12093 crossref_primary_10_1021_acs_jpcc_0c06542 crossref_primary_10_1002_adma_202106041 crossref_primary_10_1016_j_cclet_2021_06_078 crossref_primary_10_1007_s40242_020_0159_2 crossref_primary_10_1016_j_xcrp_2021_100482 crossref_primary_10_1016_j_cclet_2021_08_086 crossref_primary_10_1002_admi_202001290 crossref_primary_10_1039_D1NR00351H crossref_primary_10_1002_adma_202203332 crossref_primary_10_1021_acsnano_3c10665 crossref_primary_10_1038_s41578_021_00304_0 crossref_primary_10_1021_acs_jpcc_2c04290 crossref_primary_10_1039_D2TA01932A crossref_primary_10_1557_s43580_021_00007_2 crossref_primary_10_1002_admi_202200347 crossref_primary_10_1016_j_surfin_2021_101371 crossref_primary_10_1021_acsanm_1c02593 crossref_primary_10_1002_adma_202416160 |
Cites_doi | 10.1038/nmat4384 10.1039/C5TA01010A 10.1103/PhysRevLett.105.136805 10.1126/science.1256815 10.1016/0009-2614(92)85069-M 10.1103/PhysRevB.59.1758 10.1021/nl3026357 10.1002/adfm.201101956 10.1351/pac199971060951 10.1021/acsnano.5b01341 10.1063/1.3553716 10.1021/nn501150r 10.1038/nnano.2014.35 10.1038/nnano.2014.323 10.1021/nl5032293 10.1088/2053-1583/1/2/025001 10.1063/1.3273396 10.1038/nnano.2014.26 10.1039/C8TA08497A 10.1038/nnano.2015.112 10.1038/nmat4299 10.1021/acsami.5b01297 10.1103/PhysRevLett.77.3865 10.1073/pnas.1416581112 10.1023/A:1018441032374 10.1038/nature12385 10.1038/nnano.2014.325 10.1021/nn5074435 10.1103/PhysRevB.54.11169 10.1088/0953-8984/21/8/084204 10.1063/1.4868132 10.1021/acsnano.6b00714 10.1021/acsami.8b00853 10.1021/nn403454e 10.1021/ed100468u 10.1063/1.3382344 10.1021/nn401429w 10.1103/PhysRevB.16.1748 10.1103/PhysRevB.90.081408 10.1021/j150531a020 10.1021/acsnano.5b07677 10.1023/A:1004036430497 10.1038/nnano.2013.277 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Oct 15, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Oct 15, 2019 – notice: 2019 |
CorporateAuthor | Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
CorporateAuthor_xml | – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OTOTI 5PM |
DOI | 10.1073/pnas.1909500116 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20849 |
ExternalDocumentID | PMC6800348 1567962 31575741 10_1073_pnas_1909500116 26857768 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 11474279 – fundername: Chinese Academy of Sciences (CAS) grantid: XDB07010100 – fundername: NSF | ENG | Division of Electrical, Communications and Cyber Systems (ECCS) grantid: 1610806 – fundername: Australian National University (ANU) grantid: Q4601024 – fundername: National Science Foundation (NSF) grantid: 1453218 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0001088 – fundername: DOD | United States Army | RDECOM | Army Research Office (ARO) grantid: 023674 – fundername: MOST | Department of S and T for Social Development (Department of S&T for Social Development) grantid: 2013CB933401 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B ADACV ADZLD ASUFR DNJUQ DWIUU OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c536t-b9a07887b6f6036e14dc7eb70a9c9820f8cc94e84415a0e5a827000b57e9799d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:23:52 EDT 2025 Mon Apr 01 04:52:56 EDT 2024 Fri Jul 11 06:43:06 EDT 2025 Mon Jun 30 08:27:08 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 03:40:09 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Thu May 29 13:25:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | multilayer 2D materials anticorrosion molecular monolayer stabilizer |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-b9a07887b6f6036e14dc7eb70a9c9820f8cc94e84415a0e5a827000b57e9799d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0001088; ECCS-1610806; DP190100295; Q4601024; 2013CB933401; 11474279; XDB07010100; 1453218; 023674 Ministry of Science and Technology of China Chinese Academy of Sciences USDOE Office of Science (SC), Basic Energy Sciences (BES) US Army Research Office (ARO) National Science Foundation of China National Science Foundation (NSF) Australian National University Australian Research Council Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved September 11, 2019 (received for review June 4, 2019) 1C.S., Z.Y., and Q.-B.Y. contributed equally to this work. Author contributions: C.S., Z.Y., and J.L. designed research; C.S., Z.Y., Q.-B.Y., Z.W., H.L., W.X., T.Y., and X.J. performed research; C.S., Z.Y., L.S., N.Z., K.T., J.H.W., M. Dincă, J.H., M. Dong, G.S., J.K., and J.L. analyzed data; N.Z., K.T., J.H.W., M. Dincă, J.H., M. Dong, G.S., J.K., and J.L. supervised the project; and C.S., Z.Y., and J.L. wrote the paper. |
ORCID | 0000-0002-1001-1390 0000-0002-1262-1264 0000-0003-0551-1208 0000-0003-2838-3165 0000000328383165 0000000210011390 0000000212621264 0000000305511208 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/42/20844.full.pdf |
PMID | 31575741 |
PQID | 2307136191 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6800348 osti_scitechconnect_1567962 proquest_miscellaneous_2300178213 proquest_journals_2307136191 pubmed_primary_31575741 crossref_primary_10_1073_pnas_1909500116 crossref_citationtrail_10_1073_pnas_1909500116 jstor_primary_26857768 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-15 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences Proceedings of the National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences – name: Proceedings of the National Academy of Sciences |
References | Williams D. L. (e_1_3_3_30_2) 2010; 101 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 Zhao Y. (e_1_3_3_25_2) 2017; 29 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_11_2 doi: 10.1038/nmat4384 – ident: e_1_3_3_20_2 doi: 10.1039/C5TA01010A – volume: 101 start-page: 2502 year: 2010 ident: e_1_3_3_30_2 article-title: Computerised measurement of contact angles publication-title: Galvanotechnik – ident: e_1_3_3_2_2 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_3_3_6_2 doi: 10.1126/science.1256815 – ident: e_1_3_3_45_2 doi: 10.1016/0009-2614(92)85069-M – ident: e_1_3_3_34_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_3_3_2 doi: 10.1021/nl3026357 – ident: e_1_3_3_42_2 doi: 10.1002/adfm.201101956 – ident: e_1_3_3_1_2 doi: 10.1351/pac199971060951 – ident: e_1_3_3_21_2 doi: 10.1021/acsnano.5b01341 – ident: e_1_3_3_38_2 doi: 10.1063/1.3553716 – ident: e_1_3_3_24_2 doi: 10.1021/nn501150r – ident: e_1_3_3_10_2 doi: 10.1038/nnano.2014.35 – ident: e_1_3_3_7_2 doi: 10.1038/nnano.2014.323 – ident: e_1_3_3_14_2 doi: 10.1021/nl5032293 – ident: e_1_3_3_18_2 doi: 10.1088/2053-1583/1/2/025001 – ident: e_1_3_3_23_2 doi: 10.1063/1.3273396 – ident: e_1_3_3_5_2 doi: 10.1038/nnano.2014.26 – ident: e_1_3_3_12_2 doi: 10.1039/C8TA08497A – ident: e_1_3_3_40_2 doi: 10.1038/nnano.2015.112 – ident: e_1_3_3_9_2 doi: 10.1038/nmat4299 – volume: 29 year: 2017 ident: e_1_3_3_25_2 article-title: Passivation of black phosphorus via self-assembled organic monolayers by van der Waals epitaxy publication-title: Adv. Mater. – ident: e_1_3_3_31_2 doi: 10.1021/acsami.5b01297 – ident: e_1_3_3_33_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_3_43_2 doi: 10.1073/pnas.1416581112 – ident: e_1_3_3_44_2 doi: 10.1023/A:1018441032374 – ident: e_1_3_3_13_2 doi: 10.1038/nature12385 – ident: e_1_3_3_8_2 doi: 10.1038/nnano.2014.325 – ident: e_1_3_3_27_2 doi: 10.1021/nn5074435 – ident: e_1_3_3_32_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_3_37_2 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_3_3_17_2 doi: 10.1063/1.4868132 – ident: e_1_3_3_28_2 doi: 10.1021/acsnano.6b00714 – ident: e_1_3_3_26_2 doi: 10.1021/acsami.8b00853 – ident: e_1_3_3_16_2 doi: 10.1021/nn403454e – ident: e_1_3_3_29_2 doi: 10.1021/ed100468u – ident: e_1_3_3_35_2 doi: 10.1063/1.3382344 – ident: e_1_3_3_22_2 doi: 10.1021/nn401429w – ident: e_1_3_3_36_2 doi: 10.1103/PhysRevB.16.1748 – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevB.90.081408 – ident: e_1_3_3_15_2 doi: 10.1021/j150531a020 – ident: e_1_3_3_19_2 doi: 10.1021/acsnano.5b07677 – ident: e_1_3_3_41_2 doi: 10.1023/A:1004036430497 – ident: e_1_3_3_4_2 doi: 10.1038/nnano.2013.277 |
SSID | ssj0009580 |
Score | 2.4792254 |
Snippet | Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we... A family of strong yet removable 1- to 2-nm-thick ultrathin monolayer is developed as a corrosion inhibitor for 2-dimensional materials that significantly... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20844 |
SubjectTerms | Alkylamines anticorrosion Drying MATERIALS SCIENCE molecular monolayer stabilizer Monolayers multilayer 2D materials Optoelectronics Organic acids Organic solvents Phosphorus Physical Sciences Protective coatings Theoretical analysis Transition metal compounds Two dimensional materials Water chemistry |
Title | Waterproof molecular monolayers stabilize 2D materials |
URI | https://www.jstor.org/stable/26857768 https://www.ncbi.nlm.nih.gov/pubmed/31575741 https://www.proquest.com/docview/2307136191 https://www.proquest.com/docview/2300178213 https://www.osti.gov/biblio/1567962 https://pubmed.ncbi.nlm.nih.gov/PMC6800348 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKkNBeJgYMwgYKEg9DVUqdOHb8ODZQhbSqiE1Me4ls1x1ILJnW9oH9Ff4sd3HipFWRYC9R6jh1mruevzvffSbkLTUzC36HjsQ0VRGThkZKSB0BltXcYNqixnjH6ZiPztnni_Si1_vdyVpaLvTA3G2sK7mPVKEN5IpVsv8hWf-l0ADnIF84goTh-E8y_qaqjMES18ibbW7hrAB3FZE0xgkw9_XO9uOT_jV2xmfq4tGJn7_mTbbAuAkPHrXFJrUFmPej_mTcbl38dVnFWct69kPj4SgJLqHpV7n0rS7K-gWGiT6UbQzf2ZlLe6XKbvSBSjTbrv6yS9698ZG6ZjeGqZC5YumBdZYWgErEmdsr1JtiV3dZ65yj3Wos6zBjrDNN42e5cQ4Ao4UbFxdqPgC0I9NqranbE4R4c12pREIBrQrHvLVGuz05PeYZsvdkD8jDGHyQKmt01GV0zlx9U_3bGt4okbxfG3ubPGoGWkE_LgEWsEAJ1nyTh7OeqNtBPmePyU7tsoRHTv92Sc8WT8hu8_7Dw5q5_N1TwluFDL1Chq1Chl4hw_gk9Ar5jJx_-nh2PIrqjTkikyZ8EWmphpiFqvmMAwKylE2NsFoMlTQSIOUsM0Yym6GvroY2VRmmNwx1KiyuIk-TPbJVlIV9QcKEspTZqdZsZlmaTTWVGjwpaxOjZlyLgAyaF5abmrUeN0_5mVfZEyLJ8WXn7csOyKG_4cYRtvy9614lAd8v5lkqwP8OyD6KJAcQikzKBlPOzCKnKQZd44AcNJLKa2Mwz7GegiacShqQN_4ymGpcf1OFLZdVH5j_spgmAXnuBOuHbhQkIGJF5L4D0sCvXil-fK_o4Gs1fXnvO_fJdvvXPiBbi9ulfQVQe6FfVyr_B07-0lg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waterproof+molecular+monolayers+stabilize+2D+materials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Su%2C+Cong&rft.au=Yin%2C+Zongyou&rft.au=Yan%2C+Qing-Bo&rft.au=Wang%2C+Zegao&rft.date=2019-10-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=42&rft.spage=20844&rft.epage=20849&rft_id=info:doi/10.1073%2Fpnas.1909500116&rft_id=info%3Apmid%2F31575741&rft.externalDocID=PMC6800348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |