Free water elimination improves test–retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects
Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural chang...
Saved in:
Published in | Human brain mapping Vol. 38; no. 1; pp. 12 - 26 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.01.2017
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test–retest reproducibility. This study compares a bi‐tensor model for FWE with DTI by extending a previous longitudinal‐reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55–80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white‐matter regions of the JHU‐ICBM‐DTI‐81 white‐matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects.
Hum Brain Mapp 38:12–26, 2017
. ©
2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc. Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. (c) 2016 Wiley Periodicals, Inc. Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test–retest reproducibility. This study compares a bi‐tensor model for FWE with DTI by extending a previous longitudinal‐reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55–80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white‐matter regions of the JHU‐ICBM‐DTI‐81 white‐matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12–26, 2017 . © 2016 Wiley Periodicals, Inc. Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. copyright 2016 Wiley Periodicals, Inc. |
Author | Marizzoni, Moira Müller, Bernhard Frisoni, Giovanni Picco, Agnese Alessandrini, Franco Albi, Angela Bosch, Beatriz Drevelegas, Antonios Cavaliere, Carlo Floridi, Piero Marra, Camillo Payoux, Pierre Jovicich, Jorge Ranjeva, Jean‐Philippe Tsolaki, Magda Bordet, Régis Nobili, Flavio Mariano Sein, Julien Didic, Mira Tarducci, Roberto Constantinidis, Manos Blin, Oliver Pasternak, Ofer Ferretti, Antonio Caulo, Massimo Bartrés‐Faz, David Zoccatelli, Giada Roccatagliata, Luca Soricelli, Andrea Gros‐Dagnac, Hélène Fiedler, Ute Aiello, Marco Parnetti, Lucilla Rossini, Paolo Maria Bombois, Stephanie Lopes, Renaud Bargalló, Núria Wiltfang, Jens Minati, Ludovico Beltramello, Alberto |
AuthorAffiliation | 33 Memory Clinic and LANVIE Laboratory of Neuroimaging of Aging University Hospitals and University of Geneva Geneva Switzerland 17 APHM, CHU Timone, Service de Neurologie et Neuropsychologie Marseille France 10 LVR‐Clinic for Psychiatry and Psychotherapy Institutes and Clinics of the University Duisburg‐Essen Essen Germany 12 Department of Neuroradiology IRCSS San Martino University Hospital and IST Genoa Italy 2 Departments of Psychiatry and Radiology Brigham and Women's Hospital, Harvard Medical School Boston MA 5 Department of Neuroradiology and Magnetic Resonance Image core Facility Hospital Clínic de Barcelona, IDIBAPS Barcelona Spain 25 IRCCS SDN Naples Italy 31 Interbalkan Medical Center of Thessaloniki Thessaloniki Greece 28 Medical Physics Unit Perugia General Hospital Perugia Italy 6 Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology Hospital Clínic, and IDIBAPS Barcelona Spain 15 Pharmacology, Assistance Publique—Hôpitaux de Marseille, Aix‐Marseille Unive |
AuthorAffiliation_xml | – name: 2 Departments of Psychiatry and Radiology Brigham and Women's Hospital, Harvard Medical School Boston MA – name: 32 Department of Radiology Aristotle University of Thessaloniki Thessaloniki Greece – name: 31 Interbalkan Medical Center of Thessaloniki Thessaloniki Greece – name: 16 CRMBM–CEMEREM, UMR 7339, Aix Marseille Université—CNRS Marseille France – name: 23 Department of Neuroscience Imaging and Clinical Sciences University “G. d'Annunzio” of Chieti Italy – name: 3 LENITEM Laboratory of Epidemiology Neuroimaging, & Telemedicine—IRCCS San Giovanni di Dio‐FBF Brescia Italy – name: 18 Aix Marseille Université, Inserm, INS UMR_S 1106 Marseille 13005 France – name: 26 University of Naples Parthenope Naples Italy – name: 6 Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology Hospital Clínic, and IDIBAPS Barcelona Spain – name: 33 Memory Clinic and LANVIE Laboratory of Neuroimaging of Aging University Hospitals and University of Geneva Geneva Switzerland – name: 25 IRCCS SDN Naples Italy – name: 7 Department Geriatrics Neuroscience & Orthopedics Catholic University, Policlinic Gemelli Rome Italy – name: 9 Center for Neuropsychological Research, Catholic University Rome Italy – name: 10 LVR‐Clinic for Psychiatry and Psychotherapy Institutes and Clinics of the University Duisburg‐Essen Essen Germany – name: 17 APHM, CHU Timone, Service de Neurologie et Neuropsychologie Marseille France – name: 27 Section of Neurology, Centre for Memory Disturbances University of Perugia Perugia Italy – name: 29 Neuroradiology Unit, Perugia General Hospital Perugia Italy – name: 4 Department of Psychiatry and Clinical Psychobiology Universitat de Barcelona and IDIBAPS Barcelona Spain – name: 22 Department of Neuroradiology General Hospital Verona Italy – name: 14 Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI) University of Genoa Genoa Italy – name: 8 IRCSS S.Raffaele Pisana Rome Italy – name: 1 Center for Mind/Brain Sciences (CIMEC), University of Trento Rovereto Italy – name: 19 Université de Lille, Inserm, CHU Lille, U1171—Degenerative and vascular cognitive disorders Lille F‐59000 France – name: 12 Department of Neuroradiology IRCSS San Martino University Hospital and IST Genoa Italy – name: 28 Medical Physics Unit Perugia General Hospital Perugia Italy – name: 30 3 rd Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece – name: 11 Department of Psychiatry and Psychotherapy University Medical Center (UMG), Georg August University Göttingen Germany – name: 13 Department of Health Sciences University of Genoa Genoa Italy – name: 24 Institute for Advanced Biomedical Technologies (ITAB), University “G. d'Annunzio” of Chieti Italy – name: 5 Department of Neuroradiology and Magnetic Resonance Image core Facility Hospital Clínic de Barcelona, IDIBAPS Barcelona Spain – name: 15 Pharmacology, Assistance Publique—Hôpitaux de Marseille, Aix‐Marseille University—CNRS, UMR Marseille 7289 France – name: 20 INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825 Toulouse France – name: 21 Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825 CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9 France |
Author_xml | – sequence: 1 givenname: Angela surname: Albi fullname: Albi, Angela organization: Center for Mind/Brain Sciences (CIMEC), University of Trento Rovereto Italy – sequence: 2 givenname: Ofer surname: Pasternak fullname: Pasternak, Ofer organization: Departments of Psychiatry and Radiology Brigham and Women's Hospital, Harvard Medical School Boston MA – sequence: 3 givenname: Ludovico surname: Minati fullname: Minati, Ludovico organization: Center for Mind/Brain Sciences (CIMEC), University of Trento Rovereto Italy – sequence: 4 givenname: Moira surname: Marizzoni fullname: Marizzoni, Moira organization: LENITEM Laboratory of Epidemiology Neuroimaging, & Telemedicine—IRCCS San Giovanni di Dio‐FBF Brescia Italy – sequence: 5 givenname: David surname: Bartrés‐Faz fullname: Bartrés‐Faz, David organization: Department of Psychiatry and Clinical Psychobiology Universitat de Barcelona and IDIBAPS Barcelona Spain – sequence: 6 givenname: Núria surname: Bargalló fullname: Bargalló, Núria organization: Department of Neuroradiology and Magnetic Resonance Image core Facility Hospital Clínic de Barcelona, IDIBAPS Barcelona Spain – sequence: 7 givenname: Beatriz surname: Bosch fullname: Bosch, Beatriz organization: Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology Hospital Clínic, and IDIBAPS Barcelona Spain – sequence: 8 givenname: Paolo Maria surname: Rossini fullname: Rossini, Paolo Maria organization: Department Geriatrics Neuroscience & Orthopedics Catholic University, Policlinic Gemelli Rome Italy, IRCSS S.Raffaele Pisana Rome Italy – sequence: 9 givenname: Camillo surname: Marra fullname: Marra, Camillo organization: Center for Neuropsychological Research, Catholic University Rome Italy – sequence: 10 givenname: Bernhard surname: Müller fullname: Müller, Bernhard organization: LVR‐Clinic for Psychiatry and Psychotherapy Institutes and Clinics of the University Duisburg‐Essen Essen Germany – sequence: 11 givenname: Ute surname: Fiedler fullname: Fiedler, Ute organization: LVR‐Clinic for Psychiatry and Psychotherapy Institutes and Clinics of the University Duisburg‐Essen Essen Germany – sequence: 12 givenname: Jens surname: Wiltfang fullname: Wiltfang, Jens organization: LVR‐Clinic for Psychiatry and Psychotherapy Institutes and Clinics of the University Duisburg‐Essen Essen Germany, Department of Psychiatry and Psychotherapy University Medical Center (UMG), Georg August University Göttingen Germany – sequence: 13 givenname: Luca surname: Roccatagliata fullname: Roccatagliata, Luca organization: Department of Neuroradiology IRCSS San Martino University Hospital and IST Genoa Italy, Department of Health Sciences University of Genoa Genoa Italy – sequence: 14 givenname: Agnese surname: Picco fullname: Picco, Agnese organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI) University of Genoa Genoa Italy – sequence: 15 givenname: Flavio Mariano surname: Nobili fullname: Nobili, Flavio Mariano organization: Department of Neuroscience, Ophthalmology, Genetics and Mother–Child Health (DINOGMI) University of Genoa Genoa Italy – sequence: 16 givenname: Oliver surname: Blin fullname: Blin, Oliver organization: Pharmacology, Assistance Publique—Hôpitaux de Marseille, Aix‐Marseille University—CNRS, UMR Marseille 7289 France – sequence: 17 givenname: Julien surname: Sein fullname: Sein, Julien organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université—CNRS Marseille France – sequence: 18 givenname: Jean‐Philippe surname: Ranjeva fullname: Ranjeva, Jean‐Philippe organization: CRMBM–CEMEREM, UMR 7339, Aix Marseille Université—CNRS Marseille France – sequence: 19 givenname: Mira surname: Didic fullname: Didic, Mira organization: APHM, CHU Timone, Service de Neurologie et Neuropsychologie Marseille France, Aix Marseille Université, Inserm, INS UMR_S 1106 Marseille 13005 France – sequence: 20 givenname: Stephanie surname: Bombois fullname: Bombois, Stephanie organization: Université de Lille, Inserm, CHU Lille, U1171—Degenerative and vascular cognitive disorders Lille F‐59000 France – sequence: 21 givenname: Renaud surname: Lopes fullname: Lopes, Renaud organization: Université de Lille, Inserm, CHU Lille, U1171—Degenerative and vascular cognitive disorders Lille F‐59000 France – sequence: 22 givenname: Régis surname: Bordet fullname: Bordet, Régis organization: Université de Lille, Inserm, CHU Lille, U1171—Degenerative and vascular cognitive disorders Lille F‐59000 France – sequence: 23 givenname: Hélène surname: Gros‐Dagnac fullname: Gros‐Dagnac, Hélène organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825 Toulouse France, Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825 CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9 France – sequence: 24 givenname: Pierre surname: Payoux fullname: Payoux, Pierre organization: INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825 Toulouse France, Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825 CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9 France – sequence: 25 givenname: Giada surname: Zoccatelli fullname: Zoccatelli, Giada organization: Department of Neuroradiology General Hospital Verona Italy – sequence: 26 givenname: Franco surname: Alessandrini fullname: Alessandrini, Franco organization: Department of Neuroradiology General Hospital Verona Italy – sequence: 27 givenname: Alberto surname: Beltramello fullname: Beltramello, Alberto organization: Department of Neuroradiology General Hospital Verona Italy – sequence: 28 givenname: Antonio surname: Ferretti fullname: Ferretti, Antonio organization: Department of Neuroscience Imaging and Clinical Sciences University “G. d'Annunzio” of Chieti Italy, Institute for Advanced Biomedical Technologies (ITAB), University “G. d'Annunzio” of Chieti Italy – sequence: 29 givenname: Massimo surname: Caulo fullname: Caulo, Massimo organization: Department of Neuroscience Imaging and Clinical Sciences University “G. d'Annunzio” of Chieti Italy, Institute for Advanced Biomedical Technologies (ITAB), University “G. d'Annunzio” of Chieti Italy – sequence: 30 givenname: Marco surname: Aiello fullname: Aiello, Marco organization: IRCCS SDN Naples Italy – sequence: 31 givenname: Carlo surname: Cavaliere fullname: Cavaliere, Carlo organization: IRCCS SDN Naples Italy – sequence: 32 givenname: Andrea surname: Soricelli fullname: Soricelli, Andrea organization: IRCCS SDN Naples Italy, University of Naples Parthenope Naples Italy – sequence: 33 givenname: Lucilla surname: Parnetti fullname: Parnetti, Lucilla organization: Section of Neurology, Centre for Memory Disturbances University of Perugia Perugia Italy – sequence: 34 givenname: Roberto surname: Tarducci fullname: Tarducci, Roberto organization: Medical Physics Unit Perugia General Hospital Perugia Italy – sequence: 35 givenname: Piero surname: Floridi fullname: Floridi, Piero organization: Neuroradiology Unit, Perugia General Hospital Perugia Italy – sequence: 36 givenname: Magda surname: Tsolaki fullname: Tsolaki, Magda organization: 3rd Department of Neurology Aristotle University of Thessaloniki Thessaloniki Greece – sequence: 37 givenname: Manos surname: Constantinidis fullname: Constantinidis, Manos organization: Interbalkan Medical Center of Thessaloniki Thessaloniki Greece – sequence: 38 givenname: Antonios surname: Drevelegas fullname: Drevelegas, Antonios organization: Interbalkan Medical Center of Thessaloniki Thessaloniki Greece, Department of Radiology Aristotle University of Thessaloniki Thessaloniki Greece – sequence: 39 givenname: Giovanni surname: Frisoni fullname: Frisoni, Giovanni organization: LENITEM Laboratory of Epidemiology Neuroimaging, & Telemedicine—IRCCS San Giovanni di Dio‐FBF Brescia Italy, Memory Clinic and LANVIE Laboratory of Neuroimaging of Aging University Hospitals and University of Geneva Geneva Switzerland – sequence: 40 givenname: Jorge surname: Jovicich fullname: Jovicich, Jorge organization: Center for Mind/Brain Sciences (CIMEC), University of Trento Rovereto Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27519630$$D View this record in MEDLINE/PubMed https://hal.science/hal-01657965$$DView record in HAL |
BookMark | eNqNkkuO1DAQhiM0iHnAggsgS2xgkRk7jp2YxUitEcMgtcQG1lbiVDpuOXZjO416xx24BcfiJDjdwwAtFqxsVX3110P_eXZinYUse07wJcG4uBra8bKglOFH2RnBosoxEfRk_nOWi7Iip9l5CGuMCWGYPMlOi4oRwSk-y77fegD0pYngERg9attE7SzS48a7LQQUIcQfX795mD_IQwp3k9KtNjrukOtRp_t-CnNNBBucT6XNStsV0rbTKinolBkAtb7R9g1aIOPsSsepS60MGicTddARUEihveAAjYnDLo3TgTc7FKZ2DSqGp9njvjEBnt2_F9mn27cfb-7y5Yd3728Wy1wxymPelkVXQklwTVved6qvOHCieN9iAZxRSkRZVKKFmrc9YVU6D2EUq0oI3Iqa04vs-qC7mdoROgU2-sbIjU-L-Z10jZZ_Z6we5MptJSsFFYIkgdcHgeGo7G6xlHMME84qwdl2Zl_dN_Pu85ROLEcdFBjTWHBTkKRmDFdFjcv_QMuqrmtezujLI3TtJp_ufaBoEq2KRL34c9GHUX-54_ciyrsQPPQPCMFydp5MzpN75yX26ohVOu69lG6kzT8qfgJP5N7f |
CitedBy_id | crossref_primary_10_2463_mrms_mp_2022_0146 crossref_primary_10_7554_eLife_62929 crossref_primary_10_1177_0271678X19865916 crossref_primary_10_1002_mds_29253 crossref_primary_10_1016_j_neurobiolaging_2024_04_005 crossref_primary_10_1038_mp_2017_43 crossref_primary_10_3389_fnins_2021_665017 crossref_primary_10_1016_j_wneu_2020_07_107 crossref_primary_10_1002_nbm_4210 crossref_primary_10_1007_s00429_020_02121_7 crossref_primary_10_1016_j_neuroimage_2020_116606 crossref_primary_10_1038_s41526_016_0001_9 crossref_primary_10_1016_j_neurobiolaging_2024_05_018 crossref_primary_10_1002_nbm_4219 crossref_primary_10_1007_s00429_019_02017_1 crossref_primary_10_1016_j_pnpbp_2020_110238 crossref_primary_10_1053_j_sult_2021_07_006 crossref_primary_10_1016_j_neuroimage_2021_118234 crossref_primary_10_1016_j_mri_2019_08_024 crossref_primary_10_1162_imag_a_00045 crossref_primary_10_1093_braincomms_fcab034 crossref_primary_10_1371_journal_pone_0242696 crossref_primary_10_1089_neu_2018_5734 crossref_primary_10_2463_mrms_mp_2021_0007 crossref_primary_10_3389_fphy_2017_00061 crossref_primary_10_1089_neu_2017_5566 crossref_primary_10_3390_cells12040601 crossref_primary_10_1016_j_neuroimage_2021_118605 crossref_primary_10_1016_j_nicl_2021_102561 crossref_primary_10_1016_j_bpsc_2021_06_007 crossref_primary_10_1016_j_ynirp_2022_100098 crossref_primary_10_1016_j_jad_2020_12_171 crossref_primary_10_1093_brain_awx146 crossref_primary_10_1177_0271678X231214073 crossref_primary_10_1212_WNL_0000000000007449 crossref_primary_10_1002_jmri_27019 crossref_primary_10_1002_hbm_24961 crossref_primary_10_1089_brain_2021_0123 crossref_primary_10_1002_mrm_28242 crossref_primary_10_1038_s41598_017_03311_w crossref_primary_10_1016_j_nicl_2020_102168 crossref_primary_10_1371_journal_pone_0255711 crossref_primary_10_1007_s00330_022_09245_w crossref_primary_10_1016_j_neurobiolaging_2018_07_018 crossref_primary_10_1097_MD_0000000000034618 crossref_primary_10_1016_j_mri_2018_07_011 crossref_primary_10_1161_HYPERTENSIONAHA_123_22337 crossref_primary_10_3233_JAD_221304 crossref_primary_10_3389_fneur_2021_725059 crossref_primary_10_3233_JAD_180158 crossref_primary_10_3233_JPD_181482 crossref_primary_10_1016_j_neuroimage_2023_120324 crossref_primary_10_3389_fnagi_2022_995425 crossref_primary_10_1016_j_neurobiolaging_2020_08_004 crossref_primary_10_1016_j_neuroimage_2020_117040 crossref_primary_10_1016_j_mri_2025_110326 crossref_primary_10_1016_j_neuroimage_2018_01_086 crossref_primary_10_1007_s11910_018_0894_7 crossref_primary_10_3389_fnagi_2022_809281 crossref_primary_10_1017_S0033291724003064 crossref_primary_10_4103_1673_5374_276326 crossref_primary_10_3390_diagnostics12010026 crossref_primary_10_1002_alz_13776 crossref_primary_10_1111_ene_70094 crossref_primary_10_1093_brain_awab039 crossref_primary_10_1038_s41386_024_01894_3 crossref_primary_10_3389_fnagi_2024_1361436 |
Cites_doi | 10.1016/j.neuroimage.2006.09.020 10.1371/journal.pone.0045996 10.1002/mrm.1105 10.1016/j.neurobiolaging.2014.10.029 10.1016/j.neuroimage.2012.02.084 10.1006/jmrb.1996.0086 10.1002/hbm.21370 10.1016/j.neuroimage.2011.01.048 10.1002/hbm.22493 10.1016/j.schres.2014.07.031 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2014.09.053 10.1016/j.neuroimage.2010.03.046 10.1080/87565641003689556 10.3174/ajnr.A2844 10.1016/j.neuroimage.2015.10.030 10.1016/j.neuroimage.2013.05.007 10.1016/j.nurt.2007.05.011 10.1016/S0006-3495(94)80775-1 10.1002/nbm.1543 10.1093/brain/awv136 10.1002/hbm.10062 10.1002/mrm.22055 10.1016/j.schres.2014.09.046 10.1016/j.neuroimage.2014.06.075 10.1016/j.neuroimage.2009.12.079 10.1016/j.jneumeth.2015.08.027 10.1097/WCO.0b013e32832d92de 10.1007/s12031-007-0029-0 10.1016/j.neuroimage.2006.02.024 10.1016/j.neuroimage.2014.06.021 10.1016/j.neuroimage.2013.01.044 10.1037/0033-2909.86.2.420 10.3171/2013.12.JNS132090 10.1016/j.neuroimage.2011.08.043 10.1002/nbm.783 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.neuroimage.2013.12.003 10.1002/jmri.1076 10.1212/01.wnl.0000194256.15247.83 10.1002/mrm.25226 10.1016/j.neuroimage.2014.03.026 10.1002/jmri.24859 10.1016/j.jalz.2014.04.518 10.1016/j.nicl.2015.11.020 10.1016/j.schres.2014.09.007 10.1037/1082-989X.1.1.30 10.1214/aos/1013699998 10.1093/oso/9780198524847.001.0001 10.1111/joim.12482 10.1523/JNEUROSCI.2904-12.2012 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. 2017 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: 2017 Wiley Periodicals, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | The PharmaCog Consortium PharmaCog Consortium |
CorporateAuthor_xml | – name: The PharmaCog Consortium – name: PharmaCog Consortium |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 1XC VOOES 5PM |
DOI | 10.1002/hbm.23350 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Computer Science |
DocumentTitleAlternate | Free‐Water Elimination improves DTI reproducibility |
EISSN | 1097-0193 |
EndPage | 26 |
ExternalDocumentID | PMC5493991 oai_HAL_hal_01657965v1 4273334171 27519630 10_1002_hbm_23350 |
Genre | Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG043640 – fundername: NIA NIH HHS grantid: RF1 AG043640 – fundername: NIMH NIH HHS grantid: R01 MH108574 – fundername: NIMH NIH HHS grantid: K24 MH110807 – fundername: NIMH NIH HHS grantid: R01 MH074794 – fundername: NIBIB NIH HHS grantid: P41 EB015902 – fundername: NIMH NIH HHS grantid: R01 MH102377 – fundername: NIA NIH HHS grantid: R01 AG042512 – fundername: EU‐FP7 for the Innovative Medicine Initiative grantid: 115009 – fundername: European Commission's Seventh Framework Programme (FP7/2007‐2013) grantid: 283562 – fundername: NIH grantid: R01MH074794 ; 2P41EB015902 ; 1R01AG042512 ; R01MH102377 ; R01MH108574 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AANHP AAONW AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 1XC VOOES 5PM WIN |
ID | FETCH-LOGICAL-c536t-b42d4e41083b6fdcf76e61c6fb09e6533194279be86bf1574711530c7990b9863 |
ISSN | 1065-9471 |
IngestDate | Thu Aug 21 18:22:33 EDT 2025 Fri May 09 12:17:48 EDT 2025 Fri Jul 11 11:06:01 EDT 2025 Fri Jul 11 01:28:35 EDT 2025 Sat Jul 26 02:26:55 EDT 2025 Thu Apr 03 06:53:49 EDT 2025 Tue Jul 01 01:10:44 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | free-water imaging brain diffusion tensor imaging longitudinal healthy elderly multisite diffusion MRI test-retest reproducibility MRI substantia-nigra reliability Schizophrenia parkinsons-disease snc tracking cerebral white-matter spatial statistics false discovery rate alzheimers-disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-b42d4e41083b6fdcf76e61c6fb09e6533194279be86bf1574711530c7990b9863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1492-5330 0000-0003-3749-2988 0000-0001-9504-7503 0000-0001-7075-7082 0000-0001-7067-536X 0000-0002-1374-1620 0000-0001-8073-102X 0000-0003-3117-1833 0000-0003-1767-5330 0000-0003-3916-6422 0000-0003-3539-7856 |
OpenAccessLink | https://hal.science/hal-01657965 |
PMID | 27519630 |
PQID | 1847385572 |
PQPubID | 996345 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5493991 hal_primary_oai_HAL_hal_01657965v1 proquest_miscellaneous_1855072804 proquest_miscellaneous_1847888644 proquest_journals_1847385572 pubmed_primary_27519630 crossref_primary_10_1002_hbm_23350 crossref_citationtrail_10_1002_hbm_23350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc Wiley John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley – name: John Wiley and Sons Inc |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Mori S (e_1_2_7_38_1) 2005 e_1_2_7_39_1 Papinutto ND (e_1_2_7_42_1) 2013; 31 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Diggle PJ (e_1_2_7_17_1) 2002 Concha L (e_1_2_7_16_1) 2005; 26 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 Liu Z (e_1_2_7_32_1) 2010; 7628 Leming M (e_1_2_7_31_1) 2016; 9788 Pasternak O (e_1_2_7_44_1) 2012; 15 |
References_xml | – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2006.09.020 – ident: e_1_2_7_29_1 doi: 10.1371/journal.pone.0045996 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.1105 – volume: 9788 year: 2016 ident: e_1_2_7_31_1 article-title: A framework for incorporating DTI Atlas Builder registration into Tract‐Based Spatial Statistics and a simulated comparison to standard TBSS publication-title: Proc SPIE – ident: e_1_2_7_39_1 doi: 10.1016/j.neurobiolaging.2014.10.029 – volume: 26 start-page: 2267 year: 2005 ident: e_1_2_7_16_1 article-title: Diffusion tensor tractography of the limbic system publication-title: AJNR Am J Neuroradiol – ident: e_1_2_7_48_1 doi: 10.1016/j.neuroimage.2012.02.084 – ident: e_1_2_7_9_1 doi: 10.1006/jmrb.1996.0086 – ident: e_1_2_7_20_1 doi: 10.1002/hbm.21370 – volume: 7628 year: 2010 ident: e_1_2_7_32_1 article-title: Quality control of diffusion weighted images publication-title: Proc Soc Photo Opt Instrum Eng (SPIE) – ident: e_1_2_7_57_1 doi: 10.1016/j.neuroimage.2011.01.048 – ident: e_1_2_7_34_1 doi: 10.1002/hbm.22493 – ident: e_1_2_7_47_1 doi: 10.1016/j.schres.2014.07.031 – ident: e_1_2_7_58_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2014.09.053 – ident: e_1_2_7_56_1 doi: 10.1016/j.neuroimage.2010.03.046 – ident: e_1_2_7_55_1 doi: 10.1080/87565641003689556 – ident: e_1_2_7_21_1 doi: 10.3174/ajnr.A2844 – ident: e_1_2_7_10_1 doi: 10.1016/j.neuroimage.2015.10.030 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2013.05.007 – volume: 15 start-page: 305 year: 2012 ident: e_1_2_7_44_1 article-title: Estimation of extracellular volume from regularized multi‐shell diffusion MRI publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_7_2_1 doi: 10.1016/j.nurt.2007.05.011 – ident: e_1_2_7_8_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_7_25_1 doi: 10.1002/nbm.1543 – start-page: 284 volume-title: MRI Atlas of Human White Matter year: 2005 ident: e_1_2_7_38_1 – ident: e_1_2_7_40_1 doi: 10.1093/brain/awv136 – ident: e_1_2_7_52_1 doi: 10.1002/hbm.10062 – ident: e_1_2_7_45_1 doi: 10.1002/mrm.22055 – ident: e_1_2_7_35_1 doi: 10.1016/j.schres.2014.09.046 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuroimage.2014.06.075 – ident: e_1_2_7_49_1 doi: 10.1016/j.neuroimage.2009.12.079 – ident: e_1_2_7_54_1 doi: 10.1016/j.jneumeth.2015.08.027 – ident: e_1_2_7_23_1 doi: 10.1097/WCO.0b013e32832d92de – ident: e_1_2_7_4_1 doi: 10.1007/s12031-007-0029-0 – ident: e_1_2_7_53_1 doi: 10.1016/j.neuroimage.2006.02.024 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2014.06.021 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2013.01.044 – ident: e_1_2_7_51_1 doi: 10.1037/0033-2909.86.2.420 – ident: e_1_2_7_43_1 doi: 10.3171/2013.12.JNS132090 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2011.08.043 – ident: e_1_2_7_7_1 doi: 10.1002/nbm.783 – ident: e_1_2_7_11_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_7_18_1 doi: 10.1016/j.neuroimage.2013.12.003 – ident: e_1_2_7_30_1 doi: 10.1002/jmri.1076 – ident: e_1_2_7_15_1 doi: 10.1212/01.wnl.0000194256.15247.83 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.25226 – ident: e_1_2_7_50_1 doi: 10.1016/j.neuroimage.2014.03.026 – ident: e_1_2_7_19_1 doi: 10.1002/jmri.24859 – ident: e_1_2_7_33_1 doi: 10.1016/j.jalz.2014.04.518 – ident: e_1_2_7_13_1 doi: 10.1016/j.nicl.2015.11.020 – ident: e_1_2_7_41_1 doi: 10.1016/j.schres.2014.09.007 – ident: e_1_2_7_36_1 doi: 10.1037/1082-989X.1.1.30 – ident: e_1_2_7_12_1 doi: 10.1214/aos/1013699998 – volume-title: Analysis of Longitudinal Data year: 2002 ident: e_1_2_7_17_1 doi: 10.1093/oso/9780198524847.001.0001 – ident: e_1_2_7_22_1 doi: 10.1111/joim.12482 – ident: e_1_2_7_46_1 doi: 10.1523/JNEUROSCI.2904-12.2012 – volume: 31 start-page: 827 year: 2013 ident: e_1_2_7_42_1 article-title: Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables publication-title: Magn Reson Med |
SSID | ssj0011501 |
Score | 2.485424 |
Snippet | Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 12 |
SubjectTerms | Aged Aged, 80 and over Aging Anisotropy Bioengineering Brain - diagnostic imaging Computer Science Diffusion Tensor Imaging Female Healthy Volunteers Humans Imaging Imaging, Three-Dimensional Life Sciences Longitudinal Studies Male Medical Imaging Middle Aged Reproducibility of Results Water - metabolism White Matter - diagnostic imaging |
Title | Free water elimination improves test–retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27519630 https://www.proquest.com/docview/1847385572 https://www.proquest.com/docview/1847888644 https://www.proquest.com/docview/1855072804 https://hal.science/hal-01657965 https://pubmed.ncbi.nlm.nih.gov/PMC5493991 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF96J4gvond-VE9ZRUQo6XXzsdn4VuRKkfZOpIW-hWyyuRbaRtpGsX-RD_6RzuwmaXo95PQlLZtls-38MjszO_sbQt7BCtVRInYsnjDXcm2fW1HsCiu17dR1k1QEKZ4dHl7y_tj9PPEmjcbvWtZSvpHteHvruZL_kSq0gVzxlOw_SLYaFBrgO8gXriBhuN5Jxr2VUq0fEfIcqrkuz2VSF3WgALkbQOVbKwytbnBzQJO7mmxYva-OxVFyjJa1MI0dE9MXpmYR7mObTC1tl0osI2GOsM8zrG-UJ7qWlk5GxN1nQ1Jb2p0gephOgpmirXUuMdCzrtvAZt9AD9paRMgPcV3Bbi5nJs3yWs2rBeNLpNkcIq24r9JdPvFQ_2IdWsiTDHRetguwr2bbbabrVYHemq2ieniD-bXwhtHIYCNZgWvqtLRV0YYUssyUVizVuCMO4Gp0cpGmbVZ3czz_YN0wPLRTuWjbjmOYcPe5uS-vwt54MAhHF5PREblng1OiHfivFVkZmtbavS8nXPJYdezzauA96-doirm3h47NzfzcmsEzekQeFp4K7RrYPSYNtTwhp134x7PFT_qe6txhvSlzQu4PixSNU_ILQUk1KGkNlLQEJa2Bkt4AJc1SWoGSGlDSApS0ACV8UgAl1fj5SLu0DklaQZJqSOKABSRpAUlaQvIJGfcuRp_6VlEOxIo9h28s6dqJq1wGToPkaRKnPlecxTyVnUBxcFtYALomkEpwmTIPoy2wnHdiHwwuGQjuPCXHy2ypnhPKJPPiRCoZyY6rIiYUj7mvVMBU5DgiaZIPpZjCuODKx5It89CwfNshSDTUEm2St1XXb4Yg5tZOIOvqPlK697uDENvwOKEfcO87a5KzEgphoWTWIQPr0RGe59tN8qa6DUsA7utFS5Xlpo8QAjybv_VB4kJbdKDPM4Ouajq27-E6DLP093C3N9_9O8vZVFPRe24AHg57cYfnviQPdu_3GTnerHL1Cgz6jXyt36M_3h8D4A |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free+water+elimination+improves+test-retest+reproducibility+of+diffusion+tensor+imaging+indices+in+the+brain%3A+A+longitudinal+multisite+study+of+healthy+elderly+subjects&rft.jtitle=Human+brain+mapping&rft.au=Albi%2C+Angela&rft.au=Pasternak%2C+Ofer&rft.au=Minati%2C+Ludovico&rft.au=Marizzoni%2C+Moira&rft.date=2017-01-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=38&rft.issue=1&rft.spage=12&rft.epage=26&rft_id=info:doi/10.1002%2Fhbm.23350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |