Automatic configuration of the Cassandra database using irace

Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 7; p. e634
Main Authors Silva-Muñoz, Moisés, Franzin, Alberto, Bersini, Hugues
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 05.08.2021
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.
AbstractList Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.
ArticleNumber e634
Audience Academic
Author Franzin, Alberto
Silva-Muñoz, Moisés
Bersini, Hugues
Author_xml – sequence: 1
  givenname: Moisés
  surname: Silva-Muñoz
  fullname: Silva-Muñoz, Moisés
  organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0002-4066-0375
  surname: Franzin
  fullname: Franzin, Alberto
  organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
– sequence: 3
  givenname: Hugues
  surname: Bersini
  fullname: Bersini, Hugues
  organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34435094$$D View this record in MEDLINE/PubMed
BookMark eNptkstrGzEQh5eS0qRpbj2XhV5aqF3t6rU6pGBMH4ZAoY-zmJVmNzK25Eq7pfnvI9tp8JZKB41G3_yGGc3z4swHj0XxsiJzKSv5focY1zOT5oKyJ8VFTaWYcaXqsxP7vLhKaU0IqXiVl3pWnFPGKCeKXRTXi3EIWxicKU3wnevHmC_Bl6Erh1ssl5ASeBuhtDBACwnLMTnfly6CwRfF0w42Ca8ezsvi56ePP5ZfZjdfP6-Wi5uZ4VQMM5BEEmXaju2TmjobrGsoIVBVsuNIiZHSWGoMbequFsy2DTMIxgKiqgS9LFZHXRtgrXfRbSHe6QBOHxwh9hpirmGDmhCbYxvOLFOMWaGMqCUAKmSqNVxmrQ9Hrd3YbtEa9EOEzUR0-uLdre7Db91QLoSos8CbB4EYfo2YBr11yeBmAx7DmHTNRU5dK8oy-vofdB3G6HOrMsWbWlBKTqgecgHOdyHnNXtRvRC5dZxUlGRq_h8qb4tbl_8OO5f9k4C3k4DMDPhn6GFMSa--f5uy746siSGliN1jPyqi95OmD5OmTdLiUNer0x4-wn_nit4DwNjPDQ
Cites_doi 10.14778/3329772.3329780
10.1007/978-3-319-09333-8_1
10.5220/0005846400490056
10.1016/j.orp.2016.09.002
10.1016/j.ejor.2019.01.018
10.1016/j.jnca.2016.01.010
10.1145/1012888.1005739
10.1007/978-3-319-13021-7_6
10.1007/978-3-319-92639-1_60
10.14778/3352063.3352129
10.1109/TKDE.2020.2994641
10.14778/3339490.3339503
10.1007/s12530-013-9072-y
10.1007/978-3-319-62410-5_11
10.1145/1353452.1353455
10.1023/A:1006556606079
10.1109/ACCESS.2020.2990735
10.1613/jair.2861
10.1007/978-3-319-44406-2_12
10.1155/2015/502795
10.14778/1687627.1687767
10.1016/j.suscom.2019.01.017
10.14778/2732977.2732995
10.14778/3352063.3352112
10.14778/3192965.3192971
ContentType Journal Article
Copyright 2021 Silva-Muñoz et al.
COPYRIGHT 2021 PeerJ. Ltd.
2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al.
Copyright_xml – notice: 2021 Silva-Muñoz et al.
– notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al.
DBID NPM
AAYXX
CITATION
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.634
DatabaseName PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
ProQuest Computing
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computing (Alumni Edition)
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
EndPage e634
ExternalDocumentID oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57
A670750130
10_7717_peerj_cs_634
34435094
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: CHIST-ERA-17-BDSI-001 ABIDI
– fundername: 2018-SHAPE-25a
GroupedDBID 3V.
53G
5VS
8FE
8FG
AAFWJ
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M0N
M~E
NPM
OK1
P62
PIMPY
PQQKQ
PROAC
RPM
AAYXX
CITATION
7XB
8AL
8FK
JQ2
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c536t-a70709cbf45094c2bf44f8300a117f5e30c77cd3cc382f264db84ceacdaee9163
IEDL.DBID RPM
ISSN 2376-5992
IngestDate Tue Oct 22 15:14:39 EDT 2024
Tue Sep 17 21:27:40 EDT 2024
Sat Aug 17 05:38:08 EDT 2024
Thu Oct 10 16:04:29 EDT 2024
Thu Feb 22 23:42:30 EST 2024
Thu Nov 09 12:27:29 EST 2023
Thu Aug 01 19:17:44 EDT 2024
Fri Aug 23 00:33:17 EDT 2024
Sat Nov 02 12:29:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Databases
Automatic configuration
Parameter tuning
Cassandra
Hyperparameter tuning
Language English
License 2021 Silva-Muñoz et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-a70709cbf45094c2bf44f8300a117f5e30c77cd3cc382f264db84ceacdaee9163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4066-0375
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356662/
PMID 34435094
PQID 2558263304
PQPubID 2045934
PageCount e634
ParticipantIDs doaj_primary_oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356662
proquest_miscellaneous_2564942934
proquest_journals_2558263304
gale_infotracmisc_A670750130
gale_infotracacademiconefile_A670750130
gale_incontextgauss_ISR_A670750130
crossref_primary_10_7717_peerj_cs_634
pubmed_primary_34435094
PublicationCentury 2000
PublicationDate 2021-08-05
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Raasveldt (10.7717/peerj-cs.634/ref-49) 2018
Mahgoub (10.7717/peerj-cs.634/ref-38) 2017b
Pagnozzi (10.7717/peerj-cs.634/ref-44) 2019; 276
Babu (10.7717/peerj-cs.634/ref-4) 2009
Mahgoub (10.7717/peerj-cs.634/ref-36) 2017a
Birattari (10.7717/peerj-cs.634/ref-10) 2002
Duan (10.7717/peerj-cs.634/ref-19) 2009; 2
Pushak (10.7717/peerj-cs.634/ref-47) 2018
Marcus (10.7717/peerj-cs.634/ref-40) 2019
Kraska (10.7717/peerj-cs.634/ref-26) 2018
Ma (10.7717/peerj-cs.634/ref-34) 2018
Oh (10.7717/peerj-cs.634/ref-43) 2005
Krishnan (10.7717/peerj-cs.634/ref-27) 2018
Stützle (10.7717/peerj-cs.634/ref-56) 2013
Aniceto (10.7717/peerj-cs.634/ref-3) 2015; 2015
Pérez Cáceres (10.7717/peerj-cs.634/ref-48) 2017
Abramova (10.7717/peerj-cs.634/ref-1) 2014
Kwan (10.7717/peerj-cs.634/ref-29) 2003
Bergstra (10.7717/peerj-cs.634/ref-7) 2011; 24
Debnath (10.7717/peerj-cs.634/ref-16) 2008
Valentin (10.7717/peerj-cs.634/ref-61) 2000
Mahgoub (10.7717/peerj-cs.634/ref-37) 2020
Daz (10.7717/peerj-cs.634/ref-15) 2016; 67
Haughian (10.7717/peerj-cs.634/ref-22) 2016
Wang (10.7717/peerj-cs.634/ref-63) 2014; 8807
Jindal (10.7717/peerj-cs.634/ref-25) 2018; 11
Van Aken (10.7717/peerj-cs.634/ref-62) 2017
Miranda (10.7717/peerj-cs.634/ref-42) 2014
Li (10.7717/peerj-cs.634/ref-31) 2019; 12
Hutter (10.7717/peerj-cs.634/ref-23) 2011
Zilio (10.7717/peerj-cs.634/ref-74) 2004
Schnaitter (10.7717/peerj-cs.634/ref-51) 2007
Birattari (10.7717/peerj-cs.634/ref-9) 2004
Yuan (10.7717/peerj-cs.634/ref-67) 2020
Zheng (10.7717/peerj-cs.634/ref-70) 2014; 8588
Dutt (10.7717/peerj-cs.634/ref-21) 2019; 12
Dias (10.7717/peerj-cs.634/ref-17) 2005
Kuhlenkamp (10.7717/peerj-cs.634/ref-28) 2014; 7
Zhou (10.7717/peerj-cs.634/ref-71) 2020
Wei (10.7717/peerj-cs.634/ref-65) 2014
Chavan (10.7717/peerj-cs.634/ref-13) 2011
Lu (10.7717/peerj-cs.634/ref-32) 2019; 12
Sheng (10.7717/peerj-cs.634/ref-52) 2019
López-Ibáñez (10.7717/peerj-cs.634/ref-33) 2016; 3
Swaminathan (10.7717/peerj-cs.634/ref-58) 2016
Abubakar (10.7717/peerj-cs.634/ref-2) 2014; 7
Bergstra (10.7717/peerj-cs.634/ref-8) 2012; 13
Baik (10.7717/peerj-cs.634/ref-5) 2019
Bao (10.7717/peerj-cs.634/ref-6) 2018
Zhang (10.7717/peerj-cs.634/ref-69) 2019
Storm (10.7717/peerj-cs.634/ref-55) 2006
Tan (10.7717/peerj-cs.634/ref-59) 2019; 12
Hutter (10.7717/peerj-cs.634/ref-24) 2009; 36
Zhu (10.7717/peerj-cs.634/ref-73) 2017b
Zhu (10.7717/peerj-cs.634/ref-72) 2017a
Stillger (10.7717/peerj-cs.634/ref-54) 2001; 1
Mahgoub (10.7717/peerj-cs.634/ref-39) 2019
Maron (10.7717/peerj-cs.634/ref-41) 1997; 11
Wang (10.7717/peerj-cs.634/ref-64) 2012
Le (10.7717/peerj-cs.634/ref-30) 2014
Pedrozo (10.7717/peerj-cs.634/ref-45) 2018; 10870
Zhang (10.7717/peerj-cs.634/ref-68) 2012
Wu (10.7717/peerj-cs.634/ref-66) 2019
Cooper (10.7717/peerj-cs.634/ref-14) 2010
Rodd (10.7717/peerj-cs.634/ref-50) 2013; 4
Cao (10.7717/peerj-cs.634/ref-11) 2018
Duarte (10.7717/peerj-cs.634/ref-20) 2016; 2
Silva-Muñoz (10.7717/peerj-cs.634/ref-53) 2020
Mahajan (10.7717/peerj-cs.634/ref-35) 2019; 22
Cassandra (10.7717/peerj-cs.634/ref-12) 2014
Tran (10.7717/peerj-cs.634/ref-60) 2008; 4
Pinheiro (10.7717/peerj-cs.634/ref-46) 2017; 620
Dou (10.7717/peerj-cs.634/ref-18) 2020; 8
Sullivan (10.7717/peerj-cs.634/ref-57) 2004; 32
References_xml – volume: 12
  start-page: 1044
  issue: 9
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-21
  article-title: Selectivity estimation for range predicates using lightweight models
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3329772.3329780
  contributor:
    fullname: Dutt
– start-page: 11
  year: 2008
  ident: 10.7717/peerj-cs.634/ref-16
  article-title: Sard: a statistical approach for ranking database tuning parameters
  contributor:
    fullname: Debnath
– start-page: 489
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-26
  article-title: The case for learned index structures
  contributor:
    fullname: Kraska
– volume: 8588
  start-page: 1
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-70
  article-title: Self-tuning performance of database systems with neural network
  doi: 10.1007/978-3-319-09333-8_1
  contributor:
    fullname: Zheng
– volume: 2
  start-page: 49
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-20
  article-title: Cassandra for internet of things: an experimental evaluation
  publication-title: International Conference on Internet of Things and Big Data
  doi: 10.5220/0005846400490056
  contributor:
    fullname: Duarte
– start-page: 189
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-37
  article-title: {OPTIMUSCLOUD}: heterogeneous configuration optimization for distributed databases in the cloud
  contributor:
    fullname: Mahgoub
– start-page: 11
  year: 2002
  ident: 10.7717/peerj-cs.634/ref-10
  article-title: A racing algorithm for configuring metaheuristics
  contributor:
    fullname: Birattari
– volume: 3
  start-page: 43
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-33
  article-title: The irace package: iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
  contributor:
    fullname: López-Ibáñez
– volume: 276
  start-page: 409
  issue: 2
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-44
  article-title: Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.01.018
  contributor:
    fullname: Pagnozzi
– volume: 67
  start-page: 99
  issue: 7
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-15
  article-title: State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing
  publication-title: Journal of Network and Computer applications
  doi: 10.1016/j.jnca.2016.01.010
  contributor:
    fullname: Daz
– year: 2009
  ident: 10.7717/peerj-cs.634/ref-4
  article-title: Automated experiment-driven management of (database) systems
  contributor:
    fullname: Babu
– start-page: 13
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-12
  article-title: Apache cassandra
  contributor:
    fullname: Cassandra
– start-page: 893
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-11
  article-title: Towards better understanding of black-box auto-tuning: a comparative analysis for storage systems
  contributor:
    fullname: Cao
– volume: 32
  start-page: 404
  issue: 1
  year: 2004
  ident: 10.7717/peerj-cs.634/ref-57
  article-title: Using probabilistic reasoning to automate software tuning
  publication-title: ACM SIGMETRICS Performance Evaluation Review
  doi: 10.1145/1012888.1005739
  contributor:
    fullname: Sullivan
– start-page: 415
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-69
  article-title: An end-to-end automatic cloud database tuning system using deep reinforcement learning
  contributor:
    fullname: Zhang
– volume: 8807
  start-page: 71
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-63
  article-title: Benchmarking replication and consistency strategies in cloud serving databases: HBase and Cassandra
  doi: 10.1007/978-3-319-13021-7_6
  contributor:
    fullname: Wang
– start-page: 143
  year: 2010
  ident: 10.7717/peerj-cs.634/ref-14
  article-title: Benchmarking cloud serving systems with YCSB
  contributor:
    fullname: Cooper
– volume: 10870
  start-page: 716
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-45
  article-title: An adaptive approach for index tuning with learning classifier systems on hybrid storage environments
  doi: 10.1007/978-3-319-92639-1_60
  contributor:
    fullname: Pedrozo
– start-page: 631
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-34
  article-title: Query-based workload forecasting for self-driving database management systems
  contributor:
    fullname: Ma
– start-page: 476
  year: 2017a
  ident: 10.7717/peerj-cs.634/ref-36
  article-title: Suitability of nosql systems-cassandra and scylladb-for iot workloads
  contributor:
    fullname: Mahgoub
– start-page: 202
  volume-title: Artificial Evolution: 13th International Conference, E’volution Artificielle, EA 2017; Paris, France, October 25-27, 2017; Revised Selected, volume 10764 of Lecture Notes in Computer Science
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-48
  article-title: Automatic configuration of GCC using irace
  contributor:
    fullname: Pérez Cáceres
– start-page: 84
  year: 2005
  ident: 10.7717/peerj-cs.634/ref-17
  article-title: Automatic performance diagnosis and tuning in oracle
  contributor:
    fullname: Dias
– year: 2019
  ident: 10.7717/peerj-cs.634/ref-40
  article-title: Neo: a learned query optimizer
  publication-title: arXiv preprint
  contributor:
    fullname: Marcus
– start-page: 28
  year: 2017b
  ident: 10.7717/peerj-cs.634/ref-38
  article-title: Rafiki: a middleware for parameter tuning of nosql datastores for dynamic metagenomics workloads
  contributor:
    fullname: Mahgoub
– volume: 12
  start-page: 2118
  issue: 12
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-31
  article-title: Qtune: a query-aware database tuning system with deep reinforcement learning
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3352063.3352129
  contributor:
    fullname: Li
– year: 2020
  ident: 10.7717/peerj-cs.634/ref-71
  article-title: Database meets artificial intelligence: a survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.2994641
  contributor:
    fullname: Zhou
– start-page: 199
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-1
  article-title: Evaluating cassandra scalability with YCSB
  contributor:
    fullname: Abramova
– volume: 12
  start-page: 1221
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-59
  article-title: iBTune: individualized buffer tuning for large-scale cloud databases
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3339490.3339503
  contributor:
    fullname: Tan
– volume: 4
  start-page: 133
  issue: 2
  year: 2013
  ident: 10.7717/peerj-cs.634/ref-50
  article-title: Adaptive neuro-fuzzy technique for performance tuning of database management systems
  publication-title: Evolving Systems
  doi: 10.1007/s12530-013-9072-y
  contributor:
    fullname: Rodd
– start-page: 1284
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-13
  article-title: Dbridge: a program rewrite tool for set-oriented query execution
  contributor:
    fullname: Chavan
– start-page: 374
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-5
  article-title: Bridging the semantic gap with SQL query logs in natural language interfaces to databases
  contributor:
    fullname: Baik
– volume: 620
  start-page: 87
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-46
  article-title: Smart grids data management: a case for Cassandra
  doi: 10.1007/978-3-319-62410-5_11
  contributor:
    fullname: Pinheiro
– volume: 4
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.7717/peerj-cs.634/ref-60
  article-title: A new approach to dynamic self-tuning of database buffers
  publication-title: ACM Transactions on Storage
  doi: 10.1145/1353452.1353455
  contributor:
    fullname: Tran
– volume: 7
  start-page: 23
  issue: 8
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-2
  article-title: Performance evaluation of nosql systems using YCSB in a resource austere environment
  publication-title: Performance Evaluation
  contributor:
    fullname: Abubakar
– start-page: 223
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-39
  article-title: {SOPHIA}: online reconfiguration of clustered nosql databases for time-varying workloads
  contributor:
    fullname: Mahgoub
– start-page: 507
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-23
  article-title: Sequential model-based optimization for general algorithm configuration
  contributor:
    fullname: Hutter
– start-page: 271
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-47
  article-title: Algorithm configuration landscapes: more benign than expected?
  contributor:
    fullname: Pushak
– volume: 24
  start-page: 2546
  year: 2011
  ident: 10.7717/peerj-cs.634/ref-7
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Bergstra
– start-page: 459
  year: 2007
  ident: 10.7717/peerj-cs.634/ref-51
  article-title: On-line index selection for shifting workloads
  contributor:
    fullname: Schnaitter
– start-page: 325
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-42
  article-title: Fine-tuning of support vector machine parameters using racing algorithms
  contributor:
    fullname: Miranda
– start-page: 389
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-68
  article-title: A model for application-oriented database performance tuning
  contributor:
    fullname: Zhang
– year: 2004
  ident: 10.7717/peerj-cs.634/ref-9
  article-title: The problem of tuning metaheuristics as seen from a machine learning perspective
  contributor:
    fullname: Birattari
– start-page: 1218
  year: 2005
  ident: 10.7717/peerj-cs.634/ref-43
  article-title: Resource selection for autonomic database tuning
  contributor:
    fullname: Oh
– volume: 11
  start-page: 193
  issue: 1–5
  year: 1997
  ident: 10.7717/peerj-cs.634/ref-41
  article-title: The racing algorithm: model selection for lazy learners
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006556606079
  contributor:
    fullname: Maron
– volume: 8
  start-page: 80638
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-18
  article-title: Hdconfigor: automatically tuning high dimensional configuration parameters for log search engines
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990735
  contributor:
    fullname: Dou
– volume: 36
  start-page: 267
  year: 2009
  ident: 10.7717/peerj-cs.634/ref-24
  article-title: ParamILS: an automatic algorithm configuration framework
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2861
  contributor:
    fullname: Hutter
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-27
  article-title: Learning to optimize join queries with deep reinforcement learning
  publication-title: arXiv preprint
  contributor:
    fullname: Krishnan
– start-page: 1501
  year: 2020
  ident: 10.7717/peerj-cs.634/ref-67
  article-title: Automatic view generation with deep learning and reinforcement learning
  contributor:
    fullname: Yuan
– year: 2003
  ident: 10.7717/peerj-cs.634/ref-29
  article-title: Automatic database configuration for db2 universal database: compressing years of performance expertise into seconds of execution
  contributor:
    fullname: Kwan
– year: 2020
  ident: 10.7717/peerj-cs.634/ref-53
  article-title: Supplementaty material for: automatic configuration of the Cassandra database using irace
  contributor:
    fullname: Silva-Muñoz
– year: 2016
  ident: 10.7717/peerj-cs.634/ref-22
  article-title: Benchmarking replication in cassandra and mongodb NoSQL datastores
  doi: 10.1007/978-3-319-44406-2_12
  contributor:
    fullname: Haughian
– start-page: 893
  year: 2013
  ident: 10.7717/peerj-cs.634/ref-56
  article-title: Automatic (offline) configuration of algorithms
  contributor:
    fullname: Stützle
– start-page: 1223
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-66
  article-title: Designing succinct secondary indexing mechanism by exploiting column correlations
  contributor:
    fullname: Wu
– volume: 2015
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.7717/peerj-cs.634/ref-3
  article-title: Evaluating the cassandra NoSQL database approach for genomic data persistency
  publication-title: International journal of genomics
  doi: 10.1155/2015/502795
  contributor:
    fullname: Aniceto
– start-page: 1081
  year: 2006
  ident: 10.7717/peerj-cs.634/ref-55
  article-title: Adaptive self-tuning memory in db2
  contributor:
    fullname: Storm
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-8
  article-title: Random search for hyper-parameter optimization
  publication-title: The Journal of Machine Learning Research
  contributor:
    fullname: Bergstra
– start-page: 101
  year: 2000
  ident: 10.7717/peerj-cs.634/ref-61
  article-title: Db2 advisor: an optimizer smart enough to recommend its own indexes
  contributor:
    fullname: Valentin
– start-page: 29
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-6
  article-title: Autoconfig: automatic configuration tuning for distributed message systems
  contributor:
    fullname: Bao
– year: 2019
  ident: 10.7717/peerj-cs.634/ref-52
  article-title: Scheduling oltp transactions via machine learning
  publication-title: arXiv preprint
  contributor:
    fullname: Sheng
– volume: 1
  start-page: 19
  year: 2001
  ident: 10.7717/peerj-cs.634/ref-54
  article-title: Leo-db2’s learning optimizer
  contributor:
    fullname: Stillger
– start-page: 338
  year: 2017a
  ident: 10.7717/peerj-cs.634/ref-72
  article-title: Bestconfig: tapping the performance potential of systems via automatic configuration tuning
  contributor:
    fullname: Zhu
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-49
  article-title: Fair benchmarking considered difficult: common pitfalls in database performance testing
  contributor:
    fullname: Raasveldt
– start-page: 323
  year: 2016
  ident: 10.7717/peerj-cs.634/ref-58
  article-title: Quantitative analysis of scalable nosql databases
  contributor:
    fullname: Swaminathan
– start-page: 1332
  year: 2012
  ident: 10.7717/peerj-cs.634/ref-64
  article-title: The nosql principles and basic application of cassandra model
  contributor:
    fullname: Wang
– start-page: 1
  year: 2017b
  ident: 10.7717/peerj-cs.634/ref-73
  article-title: Acts in need: automatic configuration tuning with scalability guarantees
  contributor:
    fullname: Zhu
– volume: 2
  start-page: 1246
  issue: 1
  year: 2009
  ident: 10.7717/peerj-cs.634/ref-19
  article-title: Tuning database configuration parameters with ituned
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/1687627.1687767
  contributor:
    fullname: Duan
– start-page: 194
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-65
  article-title: Self-tuning performance of database systems based on fuzzy rules
  contributor:
    fullname: Wei
– volume: 22
  start-page: 120
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-35
  article-title: Improving the energy efficiency of relational and NoSQL databases via query optimizations
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2019.01.017
  contributor:
    fullname: Mahajan
– start-page: 47
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-30
  article-title: Epc information services with No-SQL datastore for the internet of things
  contributor:
    fullname: Le
– volume: 7
  start-page: 1219
  issue: 12
  year: 2014
  ident: 10.7717/peerj-cs.634/ref-28
  article-title: Benchmarking scalability and elasticity of distributed database systems
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2732977.2732995
  contributor:
    fullname: Kuhlenkamp
– start-page: 180
  year: 2004
  ident: 10.7717/peerj-cs.634/ref-74
  article-title: Recommending materialized views and indexes with the ibm db2 design advisor
  contributor:
    fullname: Zilio
– volume: 12
  start-page: 1970
  issue: 12
  year: 2019
  ident: 10.7717/peerj-cs.634/ref-32
  article-title: Speedup your analytics: automatic parameter tuning for databases and big data systems
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3352063.3352112
  contributor:
    fullname: Lu
– start-page: 1009
  year: 2017
  ident: 10.7717/peerj-cs.634/ref-62
  article-title: Automatic database management system tuning through large-scale machine learning
  contributor:
    fullname: Van Aken
– volume: 11
  start-page: 800
  issue: 7
  year: 2018
  ident: 10.7717/peerj-cs.634/ref-25
  article-title: Selecting subexpressions to materialize at datacenter scale
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/3192965.3192971
  contributor:
    fullname: Jindal
SSID ssj0001511119
Score 2.2434578
Snippet Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e634
SubjectTerms Algorithms
Artificial Intelligence
Automatic configuration
Cassandra
Configurations
Configurations (Computers)
Data Mining and Machine Learning
Data processing
Database administration
Design of experiments
Hyperparameter tuning
Machine learning
Methods
Optimization
Parameter tuning
Parameters
Performance evaluation
Software
Statistical methods
Statistical models
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1z4KF_plwwCcQpNY8eJDxy2FVVBggNQqTfLcexlOSTVZvP_eRNnVxtx4MItiidS8sbjeRONnxl7GxRyeu59arV2qQRlT3WwVLg2QVkkCCVoN_LXb-rmVn65K-72jvqinrAoDxyBO8-yppKuKmQjtZSN0k7lpbVee6lrV8R95JneK6bi_mBaCnTsdC9Rspzfe7_-nbr-gxJyloNGqf6_F-S9jDTvltxLP9dP2KOJN_JFfN-n7IFvD9nj7ZkMfArRZ-zjYth0owwrR6UbVsshuph3gYPr8SuQZds2a8upN5RyGKfW9yVfra3zz9nt9aefVzfpdERC6gqhNqktEbLa1UGSEJ7LcSFDJbLMXlyUofAic2XpGuGcqPIA8tPUQBOLbWO9BzMUL9hB27X-FeNC5kGCH1ppPSm41KgdK7AveFNoLAMJe7cFzdxHJQyDCoLANSO4xvUG4CbskhDd2ZB-9XgDXjWTV82_vJqwN-QPQwoVLbXALO3Q9-bzj-9moUqiOci9CXs_GYUOnnF22lGA7yFRq5nlycwSIeTmw1u3mymEe4NaC6UX_e5J2OvdMD1JbWmt7wayUXh_MCbYvIyzZPfdQoKJwikJK2fzZwbMfKRd_RoFvsGKUVXmR_8DyWP2MKc2HOpyKU7YwWY9-FPwqE19NobMH9_EGwM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9sKFR3k0UCqDQJxC09hx4gNC26pVQaJChUq9WY5jL8shWZLN_2cm8W4bVeotiieSM-OZ-cb5Mgb44CXm9NS52ChlY4GQPVbeUOFaeWkwQUhOfyP_uJDnV-L7dXYdNty6QKvcxMQhUFeNpT3yQ4S-iISp-v66-hfTqVH0dTUcofEQdlKsFNIZ7ByfXvy8vNllySgkqJHxnmPpcrhyrv0b2-6z5GKSi4aW_XcD863MNGVN3kpDZ0_hccCPbD4a_Bk8cPUuPNmczcCCqz6HL_N-3QztWBlWvH656EdTs8YzxHzsBEGzqavWMOKIUi5jRIFfsGVrrHsBV2env0_O43BUQmwzLtexydF1lS29oIZ4NsUL4QueJOboKPeZ44nNc1txa3mRegRBVVkIi0G3Ms4hQuQvYVY3tdsDxkXqBeJEI4yjTi4l1pAFojC0KlcYDiL4uFGaXo0dMTRWEqRcPShX206jciM4Jo1uZaiP9XCjaRc6uIVOkgrnUWSiEkqISior09wYp5xQpc3yCN6TPTR1qqiJCrMwfdfpb78u9VzmBHcwB0fwKQj5Bi1jTfizAN-HmltNJPcnkuhKdjq8MbsOrtzpm4UXwbvtMD1J9LTaNT3JSJw_IieUeTWuku17c4GIFI0SQT5ZPxPFTEfq5Z-h0TeiY6wu09f3T-sNPEqJaEM8lmwfZuu2d28RKa3Lg-AO_wGmzhP3
  priority: 102
  providerName: ProQuest
Title Automatic configuration of the Cassandra database using irace
URI https://www.ncbi.nlm.nih.gov/pubmed/34435094
https://www.proquest.com/docview/2558263304
https://search.proquest.com/docview/2564942934
https://pubmed.ncbi.nlm.nih.gov/PMC8356662
https://doaj.org/article/00d84c854d4944d69c627aae9e49bc57
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51y4UL70egrAwCccpuGjsPHzhsV10KUquqUKk3y3HsZRFNVsnm_zOTx2ojbtyieCLZ8_B8E30eA3x0Meb00FpfS2l8gZDdl05T4Zq7WGOCiDmdRr68ii9uxfe76O4IouEsTEvaN9lmVvy5nxWbXy23cntv5gNPbH59uUTUgKg7nE9ggg56UKJ3R4NpF5AdyT3BamW-tbb67Zt6FnO6hocLhAiBFKNM1Dbs_3dbPshLY87kQRJaPYFHPXpki26WT-HIFs_g8XAzA-sD9Tl8WTS7sm3GyrDedZt10xmalY4h4mNLhMy6yCvNiCFKmYwRAX7NNpU29gXcrs5_Li_8_qIE30Q83vk6wcCVJnOC1mVCfBAu5UGgT08TF1kemCQxOTeGp6FDCJRnqTC45ebaWsSH_CUcF2VhXwPjInQCUaIW2lIflwwryBQxGNqUS9wMPPg0KE1tu34YCusI0rNq9axMrVDPHpyRRvcy1MW6fVFWa9XbUgVBjvNII5ELKUQeSxOHidZWWiEzEyUefCB7KOpTURARZq2bulbfftyoRZwQ2MEM7MHnXsiVaBmj-3MFuB5qbTWSPBlJYiCZ8fBgdtUHcq2w4sICjH76ePB-P0xfEjmtsGVDMjHOH3ETyrzqvGS_7sHZPEhG_jNSzHgEvb5t8917-Zv__vItPAyJgUMEl-gEjndVY98hhNplU5ikq69TeHB2fnV9M21_REzbMPoLGDAfEw
link.rule.ids 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,53806,53808,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcCF9yNQwCAQp7Rp7DjxAaGlYtlC2wO0Um-W49jL9pBsk83_Zybr3TZC4hbFs5Iz45n5xvt5DPDBS8zpqXOxUcrGAiF7rLyhwrXy0mCCkJxOI5-cytm5-HGRXYQNty7QKjcxcQjUVWNpj3wfoS8iYaq-vyyvYro1iv5dDVdo3IY7gmOioZPi0-_XeywZBQS15rvnWLjsL51rL2Pb7UkuRploaNj_b1i-kZfGnMkbSWj6EO4H9Mgma3M_gluufgwPNjczsOCoT-DzpF81QzNWhvWuX8z7taFZ4xkiPnaIkNnUVWsYMUQpkzEiwM_ZojXWPYXz6bezw1kcLkqIbcblKjY5Oq6ypRfUDs-m-CB8wZPEHBzkPnM8sXluK24tL1KPEKgqC2Ex5FbGOcSH_Bns1E3tXgDjIvUCUaIRxlEflxIryAIxGNqUKwwGEXzcKE0v1_0wNNYRpFw9KFfbTqNyI_hKGt3KUBfr4UXTznVwCp0kFc6jyEQllBCVVFamuTFOOaFKm-URvCd7aOpTURMRZm76rtNHv3_picwJ7GAGjuBTEPINWsaacK4Av4daW40kd0eS6Eh2PLwxuw6O3OnrZRfBu-0w_ZLIabVrepKROH_ETSjzfL1Ktt_NBeJRNEoE-Wj9jBQzHqkXf4Y234iNsbZMX_5_Wm_h7uzs5FgfH53-fAX3UqLcEKMl24WdVdu714iZVuWbwTH-Aiw0FYI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL70eggEEgTmHT2LHjA0JLYWl5VAio1Jvl-LEsh2RJNv-fmcS7bYTELYonkjPjmfnG-TIm5EUQkNNz71OjlE05QPZUBYOFqwvCQIIQDP9G_noijk75p7PiLPKfukir3MbEIVC7xuIe-QygLyBhrL5nIdIivr1fvF3_SfEEKfzSGo_TuEyuQFaU6KTl4uP5fkuBwUGN3HcJRcxs7X37O7Xda8H4JCsNzfv_DdEXctSUP3khIS1ukusRSdL5aPpb5JKvb5Mb21MaaHTaO-TNvN80Q2NWCrVvWC370ei0CRTQHz0E-Gxq1xqKbFHMahTJ8Eu6ao31d8np4sPPw6M0HpqQ2oKJTWokOLGyVeDYGs_mcMFDybLMHBzIUHiWWSmtY9ayMg8Ah1xVcgvh1xnvASuye2Svbmr_gFDG88ABMRpuPPZ0qaCaLAGPgX2ZgsCQkJdbpen12BtDQ02BytWDcrXtNCg3Ie9QozsZ7Gg93GjapY4OorPMwTzKgjuuOHdCWZFLY7zyXFW2kAl5jvbQ2LOiRusvTd91-vjHdz0XEoEPZOOEvIpCoQHLWBP_MYD3wTZXE8n9iSQ4lZ0Ob82uo1N3-nwJJuTZbhifRKJa7ZseZQTMHzAUyNwfV8nuvRkHbApGSYicrJ-JYqYj9erX0PIbcDLUmfnD_0_rKbkKPqG_HJ98fkSu5ci-QXJLsU_2Nm3vHwN82lRPBr_4Cy-OGbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+configuration+of+the+Cassandra+database+using+irace&rft.jtitle=PeerJ.+Computer+science&rft.au=Silva-Mu%C3%B1oz%2C+Mois%C3%A9s&rft.au=Franzin%2C+Alberto&rft.au=Bersini%2C+Hugues&rft.date=2021-08-05&rft.eissn=2376-5992&rft.volume=7&rft.spage=e634&rft.epage=e634&rft_id=info:doi/10.7717%2Fpeerj-cs.634&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon