Automatic configuration of the Cassandra database using irace
Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to...
Saved in:
Published in | PeerJ. Computer science Vol. 7; p. e634 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
05.08.2021
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained. |
---|---|
AbstractList | Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained. |
ArticleNumber | e634 |
Audience | Academic |
Author | Franzin, Alberto Silva-Muñoz, Moisés Bersini, Hugues |
Author_xml | – sequence: 1 givenname: Moisés surname: Silva-Muñoz fullname: Silva-Muñoz, Moisés organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium – sequence: 2 givenname: Alberto orcidid: 0000-0002-4066-0375 surname: Franzin fullname: Franzin, Alberto organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium – sequence: 3 givenname: Hugues surname: Bersini fullname: Bersini, Hugues organization: IRIDIA-CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34435094$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstrGzEQh5eS0qRpbj2XhV5aqF3t6rU6pGBMH4ZAoY-zmJVmNzK25Eq7pfnvI9tp8JZKB41G3_yGGc3z4swHj0XxsiJzKSv5focY1zOT5oKyJ8VFTaWYcaXqsxP7vLhKaU0IqXiVl3pWnFPGKCeKXRTXi3EIWxicKU3wnevHmC_Bl6Erh1ssl5ASeBuhtDBACwnLMTnfly6CwRfF0w42Ca8ezsvi56ePP5ZfZjdfP6-Wi5uZ4VQMM5BEEmXaju2TmjobrGsoIVBVsuNIiZHSWGoMbequFsy2DTMIxgKiqgS9LFZHXRtgrXfRbSHe6QBOHxwh9hpirmGDmhCbYxvOLFOMWaGMqCUAKmSqNVxmrQ9Hrd3YbtEa9EOEzUR0-uLdre7Db91QLoSos8CbB4EYfo2YBr11yeBmAx7DmHTNRU5dK8oy-vofdB3G6HOrMsWbWlBKTqgecgHOdyHnNXtRvRC5dZxUlGRq_h8qb4tbl_8OO5f9k4C3k4DMDPhn6GFMSa--f5uy746siSGliN1jPyqi95OmD5OmTdLiUNer0x4-wn_nit4DwNjPDQ |
Cites_doi | 10.14778/3329772.3329780 10.1007/978-3-319-09333-8_1 10.5220/0005846400490056 10.1016/j.orp.2016.09.002 10.1016/j.ejor.2019.01.018 10.1016/j.jnca.2016.01.010 10.1145/1012888.1005739 10.1007/978-3-319-13021-7_6 10.1007/978-3-319-92639-1_60 10.14778/3352063.3352129 10.1109/TKDE.2020.2994641 10.14778/3339490.3339503 10.1007/s12530-013-9072-y 10.1007/978-3-319-62410-5_11 10.1145/1353452.1353455 10.1023/A:1006556606079 10.1109/ACCESS.2020.2990735 10.1613/jair.2861 10.1007/978-3-319-44406-2_12 10.1155/2015/502795 10.14778/1687627.1687767 10.1016/j.suscom.2019.01.017 10.14778/2732977.2732995 10.14778/3352063.3352112 10.14778/3192965.3192971 |
ContentType | Journal Article |
Copyright | 2021 Silva-Muñoz et al. COPYRIGHT 2021 PeerJ. Ltd. 2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al. |
Copyright_xml | – notice: 2021 Silva-Muñoz et al. – notice: COPYRIGHT 2021 PeerJ. Ltd. – notice: 2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Silva-Muñoz et al. 2021 Silva-Muñoz et al. |
DBID | NPM AAYXX CITATION ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.634 |
DatabaseName | PubMed CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection ProQuest Computing Computer Science Database ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computing (Alumni Edition) ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
EndPage | e634 |
ExternalDocumentID | oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57 A670750130 10_7717_peerj_cs_634 34435094 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: CHIST-ERA-17-BDSI-001 ABIDI – fundername: 2018-SHAPE-25a |
GroupedDBID | 3V. 53G 5VS 8FE 8FG AAFWJ ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M0N M~E NPM OK1 P62 PIMPY PQQKQ PROAC RPM AAYXX CITATION 7XB 8AL 8FK JQ2 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c536t-a70709cbf45094c2bf44f8300a117f5e30c77cd3cc382f264db84ceacdaee9163 |
IEDL.DBID | RPM |
ISSN | 2376-5992 |
IngestDate | Tue Oct 22 15:14:39 EDT 2024 Tue Sep 17 21:27:40 EDT 2024 Sat Aug 17 05:38:08 EDT 2024 Thu Oct 10 16:04:29 EDT 2024 Thu Feb 22 23:42:30 EST 2024 Thu Nov 09 12:27:29 EST 2023 Thu Aug 01 19:17:44 EDT 2024 Fri Aug 23 00:33:17 EDT 2024 Sat Nov 02 12:29:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Databases Automatic configuration Parameter tuning Cassandra Hyperparameter tuning |
Language | English |
License | 2021 Silva-Muñoz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-a70709cbf45094c2bf44f8300a117f5e30c77cd3cc382f264db84ceacdaee9163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4066-0375 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356662/ |
PMID | 34435094 |
PQID | 2558263304 |
PQPubID | 2045934 |
PageCount | e634 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00d84c854d4944d69c627aae9e49bc57 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356662 proquest_miscellaneous_2564942934 proquest_journals_2558263304 gale_infotracmisc_A670750130 gale_infotracacademiconefile_A670750130 gale_incontextgauss_ISR_A670750130 crossref_primary_10_7717_peerj_cs_634 pubmed_primary_34435094 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-05 |
PublicationDateYYYYMMDD | 2021-08-05 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationTitleAlternate | PeerJ Comput Sci |
PublicationYear | 2021 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Raasveldt (10.7717/peerj-cs.634/ref-49) 2018 Mahgoub (10.7717/peerj-cs.634/ref-38) 2017b Pagnozzi (10.7717/peerj-cs.634/ref-44) 2019; 276 Babu (10.7717/peerj-cs.634/ref-4) 2009 Mahgoub (10.7717/peerj-cs.634/ref-36) 2017a Birattari (10.7717/peerj-cs.634/ref-10) 2002 Duan (10.7717/peerj-cs.634/ref-19) 2009; 2 Pushak (10.7717/peerj-cs.634/ref-47) 2018 Marcus (10.7717/peerj-cs.634/ref-40) 2019 Kraska (10.7717/peerj-cs.634/ref-26) 2018 Ma (10.7717/peerj-cs.634/ref-34) 2018 Oh (10.7717/peerj-cs.634/ref-43) 2005 Krishnan (10.7717/peerj-cs.634/ref-27) 2018 Stützle (10.7717/peerj-cs.634/ref-56) 2013 Aniceto (10.7717/peerj-cs.634/ref-3) 2015; 2015 Pérez Cáceres (10.7717/peerj-cs.634/ref-48) 2017 Abramova (10.7717/peerj-cs.634/ref-1) 2014 Kwan (10.7717/peerj-cs.634/ref-29) 2003 Bergstra (10.7717/peerj-cs.634/ref-7) 2011; 24 Debnath (10.7717/peerj-cs.634/ref-16) 2008 Valentin (10.7717/peerj-cs.634/ref-61) 2000 Mahgoub (10.7717/peerj-cs.634/ref-37) 2020 Daz (10.7717/peerj-cs.634/ref-15) 2016; 67 Haughian (10.7717/peerj-cs.634/ref-22) 2016 Wang (10.7717/peerj-cs.634/ref-63) 2014; 8807 Jindal (10.7717/peerj-cs.634/ref-25) 2018; 11 Van Aken (10.7717/peerj-cs.634/ref-62) 2017 Miranda (10.7717/peerj-cs.634/ref-42) 2014 Li (10.7717/peerj-cs.634/ref-31) 2019; 12 Hutter (10.7717/peerj-cs.634/ref-23) 2011 Zilio (10.7717/peerj-cs.634/ref-74) 2004 Schnaitter (10.7717/peerj-cs.634/ref-51) 2007 Birattari (10.7717/peerj-cs.634/ref-9) 2004 Yuan (10.7717/peerj-cs.634/ref-67) 2020 Zheng (10.7717/peerj-cs.634/ref-70) 2014; 8588 Dutt (10.7717/peerj-cs.634/ref-21) 2019; 12 Dias (10.7717/peerj-cs.634/ref-17) 2005 Kuhlenkamp (10.7717/peerj-cs.634/ref-28) 2014; 7 Zhou (10.7717/peerj-cs.634/ref-71) 2020 Wei (10.7717/peerj-cs.634/ref-65) 2014 Chavan (10.7717/peerj-cs.634/ref-13) 2011 Lu (10.7717/peerj-cs.634/ref-32) 2019; 12 Sheng (10.7717/peerj-cs.634/ref-52) 2019 López-Ibáñez (10.7717/peerj-cs.634/ref-33) 2016; 3 Swaminathan (10.7717/peerj-cs.634/ref-58) 2016 Abubakar (10.7717/peerj-cs.634/ref-2) 2014; 7 Bergstra (10.7717/peerj-cs.634/ref-8) 2012; 13 Baik (10.7717/peerj-cs.634/ref-5) 2019 Bao (10.7717/peerj-cs.634/ref-6) 2018 Zhang (10.7717/peerj-cs.634/ref-69) 2019 Storm (10.7717/peerj-cs.634/ref-55) 2006 Tan (10.7717/peerj-cs.634/ref-59) 2019; 12 Hutter (10.7717/peerj-cs.634/ref-24) 2009; 36 Zhu (10.7717/peerj-cs.634/ref-73) 2017b Zhu (10.7717/peerj-cs.634/ref-72) 2017a Stillger (10.7717/peerj-cs.634/ref-54) 2001; 1 Mahgoub (10.7717/peerj-cs.634/ref-39) 2019 Maron (10.7717/peerj-cs.634/ref-41) 1997; 11 Wang (10.7717/peerj-cs.634/ref-64) 2012 Le (10.7717/peerj-cs.634/ref-30) 2014 Pedrozo (10.7717/peerj-cs.634/ref-45) 2018; 10870 Zhang (10.7717/peerj-cs.634/ref-68) 2012 Wu (10.7717/peerj-cs.634/ref-66) 2019 Cooper (10.7717/peerj-cs.634/ref-14) 2010 Rodd (10.7717/peerj-cs.634/ref-50) 2013; 4 Cao (10.7717/peerj-cs.634/ref-11) 2018 Duarte (10.7717/peerj-cs.634/ref-20) 2016; 2 Silva-Muñoz (10.7717/peerj-cs.634/ref-53) 2020 Mahajan (10.7717/peerj-cs.634/ref-35) 2019; 22 Cassandra (10.7717/peerj-cs.634/ref-12) 2014 Tran (10.7717/peerj-cs.634/ref-60) 2008; 4 Pinheiro (10.7717/peerj-cs.634/ref-46) 2017; 620 Dou (10.7717/peerj-cs.634/ref-18) 2020; 8 Sullivan (10.7717/peerj-cs.634/ref-57) 2004; 32 |
References_xml | – volume: 12 start-page: 1044 issue: 9 year: 2019 ident: 10.7717/peerj-cs.634/ref-21 article-title: Selectivity estimation for range predicates using lightweight models publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3329772.3329780 contributor: fullname: Dutt – start-page: 11 year: 2008 ident: 10.7717/peerj-cs.634/ref-16 article-title: Sard: a statistical approach for ranking database tuning parameters contributor: fullname: Debnath – start-page: 489 year: 2018 ident: 10.7717/peerj-cs.634/ref-26 article-title: The case for learned index structures contributor: fullname: Kraska – volume: 8588 start-page: 1 year: 2014 ident: 10.7717/peerj-cs.634/ref-70 article-title: Self-tuning performance of database systems with neural network doi: 10.1007/978-3-319-09333-8_1 contributor: fullname: Zheng – volume: 2 start-page: 49 year: 2016 ident: 10.7717/peerj-cs.634/ref-20 article-title: Cassandra for internet of things: an experimental evaluation publication-title: International Conference on Internet of Things and Big Data doi: 10.5220/0005846400490056 contributor: fullname: Duarte – start-page: 189 year: 2020 ident: 10.7717/peerj-cs.634/ref-37 article-title: {OPTIMUSCLOUD}: heterogeneous configuration optimization for distributed databases in the cloud contributor: fullname: Mahgoub – start-page: 11 year: 2002 ident: 10.7717/peerj-cs.634/ref-10 article-title: A racing algorithm for configuring metaheuristics contributor: fullname: Birattari – volume: 3 start-page: 43 issue: 1 year: 2016 ident: 10.7717/peerj-cs.634/ref-33 article-title: The irace package: iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2016.09.002 contributor: fullname: López-Ibáñez – volume: 276 start-page: 409 issue: 2 year: 2019 ident: 10.7717/peerj-cs.634/ref-44 article-title: Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2019.01.018 contributor: fullname: Pagnozzi – volume: 67 start-page: 99 issue: 7 year: 2016 ident: 10.7717/peerj-cs.634/ref-15 article-title: State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing publication-title: Journal of Network and Computer applications doi: 10.1016/j.jnca.2016.01.010 contributor: fullname: Daz – year: 2009 ident: 10.7717/peerj-cs.634/ref-4 article-title: Automated experiment-driven management of (database) systems contributor: fullname: Babu – start-page: 13 year: 2014 ident: 10.7717/peerj-cs.634/ref-12 article-title: Apache cassandra contributor: fullname: Cassandra – start-page: 893 year: 2018 ident: 10.7717/peerj-cs.634/ref-11 article-title: Towards better understanding of black-box auto-tuning: a comparative analysis for storage systems contributor: fullname: Cao – volume: 32 start-page: 404 issue: 1 year: 2004 ident: 10.7717/peerj-cs.634/ref-57 article-title: Using probabilistic reasoning to automate software tuning publication-title: ACM SIGMETRICS Performance Evaluation Review doi: 10.1145/1012888.1005739 contributor: fullname: Sullivan – start-page: 415 year: 2019 ident: 10.7717/peerj-cs.634/ref-69 article-title: An end-to-end automatic cloud database tuning system using deep reinforcement learning contributor: fullname: Zhang – volume: 8807 start-page: 71 year: 2014 ident: 10.7717/peerj-cs.634/ref-63 article-title: Benchmarking replication and consistency strategies in cloud serving databases: HBase and Cassandra doi: 10.1007/978-3-319-13021-7_6 contributor: fullname: Wang – start-page: 143 year: 2010 ident: 10.7717/peerj-cs.634/ref-14 article-title: Benchmarking cloud serving systems with YCSB contributor: fullname: Cooper – volume: 10870 start-page: 716 year: 2018 ident: 10.7717/peerj-cs.634/ref-45 article-title: An adaptive approach for index tuning with learning classifier systems on hybrid storage environments doi: 10.1007/978-3-319-92639-1_60 contributor: fullname: Pedrozo – start-page: 631 year: 2018 ident: 10.7717/peerj-cs.634/ref-34 article-title: Query-based workload forecasting for self-driving database management systems contributor: fullname: Ma – start-page: 476 year: 2017a ident: 10.7717/peerj-cs.634/ref-36 article-title: Suitability of nosql systems-cassandra and scylladb-for iot workloads contributor: fullname: Mahgoub – start-page: 202 volume-title: Artificial Evolution: 13th International Conference, E’volution Artificielle, EA 2017; Paris, France, October 25-27, 2017; Revised Selected, volume 10764 of Lecture Notes in Computer Science year: 2017 ident: 10.7717/peerj-cs.634/ref-48 article-title: Automatic configuration of GCC using irace contributor: fullname: Pérez Cáceres – start-page: 84 year: 2005 ident: 10.7717/peerj-cs.634/ref-17 article-title: Automatic performance diagnosis and tuning in oracle contributor: fullname: Dias – year: 2019 ident: 10.7717/peerj-cs.634/ref-40 article-title: Neo: a learned query optimizer publication-title: arXiv preprint contributor: fullname: Marcus – start-page: 28 year: 2017b ident: 10.7717/peerj-cs.634/ref-38 article-title: Rafiki: a middleware for parameter tuning of nosql datastores for dynamic metagenomics workloads contributor: fullname: Mahgoub – volume: 12 start-page: 2118 issue: 12 year: 2019 ident: 10.7717/peerj-cs.634/ref-31 article-title: Qtune: a query-aware database tuning system with deep reinforcement learning publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3352063.3352129 contributor: fullname: Li – year: 2020 ident: 10.7717/peerj-cs.634/ref-71 article-title: Database meets artificial intelligence: a survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2020.2994641 contributor: fullname: Zhou – start-page: 199 year: 2014 ident: 10.7717/peerj-cs.634/ref-1 article-title: Evaluating cassandra scalability with YCSB contributor: fullname: Abramova – volume: 12 start-page: 1221 issue: 10 year: 2019 ident: 10.7717/peerj-cs.634/ref-59 article-title: iBTune: individualized buffer tuning for large-scale cloud databases publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3339490.3339503 contributor: fullname: Tan – volume: 4 start-page: 133 issue: 2 year: 2013 ident: 10.7717/peerj-cs.634/ref-50 article-title: Adaptive neuro-fuzzy technique for performance tuning of database management systems publication-title: Evolving Systems doi: 10.1007/s12530-013-9072-y contributor: fullname: Rodd – start-page: 1284 year: 2011 ident: 10.7717/peerj-cs.634/ref-13 article-title: Dbridge: a program rewrite tool for set-oriented query execution contributor: fullname: Chavan – start-page: 374 year: 2019 ident: 10.7717/peerj-cs.634/ref-5 article-title: Bridging the semantic gap with SQL query logs in natural language interfaces to databases contributor: fullname: Baik – volume: 620 start-page: 87 year: 2017 ident: 10.7717/peerj-cs.634/ref-46 article-title: Smart grids data management: a case for Cassandra doi: 10.1007/978-3-319-62410-5_11 contributor: fullname: Pinheiro – volume: 4 start-page: 1 issue: 1 year: 2008 ident: 10.7717/peerj-cs.634/ref-60 article-title: A new approach to dynamic self-tuning of database buffers publication-title: ACM Transactions on Storage doi: 10.1145/1353452.1353455 contributor: fullname: Tran – volume: 7 start-page: 23 issue: 8 year: 2014 ident: 10.7717/peerj-cs.634/ref-2 article-title: Performance evaluation of nosql systems using YCSB in a resource austere environment publication-title: Performance Evaluation contributor: fullname: Abubakar – start-page: 223 year: 2019 ident: 10.7717/peerj-cs.634/ref-39 article-title: {SOPHIA}: online reconfiguration of clustered nosql databases for time-varying workloads contributor: fullname: Mahgoub – start-page: 507 year: 2011 ident: 10.7717/peerj-cs.634/ref-23 article-title: Sequential model-based optimization for general algorithm configuration contributor: fullname: Hutter – start-page: 271 year: 2018 ident: 10.7717/peerj-cs.634/ref-47 article-title: Algorithm configuration landscapes: more benign than expected? contributor: fullname: Pushak – volume: 24 start-page: 2546 year: 2011 ident: 10.7717/peerj-cs.634/ref-7 article-title: Algorithms for hyper-parameter optimization publication-title: Advances in Neural Information Processing Systems contributor: fullname: Bergstra – start-page: 459 year: 2007 ident: 10.7717/peerj-cs.634/ref-51 article-title: On-line index selection for shifting workloads contributor: fullname: Schnaitter – start-page: 325 year: 2014 ident: 10.7717/peerj-cs.634/ref-42 article-title: Fine-tuning of support vector machine parameters using racing algorithms contributor: fullname: Miranda – start-page: 389 year: 2012 ident: 10.7717/peerj-cs.634/ref-68 article-title: A model for application-oriented database performance tuning contributor: fullname: Zhang – year: 2004 ident: 10.7717/peerj-cs.634/ref-9 article-title: The problem of tuning metaheuristics as seen from a machine learning perspective contributor: fullname: Birattari – start-page: 1218 year: 2005 ident: 10.7717/peerj-cs.634/ref-43 article-title: Resource selection for autonomic database tuning contributor: fullname: Oh – volume: 11 start-page: 193 issue: 1–5 year: 1997 ident: 10.7717/peerj-cs.634/ref-41 article-title: The racing algorithm: model selection for lazy learners publication-title: Artificial Intelligence Review doi: 10.1023/A:1006556606079 contributor: fullname: Maron – volume: 8 start-page: 80638 year: 2020 ident: 10.7717/peerj-cs.634/ref-18 article-title: Hdconfigor: automatically tuning high dimensional configuration parameters for log search engines publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990735 contributor: fullname: Dou – volume: 36 start-page: 267 year: 2009 ident: 10.7717/peerj-cs.634/ref-24 article-title: ParamILS: an automatic algorithm configuration framework publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.2861 contributor: fullname: Hutter – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.634/ref-27 article-title: Learning to optimize join queries with deep reinforcement learning publication-title: arXiv preprint contributor: fullname: Krishnan – start-page: 1501 year: 2020 ident: 10.7717/peerj-cs.634/ref-67 article-title: Automatic view generation with deep learning and reinforcement learning contributor: fullname: Yuan – year: 2003 ident: 10.7717/peerj-cs.634/ref-29 article-title: Automatic database configuration for db2 universal database: compressing years of performance expertise into seconds of execution contributor: fullname: Kwan – year: 2020 ident: 10.7717/peerj-cs.634/ref-53 article-title: Supplementaty material for: automatic configuration of the Cassandra database using irace contributor: fullname: Silva-Muñoz – year: 2016 ident: 10.7717/peerj-cs.634/ref-22 article-title: Benchmarking replication in cassandra and mongodb NoSQL datastores doi: 10.1007/978-3-319-44406-2_12 contributor: fullname: Haughian – start-page: 893 year: 2013 ident: 10.7717/peerj-cs.634/ref-56 article-title: Automatic (offline) configuration of algorithms contributor: fullname: Stützle – start-page: 1223 year: 2019 ident: 10.7717/peerj-cs.634/ref-66 article-title: Designing succinct secondary indexing mechanism by exploiting column correlations contributor: fullname: Wu – volume: 2015 start-page: 1 issue: 2 year: 2015 ident: 10.7717/peerj-cs.634/ref-3 article-title: Evaluating the cassandra NoSQL database approach for genomic data persistency publication-title: International journal of genomics doi: 10.1155/2015/502795 contributor: fullname: Aniceto – start-page: 1081 year: 2006 ident: 10.7717/peerj-cs.634/ref-55 article-title: Adaptive self-tuning memory in db2 contributor: fullname: Storm – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 10.7717/peerj-cs.634/ref-8 article-title: Random search for hyper-parameter optimization publication-title: The Journal of Machine Learning Research contributor: fullname: Bergstra – start-page: 101 year: 2000 ident: 10.7717/peerj-cs.634/ref-61 article-title: Db2 advisor: an optimizer smart enough to recommend its own indexes contributor: fullname: Valentin – start-page: 29 year: 2018 ident: 10.7717/peerj-cs.634/ref-6 article-title: Autoconfig: automatic configuration tuning for distributed message systems contributor: fullname: Bao – year: 2019 ident: 10.7717/peerj-cs.634/ref-52 article-title: Scheduling oltp transactions via machine learning publication-title: arXiv preprint contributor: fullname: Sheng – volume: 1 start-page: 19 year: 2001 ident: 10.7717/peerj-cs.634/ref-54 article-title: Leo-db2’s learning optimizer contributor: fullname: Stillger – start-page: 338 year: 2017a ident: 10.7717/peerj-cs.634/ref-72 article-title: Bestconfig: tapping the performance potential of systems via automatic configuration tuning contributor: fullname: Zhu – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.634/ref-49 article-title: Fair benchmarking considered difficult: common pitfalls in database performance testing contributor: fullname: Raasveldt – start-page: 323 year: 2016 ident: 10.7717/peerj-cs.634/ref-58 article-title: Quantitative analysis of scalable nosql databases contributor: fullname: Swaminathan – start-page: 1332 year: 2012 ident: 10.7717/peerj-cs.634/ref-64 article-title: The nosql principles and basic application of cassandra model contributor: fullname: Wang – start-page: 1 year: 2017b ident: 10.7717/peerj-cs.634/ref-73 article-title: Acts in need: automatic configuration tuning with scalability guarantees contributor: fullname: Zhu – volume: 2 start-page: 1246 issue: 1 year: 2009 ident: 10.7717/peerj-cs.634/ref-19 article-title: Tuning database configuration parameters with ituned publication-title: Proceedings of the VLDB Endowment doi: 10.14778/1687627.1687767 contributor: fullname: Duan – start-page: 194 year: 2014 ident: 10.7717/peerj-cs.634/ref-65 article-title: Self-tuning performance of database systems based on fuzzy rules contributor: fullname: Wei – volume: 22 start-page: 120 year: 2019 ident: 10.7717/peerj-cs.634/ref-35 article-title: Improving the energy efficiency of relational and NoSQL databases via query optimizations publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2019.01.017 contributor: fullname: Mahajan – start-page: 47 year: 2014 ident: 10.7717/peerj-cs.634/ref-30 article-title: Epc information services with No-SQL datastore for the internet of things contributor: fullname: Le – volume: 7 start-page: 1219 issue: 12 year: 2014 ident: 10.7717/peerj-cs.634/ref-28 article-title: Benchmarking scalability and elasticity of distributed database systems publication-title: Proceedings of the VLDB Endowment doi: 10.14778/2732977.2732995 contributor: fullname: Kuhlenkamp – start-page: 180 year: 2004 ident: 10.7717/peerj-cs.634/ref-74 article-title: Recommending materialized views and indexes with the ibm db2 design advisor contributor: fullname: Zilio – volume: 12 start-page: 1970 issue: 12 year: 2019 ident: 10.7717/peerj-cs.634/ref-32 article-title: Speedup your analytics: automatic parameter tuning for databases and big data systems publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3352063.3352112 contributor: fullname: Lu – start-page: 1009 year: 2017 ident: 10.7717/peerj-cs.634/ref-62 article-title: Automatic database management system tuning through large-scale machine learning contributor: fullname: Van Aken – volume: 11 start-page: 800 issue: 7 year: 2018 ident: 10.7717/peerj-cs.634/ref-25 article-title: Selecting subexpressions to materialize at datacenter scale publication-title: Proceedings of the VLDB Endowment doi: 10.14778/3192965.3192971 contributor: fullname: Jindal |
SSID | ssj0001511119 |
Score | 2.2434578 |
Snippet | Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e634 |
SubjectTerms | Algorithms Artificial Intelligence Automatic configuration Cassandra Configurations Configurations (Computers) Data Mining and Machine Learning Data processing Database administration Design of experiments Hyperparameter tuning Machine learning Methods Optimization Parameter tuning Parameters Performance evaluation Software Statistical methods Statistical models Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1z4KF_plwwCcQpNY8eJDxy2FVVBggNQqTfLcexlOSTVZvP_eRNnVxtx4MItiidS8sbjeRONnxl7GxRyeu59arV2qQRlT3WwVLg2QVkkCCVoN_LXb-rmVn65K-72jvqinrAoDxyBO8-yppKuKmQjtZSN0k7lpbVee6lrV8R95JneK6bi_mBaCnTsdC9Rspzfe7_-nbr-gxJyloNGqf6_F-S9jDTvltxLP9dP2KOJN_JFfN-n7IFvD9nj7ZkMfArRZ-zjYth0owwrR6UbVsshuph3gYPr8SuQZds2a8upN5RyGKfW9yVfra3zz9nt9aefVzfpdERC6gqhNqktEbLa1UGSEJ7LcSFDJbLMXlyUofAic2XpGuGcqPIA8tPUQBOLbWO9BzMUL9hB27X-FeNC5kGCH1ppPSm41KgdK7AveFNoLAMJe7cFzdxHJQyDCoLANSO4xvUG4CbskhDd2ZB-9XgDXjWTV82_vJqwN-QPQwoVLbXALO3Q9-bzj-9moUqiOci9CXs_GYUOnnF22lGA7yFRq5nlycwSIeTmw1u3mymEe4NaC6UX_e5J2OvdMD1JbWmt7wayUXh_MCbYvIyzZPfdQoKJwikJK2fzZwbMfKRd_RoFvsGKUVXmR_8DyWP2MKc2HOpyKU7YwWY9-FPwqE19NobMH9_EGwM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9sKFR3k0UCqDQJxC09hx4gNC26pVQaJChUq9WY5jL8shWZLN_2cm8W4bVeotiieSM-OZ-cb5Mgb44CXm9NS52ChlY4GQPVbeUOFaeWkwQUhOfyP_uJDnV-L7dXYdNty6QKvcxMQhUFeNpT3yQ4S-iISp-v66-hfTqVH0dTUcofEQdlKsFNIZ7ByfXvy8vNllySgkqJHxnmPpcrhyrv0b2-6z5GKSi4aW_XcD863MNGVN3kpDZ0_hccCPbD4a_Bk8cPUuPNmczcCCqz6HL_N-3QztWBlWvH656EdTs8YzxHzsBEGzqavWMOKIUi5jRIFfsGVrrHsBV2env0_O43BUQmwzLtexydF1lS29oIZ4NsUL4QueJOboKPeZ44nNc1txa3mRegRBVVkIi0G3Ms4hQuQvYVY3tdsDxkXqBeJEI4yjTi4l1pAFojC0KlcYDiL4uFGaXo0dMTRWEqRcPShX206jciM4Jo1uZaiP9XCjaRc6uIVOkgrnUWSiEkqISior09wYp5xQpc3yCN6TPTR1qqiJCrMwfdfpb78u9VzmBHcwB0fwKQj5Bi1jTfizAN-HmltNJPcnkuhKdjq8MbsOrtzpm4UXwbvtMD1J9LTaNT3JSJw_IieUeTWuku17c4GIFI0SQT5ZPxPFTEfq5Z-h0TeiY6wu09f3T-sNPEqJaEM8lmwfZuu2d28RKa3Lg-AO_wGmzhP3 priority: 102 providerName: ProQuest |
Title | Automatic configuration of the Cassandra database using irace |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34435094 https://www.proquest.com/docview/2558263304 https://search.proquest.com/docview/2564942934 https://pubmed.ncbi.nlm.nih.gov/PMC8356662 https://doaj.org/article/00d84c854d4944d69c627aae9e49bc57 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51y4UL70egrAwCccpuGjsPHzhsV10KUquqUKk3y3HsZRFNVsnm_zOTx2ojbtyieCLZ8_B8E30eA3x0Meb00FpfS2l8gZDdl05T4Zq7WGOCiDmdRr68ii9uxfe76O4IouEsTEvaN9lmVvy5nxWbXy23cntv5gNPbH59uUTUgKg7nE9ggg56UKJ3R4NpF5AdyT3BamW-tbb67Zt6FnO6hocLhAiBFKNM1Dbs_3dbPshLY87kQRJaPYFHPXpki26WT-HIFs_g8XAzA-sD9Tl8WTS7sm3GyrDedZt10xmalY4h4mNLhMy6yCvNiCFKmYwRAX7NNpU29gXcrs5_Li_8_qIE30Q83vk6wcCVJnOC1mVCfBAu5UGgT08TF1kemCQxOTeGp6FDCJRnqTC45ebaWsSH_CUcF2VhXwPjInQCUaIW2lIflwwryBQxGNqUS9wMPPg0KE1tu34YCusI0rNq9axMrVDPHpyRRvcy1MW6fVFWa9XbUgVBjvNII5ELKUQeSxOHidZWWiEzEyUefCB7KOpTURARZq2bulbfftyoRZwQ2MEM7MHnXsiVaBmj-3MFuB5qbTWSPBlJYiCZ8fBgdtUHcq2w4sICjH76ePB-P0xfEjmtsGVDMjHOH3ETyrzqvGS_7sHZPEhG_jNSzHgEvb5t8917-Zv__vItPAyJgUMEl-gEjndVY98hhNplU5ikq69TeHB2fnV9M21_REzbMPoLGDAfEw |
link.rule.ids | 230,315,730,783,787,867,888,2109,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819,53806,53808,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcCF9yNQwCAQp7Rp7DjxAaGlYtlC2wO0Um-W49jL9pBsk83_Zybr3TZC4hbFs5Iz45n5xvt5DPDBS8zpqXOxUcrGAiF7rLyhwrXy0mCCkJxOI5-cytm5-HGRXYQNty7QKjcxcQjUVWNpj3wfoS8iYaq-vyyvYro1iv5dDVdo3IY7gmOioZPi0-_XeywZBQS15rvnWLjsL51rL2Pb7UkuRploaNj_b1i-kZfGnMkbSWj6EO4H9Mgma3M_gluufgwPNjczsOCoT-DzpF81QzNWhvWuX8z7taFZ4xkiPnaIkNnUVWsYMUQpkzEiwM_ZojXWPYXz6bezw1kcLkqIbcblKjY5Oq6ypRfUDs-m-CB8wZPEHBzkPnM8sXluK24tL1KPEKgqC2Ex5FbGOcSH_Bns1E3tXgDjIvUCUaIRxlEflxIryAIxGNqUKwwGEXzcKE0v1_0wNNYRpFw9KFfbTqNyI_hKGt3KUBfr4UXTznVwCp0kFc6jyEQllBCVVFamuTFOOaFKm-URvCd7aOpTURMRZm76rtNHv3_picwJ7GAGjuBTEPINWsaacK4Av4daW40kd0eS6Eh2PLwxuw6O3OnrZRfBu-0w_ZLIabVrepKROH_ETSjzfL1Ktt_NBeJRNEoE-Wj9jBQzHqkXf4Y234iNsbZMX_5_Wm_h7uzs5FgfH53-fAX3UqLcEKMl24WdVdu714iZVuWbwTH-Aiw0FYI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL70eggEEgTmHT2LHjA0JLYWl5VAio1Jvl-LEsh2RJNv-fmcS7bYTELYonkjPjmfnG-TIm5EUQkNNz71OjlE05QPZUBYOFqwvCQIIQDP9G_noijk75p7PiLPKfukir3MbEIVC7xuIe-QygLyBhrL5nIdIivr1fvF3_SfEEKfzSGo_TuEyuQFaU6KTl4uP5fkuBwUGN3HcJRcxs7X37O7Xda8H4JCsNzfv_DdEXctSUP3khIS1ukusRSdL5aPpb5JKvb5Mb21MaaHTaO-TNvN80Q2NWCrVvWC370ei0CRTQHz0E-Gxq1xqKbFHMahTJ8Eu6ao31d8np4sPPw6M0HpqQ2oKJTWokOLGyVeDYGs_mcMFDybLMHBzIUHiWWSmtY9ayMg8Ah1xVcgvh1xnvASuye2Svbmr_gFDG88ABMRpuPPZ0qaCaLAGPgX2ZgsCQkJdbpen12BtDQ02BytWDcrXtNCg3Ie9QozsZ7Gg93GjapY4OorPMwTzKgjuuOHdCWZFLY7zyXFW2kAl5jvbQ2LOiRusvTd91-vjHdz0XEoEPZOOEvIpCoQHLWBP_MYD3wTZXE8n9iSQ4lZ0Ob82uo1N3-nwJJuTZbhifRKJa7ZseZQTMHzAUyNwfV8nuvRkHbApGSYicrJ-JYqYj9erX0PIbcDLUmfnD_0_rKbkKPqG_HJ98fkSu5ci-QXJLsU_2Nm3vHwN82lRPBr_4Cy-OGbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+configuration+of+the+Cassandra+database+using+irace&rft.jtitle=PeerJ.+Computer+science&rft.au=Silva-Mu%C3%B1oz%2C+Mois%C3%A9s&rft.au=Franzin%2C+Alberto&rft.au=Bersini%2C+Hugues&rft.date=2021-08-05&rft.eissn=2376-5992&rft.volume=7&rft.spage=e634&rft.epage=e634&rft_id=info:doi/10.7717%2Fpeerj-cs.634&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |