A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems

Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose con...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 2; p. 466
Main Authors Daniels, John, Herrero, Pau, Georgiou, Pantelis
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22020466

Cover

Abstract Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.
AbstractList Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.
Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.
Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p < 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p < 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p = 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.
Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.
Audience Academic
Author Georgiou, Pantelis
Herrero, Pau
Daniels, John
AuthorAffiliation Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; pherrero@imperial.ac.uk (P.H.); pantelis@imperial.ac.uk (P.G.)
AuthorAffiliation_xml – name: Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; pherrero@imperial.ac.uk (P.H.); pantelis@imperial.ac.uk (P.G.)
Author_xml – sequence: 1
  givenname: John
  orcidid: 0000-0002-4464-2625
  surname: Daniels
  fullname: Daniels, John
– sequence: 2
  givenname: Pau
  orcidid: 0000-0002-7088-5807
  surname: Herrero
  fullname: Herrero, Pau
– sequence: 3
  givenname: Pantelis
  surname: Georgiou
  fullname: Georgiou, Pantelis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062427$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-AVuJCD2n9ud5ckKLSQqUgkICzNesdB4ddO9gOVf89TlNCU1U-2B4_886M9R5XBz54rKrXlJxxPiXniTHCiGiaZ9URFUxM2hI4eHA-rI5TWhLCOOfti-qQS9IwwdRR1c_qD4ireo4QvfOL-irCiDch_qptiPVsncMI2Zn6M8JQ0Iwmu-Br8H19mbLbPJar8_UsZmedcQX7Ct5EhFR_u00Zx_Syem5hSPjqfj-pflxdfr_4NJl_-Xh9MZtPjORNnoBUCIIBYx3yVlAxBck60imwUiroLSVSNtTQHlvDFRcNt2BaNgUQqHjHT6rrrW4fYKlXsXQXb3UAp-8CIS40lC7NgNqqKYVOtdBRLoDQDhH6loOkkoKxsmi932qt1t2IvUGfIwx7ovsv3v3Ui_BHt6qlpG2KwLt7gRh-rzFlPbpkcBjAY1gnzRrGmFJEiIK-fYQuwzr68lUbinLVUMX_UwsoAzhvQ6lrNqJ6VmqyKVV0o3X2BFVWj6MzxTfWlfhewpuHg-4m_OeRApxuARNDShHtDqFEb_ynd_4r7Pkj1rh8Z5HShRueyPgLaCbZ8w
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108154
crossref_primary_10_1177_19322968221102183
crossref_primary_10_1186_s12911_025_02856_5
crossref_primary_10_1109_RBME_2023_3331297
crossref_primary_10_1089_dia_2023_2503
crossref_primary_10_1016_j_arcontrol_2023_100897
crossref_primary_10_1016_j_ifacol_2023_10_441
crossref_primary_10_1002_erv_3094
crossref_primary_10_3390_foods12112118
crossref_primary_10_3390_ijerph19095367
crossref_primary_10_1109_JBHI_2023_3309302
crossref_primary_10_1177_19322968241248402
crossref_primary_10_2147_DMSO_S313837
crossref_primary_10_3390_electronics11142227
crossref_primary_10_1007_s11517_024_03042_x
crossref_primary_10_1111_1753_0407_13490
Cites_doi 10.2337/dc15-2716
10.1016/j.diabres.2012.10.024
10.1109/JBHI.2017.2677953
10.1177/193229680900300505
10.1080/03007995.2016.1275937
10.2337/dc07-1293
10.2337/db18-992-P
10.1017/CBO9780511754098
10.2337/diaclin.34.3.142
10.3390/s18030884
10.1109/JBHI.2020.3040225
10.1111/jhn.12561
10.1007/s40265-019-01149-2
10.2337/db19-931-P
10.1177/193229680800200414
10.1089/dia.2017.0364
10.1111/dme.13381
10.1089/dia.2021.0164
10.1177/1932296817728525
10.1093/jamia/ocz159
10.2337/dc21-0932
10.3390/s19194338
10.1016/j.bspc.2017.05.004
10.1109/TBME.2016.2599073
10.3390/a2010518
10.2337/dc12-0948
10.4158/EP171813.OR
10.1177/1932296815616134
10.1109/EMBC.2019.8856940
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22020466
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5
PMC8781086
A781291714
35062427
10_3390_s22020466
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P0093X/1
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c536t-a57ea42a22be384149a52b0b7af557adf105561c1de8c373463fac829aa4e73b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:11 EDT 2025
Thu Aug 21 14:07:39 EDT 2025
Thu Sep 04 22:03:16 EDT 2025
Sat Sep 06 22:13:12 EDT 2025
Tue Jun 17 22:23:18 EDT 2025
Tue Jun 10 21:15:26 EDT 2025
Wed Feb 19 02:26:54 EST 2025
Tue Jul 01 02:41:41 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
type 1 diabetes
carbohydrate estimation
quantile regression
meal detection
artificial pancreas
machine learning
multitask learning
neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-a57ea42a22be384149a52b0b7af557adf105561c1de8c373463fac829aa4e73b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4464-2625
0000-0002-7088-5807
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22020466
PMID 35062427
PQID 2621376173
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781086
proquest_miscellaneous_2622277044
proquest_journals_2621376173
gale_infotracmisc_A781291714
gale_infotracacademiconefile_A781291714
pubmed_primary_35062427
crossref_primary_10_3390_s22020466
crossref_citationtrail_10_3390_s22020466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xie (ref_21) 2017; 64
Smythe (ref_6) 2018; 31
Joiner (ref_7) 2018; 50
Magni (ref_34) 2008; 2
Castle (ref_32) 2009; 2
Cameron (ref_20) 2009; 3
ref_35
Maahs (ref_33) 2016; 39
Hessler (ref_5) 2017; 34
ref_11
ref_10
Brazeau (ref_13) 2013; 99
Dassau (ref_16) 2008; 31
ref_31
Dassau (ref_2) 2013; 36
ref_17
ref_37
Zheng (ref_23) 2019; 26
Peters (ref_12) 2017; 23
Meade (ref_14) 2016; 34
Hochreiter (ref_28) 1997; 9
Diaz (ref_24) 2021; 44
Samadi (ref_19) 2018; 20
Ramli (ref_1) 2019; 79
ref_25
Zhu (ref_30) 2020; 25
Tamborlane (ref_8) 2017; 33
Robinson (ref_4) 2021; 23
ref_29
Samadi (ref_18) 2017; 21
ref_27
Datye (ref_9) 2018; 12
ref_26
Reddy (ref_3) 2015; 10
Mahmoudi (ref_22) 2017; 38
Subbaswamy (ref_36) 2020; 21
Daniels (ref_15) 2021; 23
References_xml – volume: 50
  start-page: 676
  year: 2018
  ident: ref_7
  article-title: Stressful Life Events in Young Adults With Type 1 Diabetes in the U.S. T1D Exchange Clinic Registry
  publication-title: J. Nurs. Scholarsh. Off. Publ. Sigma Theta Tau Int. Honor. Soc. Nurs.
– volume: 39
  start-page: 1175
  year: 2016
  ident: ref_33
  article-title: Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2716
– volume: 99
  start-page: 19
  year: 2013
  ident: ref_13
  article-title: Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2012.10.024
– volume: 21
  start-page: 619
  year: 2017
  ident: ref_18
  article-title: Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2677953
– volume: 3
  start-page: 1022
  year: 2009
  ident: ref_20
  article-title: Probabilistic Evolving Meal Detection and Estimation of Meal Total Glucose Appearance
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680900300505
– volume: 33
  start-page: 639
  year: 2017
  ident: ref_8
  article-title: Understanding bolus insulin dose timing: The characteristics and experiences of people with diabetes who take bolus insulin
  publication-title: Curr. Med. Res. Opin.
  doi: 10.1080/03007995.2016.1275937
– volume: 31
  start-page: 295
  year: 2008
  ident: ref_16
  article-title: Detection of a Meal Using Continuous Glucose Monitoring: Implications for an artificial -cell
  publication-title: Diabetes Care
  doi: 10.2337/dc07-1293
– ident: ref_10
  doi: 10.2337/db18-992-P
– ident: ref_29
  doi: 10.1017/CBO9780511754098
– volume: 34
  start-page: 142
  year: 2016
  ident: ref_14
  article-title: Accuracy of Carbohydrate Counting in Adults
  publication-title: Clin. Diabetes
  doi: 10.2337/diaclin.34.3.142
– ident: ref_17
  doi: 10.3390/s18030884
– volume: 25
  start-page: 2744
  year: 2020
  ident: ref_30
  article-title: Deep Learning for Diabetes: A Systematic Review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3040225
– volume: 31
  start-page: 597
  year: 2018
  ident: ref_6
  article-title: Carbohydrate knowledge, lifestyle and insulin: An observational study of their association with glycaemic control in adults with type 1 diabetes
  publication-title: J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc.
  doi: 10.1111/jhn.12561
– volume: 79
  start-page: 1089
  year: 2019
  ident: ref_1
  article-title: Artificial Pancreas: Current Progress and Future Outlook in the Treatment of Type 1 Diabetes
  publication-title: Drugs
  doi: 10.1007/s40265-019-01149-2
– ident: ref_37
– ident: ref_11
  doi: 10.2337/db19-931-P
– volume: 2
  start-page: 630
  year: 2008
  ident: ref_34
  article-title: Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis
  publication-title: J. Diabetes Sci. Technol. (Online)
  doi: 10.1177/193229680800200414
– volume: 20
  start-page: 235
  year: 2018
  ident: ref_19
  article-title: Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2017.0364
– volume: 34
  start-page: 1228
  year: 2017
  ident: ref_5
  article-title: Diabetes distress is linked with worsening diabetes management over time in adults with Type 1 diabetes
  publication-title: Diabet. Med. J. Br. Diabet. Assoc.
  doi: 10.1111/dme.13381
– volume: 23
  start-page: 844
  year: 2021
  ident: ref_4
  article-title: Missed and mistimed insulin doses in people with diabetes: A systematic literature review
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2021.0164
– volume: 12
  start-page: 349
  year: 2018
  ident: ref_9
  article-title: Timing of Meal Insulin and Its Relation to Adherence to Therapy in Type 1 Diabetes
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296817728525
– volume: 23
  start-page: A-1
  year: 2021
  ident: ref_15
  article-title: Automatic Meal Detection and Estimation using Neural Networks
  publication-title: Diabetes Technol. Ther.
– volume: 26
  start-page: 1592
  year: 2019
  ident: ref_23
  article-title: Automated meal detection from continuous glucose monitor data through simulation and explanation
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocz159
– volume: 44
  start-page: 2379
  year: 2021
  ident: ref_24
  article-title: Advanced Closed-Loop Control System Improves Postprandial Glycemic Control Compared With a Hybrid Closed-Loop System Following Unannounced Meal
  publication-title: Diabetes Care
  doi: 10.2337/dc21-0932
– ident: ref_25
– ident: ref_31
– ident: ref_35
  doi: 10.3390/s19194338
– ident: ref_27
– volume: 21
  start-page: 345
  year: 2020
  ident: ref_36
  article-title: From development to deployment: Dataset shift, causality, and shift-stable models in health AI
  publication-title: Biostatistics
– volume: 38
  start-page: 86
  year: 2017
  ident: ref_22
  article-title: Fault and meal detection by redundant continuous glucose monitors and the unscented Kalman filter
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2017.05.004
– volume: 64
  start-page: 1249
  year: 2017
  ident: ref_21
  article-title: A Variable State Dimension Approach to Meal Detection and Meal Size Estimation: In Silico Evaluation Through Basal-Bolus Insulin Therapy for Type 1 Diabetes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2599073
– volume: 2
  start-page: 518
  year: 2009
  ident: ref_32
  article-title: A Review of Closed-Loop Algorithms for Glycemic Control in the Treatment of Type 1 Diabetes
  publication-title: Algorithms
  doi: 10.3390/a2010518
– volume: 36
  start-page: 801
  year: 2013
  ident: ref_2
  article-title: Clinical Evaluation of a Personalized Artificial Pancreas
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0948
– volume: 23
  start-page: 1201
  year: 2017
  ident: ref_12
  article-title: Postprandial Dosing of Bolus Insulin in Patients with type 1 Diabetes: A Cross-sectional Study Using Data From the T1d Exchange Registry
  publication-title: Endocr. Pract.
  doi: 10.4158/EP171813.OR
– volume: 10
  start-page: 405
  year: 2015
  ident: ref_3
  article-title: Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes: A 24-Hour Randomized Controlled Crossover Study
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296815616134
– ident: ref_26
  doi: 10.1109/EMBC.2019.8856940
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_28
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
RelatedPersons Daniels, J
RelatedPersons_xml – fullname: Daniels, J
SSID ssj0023338
Score 2.44559
Snippet Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 466
SubjectTerms Adult
Algorithms
artificial pancreas
Blood Glucose
Blood Glucose Self-Monitoring
Blood sugar
carbohydrate estimation
Carbohydrates
Daniels, J
Deep Learning
Diabetes
Diabetes Mellitus, Type 1 - drug therapy
Estimates
Glucose
Humans
Insulin
Insulin Infusion Systems
Kalman filters
machine learning
meal detection
Meals
multitask learning
Neural networks
Pancreas
Pancreas, Artificial
Sensors
type 1 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugBFVpoaEEuQoJL1GTsxMlxga4qpFYcqNSbNXYcqFRlK5r9_x0_NmxUJC5c40lsz8OeiWa-YeyDA0AhBOS2artc0iGZG9sXeQdI6mJNhwG--PKqvriW326qm61WXz4nLMIDR8ad9aot0agGTSkkFqVxtPdGIN3DJdo-oJcWbbEJplKoRdM3EUdIUFB_9gDgi0ADFOKf2yeA9D89irfuonme5NbFs9xnz5PHyBdxpS_Yjhtesr0tHMED1i34V-fueQJL_cmXm5QrTj4pX6zHVUBm5ZfkFhLpGPKvBo5Dx8_JxmP5Ir8dwiwRU4J_J33wGes8gZofsuvl-Y8vF3lqn0B8F_WYY6UcSkAA40QjKRTCCkxhFPZVpbDrY29MW3ausUIJWYsebQMtonRKGPGK7Q6rwR0x3rbE6QprY7CT6MXb-oROKxVFTxbqjH3asFXbhC3uW1zcaYoxvAT0JIGMvZ9I7yOgxt-IPnvZTAQeAzs8IM3QSTP0vzQjYx-9ZLW3VFqMxVRwQFvymFd6oci5aX0D-IydzCjJwux8eKMbOln4g4YaSjqcSyUydjoN-zd91trgVutAA6BUIekTr6MqTVsSVeFLc1TG1EzJZnuejwy3vwL-d0Mro0j0zf9g0jF7Br6gI_xUOmG74--1e0tu1mjeBYt6BKb3JrM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gXOCA-F5hoICQ4FKtTdKmPaHHtseENMSBSbtFTppuk6b2sdf3_2Oned2rQFwbt3VqO7FT-2fGPnohQEopUlfUTapwkUyta7O0EYDq4mwDAb747Ed5eq6-XxQX8cBtHdMqt2tiWKib3tEZ-aEoRY7GkGv5ZfU7pa5R9Hc1ttC4zx7kuNOQnlfLb1PAhUxUI5qQxND-cC0ElYIGQMS7PShA9f-9IO_sSPNsyZ3tZ_mEPY5-I1-Mgn7K7vnuGXu0gyb4nDULfuz9ikfI1Eu-3CZecfRM-WIz9AGflZ-hc4ikQ8jC6jh0DT9BSx-LGPl1F94yIkvwn6gVlLfOI7T5C3a-PPl1dJrGJgr49WU5pFBoD0qAENbLSmFABIWwmdXQFoWGph07ZLq88ZWTWqpStuAqUQMor6WVL9le13d-n_G6dngPlNZCo4CEXFNap1MaYygnyoR93n5W4yLCODW6uDEYaZAEzCSBhH2YSFcjrMa_iL6SbCYCQsIOF_rbSxMNy7S6zsHqCmwuFWS59WgblQT003JAfhP2iSRryF6RGQex7ACnRMhXZqHRxampDXzCDmaUaGduPrzVDRPtfG3utDJh76dhupNy1zrfbwKNEFpnCh_xalSlaUqyyKhARydMz5RsNuf5SHd9FVDAK-QM49HX_2frDXsoqGAjHBodsL3hduPfohs12HfBVv4AwbodFw
  priority: 102
  providerName: ProQuest
Title A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/35062427
https://www.proquest.com/docview/2621376173
https://www.proquest.com/docview/2622277044
https://pubmed.ncbi.nlm.nih.gov/PMC8781086
https://doaj.org/article/f791ab78ab134a01beead83a5151acf5
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4k1KWRmEBJdAYjtxckBoC7tUSFtViJX2Fo0dp1SqsmWblcq_Z-w8tBE9cskhniS2Z8aecWa-AXhrOUchBA9NkpehpEUy1KaKwpIjiYvRJXr44sVZerqU31fJag_6GpvdBN7c6dq5elLLzdWH299_PpPCf3IeJ7nsH284dymeaboPh7Qhpc4HW8jhZwKnvmQtqNCYfLQVecT-f9flnY1pHDS5swvNH8KDznxk05bfj2DP1o_h_g6o4BMop-yrtdesQ069YPM-_oqRgcqm22btYVrZgmxEIm18MFbNsC7ZjBS-zWVkl7X_Sgswwc5JOFz4OusQzp_Ccj77-eU07GopEBNE2oSYKIuSI-faikySX4QJ15FWWCWJwrJqC2WauLSZEUrIVFRoMp4jSquEFs_goF7X9gWwPDf0DKZaYynR8Tp30Z1GKnKlDE8DeN9Pa2E6oHFX7-KqIIfDcaAYOBDAm4H0ukXXuIvoxPFmIHCA2P7GenNRdPpVVCqPUasMdSwkRrG2pCKZQDLXYqT-BvDOcbZwgkSdMdhlH9CQHABWMVVk6eSuGnwAxyNKUjczbu5lo-ilteApj2mljpUI4PXQ7J50IWy1XW89DedKRZJe8bwVpWFIIolcno4KQI2EbDTmcUt9-cuDgWfUM3JLj_7HJL2Ee9xld_gTpmM4aDZb-4psrkZPYF-tFF2z-bcJHJ7Mzs5_TPz5xcTr2l_1ljBx
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sZ04OSC00K62tFtxaKW9hbHjtJWq7NLdFeJP8RsZO8nuRiBuvcaTxM48POPMfAPw1nKOQggemiQvQ0lGMtSmisKSI4mL0SV6-OLxcTo6lV8nyWQLfne1MC6tsrOJ3lCXU-POyHd5ymNShliJT7Mfoesa5f6udi00GrE4tL9-Usg2_3iwR_x9x_lw_-TLKGy7CtB0RLoIMVEWJUfOtRWZpAgBE64jrbBKEoVl1bSMNHFpMyOUkKmo0GQ8R5RWCS3ouTfgpnQn46Q_arIO8GjRWYNeJEQe7c45d6WnHoBxvef51gB_bwAbO2A_O3Njuxveg7utn8oGjWDdhy1bP4A7G-iFD6EcsD1rZ6yFaD1jwy7Ri5EnzAbLxdTjwbIxOaNEuvBZXzXDumT7ZFmaokl2Ufu3NEgW7BtJocuTZy2U-iM4vZbP-xi262ltnwLLc0P3YKo1lhKdUOUujdRIRTGb4WkAH7rPWpgW0dw11rgsKLJxHChWHAjgzYp01sB4_Ivos-PNisAhb_sL06uzolXkolJ5jFplqGMhMYq1JV3MBJJfGCPNN4D3jrOFsw80GYNtmQMtySFtFQNFLlXu2s4HsNOjJL02_eFONorWrsyLtRYE8Ho17O50uXK1nS49DedKRZIe8aQRpdWSRBK5giAVgOoJWW_N_ZH64tyjjmc0M4p_n_1_Wq_g1uhkfFQcHRwfPofb3BWL-AOrHdheXC3tC3LhFvql1xsG369bUf8AtTdZ8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEgku0iZ3EyQGhhe2qpbTqgUp7S8eOUypV2W03K8Rf49cxdh67EYhbr_EksT0PzyQz3wC8NZyjEIL7Os4KPyIj6StdBn7BkcRFqwIdfPHhUbJ3En2dxbMt-N3Vwti0ys4mOkNdzLX9Rj7iCQ9JGUIpRmWbFnE8mX5aXPq2g5T909q102hE5MD8-knh2_Lj_oR4_Y7z6e73L3t-22GApiaS2sdYGow4cq6MSCOKFjDmKlASyziWWJRN-0gdFibVQoooESXqlGeIkZFCCXruDbgpBXlVpEtytg72aAPSBslIiCwYLTm3ZagOjHF9_rk2AX8fBhun4TBTc-Pom96Du63PysaNkN2HLVM9gDsbSIYPoRiziTEL1sK1nrFpl_TFyCtm41U9d9iw7JAcUyKtXQZYxbAq2C5ZmaaAkp1X7i0NqgU7Jom0OfOshVV_BCfXsr2PYbuaV-YpsCzTdA8mSmERoRWwzKaU6khS_KZ54sGHbltz3aKb2yYbFzlFOZYDec8BD970pIsG0uNfRJ8tb3oCi8LtLsyvzvJWqfNSZiEqmaIKRYRBqAzpZSqQfMQQab4evLecza2toMlobEseaEkWdSsfS3KvMtuC3oOdASXpuB4Od7KRtzZmma81woPX_bC90-bNVWa-cjScSxlE9IgnjSj1SyKhtcVB0gM5ELLBmocj1fkPh0Ce0swoFn72_2m9glukovm3_aOD53Cb27oR9-1qB7brq5V5Qd5crV46tWFwet16-gfmmV4x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Framework+for+Automatic+Meal+Detection+and+Estimation+in+Artificial+Pancreas+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=John+Daniels&rft.au=Pau+Herrero&rft.au=Pantelis+Georgiou&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft.spage=466&rft_id=info:doi/10.3390%2Fs22020466&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon