A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems
Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose con...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 2; p. 466 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22020466 |
Cover
Abstract | Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia. |
---|---|
AbstractList | Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia.Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia. Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia. Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (−4.4 mg/dL, p < 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p < 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p = 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia. Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control effectively. This poses a cognitive burden and challenge to users with T1D since this relies on frequent user engagement to maintain tight glucose control. In order to move towards fully automated closed-loop glucose control, we propose an algorithm based on a deep learning framework that performs multitask quantile regression, for both meal detection and carbohydrate estimation. Our proposed method is evaluated in silico on 10 adult subjects from the UVa/Padova simulator with a Bio-inspired Artificial Pancreas (BiAP) control algorithm over a 2 month period. Three different configurations of the AP are evaluated -BiAP without meal announcement (BiAP-NMA), BiAP with meal announcement (BiAP-MA), and BiAP with meal detection (BiAP-MD). We present results showing an improvement of BiAP-MD over BiAP-NMA, demonstrating 144.5 ± 6.8 mg/dL mean blood glucose level (-4.4 mg/dL, p< 0.01) and 77.8 ± 6.3% mean time between 70 and 180 mg/dL (+3.9%, p< 0.001). This improvement in control is realised without a significant increase in mean in hypoglycaemia (+0.1%, p= 0.4). In terms of detection of meals and snacks, the proposed method on average achieves 93% precision and 76% recall with a detection delay time of 38 ± 15 min (92% precision, 92% recall, and 37 min detection time for meals only). Furthermore, BiAP-MD handles hypoglycaemia better than BiAP-MA based on CVGA assessment with fewer control errors (10% vs. 20%). This study suggests that multitask quantile regression can improve the capability of AP systems for postprandial glucose control without increasing hypoglycaemia. |
Audience | Academic |
Author | Georgiou, Pantelis Herrero, Pau Daniels, John |
AuthorAffiliation | Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; pherrero@imperial.ac.uk (P.H.); pantelis@imperial.ac.uk (P.G.) |
AuthorAffiliation_xml | – name: Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; pherrero@imperial.ac.uk (P.H.); pantelis@imperial.ac.uk (P.G.) |
Author_xml | – sequence: 1 givenname: John orcidid: 0000-0002-4464-2625 surname: Daniels fullname: Daniels, John – sequence: 2 givenname: Pau orcidid: 0000-0002-7088-5807 surname: Herrero fullname: Herrero, Pau – sequence: 3 givenname: Pantelis surname: Georgiou fullname: Georgiou, Pantelis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35062427$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiH7AgT-AVuJCD2n9ud5ckKLSQqUgkICzNesdB4ddO9gOVf89TlNCU1U-2B4_886M9R5XBz54rKrXlJxxPiXniTHCiGiaZ9URFUxM2hI4eHA-rI5TWhLCOOfti-qQS9IwwdRR1c_qD4ireo4QvfOL-irCiDch_qptiPVsncMI2Zn6M8JQ0Iwmu-Br8H19mbLbPJar8_UsZmedcQX7Ct5EhFR_u00Zx_Syem5hSPjqfj-pflxdfr_4NJl_-Xh9MZtPjORNnoBUCIIBYx3yVlAxBck60imwUiroLSVSNtTQHlvDFRcNt2BaNgUQqHjHT6rrrW4fYKlXsXQXb3UAp-8CIS40lC7NgNqqKYVOtdBRLoDQDhH6loOkkoKxsmi932qt1t2IvUGfIwx7ovsv3v3Ui_BHt6qlpG2KwLt7gRh-rzFlPbpkcBjAY1gnzRrGmFJEiIK-fYQuwzr68lUbinLVUMX_UwsoAzhvQ6lrNqJ6VmqyKVV0o3X2BFVWj6MzxTfWlfhewpuHg-4m_OeRApxuARNDShHtDqFEb_ynd_4r7Pkj1rh8Z5HShRueyPgLaCbZ8w |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108154 crossref_primary_10_1177_19322968221102183 crossref_primary_10_1186_s12911_025_02856_5 crossref_primary_10_1109_RBME_2023_3331297 crossref_primary_10_1089_dia_2023_2503 crossref_primary_10_1016_j_arcontrol_2023_100897 crossref_primary_10_1016_j_ifacol_2023_10_441 crossref_primary_10_1002_erv_3094 crossref_primary_10_3390_foods12112118 crossref_primary_10_3390_ijerph19095367 crossref_primary_10_1109_JBHI_2023_3309302 crossref_primary_10_1177_19322968241248402 crossref_primary_10_2147_DMSO_S313837 crossref_primary_10_3390_electronics11142227 crossref_primary_10_1007_s11517_024_03042_x crossref_primary_10_1111_1753_0407_13490 |
Cites_doi | 10.2337/dc15-2716 10.1016/j.diabres.2012.10.024 10.1109/JBHI.2017.2677953 10.1177/193229680900300505 10.1080/03007995.2016.1275937 10.2337/dc07-1293 10.2337/db18-992-P 10.1017/CBO9780511754098 10.2337/diaclin.34.3.142 10.3390/s18030884 10.1109/JBHI.2020.3040225 10.1111/jhn.12561 10.1007/s40265-019-01149-2 10.2337/db19-931-P 10.1177/193229680800200414 10.1089/dia.2017.0364 10.1111/dme.13381 10.1089/dia.2021.0164 10.1177/1932296817728525 10.1093/jamia/ocz159 10.2337/dc21-0932 10.3390/s19194338 10.1016/j.bspc.2017.05.004 10.1109/TBME.2016.2599073 10.3390/a2010518 10.2337/dc12-0948 10.4158/EP171813.OR 10.1177/1932296815616134 10.1109/EMBC.2019.8856940 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22020466 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5 PMC8781086 A781291714 35062427 10_3390_s22020466 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/P0093X/1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c536t-a57ea42a22be384149a52b0b7af557adf105561c1de8c373463fac829aa4e73b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 14:07:39 EDT 2025 Thu Sep 04 22:03:16 EDT 2025 Sat Sep 06 22:13:12 EDT 2025 Tue Jun 17 22:23:18 EDT 2025 Tue Jun 10 21:15:26 EDT 2025 Wed Feb 19 02:26:54 EST 2025 Tue Jul 01 02:41:41 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning type 1 diabetes carbohydrate estimation quantile regression meal detection artificial pancreas machine learning multitask learning neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-a57ea42a22be384149a52b0b7af557adf105561c1de8c373463fac829aa4e73b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4464-2625 0000-0002-7088-5807 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22020466 |
PMID | 35062427 |
PQID | 2621376173 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8781086 proquest_miscellaneous_2622277044 proquest_journals_2621376173 gale_infotracmisc_A781291714 gale_infotracacademiconefile_A781291714 pubmed_primary_35062427 crossref_primary_10_3390_s22020466 crossref_citationtrail_10_3390_s22020466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Xie (ref_21) 2017; 64 Smythe (ref_6) 2018; 31 Joiner (ref_7) 2018; 50 Magni (ref_34) 2008; 2 Castle (ref_32) 2009; 2 Cameron (ref_20) 2009; 3 ref_35 Maahs (ref_33) 2016; 39 Hessler (ref_5) 2017; 34 ref_11 ref_10 Brazeau (ref_13) 2013; 99 Dassau (ref_16) 2008; 31 ref_31 Dassau (ref_2) 2013; 36 ref_17 ref_37 Zheng (ref_23) 2019; 26 Peters (ref_12) 2017; 23 Meade (ref_14) 2016; 34 Hochreiter (ref_28) 1997; 9 Diaz (ref_24) 2021; 44 Samadi (ref_19) 2018; 20 Ramli (ref_1) 2019; 79 ref_25 Zhu (ref_30) 2020; 25 Tamborlane (ref_8) 2017; 33 Robinson (ref_4) 2021; 23 ref_29 Samadi (ref_18) 2017; 21 ref_27 Datye (ref_9) 2018; 12 ref_26 Reddy (ref_3) 2015; 10 Mahmoudi (ref_22) 2017; 38 Subbaswamy (ref_36) 2020; 21 Daniels (ref_15) 2021; 23 |
References_xml | – volume: 50 start-page: 676 year: 2018 ident: ref_7 article-title: Stressful Life Events in Young Adults With Type 1 Diabetes in the U.S. T1D Exchange Clinic Registry publication-title: J. Nurs. Scholarsh. Off. Publ. Sigma Theta Tau Int. Honor. Soc. Nurs. – volume: 39 start-page: 1175 year: 2016 ident: ref_33 article-title: Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report publication-title: Diabetes Care doi: 10.2337/dc15-2716 – volume: 99 start-page: 19 year: 2013 ident: ref_13 article-title: Carbohydrate counting accuracy and blood glucose variability in adults with type 1 diabetes publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2012.10.024 – volume: 21 start-page: 619 year: 2017 ident: ref_18 article-title: Meal Detection and Carbohydrate Estimation Using Continuous Glucose Sensor Data publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2677953 – volume: 3 start-page: 1022 year: 2009 ident: ref_20 article-title: Probabilistic Evolving Meal Detection and Estimation of Meal Total Glucose Appearance publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229680900300505 – volume: 33 start-page: 639 year: 2017 ident: ref_8 article-title: Understanding bolus insulin dose timing: The characteristics and experiences of people with diabetes who take bolus insulin publication-title: Curr. Med. Res. Opin. doi: 10.1080/03007995.2016.1275937 – volume: 31 start-page: 295 year: 2008 ident: ref_16 article-title: Detection of a Meal Using Continuous Glucose Monitoring: Implications for an artificial -cell publication-title: Diabetes Care doi: 10.2337/dc07-1293 – ident: ref_10 doi: 10.2337/db18-992-P – ident: ref_29 doi: 10.1017/CBO9780511754098 – volume: 34 start-page: 142 year: 2016 ident: ref_14 article-title: Accuracy of Carbohydrate Counting in Adults publication-title: Clin. Diabetes doi: 10.2337/diaclin.34.3.142 – ident: ref_17 doi: 10.3390/s18030884 – volume: 25 start-page: 2744 year: 2020 ident: ref_30 article-title: Deep Learning for Diabetes: A Systematic Review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3040225 – volume: 31 start-page: 597 year: 2018 ident: ref_6 article-title: Carbohydrate knowledge, lifestyle and insulin: An observational study of their association with glycaemic control in adults with type 1 diabetes publication-title: J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. doi: 10.1111/jhn.12561 – volume: 79 start-page: 1089 year: 2019 ident: ref_1 article-title: Artificial Pancreas: Current Progress and Future Outlook in the Treatment of Type 1 Diabetes publication-title: Drugs doi: 10.1007/s40265-019-01149-2 – ident: ref_37 – ident: ref_11 doi: 10.2337/db19-931-P – volume: 2 start-page: 630 year: 2008 ident: ref_34 article-title: Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis publication-title: J. Diabetes Sci. Technol. (Online) doi: 10.1177/193229680800200414 – volume: 20 start-page: 235 year: 2018 ident: ref_19 article-title: Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2017.0364 – volume: 34 start-page: 1228 year: 2017 ident: ref_5 article-title: Diabetes distress is linked with worsening diabetes management over time in adults with Type 1 diabetes publication-title: Diabet. Med. J. Br. Diabet. Assoc. doi: 10.1111/dme.13381 – volume: 23 start-page: 844 year: 2021 ident: ref_4 article-title: Missed and mistimed insulin doses in people with diabetes: A systematic literature review publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2021.0164 – volume: 12 start-page: 349 year: 2018 ident: ref_9 article-title: Timing of Meal Insulin and Its Relation to Adherence to Therapy in Type 1 Diabetes publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296817728525 – volume: 23 start-page: A-1 year: 2021 ident: ref_15 article-title: Automatic Meal Detection and Estimation using Neural Networks publication-title: Diabetes Technol. Ther. – volume: 26 start-page: 1592 year: 2019 ident: ref_23 article-title: Automated meal detection from continuous glucose monitor data through simulation and explanation publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocz159 – volume: 44 start-page: 2379 year: 2021 ident: ref_24 article-title: Advanced Closed-Loop Control System Improves Postprandial Glycemic Control Compared With a Hybrid Closed-Loop System Following Unannounced Meal publication-title: Diabetes Care doi: 10.2337/dc21-0932 – ident: ref_25 – ident: ref_31 – ident: ref_35 doi: 10.3390/s19194338 – ident: ref_27 – volume: 21 start-page: 345 year: 2020 ident: ref_36 article-title: From development to deployment: Dataset shift, causality, and shift-stable models in health AI publication-title: Biostatistics – volume: 38 start-page: 86 year: 2017 ident: ref_22 article-title: Fault and meal detection by redundant continuous glucose monitors and the unscented Kalman filter publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2017.05.004 – volume: 64 start-page: 1249 year: 2017 ident: ref_21 article-title: A Variable State Dimension Approach to Meal Detection and Meal Size Estimation: In Silico Evaluation Through Basal-Bolus Insulin Therapy for Type 1 Diabetes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2599073 – volume: 2 start-page: 518 year: 2009 ident: ref_32 article-title: A Review of Closed-Loop Algorithms for Glycemic Control in the Treatment of Type 1 Diabetes publication-title: Algorithms doi: 10.3390/a2010518 – volume: 36 start-page: 801 year: 2013 ident: ref_2 article-title: Clinical Evaluation of a Personalized Artificial Pancreas publication-title: Diabetes Care doi: 10.2337/dc12-0948 – volume: 23 start-page: 1201 year: 2017 ident: ref_12 article-title: Postprandial Dosing of Bolus Insulin in Patients with type 1 Diabetes: A Cross-sectional Study Using Data From the T1d Exchange Registry publication-title: Endocr. Pract. doi: 10.4158/EP171813.OR – volume: 10 start-page: 405 year: 2015 ident: ref_3 article-title: Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes: A 24-Hour Randomized Controlled Crossover Study publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296815616134 – ident: ref_26 doi: 10.1109/EMBC.2019.8856940 – volume: 9 start-page: 1735 year: 1997 ident: ref_28 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 |
RelatedPersons | Daniels, J |
RelatedPersons_xml | – fullname: Daniels, J |
SSID | ssj0023338 |
Score | 2.44559 |
Snippet | Current artificial pancreas (AP) systems are hybrid closed-loop systems that require manual meal announcements to manage postprandial glucose control... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 466 |
SubjectTerms | Adult Algorithms artificial pancreas Blood Glucose Blood Glucose Self-Monitoring Blood sugar carbohydrate estimation Carbohydrates Daniels, J Deep Learning Diabetes Diabetes Mellitus, Type 1 - drug therapy Estimates Glucose Humans Insulin Insulin Infusion Systems Kalman filters machine learning meal detection Meals multitask learning Neural networks Pancreas Pancreas, Artificial Sensors type 1 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugBFVpoaEEuQoJL1GTsxMlxga4qpFYcqNSbNXYcqFRlK5r9_x0_NmxUJC5c40lsz8OeiWa-YeyDA0AhBOS2artc0iGZG9sXeQdI6mJNhwG--PKqvriW326qm61WXz4nLMIDR8ad9aot0agGTSkkFqVxtPdGIN3DJdo-oJcWbbEJplKoRdM3EUdIUFB_9gDgi0ADFOKf2yeA9D89irfuonme5NbFs9xnz5PHyBdxpS_Yjhtesr0tHMED1i34V-fueQJL_cmXm5QrTj4pX6zHVUBm5ZfkFhLpGPKvBo5Dx8_JxmP5Ir8dwiwRU4J_J33wGes8gZofsuvl-Y8vF3lqn0B8F_WYY6UcSkAA40QjKRTCCkxhFPZVpbDrY29MW3ausUIJWYsebQMtonRKGPGK7Q6rwR0x3rbE6QprY7CT6MXb-oROKxVFTxbqjH3asFXbhC3uW1zcaYoxvAT0JIGMvZ9I7yOgxt-IPnvZTAQeAzs8IM3QSTP0vzQjYx-9ZLW3VFqMxVRwQFvymFd6oci5aX0D-IydzCjJwux8eKMbOln4g4YaSjqcSyUydjoN-zd91trgVutAA6BUIekTr6MqTVsSVeFLc1TG1EzJZnuejwy3vwL-d0Mro0j0zf9g0jF7Br6gI_xUOmG74--1e0tu1mjeBYt6BKb3JrM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gXOCA-F5hoICQ4FKtTdKmPaHHtseENMSBSbtFTppuk6b2sdf3_2Oned2rQFwbt3VqO7FT-2fGPnohQEopUlfUTapwkUyta7O0EYDq4mwDAb747Ed5eq6-XxQX8cBtHdMqt2tiWKib3tEZ-aEoRY7GkGv5ZfU7pa5R9Hc1ttC4zx7kuNOQnlfLb1PAhUxUI5qQxND-cC0ElYIGQMS7PShA9f-9IO_sSPNsyZ3tZ_mEPY5-I1-Mgn7K7vnuGXu0gyb4nDULfuz9ikfI1Eu-3CZecfRM-WIz9AGflZ-hc4ikQ8jC6jh0DT9BSx-LGPl1F94yIkvwn6gVlLfOI7T5C3a-PPl1dJrGJgr49WU5pFBoD0qAENbLSmFABIWwmdXQFoWGph07ZLq88ZWTWqpStuAqUQMor6WVL9le13d-n_G6dngPlNZCo4CEXFNap1MaYygnyoR93n5W4yLCODW6uDEYaZAEzCSBhH2YSFcjrMa_iL6SbCYCQsIOF_rbSxMNy7S6zsHqCmwuFWS59WgblQT003JAfhP2iSRryF6RGQex7ACnRMhXZqHRxampDXzCDmaUaGduPrzVDRPtfG3utDJh76dhupNy1zrfbwKNEFpnCh_xalSlaUqyyKhARydMz5RsNuf5SHd9FVDAK-QM49HX_2frDXsoqGAjHBodsL3hduPfohs12HfBVv4AwbodFw priority: 102 providerName: ProQuest |
Title | A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35062427 https://www.proquest.com/docview/2621376173 https://www.proquest.com/docview/2622277044 https://pubmed.ncbi.nlm.nih.gov/PMC8781086 https://doaj.org/article/f791ab78ab134a01beead83a5151acf5 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4k1KWRmEBJdAYjtxckBoC7tUSFtViJX2Fo0dp1SqsmWblcq_Z-w8tBE9cskhniS2Z8aecWa-AXhrOUchBA9NkpehpEUy1KaKwpIjiYvRJXr44sVZerqU31fJag_6GpvdBN7c6dq5elLLzdWH299_PpPCf3IeJ7nsH284dymeaboPh7Qhpc4HW8jhZwKnvmQtqNCYfLQVecT-f9flnY1pHDS5swvNH8KDznxk05bfj2DP1o_h_g6o4BMop-yrtdesQ069YPM-_oqRgcqm22btYVrZgmxEIm18MFbNsC7ZjBS-zWVkl7X_Sgswwc5JOFz4OusQzp_Ccj77-eU07GopEBNE2oSYKIuSI-faikySX4QJ15FWWCWJwrJqC2WauLSZEUrIVFRoMp4jSquEFs_goF7X9gWwPDf0DKZaYynR8Tp30Z1GKnKlDE8DeN9Pa2E6oHFX7-KqIIfDcaAYOBDAm4H0ukXXuIvoxPFmIHCA2P7GenNRdPpVVCqPUasMdSwkRrG2pCKZQDLXYqT-BvDOcbZwgkSdMdhlH9CQHABWMVVk6eSuGnwAxyNKUjczbu5lo-ilteApj2mljpUI4PXQ7J50IWy1XW89DedKRZJe8bwVpWFIIolcno4KQI2EbDTmcUt9-cuDgWfUM3JLj_7HJL2Ee9xld_gTpmM4aDZb-4psrkZPYF-tFF2z-bcJHJ7Mzs5_TPz5xcTr2l_1ljBx |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sZ04OSC00K62tFtxaKW9hbHjtJWq7NLdFeJP8RsZO8nuRiBuvcaTxM48POPMfAPw1nKOQggemiQvQ0lGMtSmisKSI4mL0SV6-OLxcTo6lV8nyWQLfne1MC6tsrOJ3lCXU-POyHd5ymNShliJT7Mfoesa5f6udi00GrE4tL9-Usg2_3iwR_x9x_lw_-TLKGy7CtB0RLoIMVEWJUfOtRWZpAgBE64jrbBKEoVl1bSMNHFpMyOUkKmo0GQ8R5RWCS3ouTfgpnQn46Q_arIO8GjRWYNeJEQe7c45d6WnHoBxvef51gB_bwAbO2A_O3Njuxveg7utn8oGjWDdhy1bP4A7G-iFD6EcsD1rZ6yFaD1jwy7Ri5EnzAbLxdTjwbIxOaNEuvBZXzXDumT7ZFmaokl2Ufu3NEgW7BtJocuTZy2U-iM4vZbP-xi262ltnwLLc0P3YKo1lhKdUOUujdRIRTGb4WkAH7rPWpgW0dw11rgsKLJxHChWHAjgzYp01sB4_Ivos-PNisAhb_sL06uzolXkolJ5jFplqGMhMYq1JV3MBJJfGCPNN4D3jrOFsw80GYNtmQMtySFtFQNFLlXu2s4HsNOjJL02_eFONorWrsyLtRYE8Ho17O50uXK1nS49DedKRZIe8aQRpdWSRBK5giAVgOoJWW_N_ZH64tyjjmc0M4p_n_1_Wq_g1uhkfFQcHRwfPofb3BWL-AOrHdheXC3tC3LhFvql1xsG369bUf8AtTdZ8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4EChgEgku0iZ3EyQGhhe2qpbTqgUp7S8eOUypV2W03K8Rf49cxdh67EYhbr_EksT0PzyQz3wC8NZyjEIL7Os4KPyIj6StdBn7BkcRFqwIdfPHhUbJ3En2dxbMt-N3Vwti0ys4mOkNdzLX9Rj7iCQ9JGUIpRmWbFnE8mX5aXPq2g5T909q102hE5MD8-knh2_Lj_oR4_Y7z6e73L3t-22GApiaS2sdYGow4cq6MSCOKFjDmKlASyziWWJRN-0gdFibVQoooESXqlGeIkZFCCXruDbgpBXlVpEtytg72aAPSBslIiCwYLTm3ZagOjHF9_rk2AX8fBhun4TBTc-Pom96Du63PysaNkN2HLVM9gDsbSIYPoRiziTEL1sK1nrFpl_TFyCtm41U9d9iw7JAcUyKtXQZYxbAq2C5ZmaaAkp1X7i0NqgU7Jom0OfOshVV_BCfXsr2PYbuaV-YpsCzTdA8mSmERoRWwzKaU6khS_KZ54sGHbltz3aKb2yYbFzlFOZYDec8BD970pIsG0uNfRJ8tb3oCi8LtLsyvzvJWqfNSZiEqmaIKRYRBqAzpZSqQfMQQab4evLecza2toMlobEseaEkWdSsfS3KvMtuC3oOdASXpuB4Od7KRtzZmma81woPX_bC90-bNVWa-cjScSxlE9IgnjSj1SyKhtcVB0gM5ELLBmocj1fkPh0Ce0swoFn72_2m9glukovm3_aOD53Cb27oR9-1qB7brq5V5Qd5crV46tWFwet16-gfmmV4x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Framework+for+Automatic+Meal+Detection+and+Estimation+in+Artificial+Pancreas+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=John+Daniels&rft.au=Pau+Herrero&rft.au=Pantelis+Georgiou&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft.spage=466&rft_id=info:doi/10.3390%2Fs22020466&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f791ab78ab134a01beead83a5151acf5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |