A unique bZIP transcription factor imparting multiple stress tolerance in Rice

Background Rice productivity is adversely affected by environmental stresses. Transcription factors (TFs), as the regulators of gene expression, are the key players contributing to stress tolerance and crop yield. Histone gene binding protein-1b (OsHBP1b) is a TF localized within the Saltol QTL in r...

Full description

Saved in:
Bibliographic Details
Published inRice (New York, N.Y.) Vol. 12; no. 1; pp. 58 - 16
Main Authors Das, Priyanka, Lakra, Nita, Nutan, Kamlesh Kant, Singla-Pareek, Sneh Lata, Pareek, Ashwani
Format Journal Article
LanguageEnglish
Published New York Springer US 02.08.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Rice productivity is adversely affected by environmental stresses. Transcription factors (TFs), as the regulators of gene expression, are the key players contributing to stress tolerance and crop yield. Histone gene binding protein-1b (OsHBP1b) is a TF localized within the Saltol QTL in rice. Recently, we have reported the characterization of OsHBP1b in relation to salinity and drought tolerance in a model system tobacco. In the present study, we over-express the full-length gene encoding OsHBP1b in the homologous system (rice) to assess its contribution towards multiple stress tolerance and grain yield. Results We provide evidence to show that transgenic rice plants over-expressing OsHBP1b exhibit better survival and favourable osmotic parameters under salinity stress than the wild type counterparts. These transgenic plants restricted reactive oxygen species accumulation by exhibiting high antioxidant enzyme activity (ascorbate peroxidase and superoxide dismutase), under salinity conditions. Additionally, these transgenic plants maintained the chlorophyll concentration, organellar structure, photosynthesis and expression of photosynthesis and stress-related genes even when subjected to salinity stress. Experiments conducted for other abiotic stresses such as drought and high temperature revealed improved tolerance in these transgenic plants with better root and shoot growth, better photosynthetic parameters, and enhanced antioxidant enzyme activity, in comparison with WT. Further, the roots of transgenic lines showed large cortical cells and accumulated a good amount of callose, unlike the WT roots, thus enabling them to penetrate hard soil and prevent the entry of harmful ions in the cell. Conclusion Collectively, our results show that rice HBP1b gene contributes to multiple abiotic stress tolerance through several molecular and physiological pathways and hence, may serve as an important gene for providing multiple stress tolerance and improving crop yield in rice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1939-8425
1939-8433
1934-8037
DOI:10.1186/s12284-019-0316-8