Improving Inertial Sensor-Based Activity Recognition in Neurological Populations
Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 24; p. 9891 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson’s disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued. |
---|---|
AbstractList | Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson’s disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued. Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued. |
Audience | Academic |
Author | Aslan, M. Fatih Woo, Wai Lok Stuart, Sam Celik, Yunus Godfrey, Alan Sabanci, Kadir |
AuthorAffiliation | 3 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey – name: 3 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK – name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK |
Author_xml | – sequence: 1 givenname: Yunus orcidid: 0000-0002-3384-4213 surname: Celik fullname: Celik, Yunus – sequence: 2 givenname: M. Fatih orcidid: 0000-0001-7549-0137 surname: Aslan fullname: Aslan, M. Fatih – sequence: 3 givenname: Kadir orcidid: 0000-0003-0238-9606 surname: Sabanci fullname: Sabanci, Kadir – sequence: 4 givenname: Sam surname: Stuart fullname: Stuart, Sam – sequence: 5 givenname: Wai Lok orcidid: 0000-0002-8698-7605 surname: Woo fullname: Woo, Wai Lok – sequence: 6 givenname: Alan orcidid: 0000-0003-4049-9291 surname: Godfrey fullname: Godfrey, Alan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36560259$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAUhS1URB-w4A-gSGxgkdbxI48N0lDRMlIFFY-15cd18ChjD3YyUv89TqctnYK8sHX9nWMf-x6jAx88IPS6wqeUdvgsEUJY13bVM3RUMcLKlhB88Gh9iI5TWmFMKKXtC3RIa15jwrsjdL1cb2LYOt8XSw9xdHIovoNPIZYfZQJTLPTotm68Kb6BDr13owu-cL74AlMMQ-idzorrsJkGOW-ll-i5lUOCV3fzCfp58enH-efy6uvl8nxxVWpO67GUlQbDOGDV2kbV1DKuQClam9aYPOc8na0Yt4oqZhvGsOQaZ4UFDLRq6Qla7nxNkCuxiW4t440I0onbQoi9kDmOHkC0WEtpTA5MgTGtFSa1NKqyNVAprcxeH3Zem0mtwWjwY5TDnun-jne_RB-2omtaSvl8mXd3BjH8niCNYu2ShmGQHsKUBGl4W2HGKM7o2yfoKkzR56eaqbppq4aRv1QvcwDnbcjn6tlULBpWc8pJV2fq9D9UHgbWTucesS7X9wRvHgd9SHjfDxk42wE6hpQiWKHdePux2dkNosJi7jjx0HFZ8f6J4t70X_YPzTTVeA |
CitedBy_id | crossref_primary_10_3390_s24072199 crossref_primary_10_1007_s11063_023_11324_y crossref_primary_10_3390_neurolint17030045 crossref_primary_10_3233_THC_235010 crossref_primary_10_3390_s24051618 crossref_primary_10_14801_jkiit_2024_22_6_13 crossref_primary_10_1109_JSEN_2024_3510097 |
Cites_doi | 10.1145/3316782.3321538 10.1007/s11042-021-11105-6 10.1109/CVPR.2016.90 10.1109/EMBC.2016.7591425 10.1007/s12652-021-03465-6 10.3390/s16010115 10.1371/journal.pone.0124414 10.1109/ISCAS.2018.8351076 10.1016/j.asoc.2015.01.025 10.1016/B978-0-12-809393-1.00009-X 10.1109/IIPHDW.2018.8388338 10.1613/jair.953 10.1109/ACCESS.2020.3037715 10.1016/j.medengphy.2020.11.005 10.1016/j.mejo.2018.01.015 10.1016/j.patrec.2018.02.010 10.1109/CVPR.2018.00474 10.1186/s12984-018-0456-x 10.3390/healthcare10061084 10.1145/2370216.2370438 10.3390/s18041055 10.1109/JBHI.2019.2909688 10.1016/j.bspc.2021.102716 10.1109/ACCESS.2020.3025938 10.1109/TITB.2012.2226905 10.1007/s12652-020-02865-4 10.1109/ACCESS.2020.3017681 10.1145/2733373.2806333 10.3390/s18092892 10.1186/s40537-019-0197-0 10.1016/j.bspc.2021.103242 10.1038/nature14539 10.1186/s12984-017-0222-5 10.1186/s12984-020-00779-y 10.1007/978-3-030-96068-1_1 10.1007/978-3-319-14274-6_4 10.1109/ACCESS.2018.2877890 10.1016/j.ins.2013.07.007 10.1159/000477384 10.1109/ICAIIC48513.2020.9065078 10.3390/s140406474 10.1109/JSEN.2019.2956901 10.1186/s12984-016-0114-0 10.1109/TSMCC.2011.2161285 10.3389/fneur.2012.00158 10.4108/icst.mobicase.2014.257786 10.1109/ICCCNT45670.2019.8944512 10.2196/jmir.7385 10.1109/JBHI.2021.3092396 10.1016/j.gaitpost.2015.06.008 10.1109/ICSPCC.2013.6664056 10.1109/CVPR.2015.7298594 10.3390/jcm9041117 10.1007/s10115-021-01605-0 10.3390/s19143213 10.1016/j.compbiomed.2020.103795 10.1145/1107548.1107591 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22249891 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_80caadd0253e44ccb026adb1f6e3aafa PMC9783358 A746535296 36560259 10_3390_s22249891 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Parkinson's Foundation grantid: PF-FBS-1898 – fundername: Turkish Ministry of National Education grantid: (Celik) – fundername: Parkinson's Foundation grantid: PF-CRA-2073 – fundername: Parkinson’s Foundation grantid: PF-FBS-1898; PF-CRA-2073 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-a1ced45e0b8f7b63f45bebb36d8ddbb32499f145fb3b4f7440a5c0d45fe0e3183 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:24:30 EDT 2025 Thu Aug 21 18:40:35 EDT 2025 Mon Jul 21 09:52:32 EDT 2025 Fri Jul 25 20:50:43 EDT 2025 Thu Jul 03 03:20:40 EDT 2025 Tue Jul 01 05:45:12 EDT 2025 Wed Feb 19 02:25:00 EST 2025 Thu Apr 24 23:11:06 EDT 2025 Tue Jul 01 01:19:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | convolutional neural networks data augmentation human activity recognition inertial measurement units |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-a1ced45e0b8f7b63f45bebb36d8ddbb32499f145fb3b4f7440a5c0d45fe0e3183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8698-7605 0000-0003-0238-9606 0000-0002-3384-4213 0000-0001-7549-0137 0000-0003-4049-9291 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249891 |
PMID | 36560259 |
PQID | 2756781742 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80caadd0253e44ccb026adb1f6e3aafa pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783358 proquest_miscellaneous_2758104430 proquest_journals_2756781742 gale_infotracmisc_A746535296 gale_infotracacademiconefile_A746535296 pubmed_primary_36560259 crossref_citationtrail_10_3390_s22249891 crossref_primary_10_3390_s22249891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Demrozi (ref_8) 2020; 8 Shorten (ref_34) 2019; 6 Capela (ref_7) 2016; 13 Giggins (ref_4) 2017; 1 ref_14 ref_58 ref_13 ref_57 ref_12 ref_56 ref_55 ref_10 ref_54 ref_52 Albert (ref_24) 2012; 3 Alawneh (ref_37) 2021; 12 Celik (ref_16) 2020; 87 Shao (ref_49) 2020; 33 ref_18 Ramamurthy (ref_1) 2018; 8 Albert (ref_46) 2017; 14 Cheng (ref_15) 2012; 17 ref_60 Hu (ref_67) 2021; 63 ref_25 Li (ref_64) 2019; 88 Karakaya (ref_19) 2022; 71 ref_66 ref_21 LeCun (ref_31) 2015; 521 ref_65 Lawal (ref_22) 2020; 8 ref_29 Huang (ref_36) 2019; 24 Chawla (ref_39) 2002; 16 ref_27 ref_26 Catal (ref_28) 2015; 37 Huang (ref_30) 2021; 25 Palade (ref_62) 2013; 250 Tufek (ref_53) 2019; 20 ref_35 ref_33 ref_32 Rast (ref_11) 2020; 17 Bianco (ref_51) 2018; 6 Ozcelik (ref_17) 2021; 80 ref_38 Ardakani (ref_59) 2020; 121 Galar (ref_61) 2011; 42 Aslan (ref_41) 2021; 68 Ahmadi (ref_6) 2018; 15 Banos (ref_50) 2014; 14 ref_47 ref_45 ref_44 ref_43 ref_42 ref_40 Shawen (ref_23) 2017; 19 ref_3 Trojaniello (ref_20) 2015; 42 ref_48 Yen (ref_63) 2020; 8 Wang (ref_2) 2019; 119 ref_9 ref_5 |
References_xml | – ident: ref_40 doi: 10.1145/3316782.3321538 – volume: 80 start-page: 33527 year: 2021 ident: ref_17 article-title: Fusion of smartphone sensor data for classification of daily user activities publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11105-6 – ident: ref_9 – volume: 33 start-page: 13434 year: 2020 ident: ref_49 article-title: Is normalization indispensable for training deep neural network? publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_56 doi: 10.1109/CVPR.2016.90 – ident: ref_66 doi: 10.1109/EMBC.2016.7591425 – ident: ref_47 doi: 10.1007/s12652-021-03465-6 – ident: ref_32 doi: 10.3390/s16010115 – ident: ref_27 doi: 10.1371/journal.pone.0124414 – ident: ref_35 – ident: ref_14 doi: 10.1109/ISCAS.2018.8351076 – volume: 37 start-page: 1018 year: 2015 ident: ref_28 article-title: On the use of ensemble of classifiers for accelerometer-based activity recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.025 – ident: ref_21 doi: 10.1016/B978-0-12-809393-1.00009-X – ident: ref_48 doi: 10.1109/IIPHDW.2018.8388338 – volume: 16 start-page: 321 year: 2002 ident: ref_39 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 8 start-page: 210816 year: 2020 ident: ref_8 article-title: Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037715 – volume: 87 start-page: 9 year: 2020 ident: ref_16 article-title: Gait analysis in neurological populations: Progression in the use of wearables publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.11.005 – volume: 88 start-page: 164 year: 2019 ident: ref_64 article-title: Deep learning of smartphone sensor data for personal health assistance publication-title: Microelectron. J. doi: 10.1016/j.mejo.2018.01.015 – volume: 119 start-page: 3 year: 2019 ident: ref_2 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – ident: ref_58 doi: 10.1109/CVPR.2018.00474 – ident: ref_38 – ident: ref_45 – volume: 15 start-page: 1 year: 2018 ident: ref_6 article-title: Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0456-x – ident: ref_18 doi: 10.3390/healthcare10061084 – ident: ref_43 doi: 10.1145/2370216.2370438 – ident: ref_65 doi: 10.3390/s18041055 – volume: 24 start-page: 292 year: 2019 ident: ref_36 article-title: TSE-CNN: A two-stage end-to-end CNN for human activity recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2909688 – volume: 68 start-page: 102716 year: 2021 ident: ref_41 article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.102716 – volume: 8 start-page: 174105 year: 2020 ident: ref_63 article-title: Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025938 – volume: 17 start-page: 38 year: 2012 ident: ref_15 article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/TITB.2012.2226905 – volume: 12 start-page: 10565 year: 2021 ident: ref_37 article-title: Enhancing human activity recognition using deep learning and time series augmented data publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02865-4 – volume: 8 start-page: 155060 year: 2020 ident: ref_22 article-title: Deep human activity recognition with localisation of wearable sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3017681 – ident: ref_5 doi: 10.1145/2733373.2806333 – ident: ref_33 doi: 10.3390/s18092892 – volume: 6 start-page: 60 year: 2019 ident: ref_34 article-title: A survey on Image Data Augmentation for Deep Learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – ident: ref_44 – volume: 71 start-page: 103242 year: 2022 ident: ref_19 article-title: Deep learning based fall detection using smartwatches for healthcare applications publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.103242 – volume: 521 start-page: 436 year: 2015 ident: ref_31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 1 year: 2017 ident: ref_46 article-title: In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-017-0222-5 – volume: 17 start-page: 1 year: 2020 ident: ref_11 article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments publication-title: J. NeuroEngineering Rehabil. doi: 10.1186/s12984-020-00779-y – ident: ref_10 doi: 10.1007/978-3-030-96068-1_1 – ident: ref_42 doi: 10.1007/978-3-319-14274-6_4 – volume: 6 start-page: 64270 year: 2018 ident: ref_51 article-title: Benchmark analysis of representative deep neural network architectures publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877890 – volume: 8 start-page: e1254 year: 2018 ident: ref_1 article-title: Recent trends in machine learning for human activity recognition—A survey publication-title: Wiley Interdiscip. Rev: Data Min. Knowl. Discov. – volume: 250 start-page: 113 year: 2013 ident: ref_62 article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.07.007 – volume: 1 start-page: 14 year: 2017 ident: ref_4 article-title: Physical activity monitoring in patients with neurological disorders: A review of novel body-worn devices publication-title: Digit. Biomark. doi: 10.1159/000477384 – ident: ref_52 doi: 10.1109/ICAIIC48513.2020.9065078 – volume: 14 start-page: 6474 year: 2014 ident: ref_50 article-title: Window size impact in human activity recognition publication-title: Sensors doi: 10.3390/s140406474 – volume: 20 start-page: 3101 year: 2019 ident: ref_53 article-title: Human action recognition using deep learning methods on limited sensory data publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2956901 – volume: 13 start-page: 1 year: 2016 ident: ref_7 article-title: Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0114-0 – ident: ref_29 – ident: ref_54 – volume: 42 start-page: 463 year: 2011 ident: ref_61 article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches publication-title: IEEE Trans. Syst. Man Cybern. Part C doi: 10.1109/TSMCC.2011.2161285 – volume: 3 start-page: 158 year: 2012 ident: ref_24 article-title: Using mobile phones for activity recognition in Parkinson’s patients publication-title: Front. Neurol. doi: 10.3389/fneur.2012.00158 – ident: ref_25 doi: 10.4108/icst.mobicase.2014.257786 – ident: ref_12 doi: 10.1109/ICCCNT45670.2019.8944512 – volume: 19 start-page: e184 year: 2017 ident: ref_23 article-title: Activity recognition for persons with stroke using mobile phone technology: Toward improved performance in a home setting publication-title: J. Med. Internet Res. doi: 10.2196/jmir.7385 – volume: 25 start-page: 3834 year: 2021 ident: ref_30 article-title: The convolutional neural networks training with Channel-Selectivity for human activity recognition based on sensors publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3092396 – volume: 42 start-page: 310 year: 2015 ident: ref_20 article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.06.008 – ident: ref_13 doi: 10.1109/ICSPCC.2013.6664056 – ident: ref_55 doi: 10.1109/CVPR.2015.7298594 – ident: ref_60 doi: 10.3390/jcm9041117 – volume: 63 start-page: 2585 year: 2021 ident: ref_67 article-title: Model complexity of deep learning: A survey publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-021-01605-0 – ident: ref_3 doi: 10.3390/s19143213 – volume: 121 start-page: 103795 year: 2020 ident: ref_59 article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103795 – ident: ref_57 – ident: ref_26 doi: 10.1145/1107548.1107591 |
SSID | ssj0023338 |
Score | 2.4288101 |
Snippet | Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9891 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Big data Classification convolutional neural networks data augmentation Datasets Fourier transforms Human Activities human activity recognition Humans inertial measurement units Investigations Machine Learning Medical prognosis Mobility Neural networks Neural Networks, Computer Parkinson's disease Patient compliance Recognition, Psychology Sensors Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kT3oQ39YXVQS9lG130jY9rqKooIgP2FtI0hQXpCvu-v-dabtli4IXT4VmUprJTCdfOvkG4NQOIoMu1oFE3q2ioBKYPCXgimnExNaRRT7gfP-Q3LyKu1E8Wij1xTlhNT1wrbi-DK0mH6TQjE4Iaw2BBp2bqEgcal1USyOKeXMw1UAtJORV8wghgfr-lKKgyGQWdaJPRdL_81O8EIu6eZILged6DVabFaM_rN90HZZcuQErCzyCm_DYbg34tyUnSpP8M-HTyWdwQVEq94e2LhLhP83zhSalPy79ipqj-fr5j20tr-kWvF5fvVzeBE2phMDGmMwCHVmXi9iFRhapSbAQsXHGYJLLPKcrjT4rIhEXBo0omBRQxzakHoULeRcUt6FXTkq3C75NBy4LM-ksidIDND3Y8HlbNLTYc5EH53MVKtvwiHM5i3dFeIK1rVpte3DSin7U5Bm_CV3wPLQCzHdd3SArUI0VqL-swIMznkXFXkkvY3VzuICGxPxWapgyjxz_Y_bgoCNJ3mS7zXM7UI03TxVT5KeSsNvAg-O2mXtyhlrpJl-VjCRoKzD0YKc2m3ZIyAxHhDM9SDsG1Rlzt6Ucv1Vc37wzh7Hc-w8l7cPygA9vVMk4B9CbfX65Q1pSzcxR5T3f3zkisw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB9a-9I-iNqv6CmpCO1LMLnZJJsnOUWxhYrUCve27G42VpBE787_35lkL3ehpU-B7GTZr_nM7G8Ajuw4MehSHUnkaBUplciUOTmumCcMbJ1Y5AvOP6-yy1vxY5pOfcBt7tMqlzKxFdRlYzlGfsww5bkk-3l88vgUcdUo_rvqS2i8hjcMXcYpXfl05XAh-V8dmhCSa388J10oClkkAx3UQvX_LZDXNNIwW3JN_Vxswaa3G8NJt9Hb8MrVO_BuDU3wPVz3AYLwe83p0kR_Q15qM4tOSVeV4cR2pSLCX8usoaYO7-uwBejwMjC87it6zT_A7cX577PLyBdMiGyK2SLSiXWlSF1sZJWbDCuRGmcMZqUsS3rS7IsqEWll0IiKoQF1amP6onIxx0LxI2zUTe0-Q2jzsSviQjpLpNSBpo4N37pFQyafSwL4tlxCZT2aOBe1eFDkVfBqq361AzjsSR87CI1_EZ3yPvQEjHrdvmhmd8ozkZKx1SSPyUxDJ4S1hhxIXZqkyhxqXekAvvIuKuZNGozV_ooBTYlRrtQkZzQ5_tMcwGhASTxlh83Lc6A8T8_V6gQG8KVv5i85T612zXNLI8nBFRgH8Kk7Nv2UkHGOyNsMIB8cqMGchy31_Z8W8Zvjc5jK3f8Paw_ejvlyRptsM4KNxezZ7ZPJtDAHLV-8ANVqGC4 priority: 102 providerName: ProQuest |
Title | Improving Inertial Sensor-Based Activity Recognition in Neurological Populations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36560259 https://www.proquest.com/docview/2756781742 https://www.proquest.com/docview/2758104430 https://pubmed.ncbi.nlm.nih.gov/PMC9783358 https://doaj.org/article/80caadd0253e44ccb026adb1f6e3aafa |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7QUe0MbXso0qICR4CSSxE7sPCLVoZSBtqgaV-mbZjgOTpoS1nQT_PXfOhxptD7y0Un2O6vOdz3e5-x3AG5smhrlMR5JRtAqNSmQKgY4rEwkBWyeWUYHz-UV-tuDfltlyB7oemy0D1_e6dtRParG6fv_n5u8nVPiP5HGiy_5hjTaOjyXVsO-hQRKkn-e8f5mQMuYbWlNNV4T2MG4AhoZTB2bJo_ffPaO3jNQwgXLLIs324XF7lQwnzd4fwI6rnsCjLYDBpzDvYwbh14oyqJH-Ozqu9SqaovkqwoltukeEl10iUV2FV1XoMTvaYzGc902-1s9gMTv98fksansoRDZj-SbSiXUFz1xsZClMzkqeGWcMywtZFPiNqx-XCc9KwwwvCS1QZzbGGaWLKTzKnsNuVVfuEEIrUjeOx9JZJMUHaHywoUJcZvAW6JIA3nUsVLYFGKc-F9cKHQ3ituq5HcDrnvR3g6pxH9GU9qEnICBs_0O9-qlavVIythqPaLy5Mce5tQZ9Sl2YpMwd07rUAbylXVQkQPhnrG6rDnBJBHylJoIA5ujlcwAnA0pUMzsc7uRAdVKqCDtfSHTq0gBe9cM0k1LXKlffehqJPi9ncQAvGrHpl8QI-ggd0ADEQKAGax6OVFe_PAg4hexYJo_-h5PH8DClqg2fhXMCu5vVrXuJd6mNGcEDsRT4KWdfRrA3Pb2YX458XGLkdegf4CshOQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmnFDAIBJeoSewkzgGhLVDt0ocqaKW9ubbj0EpVUna3Qvyp_kZm8upGIG49rbSeWLE9D89k5huANzYKDXex9iWnaBUaFd_kKTquPA0J2Dq0nAqc9w-S8bH4Oo2nK3DV1cJQWmWnE2tFnVeWYuRbBFOeSrw_Rx8vfvrUNYq-rnYtNBq22HW_f6HLNv8w-Yzn-zaKdr4cfRr7bVcB38Y8Wfg6tC4XsQuMLFKT8ELExhnDk1zmOf6iP5IVoYgLw40oCD9PxzbAJwoXUMCQ47y34DYa3oAkKp1eO3gc_b0GvYjzLNiao-0VmczCgc2rWwP8bQCWLOAwO3PJ3O2sw1p7T2WjhrHuw4orH8C9JfTCh3DYByTYpKT0bKT_jl5xNfO30TbmbGSb1hTsW5elVJXsrGQ1IEirc9lh30Fs_giOb2QrH8NqWZXuKTCbRi4LMukskuIEGic2VOXLDV4xXejB-24LlW3Ry6mJxrlCL4Z2W_W77cHrnvSigez4F9E2nUNPQCjb9R_V7IdqhVbJwGrU_3gt5E4Iaw06rDo3YZE4rnWhPXhHp6hIF-DLWN2WNOCSCFVLjVJCr6Mv2x5sDihRhu1wuOMD1eqQubrmeA9e9cP0JOXFla66rGkkOtSCBx48adimXxInXCX0bj1IBww1WPNwpDw7rRHGKR7IY7nx_9d6CXfGR_t7am9ysPsM7kZUGFIn-mzC6mJ26Z7jdW1hXtQywuDkpoXyDxaFVp8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPIOtBAQCC7Rxpk8D6jaUlZdCtUKqLQ313YcqISSsrsV4q_11zGTVzcCcetppfXEiu15eCYz3wC8NIHQaCPlpcjRKjIqns4TclwxEQxsLQxygfOno_jgOPwwj-YbcNHVwnBaZacTa0WdV4Zj5COGKU9Suj8Ho6JNi5jtT3bPfnrcQYq_tHbtNBoWObS_f5H7tnw73aezfhUEk_df3x14bYcBz0QYrzwljM3DyPo6LRIdYxFG2mqNcZ7mOf2Sb5IVIowKjTosGEtPRcanJwrrc_AQad5rcD3BSLCMJfNLZw_J92uQjBAzf7QkOxxmaSYG9q9uE_C3MVizhsNMzTXTN9mC2-2d1R03THYHNmx5F26tIRneg1kfnHCnJadqE_0X8pCrhbdHdjJ3x6ZpU-F-7jKWqtI9Ld0aHKTVv-6s7ya2vA_HV7KVD2CzrEr7CFyTBDbzs9QaIqUJFE2sueIXNV03rXDgTbeF0rRI5txQ44ckj4Z3W_a77cCLnvSsge_4F9Een0NPwIjb9R_V4ptsBVimvlFkC-iKiDYMjdHkvKpciyK2qFShHHjNpyhZL9DLGNWWN9CSGGFLjhNGsuOv3A5sDyhJns1wuOMD2eqTpbzkfgee98P8JOfIlbY6r2lScq5D9B142LBNvyRkjCXydB1IBgw1WPNwpDz9XqONc2wQo_Tx_1_rGdwgcZQfp0eHT-BmwDUidc7PNmyuFud2h25uK_20FhEXTq5aJv8Ax81a1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Inertial+Sensor-Based+Activity+Recognition+in+Neurological+Populations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Celik%2C+Yunus&rft.au=Aslan%2C+M.+Fatih&rft.au=Sabanci%2C+Kadir&rft.au=Stuart%2C+Sam&rft.date=2022-12-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9891&rft_id=info:doi/10.3390%2Fs22249891&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22249891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |