Improving Inertial Sensor-Based Activity Recognition in Neurological Populations

Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 24; p. 9891
Main Authors Celik, Yunus, Aslan, M. Fatih, Sabanci, Kadir, Stuart, Sam, Woo, Wai Lok, Godfrey, Alan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson’s disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.
AbstractList Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson’s disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.
Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional capabilities of people with impaired mobility. Typically, artificial intelligence models achieve high recognition accuracies when trained with rich and diverse inertial datasets. However, obtaining such datasets may not be feasible in neurological populations due to, e.g., impaired patient mobility to perform many daily activities. This study proposes a novel framework to overcome the challenge of creating rich and diverse datasets for HAR in neurological populations. The framework produces images from numerical inertial time-series data (initial state) and then artificially augments the number of produced images (enhanced state) to achieve a larger dataset. Here, we used convolutional neural network (CNN) architectures by utilizing image input. In addition, CNN enables transfer learning which enables limited datasets to benefit from models that are trained with big data. Initially, two benchmarked public datasets were used to verify the framework. Afterward, the approach was tested in limited local datasets of healthy subjects (HS), Parkinson's disease (PD) population, and stroke survivors (SS) to further investigate validity. The experimental results show that when data augmentation is applied, recognition accuracies have been increased in HS, SS, and PD by 25.6%, 21.4%, and 5.8%, respectively, compared to the no data augmentation state. In addition, data augmentation contributes to better detection of stair ascent and stair descent by 39.1% and 18.0%, respectively, in limited local datasets. Findings also suggest that CNN architectures that have a small number of deep layers can achieve high accuracy. The implication of this study has the potential to reduce the burden on participants and researchers where limited datasets are accrued.
Audience Academic
Author Aslan, M. Fatih
Woo, Wai Lok
Stuart, Sam
Celik, Yunus
Godfrey, Alan
Sabanci, Kadir
AuthorAffiliation 3 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
– name: 3 Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
– name: 1 Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
Author_xml – sequence: 1
  givenname: Yunus
  orcidid: 0000-0002-3384-4213
  surname: Celik
  fullname: Celik, Yunus
– sequence: 2
  givenname: M. Fatih
  orcidid: 0000-0001-7549-0137
  surname: Aslan
  fullname: Aslan, M. Fatih
– sequence: 3
  givenname: Kadir
  orcidid: 0000-0003-0238-9606
  surname: Sabanci
  fullname: Sabanci, Kadir
– sequence: 4
  givenname: Sam
  surname: Stuart
  fullname: Stuart, Sam
– sequence: 5
  givenname: Wai Lok
  orcidid: 0000-0002-8698-7605
  surname: Woo
  fullname: Woo, Wai Lok
– sequence: 6
  givenname: Alan
  orcidid: 0000-0003-4049-9291
  surname: Godfrey
  fullname: Godfrey, Alan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36560259$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhS1URB-w4A-gSGxgkdbxI48N0lDRMlIFFY-15cd18ChjD3YyUv89TqctnYK8sHX9nWMf-x6jAx88IPS6wqeUdvgsEUJY13bVM3RUMcLKlhB88Gh9iI5TWmFMKKXtC3RIa15jwrsjdL1cb2LYOt8XSw9xdHIovoNPIZYfZQJTLPTotm68Kb6BDr13owu-cL74AlMMQ-idzorrsJkGOW-ll-i5lUOCV3fzCfp58enH-efy6uvl8nxxVWpO67GUlQbDOGDV2kbV1DKuQClam9aYPOc8na0Yt4oqZhvGsOQaZ4UFDLRq6Qla7nxNkCuxiW4t440I0onbQoi9kDmOHkC0WEtpTA5MgTGtFSa1NKqyNVAprcxeH3Zem0mtwWjwY5TDnun-jne_RB-2omtaSvl8mXd3BjH8niCNYu2ShmGQHsKUBGl4W2HGKM7o2yfoKkzR56eaqbppq4aRv1QvcwDnbcjn6tlULBpWc8pJV2fq9D9UHgbWTucesS7X9wRvHgd9SHjfDxk42wE6hpQiWKHdePux2dkNosJi7jjx0HFZ8f6J4t70X_YPzTTVeA
CitedBy_id crossref_primary_10_3390_s24072199
crossref_primary_10_1007_s11063_023_11324_y
crossref_primary_10_3390_neurolint17030045
crossref_primary_10_3233_THC_235010
crossref_primary_10_3390_s24051618
crossref_primary_10_14801_jkiit_2024_22_6_13
crossref_primary_10_1109_JSEN_2024_3510097
Cites_doi 10.1145/3316782.3321538
10.1007/s11042-021-11105-6
10.1109/CVPR.2016.90
10.1109/EMBC.2016.7591425
10.1007/s12652-021-03465-6
10.3390/s16010115
10.1371/journal.pone.0124414
10.1109/ISCAS.2018.8351076
10.1016/j.asoc.2015.01.025
10.1016/B978-0-12-809393-1.00009-X
10.1109/IIPHDW.2018.8388338
10.1613/jair.953
10.1109/ACCESS.2020.3037715
10.1016/j.medengphy.2020.11.005
10.1016/j.mejo.2018.01.015
10.1016/j.patrec.2018.02.010
10.1109/CVPR.2018.00474
10.1186/s12984-018-0456-x
10.3390/healthcare10061084
10.1145/2370216.2370438
10.3390/s18041055
10.1109/JBHI.2019.2909688
10.1016/j.bspc.2021.102716
10.1109/ACCESS.2020.3025938
10.1109/TITB.2012.2226905
10.1007/s12652-020-02865-4
10.1109/ACCESS.2020.3017681
10.1145/2733373.2806333
10.3390/s18092892
10.1186/s40537-019-0197-0
10.1016/j.bspc.2021.103242
10.1038/nature14539
10.1186/s12984-017-0222-5
10.1186/s12984-020-00779-y
10.1007/978-3-030-96068-1_1
10.1007/978-3-319-14274-6_4
10.1109/ACCESS.2018.2877890
10.1016/j.ins.2013.07.007
10.1159/000477384
10.1109/ICAIIC48513.2020.9065078
10.3390/s140406474
10.1109/JSEN.2019.2956901
10.1186/s12984-016-0114-0
10.1109/TSMCC.2011.2161285
10.3389/fneur.2012.00158
10.4108/icst.mobicase.2014.257786
10.1109/ICCCNT45670.2019.8944512
10.2196/jmir.7385
10.1109/JBHI.2021.3092396
10.1016/j.gaitpost.2015.06.008
10.1109/ICSPCC.2013.6664056
10.1109/CVPR.2015.7298594
10.3390/jcm9041117
10.1007/s10115-021-01605-0
10.3390/s19143213
10.1016/j.compbiomed.2020.103795
10.1145/1107548.1107591
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22249891
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_80caadd0253e44ccb026adb1f6e3aafa
PMC9783358
A746535296
36560259
10_3390_s22249891
Genre Journal Article
GrantInformation_xml – fundername: Parkinson's Foundation
  grantid: PF-FBS-1898
– fundername: Turkish Ministry of National Education
  grantid: (Celik)
– fundername: Parkinson's Foundation
  grantid: PF-CRA-2073
– fundername: Parkinson’s Foundation
  grantid: PF-FBS-1898; PF-CRA-2073
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-a1ced45e0b8f7b63f45bebb36d8ddbb32499f145fb3b4f7440a5c0d45fe0e3183
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:24:30 EDT 2025
Thu Aug 21 18:40:35 EDT 2025
Mon Jul 21 09:52:32 EDT 2025
Fri Jul 25 20:50:43 EDT 2025
Thu Jul 03 03:20:40 EDT 2025
Tue Jul 01 05:45:12 EDT 2025
Wed Feb 19 02:25:00 EST 2025
Thu Apr 24 23:11:06 EDT 2025
Tue Jul 01 01:19:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords convolutional neural networks
data augmentation
human activity recognition
inertial measurement units
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-a1ced45e0b8f7b63f45bebb36d8ddbb32499f145fb3b4f7440a5c0d45fe0e3183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8698-7605
0000-0003-0238-9606
0000-0002-3384-4213
0000-0001-7549-0137
0000-0003-4049-9291
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22249891
PMID 36560259
PQID 2756781742
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_80caadd0253e44ccb026adb1f6e3aafa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9783358
proquest_miscellaneous_2758104430
proquest_journals_2756781742
gale_infotracmisc_A746535296
gale_infotracacademiconefile_A746535296
pubmed_primary_36560259
crossref_citationtrail_10_3390_s22249891
crossref_primary_10_3390_s22249891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Demrozi (ref_8) 2020; 8
Shorten (ref_34) 2019; 6
Capela (ref_7) 2016; 13
Giggins (ref_4) 2017; 1
ref_14
ref_58
ref_13
ref_57
ref_12
ref_56
ref_55
ref_10
ref_54
ref_52
Albert (ref_24) 2012; 3
Alawneh (ref_37) 2021; 12
Celik (ref_16) 2020; 87
Shao (ref_49) 2020; 33
ref_18
Ramamurthy (ref_1) 2018; 8
Albert (ref_46) 2017; 14
Cheng (ref_15) 2012; 17
ref_60
Hu (ref_67) 2021; 63
ref_25
Li (ref_64) 2019; 88
Karakaya (ref_19) 2022; 71
ref_66
ref_21
LeCun (ref_31) 2015; 521
ref_65
Lawal (ref_22) 2020; 8
ref_29
Huang (ref_36) 2019; 24
Chawla (ref_39) 2002; 16
ref_27
ref_26
Catal (ref_28) 2015; 37
Huang (ref_30) 2021; 25
Palade (ref_62) 2013; 250
Tufek (ref_53) 2019; 20
ref_35
ref_33
ref_32
Rast (ref_11) 2020; 17
Bianco (ref_51) 2018; 6
Ozcelik (ref_17) 2021; 80
ref_38
Ardakani (ref_59) 2020; 121
Galar (ref_61) 2011; 42
Aslan (ref_41) 2021; 68
Ahmadi (ref_6) 2018; 15
Banos (ref_50) 2014; 14
ref_47
ref_45
ref_44
ref_43
ref_42
ref_40
Shawen (ref_23) 2017; 19
ref_3
Trojaniello (ref_20) 2015; 42
ref_48
Yen (ref_63) 2020; 8
Wang (ref_2) 2019; 119
ref_9
ref_5
References_xml – ident: ref_40
  doi: 10.1145/3316782.3321538
– volume: 80
  start-page: 33527
  year: 2021
  ident: ref_17
  article-title: Fusion of smartphone sensor data for classification of daily user activities
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11105-6
– ident: ref_9
– volume: 33
  start-page: 13434
  year: 2020
  ident: ref_49
  article-title: Is normalization indispensable for training deep neural network?
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_56
  doi: 10.1109/CVPR.2016.90
– ident: ref_66
  doi: 10.1109/EMBC.2016.7591425
– ident: ref_47
  doi: 10.1007/s12652-021-03465-6
– ident: ref_32
  doi: 10.3390/s16010115
– ident: ref_27
  doi: 10.1371/journal.pone.0124414
– ident: ref_35
– ident: ref_14
  doi: 10.1109/ISCAS.2018.8351076
– volume: 37
  start-page: 1018
  year: 2015
  ident: ref_28
  article-title: On the use of ensemble of classifiers for accelerometer-based activity recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.025
– ident: ref_21
  doi: 10.1016/B978-0-12-809393-1.00009-X
– ident: ref_48
  doi: 10.1109/IIPHDW.2018.8388338
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_39
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 8
  start-page: 210816
  year: 2020
  ident: ref_8
  article-title: Human activity recognition using inertial, physiological and environmental sensors: A comprehensive survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037715
– volume: 87
  start-page: 9
  year: 2020
  ident: ref_16
  article-title: Gait analysis in neurological populations: Progression in the use of wearables
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.11.005
– volume: 88
  start-page: 164
  year: 2019
  ident: ref_64
  article-title: Deep learning of smartphone sensor data for personal health assistance
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2018.01.015
– volume: 119
  start-page: 3
  year: 2019
  ident: ref_2
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref_58
  doi: 10.1109/CVPR.2018.00474
– ident: ref_38
– ident: ref_45
– volume: 15
  start-page: 1
  year: 2018
  ident: ref_6
  article-title: Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0456-x
– ident: ref_18
  doi: 10.3390/healthcare10061084
– ident: ref_43
  doi: 10.1145/2370216.2370438
– ident: ref_65
  doi: 10.3390/s18041055
– volume: 24
  start-page: 292
  year: 2019
  ident: ref_36
  article-title: TSE-CNN: A two-stage end-to-end CNN for human activity recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2909688
– volume: 68
  start-page: 102716
  year: 2021
  ident: ref_41
  article-title: A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: Numeric to image
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.102716
– volume: 8
  start-page: 174105
  year: 2020
  ident: ref_63
  article-title: Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025938
– volume: 17
  start-page: 38
  year: 2012
  ident: ref_15
  article-title: A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/TITB.2012.2226905
– volume: 12
  start-page: 10565
  year: 2021
  ident: ref_37
  article-title: Enhancing human activity recognition using deep learning and time series augmented data
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02865-4
– volume: 8
  start-page: 155060
  year: 2020
  ident: ref_22
  article-title: Deep human activity recognition with localisation of wearable sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017681
– ident: ref_5
  doi: 10.1145/2733373.2806333
– ident: ref_33
  doi: 10.3390/s18092892
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_34
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: ref_44
– volume: 71
  start-page: 103242
  year: 2022
  ident: ref_19
  article-title: Deep learning based fall detection using smartwatches for healthcare applications
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.103242
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 1
  year: 2017
  ident: ref_46
  article-title: In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-017-0222-5
– volume: 17
  start-page: 1
  year: 2020
  ident: ref_11
  article-title: Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments
  publication-title: J. NeuroEngineering Rehabil.
  doi: 10.1186/s12984-020-00779-y
– ident: ref_10
  doi: 10.1007/978-3-030-96068-1_1
– ident: ref_42
  doi: 10.1007/978-3-319-14274-6_4
– volume: 6
  start-page: 64270
  year: 2018
  ident: ref_51
  article-title: Benchmark analysis of representative deep neural network architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877890
– volume: 8
  start-page: e1254
  year: 2018
  ident: ref_1
  article-title: Recent trends in machine learning for human activity recognition—A survey
  publication-title: Wiley Interdiscip. Rev: Data Min. Knowl. Discov.
– volume: 250
  start-page: 113
  year: 2013
  ident: ref_62
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.07.007
– volume: 1
  start-page: 14
  year: 2017
  ident: ref_4
  article-title: Physical activity monitoring in patients with neurological disorders: A review of novel body-worn devices
  publication-title: Digit. Biomark.
  doi: 10.1159/000477384
– ident: ref_52
  doi: 10.1109/ICAIIC48513.2020.9065078
– volume: 14
  start-page: 6474
  year: 2014
  ident: ref_50
  article-title: Window size impact in human activity recognition
  publication-title: Sensors
  doi: 10.3390/s140406474
– volume: 20
  start-page: 3101
  year: 2019
  ident: ref_53
  article-title: Human action recognition using deep learning methods on limited sensory data
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2956901
– volume: 13
  start-page: 1
  year: 2016
  ident: ref_7
  article-title: Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0114-0
– ident: ref_29
– ident: ref_54
– volume: 42
  start-page: 463
  year: 2011
  ident: ref_61
  article-title: A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
  publication-title: IEEE Trans. Syst. Man Cybern. Part C
  doi: 10.1109/TSMCC.2011.2161285
– volume: 3
  start-page: 158
  year: 2012
  ident: ref_24
  article-title: Using mobile phones for activity recognition in Parkinson’s patients
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2012.00158
– ident: ref_25
  doi: 10.4108/icst.mobicase.2014.257786
– ident: ref_12
  doi: 10.1109/ICCCNT45670.2019.8944512
– volume: 19
  start-page: e184
  year: 2017
  ident: ref_23
  article-title: Activity recognition for persons with stroke using mobile phone technology: Toward improved performance in a home setting
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.7385
– volume: 25
  start-page: 3834
  year: 2021
  ident: ref_30
  article-title: The convolutional neural networks training with Channel-Selectivity for human activity recognition based on sensors
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3092396
– volume: 42
  start-page: 310
  year: 2015
  ident: ref_20
  article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.06.008
– ident: ref_13
  doi: 10.1109/ICSPCC.2013.6664056
– ident: ref_55
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_60
  doi: 10.3390/jcm9041117
– volume: 63
  start-page: 2585
  year: 2021
  ident: ref_67
  article-title: Model complexity of deep learning: A survey
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-021-01605-0
– ident: ref_3
  doi: 10.3390/s19143213
– volume: 121
  start-page: 103795
  year: 2020
  ident: ref_59
  article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103795
– ident: ref_57
– ident: ref_26
  doi: 10.1145/1107548.1107591
SSID ssj0023338
Score 2.4288101
Snippet Inertial sensor-based human activity recognition (HAR) has a range of healthcare applications as it can indicate the overall health status or functional...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9891
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Big data
Classification
convolutional neural networks
data augmentation
Datasets
Fourier transforms
Human Activities
human activity recognition
Humans
inertial measurement units
Investigations
Machine Learning
Medical prognosis
Mobility
Neural networks
Neural Networks, Computer
Parkinson's disease
Patient compliance
Recognition, Psychology
Sensors
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kT3oQ39YXVQS9lG130jY9rqKooIgP2FtI0hQXpCvu-v-dabtli4IXT4VmUprJTCdfOvkG4NQOIoMu1oFE3q2ioBKYPCXgimnExNaRRT7gfP-Q3LyKu1E8Wij1xTlhNT1wrbi-DK0mH6TQjE4Iaw2BBp2bqEgcal1USyOKeXMw1UAtJORV8wghgfr-lKKgyGQWdaJPRdL_81O8EIu6eZILged6DVabFaM_rN90HZZcuQErCzyCm_DYbg34tyUnSpP8M-HTyWdwQVEq94e2LhLhP83zhSalPy79ipqj-fr5j20tr-kWvF5fvVzeBE2phMDGmMwCHVmXi9iFRhapSbAQsXHGYJLLPKcrjT4rIhEXBo0omBRQxzakHoULeRcUt6FXTkq3C75NBy4LM-ksidIDND3Y8HlbNLTYc5EH53MVKtvwiHM5i3dFeIK1rVpte3DSin7U5Bm_CV3wPLQCzHdd3SArUI0VqL-swIMznkXFXkkvY3VzuICGxPxWapgyjxz_Y_bgoCNJ3mS7zXM7UI03TxVT5KeSsNvAg-O2mXtyhlrpJl-VjCRoKzD0YKc2m3ZIyAxHhDM9SDsG1Rlzt6Ucv1Vc37wzh7Hc-w8l7cPygA9vVMk4B9CbfX65Q1pSzcxR5T3f3zkisw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB9a-9I-iNqv6CmpCO1LMLnZJJsnOUWxhYrUCve27G42VpBE787_35lkL3ehpU-B7GTZr_nM7G8Ajuw4MehSHUnkaBUplciUOTmumCcMbJ1Y5AvOP6-yy1vxY5pOfcBt7tMqlzKxFdRlYzlGfsww5bkk-3l88vgUcdUo_rvqS2i8hjcMXcYpXfl05XAh-V8dmhCSa388J10oClkkAx3UQvX_LZDXNNIwW3JN_Vxswaa3G8NJt9Hb8MrVO_BuDU3wPVz3AYLwe83p0kR_Q15qM4tOSVeV4cR2pSLCX8usoaYO7-uwBejwMjC87it6zT_A7cX577PLyBdMiGyK2SLSiXWlSF1sZJWbDCuRGmcMZqUsS3rS7IsqEWll0IiKoQF1amP6onIxx0LxI2zUTe0-Q2jzsSviQjpLpNSBpo4N37pFQyafSwL4tlxCZT2aOBe1eFDkVfBqq361AzjsSR87CI1_EZ3yPvQEjHrdvmhmd8ozkZKx1SSPyUxDJ4S1hhxIXZqkyhxqXekAvvIuKuZNGozV_ooBTYlRrtQkZzQ5_tMcwGhASTxlh83Lc6A8T8_V6gQG8KVv5i85T612zXNLI8nBFRgH8Kk7Nv2UkHGOyNsMIB8cqMGchy31_Z8W8Zvjc5jK3f8Paw_ejvlyRptsM4KNxezZ7ZPJtDAHLV-8ANVqGC4
  priority: 102
  providerName: ProQuest
Title Improving Inertial Sensor-Based Activity Recognition in Neurological Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/36560259
https://www.proquest.com/docview/2756781742
https://www.proquest.com/docview/2758104430
https://pubmed.ncbi.nlm.nih.gov/PMC9783358
https://doaj.org/article/80caadd0253e44ccb026adb1f6e3aafa
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7QUe0MbXso0qICR4CSSxE7sPCLVoZSBtqgaV-mbZjgOTpoS1nQT_PXfOhxptD7y0Un2O6vOdz3e5-x3AG5smhrlMR5JRtAqNSmQKgY4rEwkBWyeWUYHz-UV-tuDfltlyB7oemy0D1_e6dtRParG6fv_n5u8nVPiP5HGiy_5hjTaOjyXVsO-hQRKkn-e8f5mQMuYbWlNNV4T2MG4AhoZTB2bJo_ffPaO3jNQwgXLLIs324XF7lQwnzd4fwI6rnsCjLYDBpzDvYwbh14oyqJH-Ozqu9SqaovkqwoltukeEl10iUV2FV1XoMTvaYzGc902-1s9gMTv98fksansoRDZj-SbSiXUFz1xsZClMzkqeGWcMywtZFPiNqx-XCc9KwwwvCS1QZzbGGaWLKTzKnsNuVVfuEEIrUjeOx9JZJMUHaHywoUJcZvAW6JIA3nUsVLYFGKc-F9cKHQ3ituq5HcDrnvR3g6pxH9GU9qEnICBs_0O9-qlavVIythqPaLy5Mce5tQZ9Sl2YpMwd07rUAbylXVQkQPhnrG6rDnBJBHylJoIA5ujlcwAnA0pUMzsc7uRAdVKqCDtfSHTq0gBe9cM0k1LXKlffehqJPi9ncQAvGrHpl8QI-ggd0ADEQKAGax6OVFe_PAg4hexYJo_-h5PH8DClqg2fhXMCu5vVrXuJd6mNGcEDsRT4KWdfRrA3Pb2YX458XGLkdegf4CshOQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOVXmnFDAIBJeoSewkzgGhLVDt0ocqaKW9ubbj0EpVUna3Qvyp_kZm8upGIG49rbSeWLE9D89k5huANzYKDXex9iWnaBUaFd_kKTquPA0J2Dq0nAqc9w-S8bH4Oo2nK3DV1cJQWmWnE2tFnVeWYuRbBFOeSrw_Rx8vfvrUNYq-rnYtNBq22HW_f6HLNv8w-Yzn-zaKdr4cfRr7bVcB38Y8Wfg6tC4XsQuMLFKT8ELExhnDk1zmOf6iP5IVoYgLw40oCD9PxzbAJwoXUMCQ47y34DYa3oAkKp1eO3gc_b0GvYjzLNiao-0VmczCgc2rWwP8bQCWLOAwO3PJ3O2sw1p7T2WjhrHuw4orH8C9JfTCh3DYByTYpKT0bKT_jl5xNfO30TbmbGSb1hTsW5elVJXsrGQ1IEirc9lh30Fs_giOb2QrH8NqWZXuKTCbRi4LMukskuIEGic2VOXLDV4xXejB-24LlW3Ry6mJxrlCL4Z2W_W77cHrnvSigez4F9E2nUNPQCjb9R_V7IdqhVbJwGrU_3gt5E4Iaw06rDo3YZE4rnWhPXhHp6hIF-DLWN2WNOCSCFVLjVJCr6Mv2x5sDihRhu1wuOMD1eqQubrmeA9e9cP0JOXFla66rGkkOtSCBx48adimXxInXCX0bj1IBww1WPNwpDw7rRHGKR7IY7nx_9d6CXfGR_t7am9ysPsM7kZUGFIn-mzC6mJ26Z7jdW1hXtQywuDkpoXyDxaFVp8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4oPIOtBAQCC7Rxpk8D6jaUlZdCtUKqLQ313YcqISSsrsV4q_11zGTVzcCcetppfXEiu15eCYz3wC8NIHQaCPlpcjRKjIqns4TclwxEQxsLQxygfOno_jgOPwwj-YbcNHVwnBaZacTa0WdV4Zj5COGKU9Suj8Ho6JNi5jtT3bPfnrcQYq_tHbtNBoWObS_f5H7tnw73aezfhUEk_df3x14bYcBz0QYrzwljM3DyPo6LRIdYxFG2mqNcZ7mOf2Sb5IVIowKjTosGEtPRcanJwrrc_AQad5rcD3BSLCMJfNLZw_J92uQjBAzf7QkOxxmaSYG9q9uE_C3MVizhsNMzTXTN9mC2-2d1R03THYHNmx5F26tIRneg1kfnHCnJadqE_0X8pCrhbdHdjJ3x6ZpU-F-7jKWqtI9Ld0aHKTVv-6s7ya2vA_HV7KVD2CzrEr7CFyTBDbzs9QaIqUJFE2sueIXNV03rXDgTbeF0rRI5txQ44ckj4Z3W_a77cCLnvSsge_4F9Een0NPwIjb9R_V4ptsBVimvlFkC-iKiDYMjdHkvKpciyK2qFShHHjNpyhZL9DLGNWWN9CSGGFLjhNGsuOv3A5sDyhJns1wuOMD2eqTpbzkfgee98P8JOfIlbY6r2lScq5D9B142LBNvyRkjCXydB1IBgw1WPNwpDz9XqONc2wQo_Tx_1_rGdwgcZQfp0eHT-BmwDUidc7PNmyuFud2h25uK_20FhEXTq5aJv8Ax81a1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Inertial+Sensor-Based+Activity+Recognition+in+Neurological+Populations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Celik%2C+Yunus&rft.au=Aslan%2C+M.+Fatih&rft.au=Sabanci%2C+Kadir&rft.au=Stuart%2C+Sam&rft.date=2022-12-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=24&rft.spage=9891&rft_id=info:doi/10.3390%2Fs22249891&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22249891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon