Classical and Bayesian Inference in Neuroimaging: Theory

This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework....

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 16; no. 2; pp. 465 - 483
Main Authors Friston, K.J., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J.
Format Journal Article Web Resource
LanguageEnglish
Published United States Elsevier Inc 01.06.2002
Academic Press Inc Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.
AbstractList This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.
This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.
Author Hinton, G.
Ashburner, J.
Phillips, C.
Penny, W.
Friston, K.J.
Kiebel, S.
Author_xml – sequence: 1
  givenname: K.J.
  surname: Friston
  fullname: Friston, K.J.
– sequence: 2
  givenname: W.
  surname: Penny
  fullname: Penny, W.
– sequence: 3
  givenname: C.
  surname: Phillips
  fullname: Phillips, C.
– sequence: 4
  givenname: S.
  surname: Kiebel
  fullname: Kiebel, S.
– sequence: 5
  givenname: G.
  surname: Hinton
  fullname: Hinton, G.
– sequence: 6
  givenname: J.
  surname: Ashburner
  fullname: Ashburner, J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12030832$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNU7IduXcqs3M1tvmaSuNOLH4Wim7oOmeTMGM1NajJTuP--GaYiFNrVOYHnCZz3PUcnMUVA6C3BO4Jxfxn9YdpRjGl9KvwCndXRtaoT9GTdO9ZKQtQpOi_lN8ZYES5foVNCMcOS0TMk98GU4q0JjYmu-WSOULyJzVUcIUO00PjYfIclJ38wk4_Th-bmF6R8fI1ejiYUePMwL9DPL59v9t_a6x9fr_Yfr1vbsX5uJUiBseVKCCd7wZ3hlHJwoATYkSjTOTHwegkmo2FcdMz0oNTAOFYcOscuEN3-DR4m0CkPXt9RnYzf9iVM2lg9gKa0l1pywWSV3m_SbU5_FyizPvhiIQQTIS1FCyI6rISq4LsHcBkO4PRtrmfmo_4XUAV2G2BzKiXD-B_Bem1Arw3otQG9NlAF_kiwfjazT3HOxoenNblpULO885B1sX7N3_kMdtYu-afV_pFqg49rpX_g-Jx4Dzk8rVA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2004_06_011
crossref_primary_10_1371_journal_pone_0055969
crossref_primary_10_1016_j_neuroimage_2007_12_003
crossref_primary_10_1016_j_neuroimage_2023_120232
crossref_primary_10_1016_j_neuroimage_2011_07_077
crossref_primary_10_3389_fnins_2019_00300
crossref_primary_10_1214_17_STS624
crossref_primary_10_1155_2013_645043
crossref_primary_10_1016_j_mri_2005_12_034
crossref_primary_10_1038_s41598_019_43733_2
crossref_primary_10_1016_j_neuroimage_2004_07_051
crossref_primary_10_1007_s00221_009_1753_1
crossref_primary_10_1002_hbm_23127
crossref_primary_10_1016_j_neures_2017_09_006
crossref_primary_10_1007_s00429_021_02221_y
crossref_primary_10_1016_j_bandc_2012_10_002
crossref_primary_10_1136_bmjopen_2016_012174
crossref_primary_10_1080_17470919_2011_598945
crossref_primary_10_1093_biostatistics_kxn028
crossref_primary_10_3390_ijerph17020588
crossref_primary_10_1016_j_neuroimage_2014_12_030
crossref_primary_10_3389_fnins_2015_00168
crossref_primary_10_1006_nimg_2002_1091
crossref_primary_10_1016_j_neuroimage_2006_02_006
crossref_primary_10_1093_scan_nsab082
crossref_primary_10_1016_j_neuroimage_2003_12_023
crossref_primary_10_1002_hbm_21098
crossref_primary_10_1364_BOE_2_000001
crossref_primary_10_1016_j_neuroimage_2006_11_054
crossref_primary_10_1162_neco_2009_07_08_820
crossref_primary_10_1002_hbm_22297
crossref_primary_10_1002_hipo_22796
crossref_primary_10_1016_j_neuroimage_2009_08_051
crossref_primary_10_1101_lm_2197211
crossref_primary_10_1152_jn_00707_2011
crossref_primary_10_1016_j_compchemeng_2023_108502
crossref_primary_10_1093_cercor_bhh211
crossref_primary_10_1016_j_neures_2010_11_001
crossref_primary_10_1016_j_neuroimage_2024_120954
crossref_primary_10_1016_j_neuroimage_2003_12_044
crossref_primary_10_1002_hbm_20182
crossref_primary_10_1016_j_neuroimage_2005_10_037
crossref_primary_10_1016_j_neuroimage_2012_01_133
crossref_primary_10_1176_appi_ajp_2010_10040484
crossref_primary_10_1155_2007_67613
crossref_primary_10_1109_JBHI_2021_3101662
crossref_primary_10_1155_2012_961342
crossref_primary_10_1016_j_neubiorev_2019_04_018
crossref_primary_10_1098_rstb_2007_2160
crossref_primary_10_1140_epjp_i2012_12140_9
crossref_primary_10_1002_hbm_23329
crossref_primary_10_1109_TMI_2014_2347703
crossref_primary_10_1002_hbm_25627
crossref_primary_10_3389_fninf_2021_738342
crossref_primary_10_1111_j_1469_8986_2008_00780_x
crossref_primary_10_1162_jocn_a_00163
crossref_primary_10_1016_j_neuroimage_2003_11_008
crossref_primary_10_1016_j_neuroimage_2014_05_043
crossref_primary_10_1016_j_neuroimage_2014_11_007
crossref_primary_10_1109_TCBB_2015_2465951
crossref_primary_10_1002_cjs_5550340208
crossref_primary_10_1016_S1053_8119_03_00360_4
crossref_primary_10_1016_j_neuroimage_2004_08_055
crossref_primary_10_26599_BSA_2023_9050008
crossref_primary_10_1093_scan_nst011
crossref_primary_10_1007_s00247_010_1677_8
crossref_primary_10_1016_j_neuroimage_2006_01_016
crossref_primary_10_1109_TCDS_2020_3006497
crossref_primary_10_1016_j_bandc_2014_06_005
crossref_primary_10_1016_j_neuroimage_2018_03_048
crossref_primary_10_1523_JNEUROSCI_5745_09_2010
crossref_primary_10_1162_jocn_a_00010
crossref_primary_10_1016_j_neuroimage_2009_07_047
crossref_primary_10_1155_2011_852961
crossref_primary_10_1162_jocn_2010_21565
crossref_primary_10_1016_j_neuroimage_2013_03_008
crossref_primary_10_1109_MSP_2015_2481559
crossref_primary_10_1002_hbm_22377
crossref_primary_10_1002_hbm_25767
crossref_primary_10_1016_j_neuroimage_2013_08_025
crossref_primary_10_2174_1568026620666200302111130
crossref_primary_10_1002_hbm_24677
crossref_primary_10_1016_j_neuroimage_2006_01_023
crossref_primary_10_1364_BOE_1_001084
crossref_primary_10_1016_j_neuroimage_2006_12_035
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1152_jn_01245_2005
crossref_primary_10_1016_j_neuroimage_2020_117507
crossref_primary_10_1016_j_neuroimage_2007_04_072
crossref_primary_10_1016_j_pscychresns_2011_08_008
crossref_primary_10_1016_j_brainres_2015_01_033
crossref_primary_10_1016_j_media_2019_04_008
crossref_primary_10_3390_brainsci13010111
crossref_primary_10_1016_j_neuroimage_2005_08_015
crossref_primary_10_1016_j_jad_2017_12_031
crossref_primary_10_1016_S1053_8119_03_00308_2
crossref_primary_10_1016_j_asoc_2011_07_004
crossref_primary_10_1016_j_neuroimage_2009_07_061
crossref_primary_10_1093_cercor_bhl090
crossref_primary_10_1016_j_neuroimage_2021_118309
crossref_primary_10_1002_ana_25906
crossref_primary_10_1002_hbm_10100
crossref_primary_10_1002_hbm_24611
crossref_primary_10_1016_j_neuroimage_2006_08_024
crossref_primary_10_1016_j_neuropsychologia_2009_08_019
crossref_primary_10_1002_hbm_20251
crossref_primary_10_1016_j_neuroimage_2013_01_048
crossref_primary_10_1109_TBME_2013_2294013
crossref_primary_10_1093_cercor_bhl080
crossref_primary_10_1097_WNR_0000000000000368
crossref_primary_10_1016_j_jneumeth_2023_109950
crossref_primary_10_1126_science_1177949
crossref_primary_10_3389_fendo_2022_885617
crossref_primary_10_1016_j_neuroimage_2015_04_032
crossref_primary_10_1001_jamanetworkopen_2020_22847
crossref_primary_10_1111_sjos_12522
crossref_primary_10_3109_17482960802353504
crossref_primary_10_1038_s42003_023_04787_1
crossref_primary_10_1007_s00221_012_3094_8
crossref_primary_10_1111_j_1745_6924_2009_01130_x
crossref_primary_10_1016_j_neuroimage_2008_01_011
crossref_primary_10_1016_j_neuroimage_2009_03_022
crossref_primary_10_1016_j_neuroimage_2011_08_027
crossref_primary_10_1016_j_neures_2011_04_001
crossref_primary_10_1016_j_neuroimage_2009_04_063
crossref_primary_10_1016_j_neuroimage_2008_02_059
crossref_primary_10_1038_s42256_019_0069_5
crossref_primary_10_1109_TMI_2004_841225
crossref_primary_10_1016_S1053_8119_03_00071_5
crossref_primary_10_1016_j_jneumeth_2018_05_017
crossref_primary_10_1002_hbm_21124
crossref_primary_10_1016_j_seizure_2024_01_001
crossref_primary_10_1210_jendso_bvad052
crossref_primary_10_3389_fnins_2017_00504
crossref_primary_10_1016_j_neuroimage_2008_02_054
crossref_primary_10_1016_j_brainres_2012_01_029
crossref_primary_10_1016_j_neuroimage_2005_12_055
crossref_primary_10_1016_j_neuroimage_2018_01_005
crossref_primary_10_1093_ajcn_86_3_573
crossref_primary_10_1093_cercor_bhm194
crossref_primary_10_1016_j_neuroimage_2012_09_014
crossref_primary_10_1093_cercor_bhz242
crossref_primary_10_1016_j_neuroimage_2004_12_030
crossref_primary_10_1016_S1053_8119_03_00435_X
crossref_primary_10_3389_fnbeh_2022_902175
crossref_primary_10_52294_2e179dbf_5e37_4338_a639_9ceb92b055ea
crossref_primary_10_1093_cercor_bhn037
crossref_primary_10_1002_hbm_23413
crossref_primary_10_1038_srep11248
crossref_primary_10_3389_fnins_2017_00635
crossref_primary_10_1093_cercor_bhn039
crossref_primary_10_1016_j_neuroimage_2004_10_037
crossref_primary_10_1016_j_neuroimage_2004_10_030
crossref_primary_10_1038_s42003_022_03147_9
crossref_primary_10_1016_j_nicl_2017_12_008
crossref_primary_10_1007_s00723_012_0371_4
crossref_primary_10_1016_j_neuroimage_2016_07_047
crossref_primary_10_1162_jocn_a_00432
crossref_primary_10_1002_hbm_20334
crossref_primary_10_1002_hbm_20214
crossref_primary_10_1002_hbm_20570
crossref_primary_10_1002_hbm_20450
crossref_primary_10_1214_16_AOAS926
crossref_primary_10_1002_hbm_24806
crossref_primary_10_1109_TMI_2007_896934
crossref_primary_10_1142_S0219622016400010
crossref_primary_10_1016_j_neuroimage_2014_10_046
crossref_primary_10_1038_nrn1993
crossref_primary_10_1002_wics_1339
crossref_primary_10_1098_rstb_2019_0661
crossref_primary_10_1016_j_neuroimage_2012_01_073
crossref_primary_10_1016_j_jneumeth_2016_03_003
crossref_primary_10_1016_j_foodqual_2024_105374
crossref_primary_10_1002_hbm_20242
crossref_primary_10_1002_hbm_21452
crossref_primary_10_1016_j_brainresbull_2009_03_007
crossref_primary_10_1016_j_jastp_2020_105190
crossref_primary_10_1016_j_jneumeth_2006_05_035
crossref_primary_10_1016_j_neuroscience_2015_05_045
crossref_primary_10_1026_0044_3409_213_3_133
crossref_primary_10_1016_j_compmedimag_2007_04_002
crossref_primary_10_1016_j_neuroimage_2015_06_094
crossref_primary_10_1002_hbm_23505
crossref_primary_10_1007_s12561_017_9205_0
crossref_primary_10_1016_j_neuroimage_2005_06_022
crossref_primary_10_1155_2009_279515
crossref_primary_10_1016_j_neuroimage_2014_03_031
crossref_primary_10_1523_JNEUROSCI_1715_07_2007
crossref_primary_10_1016_j_acags_2024_100191
crossref_primary_10_1007_s00429_012_0439_9
crossref_primary_10_1371_journal_pone_0049948
crossref_primary_10_1016_j_cortex_2017_07_019
crossref_primary_10_1016_j_cortex_2014_02_024
crossref_primary_10_1016_j_neuroimage_2006_08_035
crossref_primary_10_3389_fpsyg_2018_00183
crossref_primary_10_1016_j_brainres_2007_11_070
crossref_primary_10_1080_0886022X_2021_2023023
crossref_primary_10_1093_imamat_hxw026
crossref_primary_10_1038_s41467_018_06304_z
crossref_primary_10_1016_j_neuropsychologia_2008_01_018
crossref_primary_10_1146_annurev_psych_56_091103_070311
crossref_primary_10_1162_089892903770007326
crossref_primary_10_4236_cs_2016_78161
crossref_primary_10_1162_imag_a_00082
crossref_primary_10_1097_01_gme_0000196811_88505_10
crossref_primary_10_1016_j_neuroimage_2016_04_025
crossref_primary_10_1016_j_bbr_2014_11_042
crossref_primary_10_1162_jocn_a_00878
crossref_primary_10_1007_s10548_013_0301_2
crossref_primary_10_1016_j_neuroimage_2011_10_025
crossref_primary_10_1016_j_neuroimage_2012_04_014
crossref_primary_10_1155_2016_2961727
crossref_primary_10_31857_S0131164622700175
crossref_primary_10_1016_j_neuroimage_2004_03_030
crossref_primary_10_1080_17470919_2016_1241823
crossref_primary_10_1162_NECO_a_00205
crossref_primary_10_1016_j_neuroimage_2008_02_005
crossref_primary_10_1016_j_neuroimage_2013_05_100
crossref_primary_10_1016_j_neuroimage_2013_05_105
crossref_primary_10_1016_j_jbiomech_2008_05_010
crossref_primary_10_1016_j_neuroimage_2011_10_027
crossref_primary_10_1016_j_cortex_2023_12_014
crossref_primary_10_1093_biostatistics_kxi027
crossref_primary_10_1016_j_neures_2013_05_006
crossref_primary_10_1111_ejn_15419
crossref_primary_10_1109_TBME_2008_918563
crossref_primary_10_1016_j_neuroimage_2009_05_034
crossref_primary_10_1093_cercor_bhm110
crossref_primary_10_1016_j_nicl_2022_103144
crossref_primary_10_1093_braincomms_fcaa005
crossref_primary_10_3389_fpsyg_2024_1275884
crossref_primary_10_1016_j_jml_2007_12_005
crossref_primary_10_1038_npp_2008_2
crossref_primary_10_1016_j_neuroimage_2011_10_047
crossref_primary_10_1016_j_neuroimage_2007_08_012
crossref_primary_10_1016_j_neuroimage_2007_08_013
crossref_primary_10_1002_dneu_22248
crossref_primary_10_3390_ijerph20021171
crossref_primary_10_1016_j_neuroimage_2008_03_017
crossref_primary_10_1016_j_jneumeth_2019_02_009
crossref_primary_10_1109_TITB_2009_2039712
crossref_primary_10_1162_jocn_a_00980
crossref_primary_10_1016_j_jneumeth_2021_109215
crossref_primary_10_1016_j_neuroimage_2021_118383
crossref_primary_10_1016_j_jneumeth_2018_08_006
crossref_primary_10_1177_1545968307300698
crossref_primary_10_1016_j_neuroimage_2004_02_039
crossref_primary_10_1371_journal_pbio_0060315
crossref_primary_10_1162_jocn_2009_21097
crossref_primary_10_1109_MEMB_2006_1607671
crossref_primary_10_1016_j_neuroimage_2019_116449
crossref_primary_10_1007_s10683_006_9135_z
crossref_primary_10_1016_j_jmp_2014_04_003
crossref_primary_10_1016_j_neuroimage_2015_01_003
crossref_primary_10_1007_s11695_009_0015_4
crossref_primary_10_1016_j_neuroimage_2008_12_052
crossref_primary_10_1016_j_neuroimage_2005_03_014
crossref_primary_10_1016_S1053_8119_03_00443_9
crossref_primary_10_1016_j_cortex_2015_02_020
crossref_primary_10_1038_s41598_021_85386_0
crossref_primary_10_1016_j_neuroimage_2015_02_042
crossref_primary_10_1162_jocn_a_00601
crossref_primary_10_1016_j_neuron_2006_08_011
crossref_primary_10_1016_j_neuroimage_2021_118486
crossref_primary_10_1093_cercor_bhac029
crossref_primary_10_1093_cercor_bhm128
crossref_primary_10_1109_MEMB_2006_1607668
crossref_primary_10_1002_mrm_21807
crossref_primary_10_1109_TBME_2008_923918
crossref_primary_10_1093_brain_awr238
crossref_primary_10_1007_s00422_012_0490_x
crossref_primary_10_1016_j_neuroimage_2009_12_026
crossref_primary_10_1016_j_neuroimage_2016_11_048
crossref_primary_10_1152_jn_00189_2006
crossref_primary_10_1111_ejn_13038
crossref_primary_10_1016_j_brainres_2015_05_032
crossref_primary_10_3758_s13415_013_0165_7
crossref_primary_10_1016_j_dsp_2007_03_001
crossref_primary_10_1016_j_neuroimage_2007_07_032
crossref_primary_10_1016_j_neuroimage_2015_10_074
crossref_primary_10_1016_j_neuroimage_2004_02_013
crossref_primary_10_1016_j_neuroimage_2017_06_056
crossref_primary_10_1016_j_neuroimage_2012_12_005
crossref_primary_10_1016_j_neulet_2008_01_076
crossref_primary_10_1027_1618_3169_51_4_258
crossref_primary_10_1016_j_neuroimage_2004_02_012
crossref_primary_10_1016_j_neuroimage_2011_08_101
crossref_primary_10_1162_jocn_2006_18_4_522
crossref_primary_10_7763_IJIEE_2014_V4_412
crossref_primary_10_3389_fnins_2016_00573
crossref_primary_10_1007_s42113_018_0013_5
crossref_primary_10_1016_j_neuroimage_2007_07_026
crossref_primary_10_1016_j_neuron_2005_07_019
crossref_primary_10_1007_s11517_015_1365_9
crossref_primary_10_1093_cercor_bhad015
crossref_primary_10_1002_syn_20431
crossref_primary_10_1162_imag_a_00155
crossref_primary_10_1002_bimj_201600212
crossref_primary_10_1080_21681163_2022_2077235
crossref_primary_10_1214_09_STS282
crossref_primary_10_1371_journal_pone_0053824
crossref_primary_10_1109_TMI_2003_823065
crossref_primary_10_1142_S0129065722500198
crossref_primary_10_1002_hipo_20641
crossref_primary_10_1016_j_neuron_2011_07_025
crossref_primary_10_1093_scan_nsaa017
crossref_primary_10_1016_j_inffus_2020_09_008
crossref_primary_10_1111_j_1467_9469_2006_00554_x
crossref_primary_10_1016_j_neuroimage_2007_06_011
crossref_primary_10_1109_TNSRE_2009_2027705
crossref_primary_10_1136_bmjopen_2021_050843
crossref_primary_10_1093_scan_nsm019
crossref_primary_10_1016_j_neuroimage_2004_01_049
crossref_primary_10_1016_j_cmpb_2010_05_003
crossref_primary_10_1111_j_1541_0420_2012_01819_x
crossref_primary_10_1523_JNEUROSCI_1641_05_2005
crossref_primary_10_1016_j_neuroimage_2008_04_235
crossref_primary_10_1109_TMI_2004_836545
crossref_primary_10_1371_journal_pcbi_1002070
crossref_primary_10_1016_j_neuroimage_2007_11_040
crossref_primary_10_1007_s10548_014_0423_1
crossref_primary_10_2174_0929867328666201228125208
crossref_primary_10_1093_ajcn_84_4_725
crossref_primary_10_1002_hbm_26262
crossref_primary_10_1097_PSY_0000000000000581
crossref_primary_10_1098_rstb_2005_1648
crossref_primary_10_1134_S0362119722700141
crossref_primary_10_1523_JNEUROSCI_2296_19_2020
crossref_primary_10_1002_hbm_20956
crossref_primary_10_1016_S1053_8119_03_00144_7
crossref_primary_10_1097_j_pain_0000000000001498
crossref_primary_10_1162_jocn_2008_21025
crossref_primary_10_1016_j_neuropsychologia_2006_06_023
crossref_primary_10_1016_j_neuroimage_2007_06_034
crossref_primary_10_1016_j_neuroimage_2011_04_042
crossref_primary_10_1016_j_neuroimage_2006_05_040
crossref_primary_10_1186_1471_2202_15_S1_O8
crossref_primary_10_1007_s11517_021_02444_5
crossref_primary_10_1016_j_neuroimage_2012_05_020
crossref_primary_10_1097_ALN_0b013e31826be467
crossref_primary_10_1523_JNEUROSCI_4099_15_2016
crossref_primary_10_1016_j_neuroimage_2008_07_002
crossref_primary_10_1016_j_neucom_2022_09_001
crossref_primary_10_1016_j_neuroimage_2013_05_049
crossref_primary_10_1016_j_neuroimage_2015_09_070
crossref_primary_10_1016_j_neuroscience_2020_12_002
crossref_primary_10_1016_j_neuroimage_2007_07_061
crossref_primary_10_1109_TBME_2007_902591
crossref_primary_10_1016_j_biopsycho_2016_06_012
crossref_primary_10_1016_j_brs_2013_11_004
crossref_primary_10_1002_hipo_22621
crossref_primary_10_1016_j_neuroimage_2007_05_012
crossref_primary_10_1016_j_neuroimage_2009_09_026
crossref_primary_10_1016_j_neuroimage_2003_07_015
crossref_primary_10_1006_nimg_2001_1044
crossref_primary_10_4236_jsip_2012_34060
crossref_primary_10_3389_fpsyg_2017_00426
crossref_primary_10_1016_j_neuroimage_2011_02_053
crossref_primary_10_1016_j_pscychresns_2015_07_008
crossref_primary_10_1097_WCO_0000000000000029
crossref_primary_10_1523_JNEUROSCI_4670_11_2012
crossref_primary_10_1038_sj_npp_2008_2
crossref_primary_10_1016_j_neuroimage_2011_02_046
crossref_primary_10_1016_j_neuropsychologia_2017_07_016
crossref_primary_10_1111_j_1745_4603_2007_00122_x
crossref_primary_10_1016_j_neuropsychologia_2012_07_025
crossref_primary_10_1162_jocn_2009_21116
crossref_primary_10_1109_TBME_2008_2008637
crossref_primary_10_1016_j_neuroimage_2012_04_050
crossref_primary_10_1002_hbm_26425
crossref_primary_10_1016_j_neuroimage_2005_02_021
crossref_primary_10_1093_cercor_bht193
crossref_primary_10_1016_j_neuroimage_2012_05_053
crossref_primary_10_1016_S1053_8119_03_00058_2
crossref_primary_10_1162_jocn_2009_21224
crossref_primary_10_1101_lm_027631_112
crossref_primary_10_1109_TBME_2005_869791
crossref_primary_10_1142_S0218126621501498
crossref_primary_10_1016_j_neuropsychologia_2007_08_012
crossref_primary_10_1016_j_neuroimage_2018_11_018
crossref_primary_10_1038_sj_mp_4002030
crossref_primary_10_1192_bjp_182_5_381
crossref_primary_10_1109_RBME_2008_2008233
crossref_primary_10_1016_j_neuroimage_2007_05_025
crossref_primary_10_1016_j_neuroimage_2014_07_020
crossref_primary_10_1016_j_neuroimage_2017_10_043
crossref_primary_10_1016_j_rasd_2016_02_011
crossref_primary_10_1016_j_cortex_2017_02_005
crossref_primary_10_1016_j_neuroimage_2010_01_049
crossref_primary_10_1162_jocn_2008_20024
crossref_primary_10_1016_j_neuroimage_2012_11_060
crossref_primary_10_1117_1_2804092
crossref_primary_10_1109_ACCESS_2021_3051644
Cites_doi 10.1002/hbm.460020402
10.1006/nimg.2002.1091
10.2307/2529876
10.1006/nimg.2001.0933
10.1080/01621459.1981.10477653
10.1080/01621459.1989.10478825
10.1006/nimg.2002.1175
10.1006/nimg.1998.0372
10.1038/scientificamerican0577-119
10.1016/S1053-8119(18)31587-8
10.2307/1427576
10.1111/j.2517-6161.1977.tb01600.x
10.1080/01621459.1977.10480998
10.1111/j.2517-6161.1983.tb01258.x
10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H
10.2307/2527783
ContentType Journal Article
Web Resource
Copyright 2002 Elsevier Science (USA)
Copyright_xml – notice: 2002 Elsevier Science (USA)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
Q33
DOI 10.1006/nimg.2002.1090
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 483
ExternalDocumentID oai_orbi_ulg_ac_be_2268_84738
12030832
10_1006_nimg_2002_1090
S1053811902910906
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
Q33
ID FETCH-LOGICAL-c536t-8e8700c4977d8674da4224ede97ecf19a5d7b400601fa34753a6e99b34094e5d3
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 25 15:36:45 EDT 2025
Fri Jul 11 04:38:49 EDT 2025
Wed Feb 19 01:33:52 EST 2025
Tue Jul 01 00:49:05 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Fri Feb 23 02:34:10 EST 2024
Tue Aug 26 16:31:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords random effects
fMRI
ReML
hierarchical models
Bayesian inference
EM algorithm
PET
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2002 Elsevier Science (USA)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-8e8700c4977d8674da4224ede97ecf19a5d7b400601fa34753a6e99b34094e5d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
scopus-id:2-s2.0-0036334982
OpenAccessLink http://orbi.ulg.ac.be/handle/2268/84738
PMID 12030832
PQID 71750979
PQPubID 23479
PageCount 19
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_84738
proquest_miscellaneous_71750979
pubmed_primary_12030832
crossref_primary_10_1006_nimg_2002_1090
crossref_citationtrail_10_1006_nimg_2002_1090
elsevier_sciencedirect_doi_10_1006_nimg_2002_1090
elsevier_clinicalkey_doi_10_1006_nimg_2002_1090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-06-01
PublicationDateYYYYMMDD 2002-06-01
PublicationDate_xml – month: 06
  year: 2002
  text: 2002-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2002
Publisher Elsevier Inc
Academic Press Inc Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Academic Press Inc Elsevier Science
References Copas (RF1) 1983; 45
Højen-Sørensen, Hansen, Rasmussen (RF14) 2000
Kass, Steffey (RF16) 1989; 407
Neal, Hinton (RF19) 1998
Dempster, Laird, Rubin (RF2) 1977; 39
Hartley (RF11) 1958; 14
Worsley, Liao, Aston, Petre, Duncan, Evans (RF23) 2002; 15
Fahrmeir, Tutz (RF8) 1994
Friston, Glaser, Henson, Kiebel, Phillips, Ashburner (RF10) 2002; 16
Efron, Morris (RF5) 1973; 68
Worsley (RF22) 1994; 26
Tikhonov, Arsenin (RF21) 1977
Everitt, Bullmore (RF7) 1999; 7
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (RF9) 1995; 2
Hartvig, Jensen (RF12) 2002
Harville (RF13) 1977; 72
Efron, Morris (RF6) 1977; May
Holmes, Friston (RF15) 1998
Laird, Ware (RF17) 1982; 38
Descombes, Kruggel, von Cramon (RF4) 1998; 8
Lee, P. M. 1997, Bayesian Statistics: An Introduction, Wiley, New York.
Phillips, C, Rugg, M. D, and, Friston, K. J. 2002, Systematic regularisation for linear inverse solutions of the EEG source localization problem. Submitted.
Dempster, Rubin, Tsutakawa (RF3) 1981; 76
Friston (10.1006/nimg.2002.1090_RF9) 1995; 2
Neal (10.1006/nimg.2002.1090_RF19) 1998
Hartley (10.1006/nimg.2002.1090_RF11) 1958; 14
Efron (10.1006/nimg.2002.1090_RF5) 1973; 68
Efron (10.1006/nimg.2002.1090_RF6) 1977; May
Everitt (10.1006/nimg.2002.1090_RF7) 1999; 7
Dempster (10.1006/nimg.2002.1090_RF2) 1977; 39
10.1006/nimg.2002.1090_RF20
Kass (10.1006/nimg.2002.1090_RF16) 1989; 407
Worsley (10.1006/nimg.2002.1090_RF22) 1994; 26
Friston (10.1006/nimg.2002.1090_RF10) 2002; 16
Fahrmeir (10.1006/nimg.2002.1090_RF8) 1994
Descombes (10.1006/nimg.2002.1090_RF4) 1998; 8
Holmes (10.1006/nimg.2002.1090_RF15) 1998
10.1006/nimg.2002.1090_RF18
Copas (10.1006/nimg.2002.1090_RF1) 1983; 45
Tikhonov (10.1006/nimg.2002.1090_RF21) 1977
Dempster (10.1006/nimg.2002.1090_RF3) 1981; 76
Harville (10.1006/nimg.2002.1090_RF13) 1977; 72
Hartvig (10.1006/nimg.2002.1090_RF12) 2002
Højen-Sørensen (10.1006/nimg.2002.1090_RF14) 2000
Laird (10.1006/nimg.2002.1090_RF17) 1982; 38
Worsley (10.1006/nimg.2002.1090_RF23) 2002; 15
References_xml – volume: 16
  start-page: 484
  year: 2002
  end-page: 512
  ident: RF10
  article-title: Classical and Bayesian inference in neuroimaging: Applications
  publication-title: NeuroImage
– volume: May
  start-page: 119
  year: 1977
  end-page: 127
  ident: RF6
  article-title: Stein's paradox in statistics
  publication-title: Sci. Am.
– reference: Lee, P. M. 1997, Bayesian Statistics: An Introduction, Wiley, New York.
– volume: 14
  start-page: 174
  year: 1958
  end-page: 194
  ident: RF11
  article-title: Maximum likelihood estimation from incomplete data
  publication-title: Biometrics
– volume: 15
  start-page: 1
  year: 2002
  end-page: 15
  ident: RF23
  article-title: A general statistical analysis for fMRI data
  publication-title: NeuroImage
– volume: 68
  start-page: 117
  year: 1973
  end-page: 130
  ident: RF5
  article-title: Stein's estimation rule and its competitors—An empirical Bayes approach
  publication-title: J. Am. Stat. Assoc.
– start-page: S754
  year: 1998
  ident: RF15
  article-title: Generalizability, random effects and population inference
  publication-title: NeuroImage
– volume: 407
  start-page: 717
  year: 1989
  end-page: 726
  ident: RF16
  article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models)
  publication-title: J. Am. Stat. Assoc.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: RF2
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Series B
– start-page: 355
  year: 1998
  end-page: 368
  ident: RF19
  article-title: A view of the EM algorithm that justifies incremental, sparse and other variants
  publication-title: Learning in Graphical Models
– volume: 45
  start-page: 311
  year: 1983
  end-page: 354
  ident: RF1
  article-title: Regression prediction and shrinkage
  publication-title: J. R. Statistical Soc. Series B
– year: 2002
  ident: RF12
  article-title: Spatial mixture modelling of fMRI data
  publication-title: Hum. Brain Mapp.
– reference: Phillips, C, Rugg, M. D, and, Friston, K. J. 2002, Systematic regularisation for linear inverse solutions of the EEG source localization problem. Submitted.
– volume: 76
  start-page: 341
  year: 1981
  end-page: 353
  ident: RF3
  article-title: Estimation in covariance component models
  publication-title: J. Am. Stat. Assoc.
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  ident: RF17
  article-title: Random effects models for longitudinal data
  publication-title: Biometrics
– volume: 26
  start-page: 13
  year: 1994
  end-page: 42
  ident: RF22
  article-title: Local Maxima and the expected Euler characteristic of excursion sets of chi squared,
  publication-title: Adv. Appl. Prob.
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: RF9
  article-title: Statistical parametric maps in functional imaging: A general linear approach
  publication-title: Hum. Brain Mapp.
– start-page: 754
  year: 2000
  end-page: 760
  ident: RF14
  article-title: Bayesian modelling of fMRI time-series
  publication-title: Advances in Neural Information Processing Systems
– volume: 72
  start-page: 320
  year: 1977
  end-page: 338
  ident: RF13
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
– year: 1994
  ident: RF8
  publication-title: Multivariate Statistical Modelling Based on Generalized Linear Models
– year: 1977
  ident: RF21
  publication-title: Solution of Ill Posed Problems
– volume: 8
  start-page: 340
  year: 1998
  end-page: 349
  ident: RF4
  article-title: fMRI signal restoration using a spatio-temporal Markov random field preserving transitions
  publication-title: NeuroImage
– volume: 7
  start-page: 1
  year: 1999
  end-page: 14
  ident: RF7
  article-title: Mixture model mapping of brain activation in functional magnetic resonance images
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1006/nimg.2002.1090_RF9
  article-title: Statistical parametric maps in functional imaging: A general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– year: 1994
  ident: 10.1006/nimg.2002.1090_RF8
– start-page: 754
  year: 2000
  ident: 10.1006/nimg.2002.1090_RF14
  article-title: Bayesian modelling of fMRI time-series
– ident: 10.1006/nimg.2002.1090_RF18
– volume: 16
  start-page: 484
  year: 2002
  ident: 10.1006/nimg.2002.1090_RF10
  article-title: Classical and Bayesian inference in neuroimaging: Applications
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1091
– volume: 68
  start-page: 117
  year: 1973
  ident: 10.1006/nimg.2002.1090_RF5
  article-title: Stein's estimation rule and its competitors—An empirical Bayes approach
  publication-title: J. Am. Stat. Assoc.
– volume: 38
  start-page: 963
  year: 1982
  ident: 10.1006/nimg.2002.1090_RF17
  article-title: Random effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– start-page: 355
  year: 1998
  ident: 10.1006/nimg.2002.1090_RF19
  article-title: A view of the EM algorithm that justifies incremental, sparse and other variants
– volume: 15
  start-page: 1
  year: 2002
  ident: 10.1006/nimg.2002.1090_RF23
  article-title: A general statistical analysis for fMRI data
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0933
– volume: 76
  start-page: 341
  year: 1981
  ident: 10.1006/nimg.2002.1090_RF3
  article-title: Estimation in covariance component models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1981.10477653
– year: 2002
  ident: 10.1006/nimg.2002.1090_RF12
  article-title: Spatial mixture modelling of fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 407
  start-page: 717
  year: 1989
  ident: 10.1006/nimg.2002.1090_RF16
  article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models)
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1989.10478825
– ident: 10.1006/nimg.2002.1090_RF20
  doi: 10.1006/nimg.2002.1175
– volume: 8
  start-page: 340
  year: 1998
  ident: 10.1006/nimg.2002.1090_RF4
  article-title: fMRI signal restoration using a spatio-temporal Markov random field preserving transitions
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0372
– volume: May
  start-page: 119
  year: 1977
  ident: 10.1006/nimg.2002.1090_RF6
  article-title: Stein's paradox in statistics
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0577-119
– start-page: S754
  year: 1998
  ident: 10.1006/nimg.2002.1090_RF15
  article-title: Generalizability, random effects and population inference
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(18)31587-8
– volume: 26
  start-page: 13
  year: 1994
  ident: 10.1006/nimg.2002.1090_RF22
  article-title: Local Maxima and the expected Euler characteristic of excursion sets of chi squared, F and t fields
  publication-title: Adv. Appl. Prob.
  doi: 10.2307/1427576
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1006/nimg.2002.1090_RF2
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 72
  start-page: 320
  year: 1977
  ident: 10.1006/nimg.2002.1090_RF13
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1977.10480998
– year: 1977
  ident: 10.1006/nimg.2002.1090_RF21
– volume: 45
  start-page: 311
  year: 1983
  ident: 10.1006/nimg.2002.1090_RF1
  article-title: Regression prediction and shrinkage
  publication-title: J. R. Statistical Soc. Series B
  doi: 10.1111/j.2517-6161.1983.tb01258.x
– volume: 7
  start-page: 1
  year: 1999
  ident: 10.1006/nimg.2002.1090_RF7
  article-title: Mixture model mapping of brain activation in functional magnetic resonance images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H
– volume: 14
  start-page: 174
  year: 1958
  ident: 10.1006/nimg.2002.1090_RF11
  article-title: Maximum likelihood estimation from incomplete data
  publication-title: Biometrics
  doi: 10.2307/2527783
RestrictionsOnAccess open access
SSID ssj0009148
Score 2.29877
Snippet This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical...
SourceID liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 465
SubjectTerms Algorithms
Bayes Theorem
Bayesian inference
Brain - physiology
Diagnostic Imaging
EM algorithm
fMRI
Hierarchical models
Humans
Likelihood Functions
Linear Models
Magnetic Resonance Imaging
Models, Neurological
Neurosciences & behavior
Neurosciences & comportement
PET
Random effects
ReML
Sciences sociales & comportementales, psychologie
Social & behavioral sciences, psychology
Statistics as Topic - methods
Tomography, Emission-Computed
Title Classical and Bayesian Inference in Neuroimaging: Theory
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811902910906
https://dx.doi.org/10.1006/nimg.2002.1090
https://www.ncbi.nlm.nih.gov/pubmed/12030832
https://www.proquest.com/docview/71750979
http://orbi.ulg.ac.be/handle/2268/84738
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SLJReSt_ZtE19KPRQXMuWLFu9JSFh05KltA3kJvTaYNh4Q7obyCW_vTOyndDD5pCTjdGAPBrNQ6P5BuCToC5FwfPUWAxRBAsyVczXabA-d9ZjuG2pOPlkKien4vtZebYBB0MtDF2r7HV_p9Ojtu6_ZD03s8umyX6jZ4DmBg1aoeh2odyEUcGVRNEe7R3_mEzvsXdz0VXElTwlggG7kcmsbS7O4z0FglVi62zTaE4J7PU-aLRFR8_hWe9EJnvdPF_ARmhfwpOTPk3-CurY6pLYn5jWJ_vmJlCtZHI8VPclTZtEWI7mInYp-pZ0Nfqv4fTo8M_BJO1bJKSu5HKZ1gH3G3MCvThfy0p4I9AmBx9UFdwsV6b0lRURdGVmuMDYxMiglOUU1oXS8zew1S7asA2Jd8zMHLNWlg6NFLdSWetEZZVhON6NIR2Yo12PH05tLOa6Qz6WmphJbS0LSmuzMXy-G3_ZIWesHZkNvNZDPShqMI1KfS1Ffkfxn7Q8SPMlLqNeXNlGXxeagLXj-2p-ro3TNmj0RWuN9prXY_g4LLbGDUdZFNOGxeqvxvgXnaxKjeFtJwP3f1cQ-A8vdh4xu3fwNPaZiec772FrebUKH9DdWdpd2Px6m-_2Qo3P_cPpz1__ADWd_kg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCiXirYUttCSQ6UeUBpv7DgxN4qKlpblUpC4WX4tirRkEd2txIXfzoyTgDhsD71F0VhyxuN5ZGa-AfgiaEpR8Dw1FkMUwYJMFfNVGqwfOusx3LbUnDw-l6NL8fOquFqB474XhsoqO93f6vSorbs3WcfN7Laus9_oGaC5QYOWK6oulK9gTdAbFOpvD891Hmoo2n64gqdE3iM3Mpk19c11rFIgUCW2zDKtTSl9vdwDjZboZBPedC5kctTu8i2shOYdrI-7JPl7qOKgS2J-YhqffDf3gTolk9O-ty-pmySCctQ3cUbRYdJ26G_B5cmPi-NR2g1ISF3B5TytAt425gT6cL6SpfBGoEUOPqgyuMlQmcKXVkTIlYnhAiMTI4NSllNQFwrPP8BqM2vCDiTeMTNxzFpZODRR3EplrROlVYYhvRtA2jNHuw49nIZYTHWLeyw1MZOGWuaU1GYD-PpEf9viZiylzHpe674bFPWXRpW-dMXwacULWfnnmoN4jHp2Z2v9N9cEqx2fF9NrbZy2QaMnWmm01rwawH5_2BqvG-VQTBNmiz8ao190sUo1gO1WBp6_LifoH55__I_d7cPr0cX4TJ-dnv_ahY04cSb-6dmD1fndInxCx2duP0fBfgRVCv1y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+Bayesian+Inference+in+Neuroimaging%3A+Theory&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Friston%2C+K.J.&rft.au=Penny%2C+W.&rft.au=Phillips%2C+C.&rft.au=Kiebel%2C+S.&rft.date=2002-06-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=16&rft.issue=2&rft.spage=465&rft.epage=483&rft_id=info:doi/10.1006%2Fnimg.2002.1090&rft.externalDocID=S1053811902910906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon