Classical and Bayesian Inference in Neuroimaging: Theory
This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework....
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 16; no. 2; pp. 465 - 483 |
---|---|
Main Authors | , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
United States
Elsevier Inc
01.06.2002
Academic Press Inc Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper. |
---|---|
AbstractList | This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper. This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper.This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical and Bayesian methods to show that conventional analyses of neuroimaging data can be usefully extended within an empirical Bayesian framework. In particular we formulate the procedures used in conventional data analysis in terms of hierarchical linear models and establish a connection between classical inference and parametric empirical Bayes (PEB) through covariance component estimation. This estimation is based on an expectation maximization or EM algorithm. The key point is that hierarchical models not only provide for appropriate inference at the highest level but that one can revisit lower levels suitably equipped to make Bayesian inferences. Bayesian inferences eschew many of the difficulties encountered with classical inference and characterize brain responses in a way that is more directly predicated on what one is interested in. The motivation for Bayesian approaches is reviewed and the theoretical background is presented in a way that relates to conventional methods, in particular restricted maximum likelihood (ReML). This paper is a technical and theoretical prelude to subsequent papers that deal with applications of the theory to a range of important issues in neuroimaging. These issues include; (i) Estimating nonsphericity or variance components in fMRI time-series that can arise from serial correlations within subject, or are induced by multisubject (i.e., hierarchical) studies. (ii) Spatiotemporal Bayesian models for imaging data, in which voxels-specific effects are constrained by responses in other voxels. (iii) Bayesian estimation of nonlinear models of hemodynamic responses and (iv) principled ways of mixing structural and functional priors in EEG source reconstruction. Although diverse, all these estimation problems are accommodated by the PEB framework described in this paper. |
Author | Hinton, G. Ashburner, J. Phillips, C. Penny, W. Friston, K.J. Kiebel, S. |
Author_xml | – sequence: 1 givenname: K.J. surname: Friston fullname: Friston, K.J. – sequence: 2 givenname: W. surname: Penny fullname: Penny, W. – sequence: 3 givenname: C. surname: Phillips fullname: Phillips, C. – sequence: 4 givenname: S. surname: Kiebel fullname: Kiebel, S. – sequence: 5 givenname: G. surname: Hinton fullname: Hinton, G. – sequence: 6 givenname: J. surname: Ashburner fullname: Ashburner, J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12030832$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNU7IduXcqs3M1tvmaSuNOLH4Wim7oOmeTMGM1NajJTuP--GaYiFNrVOYHnCZz3PUcnMUVA6C3BO4Jxfxn9YdpRjGl9KvwCndXRtaoT9GTdO9ZKQtQpOi_lN8ZYES5foVNCMcOS0TMk98GU4q0JjYmu-WSOULyJzVUcIUO00PjYfIclJ38wk4_Th-bmF6R8fI1ejiYUePMwL9DPL59v9t_a6x9fr_Yfr1vbsX5uJUiBseVKCCd7wZ3hlHJwoATYkSjTOTHwegkmo2FcdMz0oNTAOFYcOscuEN3-DR4m0CkPXt9RnYzf9iVM2lg9gKa0l1pywWSV3m_SbU5_FyizPvhiIQQTIS1FCyI6rISq4LsHcBkO4PRtrmfmo_4XUAV2G2BzKiXD-B_Bem1Arw3otQG9NlAF_kiwfjazT3HOxoenNblpULO885B1sX7N3_kMdtYu-afV_pFqg49rpX_g-Jx4Dzk8rVA |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2004_06_011 crossref_primary_10_1371_journal_pone_0055969 crossref_primary_10_1016_j_neuroimage_2007_12_003 crossref_primary_10_1016_j_neuroimage_2023_120232 crossref_primary_10_1016_j_neuroimage_2011_07_077 crossref_primary_10_3389_fnins_2019_00300 crossref_primary_10_1214_17_STS624 crossref_primary_10_1155_2013_645043 crossref_primary_10_1016_j_mri_2005_12_034 crossref_primary_10_1038_s41598_019_43733_2 crossref_primary_10_1016_j_neuroimage_2004_07_051 crossref_primary_10_1007_s00221_009_1753_1 crossref_primary_10_1002_hbm_23127 crossref_primary_10_1016_j_neures_2017_09_006 crossref_primary_10_1007_s00429_021_02221_y crossref_primary_10_1016_j_bandc_2012_10_002 crossref_primary_10_1136_bmjopen_2016_012174 crossref_primary_10_1080_17470919_2011_598945 crossref_primary_10_1093_biostatistics_kxn028 crossref_primary_10_3390_ijerph17020588 crossref_primary_10_1016_j_neuroimage_2014_12_030 crossref_primary_10_3389_fnins_2015_00168 crossref_primary_10_1006_nimg_2002_1091 crossref_primary_10_1016_j_neuroimage_2006_02_006 crossref_primary_10_1093_scan_nsab082 crossref_primary_10_1016_j_neuroimage_2003_12_023 crossref_primary_10_1002_hbm_21098 crossref_primary_10_1364_BOE_2_000001 crossref_primary_10_1016_j_neuroimage_2006_11_054 crossref_primary_10_1162_neco_2009_07_08_820 crossref_primary_10_1002_hbm_22297 crossref_primary_10_1002_hipo_22796 crossref_primary_10_1016_j_neuroimage_2009_08_051 crossref_primary_10_1101_lm_2197211 crossref_primary_10_1152_jn_00707_2011 crossref_primary_10_1016_j_compchemeng_2023_108502 crossref_primary_10_1093_cercor_bhh211 crossref_primary_10_1016_j_neures_2010_11_001 crossref_primary_10_1016_j_neuroimage_2024_120954 crossref_primary_10_1016_j_neuroimage_2003_12_044 crossref_primary_10_1002_hbm_20182 crossref_primary_10_1016_j_neuroimage_2005_10_037 crossref_primary_10_1016_j_neuroimage_2012_01_133 crossref_primary_10_1176_appi_ajp_2010_10040484 crossref_primary_10_1155_2007_67613 crossref_primary_10_1109_JBHI_2021_3101662 crossref_primary_10_1155_2012_961342 crossref_primary_10_1016_j_neubiorev_2019_04_018 crossref_primary_10_1098_rstb_2007_2160 crossref_primary_10_1140_epjp_i2012_12140_9 crossref_primary_10_1002_hbm_23329 crossref_primary_10_1109_TMI_2014_2347703 crossref_primary_10_1002_hbm_25627 crossref_primary_10_3389_fninf_2021_738342 crossref_primary_10_1111_j_1469_8986_2008_00780_x crossref_primary_10_1162_jocn_a_00163 crossref_primary_10_1016_j_neuroimage_2003_11_008 crossref_primary_10_1016_j_neuroimage_2014_05_043 crossref_primary_10_1016_j_neuroimage_2014_11_007 crossref_primary_10_1109_TCBB_2015_2465951 crossref_primary_10_1002_cjs_5550340208 crossref_primary_10_1016_S1053_8119_03_00360_4 crossref_primary_10_1016_j_neuroimage_2004_08_055 crossref_primary_10_26599_BSA_2023_9050008 crossref_primary_10_1093_scan_nst011 crossref_primary_10_1007_s00247_010_1677_8 crossref_primary_10_1016_j_neuroimage_2006_01_016 crossref_primary_10_1109_TCDS_2020_3006497 crossref_primary_10_1016_j_bandc_2014_06_005 crossref_primary_10_1016_j_neuroimage_2018_03_048 crossref_primary_10_1523_JNEUROSCI_5745_09_2010 crossref_primary_10_1162_jocn_a_00010 crossref_primary_10_1016_j_neuroimage_2009_07_047 crossref_primary_10_1155_2011_852961 crossref_primary_10_1162_jocn_2010_21565 crossref_primary_10_1016_j_neuroimage_2013_03_008 crossref_primary_10_1109_MSP_2015_2481559 crossref_primary_10_1002_hbm_22377 crossref_primary_10_1002_hbm_25767 crossref_primary_10_1016_j_neuroimage_2013_08_025 crossref_primary_10_2174_1568026620666200302111130 crossref_primary_10_1002_hbm_24677 crossref_primary_10_1016_j_neuroimage_2006_01_023 crossref_primary_10_1364_BOE_1_001084 crossref_primary_10_1016_j_neuroimage_2006_12_035 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1152_jn_01245_2005 crossref_primary_10_1016_j_neuroimage_2020_117507 crossref_primary_10_1016_j_neuroimage_2007_04_072 crossref_primary_10_1016_j_pscychresns_2011_08_008 crossref_primary_10_1016_j_brainres_2015_01_033 crossref_primary_10_1016_j_media_2019_04_008 crossref_primary_10_3390_brainsci13010111 crossref_primary_10_1016_j_neuroimage_2005_08_015 crossref_primary_10_1016_j_jad_2017_12_031 crossref_primary_10_1016_S1053_8119_03_00308_2 crossref_primary_10_1016_j_asoc_2011_07_004 crossref_primary_10_1016_j_neuroimage_2009_07_061 crossref_primary_10_1093_cercor_bhl090 crossref_primary_10_1016_j_neuroimage_2021_118309 crossref_primary_10_1002_ana_25906 crossref_primary_10_1002_hbm_10100 crossref_primary_10_1002_hbm_24611 crossref_primary_10_1016_j_neuroimage_2006_08_024 crossref_primary_10_1016_j_neuropsychologia_2009_08_019 crossref_primary_10_1002_hbm_20251 crossref_primary_10_1016_j_neuroimage_2013_01_048 crossref_primary_10_1109_TBME_2013_2294013 crossref_primary_10_1093_cercor_bhl080 crossref_primary_10_1097_WNR_0000000000000368 crossref_primary_10_1016_j_jneumeth_2023_109950 crossref_primary_10_1126_science_1177949 crossref_primary_10_3389_fendo_2022_885617 crossref_primary_10_1016_j_neuroimage_2015_04_032 crossref_primary_10_1001_jamanetworkopen_2020_22847 crossref_primary_10_1111_sjos_12522 crossref_primary_10_3109_17482960802353504 crossref_primary_10_1038_s42003_023_04787_1 crossref_primary_10_1007_s00221_012_3094_8 crossref_primary_10_1111_j_1745_6924_2009_01130_x crossref_primary_10_1016_j_neuroimage_2008_01_011 crossref_primary_10_1016_j_neuroimage_2009_03_022 crossref_primary_10_1016_j_neuroimage_2011_08_027 crossref_primary_10_1016_j_neures_2011_04_001 crossref_primary_10_1016_j_neuroimage_2009_04_063 crossref_primary_10_1016_j_neuroimage_2008_02_059 crossref_primary_10_1038_s42256_019_0069_5 crossref_primary_10_1109_TMI_2004_841225 crossref_primary_10_1016_S1053_8119_03_00071_5 crossref_primary_10_1016_j_jneumeth_2018_05_017 crossref_primary_10_1002_hbm_21124 crossref_primary_10_1016_j_seizure_2024_01_001 crossref_primary_10_1210_jendso_bvad052 crossref_primary_10_3389_fnins_2017_00504 crossref_primary_10_1016_j_neuroimage_2008_02_054 crossref_primary_10_1016_j_brainres_2012_01_029 crossref_primary_10_1016_j_neuroimage_2005_12_055 crossref_primary_10_1016_j_neuroimage_2018_01_005 crossref_primary_10_1093_ajcn_86_3_573 crossref_primary_10_1093_cercor_bhm194 crossref_primary_10_1016_j_neuroimage_2012_09_014 crossref_primary_10_1093_cercor_bhz242 crossref_primary_10_1016_j_neuroimage_2004_12_030 crossref_primary_10_1016_S1053_8119_03_00435_X crossref_primary_10_3389_fnbeh_2022_902175 crossref_primary_10_52294_2e179dbf_5e37_4338_a639_9ceb92b055ea crossref_primary_10_1093_cercor_bhn037 crossref_primary_10_1002_hbm_23413 crossref_primary_10_1038_srep11248 crossref_primary_10_3389_fnins_2017_00635 crossref_primary_10_1093_cercor_bhn039 crossref_primary_10_1016_j_neuroimage_2004_10_037 crossref_primary_10_1016_j_neuroimage_2004_10_030 crossref_primary_10_1038_s42003_022_03147_9 crossref_primary_10_1016_j_nicl_2017_12_008 crossref_primary_10_1007_s00723_012_0371_4 crossref_primary_10_1016_j_neuroimage_2016_07_047 crossref_primary_10_1162_jocn_a_00432 crossref_primary_10_1002_hbm_20334 crossref_primary_10_1002_hbm_20214 crossref_primary_10_1002_hbm_20570 crossref_primary_10_1002_hbm_20450 crossref_primary_10_1214_16_AOAS926 crossref_primary_10_1002_hbm_24806 crossref_primary_10_1109_TMI_2007_896934 crossref_primary_10_1142_S0219622016400010 crossref_primary_10_1016_j_neuroimage_2014_10_046 crossref_primary_10_1038_nrn1993 crossref_primary_10_1002_wics_1339 crossref_primary_10_1098_rstb_2019_0661 crossref_primary_10_1016_j_neuroimage_2012_01_073 crossref_primary_10_1016_j_jneumeth_2016_03_003 crossref_primary_10_1016_j_foodqual_2024_105374 crossref_primary_10_1002_hbm_20242 crossref_primary_10_1002_hbm_21452 crossref_primary_10_1016_j_brainresbull_2009_03_007 crossref_primary_10_1016_j_jastp_2020_105190 crossref_primary_10_1016_j_jneumeth_2006_05_035 crossref_primary_10_1016_j_neuroscience_2015_05_045 crossref_primary_10_1026_0044_3409_213_3_133 crossref_primary_10_1016_j_compmedimag_2007_04_002 crossref_primary_10_1016_j_neuroimage_2015_06_094 crossref_primary_10_1002_hbm_23505 crossref_primary_10_1007_s12561_017_9205_0 crossref_primary_10_1016_j_neuroimage_2005_06_022 crossref_primary_10_1155_2009_279515 crossref_primary_10_1016_j_neuroimage_2014_03_031 crossref_primary_10_1523_JNEUROSCI_1715_07_2007 crossref_primary_10_1016_j_acags_2024_100191 crossref_primary_10_1007_s00429_012_0439_9 crossref_primary_10_1371_journal_pone_0049948 crossref_primary_10_1016_j_cortex_2017_07_019 crossref_primary_10_1016_j_cortex_2014_02_024 crossref_primary_10_1016_j_neuroimage_2006_08_035 crossref_primary_10_3389_fpsyg_2018_00183 crossref_primary_10_1016_j_brainres_2007_11_070 crossref_primary_10_1080_0886022X_2021_2023023 crossref_primary_10_1093_imamat_hxw026 crossref_primary_10_1038_s41467_018_06304_z crossref_primary_10_1016_j_neuropsychologia_2008_01_018 crossref_primary_10_1146_annurev_psych_56_091103_070311 crossref_primary_10_1162_089892903770007326 crossref_primary_10_4236_cs_2016_78161 crossref_primary_10_1162_imag_a_00082 crossref_primary_10_1097_01_gme_0000196811_88505_10 crossref_primary_10_1016_j_neuroimage_2016_04_025 crossref_primary_10_1016_j_bbr_2014_11_042 crossref_primary_10_1162_jocn_a_00878 crossref_primary_10_1007_s10548_013_0301_2 crossref_primary_10_1016_j_neuroimage_2011_10_025 crossref_primary_10_1016_j_neuroimage_2012_04_014 crossref_primary_10_1155_2016_2961727 crossref_primary_10_31857_S0131164622700175 crossref_primary_10_1016_j_neuroimage_2004_03_030 crossref_primary_10_1080_17470919_2016_1241823 crossref_primary_10_1162_NECO_a_00205 crossref_primary_10_1016_j_neuroimage_2008_02_005 crossref_primary_10_1016_j_neuroimage_2013_05_100 crossref_primary_10_1016_j_neuroimage_2013_05_105 crossref_primary_10_1016_j_jbiomech_2008_05_010 crossref_primary_10_1016_j_neuroimage_2011_10_027 crossref_primary_10_1016_j_cortex_2023_12_014 crossref_primary_10_1093_biostatistics_kxi027 crossref_primary_10_1016_j_neures_2013_05_006 crossref_primary_10_1111_ejn_15419 crossref_primary_10_1109_TBME_2008_918563 crossref_primary_10_1016_j_neuroimage_2009_05_034 crossref_primary_10_1093_cercor_bhm110 crossref_primary_10_1016_j_nicl_2022_103144 crossref_primary_10_1093_braincomms_fcaa005 crossref_primary_10_3389_fpsyg_2024_1275884 crossref_primary_10_1016_j_jml_2007_12_005 crossref_primary_10_1038_npp_2008_2 crossref_primary_10_1016_j_neuroimage_2011_10_047 crossref_primary_10_1016_j_neuroimage_2007_08_012 crossref_primary_10_1016_j_neuroimage_2007_08_013 crossref_primary_10_1002_dneu_22248 crossref_primary_10_3390_ijerph20021171 crossref_primary_10_1016_j_neuroimage_2008_03_017 crossref_primary_10_1016_j_jneumeth_2019_02_009 crossref_primary_10_1109_TITB_2009_2039712 crossref_primary_10_1162_jocn_a_00980 crossref_primary_10_1016_j_jneumeth_2021_109215 crossref_primary_10_1016_j_neuroimage_2021_118383 crossref_primary_10_1016_j_jneumeth_2018_08_006 crossref_primary_10_1177_1545968307300698 crossref_primary_10_1016_j_neuroimage_2004_02_039 crossref_primary_10_1371_journal_pbio_0060315 crossref_primary_10_1162_jocn_2009_21097 crossref_primary_10_1109_MEMB_2006_1607671 crossref_primary_10_1016_j_neuroimage_2019_116449 crossref_primary_10_1007_s10683_006_9135_z crossref_primary_10_1016_j_jmp_2014_04_003 crossref_primary_10_1016_j_neuroimage_2015_01_003 crossref_primary_10_1007_s11695_009_0015_4 crossref_primary_10_1016_j_neuroimage_2008_12_052 crossref_primary_10_1016_j_neuroimage_2005_03_014 crossref_primary_10_1016_S1053_8119_03_00443_9 crossref_primary_10_1016_j_cortex_2015_02_020 crossref_primary_10_1038_s41598_021_85386_0 crossref_primary_10_1016_j_neuroimage_2015_02_042 crossref_primary_10_1162_jocn_a_00601 crossref_primary_10_1016_j_neuron_2006_08_011 crossref_primary_10_1016_j_neuroimage_2021_118486 crossref_primary_10_1093_cercor_bhac029 crossref_primary_10_1093_cercor_bhm128 crossref_primary_10_1109_MEMB_2006_1607668 crossref_primary_10_1002_mrm_21807 crossref_primary_10_1109_TBME_2008_923918 crossref_primary_10_1093_brain_awr238 crossref_primary_10_1007_s00422_012_0490_x crossref_primary_10_1016_j_neuroimage_2009_12_026 crossref_primary_10_1016_j_neuroimage_2016_11_048 crossref_primary_10_1152_jn_00189_2006 crossref_primary_10_1111_ejn_13038 crossref_primary_10_1016_j_brainres_2015_05_032 crossref_primary_10_3758_s13415_013_0165_7 crossref_primary_10_1016_j_dsp_2007_03_001 crossref_primary_10_1016_j_neuroimage_2007_07_032 crossref_primary_10_1016_j_neuroimage_2015_10_074 crossref_primary_10_1016_j_neuroimage_2004_02_013 crossref_primary_10_1016_j_neuroimage_2017_06_056 crossref_primary_10_1016_j_neuroimage_2012_12_005 crossref_primary_10_1016_j_neulet_2008_01_076 crossref_primary_10_1027_1618_3169_51_4_258 crossref_primary_10_1016_j_neuroimage_2004_02_012 crossref_primary_10_1016_j_neuroimage_2011_08_101 crossref_primary_10_1162_jocn_2006_18_4_522 crossref_primary_10_7763_IJIEE_2014_V4_412 crossref_primary_10_3389_fnins_2016_00573 crossref_primary_10_1007_s42113_018_0013_5 crossref_primary_10_1016_j_neuroimage_2007_07_026 crossref_primary_10_1016_j_neuron_2005_07_019 crossref_primary_10_1007_s11517_015_1365_9 crossref_primary_10_1093_cercor_bhad015 crossref_primary_10_1002_syn_20431 crossref_primary_10_1162_imag_a_00155 crossref_primary_10_1002_bimj_201600212 crossref_primary_10_1080_21681163_2022_2077235 crossref_primary_10_1214_09_STS282 crossref_primary_10_1371_journal_pone_0053824 crossref_primary_10_1109_TMI_2003_823065 crossref_primary_10_1142_S0129065722500198 crossref_primary_10_1002_hipo_20641 crossref_primary_10_1016_j_neuron_2011_07_025 crossref_primary_10_1093_scan_nsaa017 crossref_primary_10_1016_j_inffus_2020_09_008 crossref_primary_10_1111_j_1467_9469_2006_00554_x crossref_primary_10_1016_j_neuroimage_2007_06_011 crossref_primary_10_1109_TNSRE_2009_2027705 crossref_primary_10_1136_bmjopen_2021_050843 crossref_primary_10_1093_scan_nsm019 crossref_primary_10_1016_j_neuroimage_2004_01_049 crossref_primary_10_1016_j_cmpb_2010_05_003 crossref_primary_10_1111_j_1541_0420_2012_01819_x crossref_primary_10_1523_JNEUROSCI_1641_05_2005 crossref_primary_10_1016_j_neuroimage_2008_04_235 crossref_primary_10_1109_TMI_2004_836545 crossref_primary_10_1371_journal_pcbi_1002070 crossref_primary_10_1016_j_neuroimage_2007_11_040 crossref_primary_10_1007_s10548_014_0423_1 crossref_primary_10_2174_0929867328666201228125208 crossref_primary_10_1093_ajcn_84_4_725 crossref_primary_10_1002_hbm_26262 crossref_primary_10_1097_PSY_0000000000000581 crossref_primary_10_1098_rstb_2005_1648 crossref_primary_10_1134_S0362119722700141 crossref_primary_10_1523_JNEUROSCI_2296_19_2020 crossref_primary_10_1002_hbm_20956 crossref_primary_10_1016_S1053_8119_03_00144_7 crossref_primary_10_1097_j_pain_0000000000001498 crossref_primary_10_1162_jocn_2008_21025 crossref_primary_10_1016_j_neuropsychologia_2006_06_023 crossref_primary_10_1016_j_neuroimage_2007_06_034 crossref_primary_10_1016_j_neuroimage_2011_04_042 crossref_primary_10_1016_j_neuroimage_2006_05_040 crossref_primary_10_1186_1471_2202_15_S1_O8 crossref_primary_10_1007_s11517_021_02444_5 crossref_primary_10_1016_j_neuroimage_2012_05_020 crossref_primary_10_1097_ALN_0b013e31826be467 crossref_primary_10_1523_JNEUROSCI_4099_15_2016 crossref_primary_10_1016_j_neuroimage_2008_07_002 crossref_primary_10_1016_j_neucom_2022_09_001 crossref_primary_10_1016_j_neuroimage_2013_05_049 crossref_primary_10_1016_j_neuroimage_2015_09_070 crossref_primary_10_1016_j_neuroscience_2020_12_002 crossref_primary_10_1016_j_neuroimage_2007_07_061 crossref_primary_10_1109_TBME_2007_902591 crossref_primary_10_1016_j_biopsycho_2016_06_012 crossref_primary_10_1016_j_brs_2013_11_004 crossref_primary_10_1002_hipo_22621 crossref_primary_10_1016_j_neuroimage_2007_05_012 crossref_primary_10_1016_j_neuroimage_2009_09_026 crossref_primary_10_1016_j_neuroimage_2003_07_015 crossref_primary_10_1006_nimg_2001_1044 crossref_primary_10_4236_jsip_2012_34060 crossref_primary_10_3389_fpsyg_2017_00426 crossref_primary_10_1016_j_neuroimage_2011_02_053 crossref_primary_10_1016_j_pscychresns_2015_07_008 crossref_primary_10_1097_WCO_0000000000000029 crossref_primary_10_1523_JNEUROSCI_4670_11_2012 crossref_primary_10_1038_sj_npp_2008_2 crossref_primary_10_1016_j_neuroimage_2011_02_046 crossref_primary_10_1016_j_neuropsychologia_2017_07_016 crossref_primary_10_1111_j_1745_4603_2007_00122_x crossref_primary_10_1016_j_neuropsychologia_2012_07_025 crossref_primary_10_1162_jocn_2009_21116 crossref_primary_10_1109_TBME_2008_2008637 crossref_primary_10_1016_j_neuroimage_2012_04_050 crossref_primary_10_1002_hbm_26425 crossref_primary_10_1016_j_neuroimage_2005_02_021 crossref_primary_10_1093_cercor_bht193 crossref_primary_10_1016_j_neuroimage_2012_05_053 crossref_primary_10_1016_S1053_8119_03_00058_2 crossref_primary_10_1162_jocn_2009_21224 crossref_primary_10_1101_lm_027631_112 crossref_primary_10_1109_TBME_2005_869791 crossref_primary_10_1142_S0218126621501498 crossref_primary_10_1016_j_neuropsychologia_2007_08_012 crossref_primary_10_1016_j_neuroimage_2018_11_018 crossref_primary_10_1038_sj_mp_4002030 crossref_primary_10_1192_bjp_182_5_381 crossref_primary_10_1109_RBME_2008_2008233 crossref_primary_10_1016_j_neuroimage_2007_05_025 crossref_primary_10_1016_j_neuroimage_2014_07_020 crossref_primary_10_1016_j_neuroimage_2017_10_043 crossref_primary_10_1016_j_rasd_2016_02_011 crossref_primary_10_1016_j_cortex_2017_02_005 crossref_primary_10_1016_j_neuroimage_2010_01_049 crossref_primary_10_1162_jocn_2008_20024 crossref_primary_10_1016_j_neuroimage_2012_11_060 crossref_primary_10_1117_1_2804092 crossref_primary_10_1109_ACCESS_2021_3051644 |
Cites_doi | 10.1002/hbm.460020402 10.1006/nimg.2002.1091 10.2307/2529876 10.1006/nimg.2001.0933 10.1080/01621459.1981.10477653 10.1080/01621459.1989.10478825 10.1006/nimg.2002.1175 10.1006/nimg.1998.0372 10.1038/scientificamerican0577-119 10.1016/S1053-8119(18)31587-8 10.2307/1427576 10.1111/j.2517-6161.1977.tb01600.x 10.1080/01621459.1977.10480998 10.1111/j.2517-6161.1983.tb01258.x 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H 10.2307/2527783 |
ContentType | Journal Article Web Resource |
Copyright | 2002 Elsevier Science (USA) |
Copyright_xml | – notice: 2002 Elsevier Science (USA) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 Q33 |
DOI | 10.1006/nimg.2002.1090 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 483 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_84738 12030832 10_1006_nimg_2002_1090 S1053811902910906 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7X8 Q33 |
ID | FETCH-LOGICAL-c536t-8e8700c4977d8674da4224ede97ecf19a5d7b400601fa34753a6e99b34094e5d3 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 25 15:36:45 EDT 2025 Fri Jul 11 04:38:49 EDT 2025 Wed Feb 19 01:33:52 EST 2025 Tue Jul 01 00:49:05 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Fri Feb 23 02:34:10 EST 2024 Tue Aug 26 16:31:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | random effects fMRI ReML hierarchical models Bayesian inference EM algorithm PET |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 2002 Elsevier Science (USA) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-8e8700c4977d8674da4224ede97ecf19a5d7b400601fa34753a6e99b34094e5d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 scopus-id:2-s2.0-0036334982 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/84738 |
PMID | 12030832 |
PQID | 71750979 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_84738 proquest_miscellaneous_71750979 pubmed_primary_12030832 crossref_primary_10_1006_nimg_2002_1090 crossref_citationtrail_10_1006_nimg_2002_1090 elsevier_sciencedirect_doi_10_1006_nimg_2002_1090 elsevier_clinicalkey_doi_10_1006_nimg_2002_1090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-06-01 |
PublicationDateYYYYMMDD | 2002-06-01 |
PublicationDate_xml | – month: 06 year: 2002 text: 2002-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2002 |
Publisher | Elsevier Inc Academic Press Inc Elsevier Science |
Publisher_xml | – name: Elsevier Inc – name: Academic Press Inc Elsevier Science |
References | Copas (RF1) 1983; 45 Højen-Sørensen, Hansen, Rasmussen (RF14) 2000 Kass, Steffey (RF16) 1989; 407 Neal, Hinton (RF19) 1998 Dempster, Laird, Rubin (RF2) 1977; 39 Hartley (RF11) 1958; 14 Worsley, Liao, Aston, Petre, Duncan, Evans (RF23) 2002; 15 Fahrmeir, Tutz (RF8) 1994 Friston, Glaser, Henson, Kiebel, Phillips, Ashburner (RF10) 2002; 16 Efron, Morris (RF5) 1973; 68 Worsley (RF22) 1994; 26 Tikhonov, Arsenin (RF21) 1977 Everitt, Bullmore (RF7) 1999; 7 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (RF9) 1995; 2 Hartvig, Jensen (RF12) 2002 Harville (RF13) 1977; 72 Efron, Morris (RF6) 1977; May Holmes, Friston (RF15) 1998 Laird, Ware (RF17) 1982; 38 Descombes, Kruggel, von Cramon (RF4) 1998; 8 Lee, P. M. 1997, Bayesian Statistics: An Introduction, Wiley, New York. Phillips, C, Rugg, M. D, and, Friston, K. J. 2002, Systematic regularisation for linear inverse solutions of the EEG source localization problem. Submitted. Dempster, Rubin, Tsutakawa (RF3) 1981; 76 Friston (10.1006/nimg.2002.1090_RF9) 1995; 2 Neal (10.1006/nimg.2002.1090_RF19) 1998 Hartley (10.1006/nimg.2002.1090_RF11) 1958; 14 Efron (10.1006/nimg.2002.1090_RF5) 1973; 68 Efron (10.1006/nimg.2002.1090_RF6) 1977; May Everitt (10.1006/nimg.2002.1090_RF7) 1999; 7 Dempster (10.1006/nimg.2002.1090_RF2) 1977; 39 10.1006/nimg.2002.1090_RF20 Kass (10.1006/nimg.2002.1090_RF16) 1989; 407 Worsley (10.1006/nimg.2002.1090_RF22) 1994; 26 Friston (10.1006/nimg.2002.1090_RF10) 2002; 16 Fahrmeir (10.1006/nimg.2002.1090_RF8) 1994 Descombes (10.1006/nimg.2002.1090_RF4) 1998; 8 Holmes (10.1006/nimg.2002.1090_RF15) 1998 10.1006/nimg.2002.1090_RF18 Copas (10.1006/nimg.2002.1090_RF1) 1983; 45 Tikhonov (10.1006/nimg.2002.1090_RF21) 1977 Dempster (10.1006/nimg.2002.1090_RF3) 1981; 76 Harville (10.1006/nimg.2002.1090_RF13) 1977; 72 Hartvig (10.1006/nimg.2002.1090_RF12) 2002 Højen-Sørensen (10.1006/nimg.2002.1090_RF14) 2000 Laird (10.1006/nimg.2002.1090_RF17) 1982; 38 Worsley (10.1006/nimg.2002.1090_RF23) 2002; 15 |
References_xml | – volume: 16 start-page: 484 year: 2002 end-page: 512 ident: RF10 article-title: Classical and Bayesian inference in neuroimaging: Applications publication-title: NeuroImage – volume: May start-page: 119 year: 1977 end-page: 127 ident: RF6 article-title: Stein's paradox in statistics publication-title: Sci. Am. – reference: Lee, P. M. 1997, Bayesian Statistics: An Introduction, Wiley, New York. – volume: 14 start-page: 174 year: 1958 end-page: 194 ident: RF11 article-title: Maximum likelihood estimation from incomplete data publication-title: Biometrics – volume: 15 start-page: 1 year: 2002 end-page: 15 ident: RF23 article-title: A general statistical analysis for fMRI data publication-title: NeuroImage – volume: 68 start-page: 117 year: 1973 end-page: 130 ident: RF5 article-title: Stein's estimation rule and its competitors—An empirical Bayes approach publication-title: J. Am. Stat. Assoc. – start-page: S754 year: 1998 ident: RF15 article-title: Generalizability, random effects and population inference publication-title: NeuroImage – volume: 407 start-page: 717 year: 1989 end-page: 726 ident: RF16 article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models) publication-title: J. Am. Stat. Assoc. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: RF2 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Series B – start-page: 355 year: 1998 end-page: 368 ident: RF19 article-title: A view of the EM algorithm that justifies incremental, sparse and other variants publication-title: Learning in Graphical Models – volume: 45 start-page: 311 year: 1983 end-page: 354 ident: RF1 article-title: Regression prediction and shrinkage publication-title: J. R. Statistical Soc. Series B – year: 2002 ident: RF12 article-title: Spatial mixture modelling of fMRI data publication-title: Hum. Brain Mapp. – reference: Phillips, C, Rugg, M. D, and, Friston, K. J. 2002, Systematic regularisation for linear inverse solutions of the EEG source localization problem. Submitted. – volume: 76 start-page: 341 year: 1981 end-page: 353 ident: RF3 article-title: Estimation in covariance component models publication-title: J. Am. Stat. Assoc. – volume: 38 start-page: 963 year: 1982 end-page: 974 ident: RF17 article-title: Random effects models for longitudinal data publication-title: Biometrics – volume: 26 start-page: 13 year: 1994 end-page: 42 ident: RF22 article-title: Local Maxima and the expected Euler characteristic of excursion sets of chi squared, publication-title: Adv. Appl. Prob. – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: RF9 article-title: Statistical parametric maps in functional imaging: A general linear approach publication-title: Hum. Brain Mapp. – start-page: 754 year: 2000 end-page: 760 ident: RF14 article-title: Bayesian modelling of fMRI time-series publication-title: Advances in Neural Information Processing Systems – volume: 72 start-page: 320 year: 1977 end-page: 338 ident: RF13 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. – year: 1994 ident: RF8 publication-title: Multivariate Statistical Modelling Based on Generalized Linear Models – year: 1977 ident: RF21 publication-title: Solution of Ill Posed Problems – volume: 8 start-page: 340 year: 1998 end-page: 349 ident: RF4 article-title: fMRI signal restoration using a spatio-temporal Markov random field preserving transitions publication-title: NeuroImage – volume: 7 start-page: 1 year: 1999 end-page: 14 ident: RF7 article-title: Mixture model mapping of brain activation in functional magnetic resonance images publication-title: Hum. Brain Mapp. – volume: 2 start-page: 189 year: 1995 ident: 10.1006/nimg.2002.1090_RF9 article-title: Statistical parametric maps in functional imaging: A general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – year: 1994 ident: 10.1006/nimg.2002.1090_RF8 – start-page: 754 year: 2000 ident: 10.1006/nimg.2002.1090_RF14 article-title: Bayesian modelling of fMRI time-series – ident: 10.1006/nimg.2002.1090_RF18 – volume: 16 start-page: 484 year: 2002 ident: 10.1006/nimg.2002.1090_RF10 article-title: Classical and Bayesian inference in neuroimaging: Applications publication-title: NeuroImage doi: 10.1006/nimg.2002.1091 – volume: 68 start-page: 117 year: 1973 ident: 10.1006/nimg.2002.1090_RF5 article-title: Stein's estimation rule and its competitors—An empirical Bayes approach publication-title: J. Am. Stat. Assoc. – volume: 38 start-page: 963 year: 1982 ident: 10.1006/nimg.2002.1090_RF17 article-title: Random effects models for longitudinal data publication-title: Biometrics doi: 10.2307/2529876 – start-page: 355 year: 1998 ident: 10.1006/nimg.2002.1090_RF19 article-title: A view of the EM algorithm that justifies incremental, sparse and other variants – volume: 15 start-page: 1 year: 2002 ident: 10.1006/nimg.2002.1090_RF23 article-title: A general statistical analysis for fMRI data publication-title: NeuroImage doi: 10.1006/nimg.2001.0933 – volume: 76 start-page: 341 year: 1981 ident: 10.1006/nimg.2002.1090_RF3 article-title: Estimation in covariance component models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1981.10477653 – year: 2002 ident: 10.1006/nimg.2002.1090_RF12 article-title: Spatial mixture modelling of fMRI data publication-title: Hum. Brain Mapp. – volume: 407 start-page: 717 year: 1989 ident: 10.1006/nimg.2002.1090_RF16 article-title: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models) publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1989.10478825 – ident: 10.1006/nimg.2002.1090_RF20 doi: 10.1006/nimg.2002.1175 – volume: 8 start-page: 340 year: 1998 ident: 10.1006/nimg.2002.1090_RF4 article-title: fMRI signal restoration using a spatio-temporal Markov random field preserving transitions publication-title: NeuroImage doi: 10.1006/nimg.1998.0372 – volume: May start-page: 119 year: 1977 ident: 10.1006/nimg.2002.1090_RF6 article-title: Stein's paradox in statistics publication-title: Sci. Am. doi: 10.1038/scientificamerican0577-119 – start-page: S754 year: 1998 ident: 10.1006/nimg.2002.1090_RF15 article-title: Generalizability, random effects and population inference publication-title: NeuroImage doi: 10.1016/S1053-8119(18)31587-8 – volume: 26 start-page: 13 year: 1994 ident: 10.1006/nimg.2002.1090_RF22 article-title: Local Maxima and the expected Euler characteristic of excursion sets of chi squared, F and t fields publication-title: Adv. Appl. Prob. doi: 10.2307/1427576 – volume: 39 start-page: 1 year: 1977 ident: 10.1006/nimg.2002.1090_RF2 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 72 start-page: 320 year: 1977 ident: 10.1006/nimg.2002.1090_RF13 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1977.10480998 – year: 1977 ident: 10.1006/nimg.2002.1090_RF21 – volume: 45 start-page: 311 year: 1983 ident: 10.1006/nimg.2002.1090_RF1 article-title: Regression prediction and shrinkage publication-title: J. R. Statistical Soc. Series B doi: 10.1111/j.2517-6161.1983.tb01258.x – volume: 7 start-page: 1 year: 1999 ident: 10.1006/nimg.2002.1090_RF7 article-title: Mixture model mapping of brain activation in functional magnetic resonance images publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:1<1::AID-HBM1>3.0.CO;2-H – volume: 14 start-page: 174 year: 1958 ident: 10.1006/nimg.2002.1090_RF11 article-title: Maximum likelihood estimation from incomplete data publication-title: Biometrics doi: 10.2307/2527783 |
RestrictionsOnAccess | open access |
SSID | ssj0009148 |
Score | 2.29877 |
Snippet | This paper reviews hierarchical observation models, used in functional neuroimaging, in a Bayesian light. It emphasizes the common ground shared by classical... |
SourceID | liege proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 465 |
SubjectTerms | Algorithms Bayes Theorem Bayesian inference Brain - physiology Diagnostic Imaging EM algorithm fMRI Hierarchical models Humans Likelihood Functions Linear Models Magnetic Resonance Imaging Models, Neurological Neurosciences & behavior Neurosciences & comportement PET Random effects ReML Sciences sociales & comportementales, psychologie Social & behavioral sciences, psychology Statistics as Topic - methods Tomography, Emission-Computed |
Title | Classical and Bayesian Inference in Neuroimaging: Theory |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811902910906 https://dx.doi.org/10.1006/nimg.2002.1090 https://www.ncbi.nlm.nih.gov/pubmed/12030832 https://www.proquest.com/docview/71750979 http://orbi.ulg.ac.be/handle/2268/84738 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SLJReSt_ZtE19KPRQXMuWLFu9JSFh05KltA3kJvTaYNh4Q7obyCW_vTOyndDD5pCTjdGAPBrNQ6P5BuCToC5FwfPUWAxRBAsyVczXabA-d9ZjuG2pOPlkKien4vtZebYBB0MtDF2r7HV_p9Ojtu6_ZD03s8umyX6jZ4DmBg1aoeh2odyEUcGVRNEe7R3_mEzvsXdz0VXElTwlggG7kcmsbS7O4z0FglVi62zTaE4J7PU-aLRFR8_hWe9EJnvdPF_ARmhfwpOTPk3-CurY6pLYn5jWJ_vmJlCtZHI8VPclTZtEWI7mInYp-pZ0Nfqv4fTo8M_BJO1bJKSu5HKZ1gH3G3MCvThfy0p4I9AmBx9UFdwsV6b0lRURdGVmuMDYxMiglOUU1oXS8zew1S7asA2Jd8zMHLNWlg6NFLdSWetEZZVhON6NIR2Yo12PH05tLOa6Qz6WmphJbS0LSmuzMXy-G3_ZIWesHZkNvNZDPShqMI1KfS1Ffkfxn7Q8SPMlLqNeXNlGXxeagLXj-2p-ro3TNmj0RWuN9prXY_g4LLbGDUdZFNOGxeqvxvgXnaxKjeFtJwP3f1cQ-A8vdh4xu3fwNPaZiec772FrebUKH9DdWdpd2Px6m-_2Qo3P_cPpz1__ADWd_kg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCiXirYUttCSQ6UeUBpv7DgxN4qKlpblUpC4WX4tirRkEd2txIXfzoyTgDhsD71F0VhyxuN5ZGa-AfgiaEpR8Dw1FkMUwYJMFfNVGqwfOusx3LbUnDw-l6NL8fOquFqB474XhsoqO93f6vSorbs3WcfN7Laus9_oGaC5QYOWK6oulK9gTdAbFOpvD891Hmoo2n64gqdE3iM3Mpk19c11rFIgUCW2zDKtTSl9vdwDjZboZBPedC5kctTu8i2shOYdrI-7JPl7qOKgS2J-YhqffDf3gTolk9O-ty-pmySCctQ3cUbRYdJ26G_B5cmPi-NR2g1ISF3B5TytAt425gT6cL6SpfBGoEUOPqgyuMlQmcKXVkTIlYnhAiMTI4NSllNQFwrPP8BqM2vCDiTeMTNxzFpZODRR3EplrROlVYYhvRtA2jNHuw49nIZYTHWLeyw1MZOGWuaU1GYD-PpEf9viZiylzHpe674bFPWXRpW-dMXwacULWfnnmoN4jHp2Z2v9N9cEqx2fF9NrbZy2QaMnWmm01rwawH5_2BqvG-VQTBNmiz8ao190sUo1gO1WBp6_LifoH55__I_d7cPr0cX4TJ-dnv_ahY04cSb-6dmD1fndInxCx2duP0fBfgRVCv1y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+Bayesian+Inference+in+Neuroimaging%3A+Theory&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Friston%2C+K.J.&rft.au=Penny%2C+W.&rft.au=Phillips%2C+C.&rft.au=Kiebel%2C+S.&rft.date=2002-06-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=16&rft.issue=2&rft.spage=465&rft.epage=483&rft_id=info:doi/10.1006%2Fnimg.2002.1090&rft.externalDocID=S1053811902910906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |