Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine
Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human co...
Saved in:
Published in | Infection and Immunity Vol. 77; no. 7; pp. 2876 - 2886 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.07.2009
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10⁵ CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10⁵ CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10³ to 10⁴ CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10⁶ to 10⁷ CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine. |
---|---|
AbstractList | Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10(5) CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10(5) CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10(3) to 10(4) CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10(6) to 10(7) CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine. Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue IAI About IAI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy Connect to IAI IAI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0019-9567 Online ISSN: 1098-5522 Copyright © 2014 by the American Society for Microbiology. For an alternate route to IAI .asm.org, visit: IAI Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 105 CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 105 CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (103 to 104 CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (106 to 107 CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine. Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains ( E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10 5 CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10 5 CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10 3 to 10 4 CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10 6 to 10 7 CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine. Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10⁵ CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10⁵ CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10³ to 10⁴ CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10⁶ to 10⁷ CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine. |
Author | Leatham, Mary P Cohen, Paul S Banerjee, Swati Autieri, Steven M Mercado-Lubo, Regino Conway, Tyrrell |
AuthorAffiliation | Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, 1 Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019 2 |
AuthorAffiliation_xml | – name: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, 1 Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019 2 |
Author_xml | – sequence: 1 fullname: Leatham, Mary P – sequence: 2 fullname: Banerjee, Swati – sequence: 3 fullname: Autieri, Steven M – sequence: 4 fullname: Mercado-Lubo, Regino – sequence: 5 fullname: Conway, Tyrrell – sequence: 6 fullname: Cohen, Paul S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21661358$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19364832$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1v0zAYB_AIDbFucOMM5gAnUvwSv3FA2qqyVhoaUrez5ThOY5TYnZ1u2j4EnxmXVgNOnCzLPz9-Hv9PiiMfvC2K1whOEcLi0_JsOYUQUllC-ayYIChFSSnGR8UEQiRLSRk_Lk5S-pG3VVWJF8UxkoRVguBJ8fN7tCb0wbtH24DFdtAezMIwWJ90D-bJdDY60zkNsnJgNUbtfAIrG-8s0AlocK5jdDaCMYD5dK-uEOWfFxxcxHA_dsB5MHZ2d9duxjA8GOfL62j1mF_8FrbJgqUfbRqdty-L563uk311WE-Lm6_z69mivLy6WM7OLktDCRtLwXVNCLc1w1wj3lQGSt60jYS4FhJhCqVmDGppiSRtVbeCk0Y0mDPGcG0qclp82dfdbOvBNsb6PFivNtENOj6ooJ3698S7Tq3DncIcCkp5LvDhUCCG221uXg0uGdv32ts8kmK8gggR8l-IUSWpoDLDj3toYkgp2vapGwTVLmmVk1a_k1Zwx9_8PcEffIg2g_cHoJPRfRu1Ny49OYwYQ4SK7N7tXefW3b2LVuk0KJd_gHPFFRacZfN2b1odlF7HXOdmhSEiELGKk0qSX0XZx2o |
CODEN | INFIBR |
CitedBy_id | crossref_primary_10_1038_s41559_022_01930_9 crossref_primary_10_1016_j_ijmm_2014_10_003 crossref_primary_10_1128_IAI_05820_11 crossref_primary_10_1128_mBio_01628_17 crossref_primary_10_1128_msystems_01383_21 crossref_primary_10_3390_antibiotics4030337 crossref_primary_10_1146_annurev_micro_091014_104115 crossref_primary_10_1080_19490976_2023_2235067 crossref_primary_10_1128_AEM_01866_19 crossref_primary_10_1007_s13213_011_0308_4 crossref_primary_10_1038_s41385_018_0053_0 crossref_primary_10_1016_j_crohns_2014_06_001 crossref_primary_10_1128_microbiolspec_MBP_0006_2014 crossref_primary_10_1371_journal_pone_0280499 crossref_primary_10_1111_cmi_12300 crossref_primary_10_1128_AEM_01686_09 crossref_primary_10_1128_AEM_02166_18 crossref_primary_10_3748_wjg_v29_i11_1651 crossref_primary_10_1128_ecosalplus_esp_0006_2023 crossref_primary_10_1128_IAI_00653_12 crossref_primary_10_1073_pnas_1716241115 crossref_primary_10_3389_fmicb_2018_00947 crossref_primary_10_3390_biology13030142 crossref_primary_10_1016_j_mib_2017_05_007 crossref_primary_10_1038_s41564_017_0095_1 crossref_primary_10_1128_mSphere_00276_20 crossref_primary_10_1152_ajpgi_00261_2022 crossref_primary_10_1128_iai_00206_22 crossref_primary_10_3389_fimmu_2015_00555 crossref_primary_10_1111_j_1574_6976_2012_00328_x crossref_primary_10_1080_19490976_2022_2068367 crossref_primary_10_3389_fmicb_2021_703421 crossref_primary_10_1007_s10565_021_09587_z crossref_primary_10_1016_j_micinf_2016_07_005 crossref_primary_10_1080_1745039X_2019_1641376 crossref_primary_10_3109_08910600903444267 crossref_primary_10_1099_mic_0_001175 crossref_primary_10_1146_annurev_genet_120213_092421 crossref_primary_10_1136_gutjnl_2014_309059 crossref_primary_10_3390_v14051110 crossref_primary_10_1089_fpd_2014_1826 crossref_primary_10_1586_14787210_2014_920252 crossref_primary_10_3389_fimmu_2022_1085551 crossref_primary_10_4291_wjgp_v3_i1_27 crossref_primary_10_1093_femsre_fuac008 crossref_primary_10_4049_jimmunol_1403169 crossref_primary_10_1016_j_cub_2020_01_050 crossref_primary_10_1016_j_mib_2017_05_012 crossref_primary_10_3390_ijms22126597 crossref_primary_10_1186_s13015_016_0087_3 crossref_primary_10_1098_rspb_2020_3106 crossref_primary_10_1128_iai_00587_21 crossref_primary_10_1128_IAI_06193_11 crossref_primary_10_1016_j_foodres_2024_114491 crossref_primary_10_1186_s12864_018_5167_y crossref_primary_10_1016_j_celrep_2015_02_049 crossref_primary_10_1128_mSphere_00847_19 crossref_primary_10_1038_s41522_023_00454_9 crossref_primary_10_1371_journal_pbio_3000617 crossref_primary_10_1146_annurev_micro_020420_013457 crossref_primary_10_1093_femsre_fuaa052 crossref_primary_10_1128_IAI_02943_14 crossref_primary_10_3389_fmicb_2018_00929 crossref_primary_10_1371_journal_pone_0053957 crossref_primary_10_1093_glycob_cwt045 crossref_primary_10_1016_j_tree_2016_03_006 crossref_primary_10_1128_mSphere_00055_15 crossref_primary_10_3390_cancers13050996 crossref_primary_10_3390_microorganisms6040115 crossref_primary_10_1016_j_mib_2010_10_003 crossref_primary_10_1128_iai_00482_23 crossref_primary_10_3389_fvets_2022_937866 crossref_primary_10_3389_fcimb_2023_1237164 crossref_primary_10_1152_ajpgi_00070_2014 crossref_primary_10_1242_dmm_035063 crossref_primary_10_1016_j_otc_2016_08_004 crossref_primary_10_1016_j_ijmm_2012_11_006 crossref_primary_10_1016_j_aninu_2023_06_004 crossref_primary_10_3390_ijms241411688 crossref_primary_10_1038_nri3430 crossref_primary_10_1128_IAI_05395_11 crossref_primary_10_3389_fcimb_2021_716299 crossref_primary_10_1128_mBio_01470_20 crossref_primary_10_5409_wjcp_v2_i4_46 crossref_primary_10_1016_j_chom_2015_08_007 crossref_primary_10_1111_jam_14789 crossref_primary_10_1016_j_molmed_2023_08_006 crossref_primary_10_3390_nu14030527 crossref_primary_10_1073_pnas_1608858113 crossref_primary_10_1016_j_molcel_2020_03_001 crossref_primary_10_1038_s41564_019_0658_4 crossref_primary_10_2217_fmb_2016_0079 crossref_primary_10_1016_j_tim_2012_04_001 crossref_primary_10_1128_IAI_01199_10 crossref_primary_10_3389_fmicb_2019_00977 crossref_primary_10_1080_17474086_2017_1288566 crossref_primary_10_4161_gmic_18754 crossref_primary_10_1093_humupd_dmy012 crossref_primary_10_3390_antibiotics11070875 crossref_primary_10_1371_journal_pone_0022823 crossref_primary_10_1080_10408398_2016_1203286 crossref_primary_10_3390_ani13162577 crossref_primary_10_1371_journal_pcbi_1009341 crossref_primary_10_1097_MPG_0000000000001154 crossref_primary_10_1016_j_medmic_2022_100054 crossref_primary_10_1038_ncomms15028 crossref_primary_10_1038_s41467_022_28163_5 crossref_primary_10_1128_IAI_01435_13 crossref_primary_10_1002_pro_4272 crossref_primary_10_1038_s41598_020_77789_2 crossref_primary_10_1128_JB_00353_19 crossref_primary_10_1111_1462_2920_14380 crossref_primary_10_1093_ibd_izy177 crossref_primary_10_1371_journal_ppat_1000711 crossref_primary_10_1038_s41598_021_81813_4 crossref_primary_10_1371_journal_ppat_1004527 crossref_primary_10_15252_embr_201642282 crossref_primary_10_1186_s12934_020_01465_3 crossref_primary_10_1186_s12866_015_0591_5 crossref_primary_10_3390_ijms161125957 crossref_primary_10_1128_mBio_02237_15 crossref_primary_10_1016_j_chempr_2017_02_001 crossref_primary_10_1038_ismej_2012_164 crossref_primary_10_1371_journal_pone_0050020 crossref_primary_10_1128_AEM_04143_15 crossref_primary_10_1186_1756_0500_7_331 crossref_primary_10_1093_femsle_fnad110 crossref_primary_10_1146_annurev_micro_090816_093549 crossref_primary_10_1038_ni_2608 crossref_primary_10_3390_nu6125786 crossref_primary_10_1128_IAI_00880_10 crossref_primary_10_1038_ncomms10039 crossref_primary_10_1186_s40168_021_01102_0 crossref_primary_10_1128_IAI_01149_13 crossref_primary_10_1089_hs_2020_0010 crossref_primary_10_1016_j_jff_2021_104661 crossref_primary_10_1007_s40588_023_00207_4 crossref_primary_10_1038_s41564_022_01286_7 crossref_primary_10_1111_1462_2920_12019 crossref_primary_10_1038_s41467_023_36337_y |
Cites_doi | 10.1128/iai.40.1.62-69.1983 10.1007/978-1-4615-9412-3_3 10.1016/j.jbiotec.2005.01.008 10.1146/annurev.mi.31.100177.000431 10.1128/iai.39.2.676-685.1983 10.1046/j.1462-2920.1999.00001.x 10.1128/iai.64.9.3504-3511.1996 10.1006/mpat.1994.1076 10.1128/JB.185.6.1831-1840.2003 10.1128/iai.57.10.3022-3029.1989 10.1128/IAI.01386-07 10.1128/IAI.00052-07 10.1073/pnas.120163297 10.1128/IAI.74.3.1977-1983.2006 10.1128/CDLI.6.3.434-436.1999 10.1016/0022-2836(72)90108-8 10.1128/IAI.71.4.2142-2152.2003 10.1099/mic.0.2006/002006-0 10.1093/oxfordjournals.molbev.a025847 10.1099/00222615-6-4-461 10.1128/iai.39.2.686-703.1983 10.1126/science.277.5331.1453 10.1038/nrmicro818 10.1139/m75-013 10.1128/iai.56.5.1030-1035.1988 10.1128/JB.184.21.5912-5925.2002 10.1016/S0076-6879(95)53026-6 10.1007/s002840010257 10.1017/S0022172400021653 10.1128/JB.186.16.5432-5441.2004 10.1128/iai.64.9.3497-3503.1996 10.1128/iai.58.5.1281-1289.1990 10.1016/0016-5085(90)91241-W 10.1128/IAI.00822-07 10.1128/iai.62.11.5191-5194.1994 10.1073/pnas.0307888101 10.1017/S0950268800047944 10.1007/BF01781204 10.1371/journal.pgen.0040002 10.1093/infdis/113.1.59 10.1128/IAI.72.3.1666-1676.2004 10.1128/iai.58.12.3959-3965.1990 10.1056/NEJM198303243081203 10.1099/mic.0.26396-0 10.1128/jcm.33.6.1602-1605.1995 10.1128/IAI.73.12.8039-8049.2005 10.3181/00379727-86-21030 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS Copyright © 2009, American Society for Microbiology |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright © 2009, American Society for Microbiology |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 7T7 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1128/IAI.00059-09 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-5522 |
EndPage | 2886 |
ExternalDocumentID | 10_1128_IAI_00059_09 19364832 21661358 iai_77_7_2876 US201301647349 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R56 AI048945 – fundername: NIAID NIH HHS grantid: AI48945 – fundername: NIAID NIH HHS grantid: R01 AI048945 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S ABOCM ACGFO ADBBV AENEX AFMIJ AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 D0S DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ O9- OHT OK1 P2P RHF RHI RNS RPM RSF SJN TR2 TWZ UCJ UPT VH1 VQA W2D W8F WH7 WHG WOQ X7M XFK Y6R ZA5 ZGI ZXP ~KM 08R AAPBV AAUGY H13 IQODW AGVNZ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 7T7 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c536t-87ab337eb627a17d4c097dfd902b8912509a660a9e393f4bf873d8d276662bc43 |
IEDL.DBID | RPM |
ISSN | 0019-9567 |
IngestDate | Tue Sep 17 21:09:19 EDT 2024 Fri Oct 25 22:59:12 EDT 2024 Fri Oct 25 03:26:10 EDT 2024 Fri Dec 06 03:36:14 EST 2024 Sat Nov 02 12:15:07 EDT 2024 Sun Oct 22 16:04:42 EDT 2023 Wed May 18 15:27:11 EDT 2016 Wed Dec 27 19:17:08 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Human Streptomycin Microbiology Digestive system Colibacillosis Escherichia coli Rodentia Gut Immunity Infection Vertebrata Antibiotic Mammalia Mouse Aminoglycoside Bacteriosis Bacteria Protein synthesis inhibitor Antibacterial agent Enterobacteriaceae |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-87ab337eb627a17d4c097dfd902b8912509a660a9e393f4bf873d8d276662bc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881. Phone: (401) 874-5920. Fax: (401) 874-2202. E-mail: pco1697u@mail.uri.edu Editor: B. A. McCormick |
OpenAccessLink | https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1068&context=cmb_facpubs |
PMID | 19364832 |
PQID | 21495859 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pascalfrancis_primary_21661358 crossref_primary_10_1128_IAI_00059_09 proquest_miscellaneous_67401133 fao_agris_US201301647349 highwire_asm_iai_77_7_2876 pubmed_primary_19364832 proquest_miscellaneous_21495859 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708557 |
PublicationCentury | 2000 |
PublicationDate | 2009-07-01 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Infection and Immunity |
PublicationTitleAlternate | Infect Immun |
PublicationYear | 2009 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | (e_1_3_2_14_2) 2007 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 (e_1_3_2_51_2) 2008; 6 e_1_3_2_41_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_45_2 (e_1_3_2_21_2) 1988 e_1_3_2_24_2 e_1_3_2_47_2 (e_1_3_2_32_2) 1983 e_1_3_2_60_2 (e_1_3_2_5_2) 1996; 2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_3_2 (e_1_3_2_22_2) 1992 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 (e_1_3_2_48_2) 1998 e_1_3_2_27_2 e_1_3_2_29_2 (e_1_3_2_20_2) 1983 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 (e_1_3_2_13_2) 2005 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 (e_1_3_2_40_2) 1978; 1 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 (e_1_3_2_37_2) 2005 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_11_2 (e_1_3_2_33_2) 1984; 14 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_36_2 e_1_3_2_2_2 (e_1_3_2_55_2) 2005; 21 |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1128/iai.40.1.62-69.1983 – ident: e_1_3_2_39_2 doi: 10.1007/978-1-4615-9412-3_3 – ident: e_1_3_2_56_2 doi: 10.1016/j.jbiotec.2005.01.008 – ident: e_1_3_2_19_2 doi: 10.1146/annurev.mi.31.100177.000431 – ident: e_1_3_2_23_2 doi: 10.1128/iai.39.2.676-685.1983 – start-page: 33 year: 1983 ident: e_1_3_2_20_2 publication-title: Human intestinal microflora in health and disease – ident: e_1_3_2_41_2 doi: 10.1046/j.1462-2920.1999.00001.x – ident: e_1_3_2_58_2 doi: 10.1128/iai.64.9.3504-3511.1996 – ident: e_1_3_2_49_2 doi: 10.1006/mpat.1994.1076 – ident: e_1_3_2_17_2 doi: 10.1128/JB.185.6.1831-1840.2003 – ident: e_1_3_2_42_2 doi: 10.1128/iai.57.10.3022-3029.1989 – ident: e_1_3_2_18_2 doi: 10.1128/IAI.01386-07 – ident: e_1_3_2_27_2 doi: 10.1128/IAI.00052-07 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.120163297 – ident: e_1_3_2_26_2 doi: 10.1128/IAI.74.3.1977-1983.2006 – ident: e_1_3_2_53_2 doi: 10.1128/CDLI.6.3.434-436.1999 – ident: e_1_3_2_25_2 doi: 10.1016/0022-2836(72)90108-8 – ident: e_1_3_2_44_2 – ident: e_1_3_2_47_2 doi: 10.1128/IAI.71.4.2142-2152.2003 – ident: e_1_3_2_34_2 doi: 10.1099/mic.0.2006/002006-0 – ident: e_1_3_2_6_2 doi: 10.1093/oxfordjournals.molbev.a025847 – volume: 6 start-page: 417 year: 2008 ident: e_1_3_2_51_2 publication-title: Cell Host Microbe – ident: e_1_3_2_2_2 doi: 10.1099/00222615-6-4-461 – ident: e_1_3_2_24_2 doi: 10.1128/iai.39.2.686-703.1983 – ident: e_1_3_2_7_2 doi: 10.1126/science.277.5331.1453 – start-page: 175 year: 2007 ident: e_1_3_2_14_2 publication-title: Virulence mechanisms of bacterial pathogens – ident: e_1_3_2_15_2 – ident: e_1_3_2_35_2 doi: 10.1038/nrmicro818 – ident: e_1_3_2_59_2 doi: 10.1139/m75-013 – ident: e_1_3_2_62_2 doi: 10.1128/iai.56.5.1030-1035.1988 – ident: e_1_3_2_31_2 doi: 10.1128/JB.184.21.5912-5925.2002 – start-page: 111 year: 1992 ident: e_1_3_2_22_2 publication-title: Probiotics: the scientific basis – start-page: 199 year: 2005 ident: e_1_3_2_37_2 publication-title: Colonization of mucosal surfaces – ident: e_1_3_2_11_2 doi: 10.1016/S0076-6879(95)53026-6 – volume: 1 start-page: 1119 year: 1978 ident: e_1_3_2_40_2 publication-title: Lancet – start-page: 311 year: 1983 ident: e_1_3_2_32_2 publication-title: Human intestinal microflora in health and disease – ident: e_1_3_2_60_2 doi: 10.1007/s002840010257 – ident: e_1_3_2_61_2 doi: 10.1017/S0022172400021653 – ident: e_1_3_2_30_2 doi: 10.1128/JB.186.16.5432-5441.2004 – ident: e_1_3_2_57_2 doi: 10.1128/iai.64.9.3497-3503.1996 – volume: 2 start-page: 2460 year: 1996 ident: e_1_3_2_5_2 publication-title: Escherichia coli and Salmonella typhimurium: cellular and molecular biology – ident: e_1_3_2_46_2 doi: 10.1128/iai.58.5.1281-1289.1990 – ident: e_1_3_2_29_2 doi: 10.1016/0016-5085(90)91241-W – ident: e_1_3_2_4_2 doi: 10.1128/IAI.00822-07 – start-page: 357 year: 1998 ident: e_1_3_2_48_2 publication-title: Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains – ident: e_1_3_2_52_2 doi: 10.1128/iai.62.11.5191-5194.1994 – ident: e_1_3_2_10_2 doi: 10.1073/pnas.0307888101 – ident: e_1_3_2_3_2 doi: 10.1017/S0950268800047944 – volume: 21 start-page: 44 year: 2005 ident: e_1_3_2_55_2 publication-title: Curr. Opin. Gastroenterol. – ident: e_1_3_2_8_2 doi: 10.1007/BF01781204 – ident: e_1_3_2_28_2 doi: 10.1371/journal.pgen.0040002 – ident: e_1_3_2_43_2 doi: 10.1093/infdis/113.1.59 – ident: e_1_3_2_45_2 doi: 10.1128/IAI.72.3.1666-1676.2004 – ident: e_1_3_2_63_2 doi: 10.1128/iai.58.12.3959-3965.1990 – start-page: 45 year: 1988 ident: e_1_3_2_21_2 publication-title: Virulence mechanisms of bacterial pathogens. – start-page: 17 year: 2005 ident: e_1_3_2_13_2 publication-title: Colonization of mucosal surfaces – ident: e_1_3_2_54_2 doi: 10.1056/NEJM198303243081203 – ident: e_1_3_2_50_2 doi: 10.1099/mic.0.26396-0 – volume: 14 start-page: 53 year: 1984 ident: e_1_3_2_33_2 publication-title: Microecol. Theor. – ident: e_1_3_2_36_2 doi: 10.1128/jcm.33.6.1602-1605.1995 – ident: e_1_3_2_38_2 doi: 10.1128/IAI.73.12.8039-8049.2005 – ident: e_1_3_2_9_2 doi: 10.3181/00379727-86-21030 |
SSID | ssj0014448 |
Score | 2.4223342 |
Snippet | Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the... Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2876 |
SubjectTerms | Animals Anti-Bacterial Agents - administration & dosage Antibiosis Bacterial Infections Bacteriology Biological and medical sciences Colony Count, Microbial Escherichia coli Escherichia coli - classification Escherichia coli - growth & development Feces - microbiology Fundamental and applied biological sciences. Psychology Humans Intestines - microbiology Mice Microbiology Miscellaneous Streptomycin - administration & dosage |
Title | Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine |
URI | http://iai.asm.org/content/77/7/2876.abstract https://www.ncbi.nlm.nih.gov/pubmed/19364832 https://search.proquest.com/docview/21495859 https://search.proquest.com/docview/67401133 https://pubmed.ncbi.nlm.nih.gov/PMC2708557 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6lUBcUCmPpsDiAxyzm9hObHMr1ZZd0EKldqXeLCdxaKRusmrSQ_kR_c3M5FG6CC6cM4kVf-PxjOfzDCHvWejy0DFkT2XCF9KGfiKt9hV2HOURF1biBeflt3i-El8uoosdEg13YVrSfpoUk_JqPSmLy5ZbuVmn04EnNj1dHjOJ7Co5HZERbL9DiN6nDoQQvfnVPjj_cmC7MzVdHC0mbUUSP-iqhfJYKM62tqRRbqsHxYKRK2lrmK6863PxN0f0Tz7lgw3qZI887T1LetT9wTOy48p98qjrNXm7Tx4v-yz6c3J3imHwFazmny6j7TE-xYsiENHCB2Y14lggB5qCVEHP2jYSNUWz4qitqaWf7DV2uqNNRWeTTup7GMmPc0k_Q1zfXNKipOBa4rtu01TrWxjZP0cHFUZcVje1o3gWCfaldC_I6mR2fjz3-74MfhrxuAEDahPOsZkKA2xlJtJAyyzPdMASpcFjCrSN48BqxzXPRZIryTOVMQmhEktSwV-S3bIq3QGhyMJxaS5VHmUiVJl2YSxdFNs8SlCLPPJhgMZsuvIbpg1bmDKApmnRNIH2yAHgZuwPsIxmdcYwH4uV0riAR4cDmMbWa1PYwkhppIFYMfbIeAve-0FYCI4Lj5RH3g14G1h4mE2xpYNpAgmILVWk_y0RY7fDkHOPvOr04_cv9JrnEbmlOfcCWPR7-wmshbb4d6_7h__95mvypMuIIeX4Ddltrm_cW3CsmmQMIcXi67hdTr8AXMUgWg |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIqAXBOXRFGh9gGN2Ez_imFuptuxCt1TqrtSb5SQOjdTNrpr00P4IfjMzeZQuggtnT2I533g8k_k8Q8gHFro8dAzZU5nwhbKhnyir_Rg7jnLJhVV4wXl6Go3n4uuFvNggsr8L05D206QYlFeLQVlcNtzK1SId9jyx4dn0iClkV6nhJnkkudJhH6R3yQMhRGeAtQ_uv-r57iweTg4ng6YmiR-09UJ5JGLO1g6lzdwuH5QLRrakreCD5W2ni7-5on8yKh8cUcfPybPOt6SH7RpekA1X7pDHbbfJ2x3yZNrl0V-Sn2cYCF_Bfr5zGW1-5FO8KgIxLbxgVCGSBbKgKUgV9LxpJFFRNCyO2opa-tleY687Wi_paNBKfQ-l-jRW9AtE9vUlLUoKziU-61b1cnELM_szdFFhxunypnIU_0aChSndKzI_Hs2Oxn7XmcFPJY9qMKE24RzbqTBAV2UiDbTK8kwHLIk1-EyBtlEUWO245rlI8ljxLM6YgmCJJangr8lWuSzdLqHIw3FpruJcZiKMM-3CSDkZ2VwmqEce-dhDY1ZtAQ7TBC4sNoCmadA0gfbILuBm7A-wjWZ-zjAji7XSuIChvR5MY6uFKWxhlDLKQLQYeWR_Dd77SVgIrguXsUcOerwNbD3Mp9jSwWcCCYguY6n_LRFhv8OQc4-8afXj9xI6zfOIWtOcewEs-70-AruhKf_daf_efz95QJ6OZ9MTczI5_faWbLf5MSQgvyNb9fWNew9uVp3sN5vqF9xMIrY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoERUXBAXaFGh9gGN2E9uJbW6ldNkFtqzUrtSb5SQOjdTNrpr0UH4Ev5mZfJRdBBfOmcRy3sx4JvMyQ8hbFro8dAzZU5nwhbShn0irfYUTR3nEhZX4g_P0LB7PxefL6HJt1FdD2k-TYlBeLwZlcdVwK1eLdNjzxIaz6QmTyK6Sw1WWD7fIw4iDkvWJeldAEEJ0Tlj7kALInvPO1HByPBk0fUn8oO0ZymOhONs4mLZyu1xrGYyMSVvBS8vbaRd_C0f_ZFWuHVOjp-RJF1_S43Yfz8gDV-6SR-3EybtdsjPtaunPyc8ZJsPXYNM_XEabj_kUfxeBvBYecFohmgUyoSlIFfS8GSZRUXQujtqKWvrB3uC8O1ov6emglfoWRvL9WNJPkN3XV7QoKQSYeK9b1cvFHazsX2CYCitOl7eVo_hFErxM6V6Q-ej04mTsd9MZ_DTicQ1u1Cac40gVBgjLTKSBllme6YAlSkPcFGgbx4HVjmueiyRXkmcqYxISJpakgr8k2-WydPuEIhfHpblUeZSJUGXahbF0UWzzKEFd8si7HhqzaptwmCZ5YcoAmqZB0wTaI_uAm7HfwT-a-TnDqiz2S-MCLh30YBpbLUxhCyOlkQYyxtgjhxvw3i_CQghfeKQ8ctTjbcD8sKZiSwevCSQgw1SR_rdEjDMPQ849stfqx-8tdJrnEbmhOfcC2Pp78wpYRNMCvLOAg_--84jszD6OzNfJ2ZdX5HFbIkMO8muyXd_cujcQadXJYWNTvwALPiPJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precolonized+human+commensal+Escherichia+coli+strains+serve+as+a+barrier+to+E.+coli+O157%3AH7+growth+in+the+streptomycin-treated+mouse+intestine&rft.jtitle=Infection+and+immunity&rft.au=Leatham%2C+Mary+P&rft.au=Banerjee%2C+Swati&rft.au=Autieri%2C+Steven+M&rft.au=Mercado-Lubo%2C+Regino&rft.date=2009-07-01&rft.eissn=1098-5522&rft.volume=77&rft.issue=7&rft.spage=2876&rft.epage=2886&rft_id=info:doi/10.1128%2FIAI.00059-09&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon |