Coexpression of CD9 augments the ability of membrane-bound heparin-binding epidermal growth factor-like growth factor (proHB-EGF) to preserve renal epithelial cell viability
Coexpression of CD9 augments the ability of membrane-bound heparin-binding epidermal growth factor-like growth factor (proHB-EGF) to preserve renal epithelial cell viability. Transfection of renal epithelial cells (NRK 52E) with membrane-associated heparin-binding epidermal growth factor-like growth...
Saved in:
Published in | Kidney international Vol. 55; no. 1; pp. 71 - 81 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
Elsevier Inc
01.01.1999
Nature Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Coexpression of CD9 augments the ability of membrane-bound heparin-binding epidermal growth factor-like growth factor (proHB-EGF) to preserve renal epithelial cell viability.
Transfection of renal epithelial cells (NRK 52E) with membrane-associated heparin-binding epidermal growth factor-like growth factor (proHB-EGF) increased renal epithelial cell survival by promoting cell–cell and cell–extracellular matrix interactions. ProHB-EGF has been shown to form a complex in the plasma membrane with the tetraspanin CD9, an interaction that significantly increases the effectiveness of proHB-EGF as a juxtacrine mitogenic agent.
We examined whether the coexpression of proHB-EGF and CD9 would increase renal epithelial cell survival. CD9 was stably transfected into NRK 52E cells, either alone (NRKCD9) or together with proHB-EGF (NRKboth).
Juxtacrine mitogenic activity of NRKCD9 was no different than in cells transfected with vector alone (NRKvector), but was increased by NRKboth; juxtacrine mitogenic activity by NRKboth was twofold greater than when proHB-EGF was transfected alone (NRKproHB-EGF). When grown in 10% fetal calf serum, growth rates were similar among all transfectants. However, in 1% fetal calf serum, NRKproHB-EGF grew 50% faster than NRKvector or NRKCD9, and NRKboth grew 20% to 50% faster than NRKproHB-EGF at one, two, and three days of culture. NRKproHB-EGF attachment to plastic substratum at one, two, and three hours was 250% greater than that of NRKvector, and NRKboth was 20% to 30% greater than that of NRKproHB-EGF. Coating plates with either poly 2-hydroxyethyl methacrylate or the GRGDTP peptide prevented normal cell–extracellular matrix attachment, and NRKvector or NRKCD9 failed to attach or form cell–cell attachments. NRKproHB-EGF exhibited 300% and NRKboth exhibited 600% greater cell viability under these conditions. Expression of type I and type III collagen mRNA was enhanced similarly in NRKproHB-EGF and NRKboth, but the expression of β1 integrin was up-regulated only in NRKboth.
Coexpression of proHB-EGF and CD9 may render the renal epithelial cells more resistant to disruption of cell–cell and cell–matrix interactions and could accelerate the re-establishment of these attachments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1046/j.1523-1755.1999.00259.x |