Deep learning interpretation of echocardiograms

Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning appli...

Full description

Saved in:
Bibliographic Details
Published inNPJ digital medicine Vol. 3; no. 1; p. 10
Main Authors Ghorbani, Amirata, Ouyang, David, Abid, Abubakar, He, Bryan, Chen, Jonathan H., Harrington, Robert A., Liang, David H., Ashley, Euan A., Zou, James Y.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R 2  = 0.74 and R 2  = 0.70), and ejection fraction ( R 2  = 0.50), as well as predicted systemic phenotypes of age ( R 2  = 0.46), sex (AUC = 0.88), weight ( R 2  = 0.56), and height ( R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
AbstractList Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (  = 0.74 and  = 0.70), and ejection fraction (  = 0.50), as well as predicted systemic phenotypes of age (  = 0.46), sex (AUC = 0.88), weight (  = 0.56), and height (  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R 2  = 0.74 and R 2  = 0.70), and ejection fraction ( R 2  = 0.50), as well as predicted systemic phenotypes of age ( R 2  = 0.46), sex (AUC = 0.88), weight ( R 2  = 0.56), and height ( R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.74 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.70), and ejection fraction ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.50), as well as predicted systemic phenotypes of age ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.46), sex (AUC = 0.88), weight ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.56), and height ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2  = 0.74 and $${R}^{2}$$ R 2  = 0.70), and ejection fraction ( $${R}^{2}$$ R 2  = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2  = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2  = 0.56), and height ( $${R}^{2}$$ R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2 = 0.74 and $${R}^{2}$$ R 2 = 0.70), and ejection fraction ( $${R}^{2}$$ R 2 = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2 = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2 = 0.56), and height ( $${R}^{2}$$ R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R 2  = 0.74 and R 2  = 0.70), and ejection fraction ( R 2  = 0.50), as well as predicted systemic phenotypes of age ( R 2  = 0.46), sex (AUC = 0.88), weight ( R 2  = 0.56), and height ( R 2  = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2 = 0.50), as well as predicted systemic phenotypes of age (R2 = 0.46), sex (AUC = 0.88), weight (R2 = 0.56), and height (R2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation.
ArticleNumber 10
Author Zou, James Y.
Liang, David H.
Abid, Abubakar
Harrington, Robert A.
Ghorbani, Amirata
Chen, Jonathan H.
Ashley, Euan A.
Ouyang, David
He, Bryan
Author_xml – sequence: 1
  givenname: Amirata
  surname: Ghorbani
  fullname: Ghorbani, Amirata
  organization: Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: David
  orcidid: 0000-0002-3813-7518
  surname: Ouyang
  fullname: Ouyang, David
  email: ouyangd@stanford.edu
  organization: Department of Medicine, Stanford University
– sequence: 3
  givenname: Abubakar
  surname: Abid
  fullname: Abid, Abubakar
  organization: Department of Electrical Engineering, Stanford University
– sequence: 4
  givenname: Bryan
  surname: He
  fullname: He, Bryan
  organization: Department of Computer Science, Stanford University
– sequence: 5
  givenname: Jonathan H.
  surname: Chen
  fullname: Chen, Jonathan H.
  organization: Department of Medicine, Stanford University
– sequence: 6
  givenname: Robert A.
  surname: Harrington
  fullname: Harrington, Robert A.
  organization: Department of Medicine, Stanford University
– sequence: 7
  givenname: David H.
  surname: Liang
  fullname: Liang, David H.
  organization: Department of Medicine, Stanford University
– sequence: 8
  givenname: Euan A.
  orcidid: 0000-0001-9418-9577
  surname: Ashley
  fullname: Ashley, Euan A.
  organization: Department of Medicine, Stanford University
– sequence: 9
  givenname: James Y.
  orcidid: 0000-0001-8880-4764
  surname: Zou
  fullname: Zou, James Y.
  email: jamesz@stanford.edu
  organization: Department of Electrical Engineering, Stanford University, Department of Computer Science, Stanford University, Department of Biomedical Data Science, Stanford University, Chan-Zuckerberg Biohub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31993508$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1PFTEUhhsDEUR-gBtzEzduRvo17enGxCAqCQkbXTedzunQm7nttZ1L4r93LgMIJqza9Lzn6WmfN-Qg5YSEvGP0E6MCzqpkWqqGMtNQzlQDr8gxFwYaJVp-8GR_RE5rXVNKOZVgpHpNjgQzRrQUjsnZV8TtakRXUkzDKqYJy7bg5KaY0yqHFfqb7F3pYx6K29S35DC4seLp_XpCfn27-Hn-o7m6_n55_uWq8a1QU6PbtuMMpAZkupdOowfAACqgoSFoJrUSnJsgpJTIdZCBccZEh50OxmlxQi4Xbp_d2m5L3Ljyx2YX7d1BLoN1ZYp-RGuYdKajM9700vStUUH3HnpwyvPg1Mz6vLC2u26Dvcc0FTc-gz6vpHhjh3xrlQHG2j3g4z2g5N87rJPdxOpxHF3CvKuWCwlcAFX7uT_8F13nXUnzV1necgAlqaJzii0pX3KtBcPjMIzavV272LWzXbu3a2Huef_0FY8dDy7nAF8CdS6lAcu_q1-m_gWIibB2
CitedBy_id crossref_primary_10_3390_cancers13236116
crossref_primary_10_1007_s00330_023_09478_3
crossref_primary_10_1016_j_cmet_2024_02_002
crossref_primary_10_1016_j_media_2022_102648
crossref_primary_10_1002_uog_22122
crossref_primary_10_1016_j_jcmg_2021_08_015
crossref_primary_10_1053_j_jvca_2022_05_004
crossref_primary_10_1109_TMI_2022_3229136
crossref_primary_10_1002_ima_22885
crossref_primary_10_1007_s11936_020_00838_6
crossref_primary_10_1016_j_nuclcard_2024_101881
crossref_primary_10_3390_diagnostics13071298
crossref_primary_10_3390_jcm10071391
crossref_primary_10_1038_d41586_020_00819_6
crossref_primary_10_3389_fncom_2024_1423051
crossref_primary_10_1002_admt_202201702
crossref_primary_10_1038_s42256_021_00399_8
crossref_primary_10_1016_j_media_2022_102438
crossref_primary_10_1109_ACCESS_2024_3418936
crossref_primary_10_1161_CIRCIMAGING_122_014519
crossref_primary_10_1016_j_inffus_2022_11_004
crossref_primary_10_1016_j_artmed_2023_102539
crossref_primary_10_1136_heartjnl_2020_318686
crossref_primary_10_1016_j_amjmed_2022_04_032
crossref_primary_10_1016_j_ijhcs_2023_103082
crossref_primary_10_3390_s22062329
crossref_primary_10_1016_j_jcmg_2021_09_028
crossref_primary_10_1097_CRD_0000000000000691
crossref_primary_10_1161_CIRCIMAGING_123_015495
crossref_primary_10_1007_s12181_021_00466_9
crossref_primary_10_1007_s12574_023_00611_1
crossref_primary_10_7759_cureus_55991
crossref_primary_10_1016_j_ultrasmedbio_2022_06_004
crossref_primary_10_1016_j_ebiom_2021_103613
crossref_primary_10_1007_s00256_023_04447_9
crossref_primary_10_3389_fnins_2023_1118340
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_3389_fcvm_2022_829512
crossref_primary_10_1053_j_jvca_2024_01_005
crossref_primary_10_1016_j_jcmg_2021_04_018
crossref_primary_10_1002_ajum_12368
crossref_primary_10_1038_s41525_022_00320_1
crossref_primary_10_1038_s41598_021_83278_x
crossref_primary_10_1038_s41586_020_2145_8
crossref_primary_10_1213_ANE_0000000000005952
crossref_primary_10_1007_s12574_020_00496_4
crossref_primary_10_1063_5_0176850
crossref_primary_10_3389_fcvm_2022_873582
crossref_primary_10_1109_ACCESS_2020_3010326
crossref_primary_10_1016_j_compbiomed_2020_104095
crossref_primary_10_1016_j_jacc_2023_09_799
crossref_primary_10_26442_20751753_2023_1_202095
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_7759_cureus_57310
crossref_primary_10_1016_j_irbm_2023_100799
crossref_primary_10_1155_2022_4134864
crossref_primary_10_1007_s00335_023_09996_x
crossref_primary_10_1016_j_compbiomed_2021_105111
crossref_primary_10_1016_j_echo_2024_05_013
crossref_primary_10_1093_eurheartj_ehab874
crossref_primary_10_3389_fcvm_2023_1195235
crossref_primary_10_3390_life13041029
crossref_primary_10_1001_jamacardio_2021_6059
crossref_primary_10_1007_s12181_022_00548_2
crossref_primary_10_1186_s12911_021_01535_5
crossref_primary_10_1109_ACCESS_2022_3215973
crossref_primary_10_1142_S0219519423400833
crossref_primary_10_1007_s40140_021_00456_3
crossref_primary_10_1136_heartjnl_2020_317160
crossref_primary_10_1016_j_xcrm_2022_100869
crossref_primary_10_1016_j_echo_2020_07_016
crossref_primary_10_1093_eurheartj_ehaa1035
crossref_primary_10_1109_ACCESS_2021_3131518
crossref_primary_10_3390_s21238007
crossref_primary_10_1016_S2589_7500_20_30138_2
crossref_primary_10_1007_s12410_022_09563_z
crossref_primary_10_1038_s41591_021_01354_1
crossref_primary_10_1038_s41467_022_34245_1
crossref_primary_10_1097_HCO_0000000000000888
crossref_primary_10_1007_s44163_024_00114_7
crossref_primary_10_1152_ajpheart_00208_2022
crossref_primary_10_1016_j_echo_2023_07_001
crossref_primary_10_3390_cancers16091700
crossref_primary_10_1016_j_bspc_2022_103724
crossref_primary_10_3389_fcvm_2022_829553
crossref_primary_10_1038_s41598_024_52480_y
crossref_primary_10_1016_j_crbiot_2023_100164
crossref_primary_10_1001_jamacardio_2022_0183
crossref_primary_10_1016_j_echo_2022_12_014
crossref_primary_10_1038_s41746_024_01090_z
crossref_primary_10_15420_aer_2022_42
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_1186_s12911_020_01255_2
crossref_primary_10_3390_diagnostics13132155
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_3389_fmed_2024_1354070
crossref_primary_10_1007_s10554_021_02461_3
crossref_primary_10_3389_fcvm_2021_711611
crossref_primary_10_1142_S1793351X23630011
crossref_primary_10_12968_jowc_2024_33_4_229
crossref_primary_10_1016_j_cose_2023_103297
crossref_primary_10_1016_j_artmed_2024_102866
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_1016_j_compbiomed_2023_106804
crossref_primary_10_1038_s41372_023_01719_z
crossref_primary_10_1001_jamacardio_2021_0185
crossref_primary_10_15836_ccar2021_117
crossref_primary_10_1111_echo_15318
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1093_ehjci_jead280
crossref_primary_10_1016_j_echo_2024_04_017
crossref_primary_10_2139_ssrn_4184447
crossref_primary_10_1002_aet2_10733
crossref_primary_10_3390_jimaging9020048
crossref_primary_10_1038_s41591_024_02959_y
crossref_primary_10_1007_s10554_024_03095_x
crossref_primary_10_1161_CIRCRESAHA_121_318224
crossref_primary_10_1016_j_echo_2023_06_007
crossref_primary_10_1093_eurheartj_ehad456
crossref_primary_10_1073_pnas_2310012121
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1097_CORR_0000000000002612
crossref_primary_10_1093_ehjdh_ztad072
crossref_primary_10_3389_fcvm_2022_1067760
crossref_primary_10_1093_biolre_ioac105
crossref_primary_10_3390_biomedicines9070720
crossref_primary_10_1007_s11263_024_01996_x
crossref_primary_10_1109_JBHI_2023_3303573
crossref_primary_10_1111_echo_15417
crossref_primary_10_14366_usg_20102
crossref_primary_10_1002_mp_14818
crossref_primary_10_3390_sym13122439
crossref_primary_10_3389_fcvm_2022_937068
crossref_primary_10_1016_j_jacc_2023_09_800
crossref_primary_10_3390_diagnostics12102549
crossref_primary_10_3389_fphy_2024_1398393
crossref_primary_10_1038_s41598_022_25467_w
crossref_primary_10_1038_s41598_023_50735_8
crossref_primary_10_1016_j_echo_2023_01_006
crossref_primary_10_1016_j_eclinm_2021_101115
crossref_primary_10_3390_info13010015
crossref_primary_10_1016_j_cardfail_2023_12_005
crossref_primary_10_1093_bjrai_ubae008
crossref_primary_10_2217_fca_2020_0225
crossref_primary_10_3390_jcm10050921
crossref_primary_10_1007_s10554_020_02046_6
crossref_primary_10_1080_14779072_2023_2223978
crossref_primary_10_36660_abcimg_2023371i
crossref_primary_10_1016_j_media_2024_103146
crossref_primary_10_1002_jum_15527
crossref_primary_10_1016_j_echo_2023_01_015
crossref_primary_10_1038_s41467_021_25503_9
crossref_primary_10_1109_ACCESS_2020_3034367
crossref_primary_10_3389_fcvm_2021_648877
crossref_primary_10_1016_j_anclin_2021_03_012
crossref_primary_10_23736_S2723_9284_23_00249_9
crossref_primary_10_2174_1389201023666220929145220
crossref_primary_10_1109_ACCESS_2022_3206782
crossref_primary_10_1093_jamiaopen_ooae012
crossref_primary_10_3389_fcvm_2024_1345761
crossref_primary_10_3389_fcvm_2024_1397921
crossref_primary_10_4330_wjc_v15_i6_284
crossref_primary_10_1038_s43856_024_00538_3
crossref_primary_10_1038_s41372_023_01606_7
crossref_primary_10_1259_bjro_20220021
crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_1053_j_jvca_2024_02_004
crossref_primary_10_1038_s41591_021_01614_0
crossref_primary_10_1007_s11886_020_01348_4
crossref_primary_10_1038_s41551_020_00667_9
crossref_primary_10_1093_jamia_ocab061
crossref_primary_10_1097_HCO_0000000000000812
crossref_primary_10_1016_S0140_6736_20_31875_4
crossref_primary_10_1016_j_hfc_2021_11_005
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_1007_s11897_022_00547_0
crossref_primary_10_1016_j_artmed_2021_102165
crossref_primary_10_1097_ALN_0000000000005013
crossref_primary_10_1016_j_jacadv_2024_100998
crossref_primary_10_1002_jum_15868
crossref_primary_10_1038_s41598_021_01779_1
crossref_primary_10_1007_s40119_024_00368_3
crossref_primary_10_1016_j_jksuci_2024_102096
crossref_primary_10_1038_s41746_022_00720_8
crossref_primary_10_3390_rs15143498
crossref_primary_10_1001_jamacardio_2023_3142
crossref_primary_10_1016_j_ahjo_2022_100126
crossref_primary_10_1001_jamacardio_2022_0901
crossref_primary_10_1016_j_jneumeth_2021_109098
crossref_primary_10_1053_j_semnuclmed_2022_11_003
crossref_primary_10_1177_20552076221089099
crossref_primary_10_1016_j_drugalcdep_2020_108029
crossref_primary_10_1111_ijcp_13686
crossref_primary_10_1016_j_compeleceng_2022_108356
crossref_primary_10_1016_S2589_7500_20_30160_6
crossref_primary_10_1016_S2589_7500_21_00235_1
crossref_primary_10_1177_1074248420928651
Cites_doi 10.1038/s41591-019-0447-x
10.1038/s41746-017-0013-1
10.1038/nature21056
10.1161/CIRCIMAGING.108.826602
10.1016/j.echo.2010.12.008
10.1093/ehjci/jet284
10.1161/CIR.0000000000000228
10.1038/s41591-018-0177-5
10.1186/s12947-015-0015-6
10.1016/S2213-8587(18)30288-2
10.1038/s41746-018-0065-x
10.1038/s42256-019-0019-2
10.1111/jvim.14846
10.1001/jamacardio.2016.3841
10.1001/jamanetworkopen.2018.4587
10.1056/NEJMp1702071
10.1016/S0894-7317(03)00516-9
10.1161/JAHA.116.005093
10.1161/CIRCIMAGING.113.000690
10.1038/s41551-018-0195-0
10.1161/CIRCULATIONAHA.109.922286
10.1161/CIRCULATIONAHA.118.034338
10.1038/s41592-018-0111-2
10.7326/0003-4819-152-1-201001050-00007
10.1371/journal.pone.0130140
10.1378/chest.117.3.657
10.1056/NEJMoa1000367
10.1161/CIR.0b013e31820a55f5
10.1007/978-3-319-10593-2_13
10.1609/aaai.v31i1.11231
10.1007/s11263-015-0816-y
10.1109/ICCV.2017.324
10.1038/s41746-019-0196-8
10.1109/CVPR.2014.223
10.1016/j.jcmg.2016.09.001
10.1111/echo.12217
10.1609/aaai.v33i01.33013681
10.1109/CVPR.2016.308
10.1111/echo.12331
10.1007/978-1-4612-4380-9_35
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-019-0216-8
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection (Proquest)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 10
ExternalDocumentID oai_doaj_org_article_914a9b08ef9d49d596f7dc8d8a6c2fa6
10_1038_s41746_019_0216_8
31993508
Genre Journal Article
GrantInformation_xml – fundername: American College of Cardiology/ Merck Research Fellowship
– fundername: NIEHS NIH HHS
  grantid: K01 ES026837
– fundername: NIMHD NIH HHS
  grantid: R21 MD012867
– fundername: NIA NIH HHS
  grantid: P30 AG059307
– fundername: ;
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
EJD
NPM
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-755b218478e17d4a7ec88ef86fe90ff714763229f3444e27f4f12113beb7f9a73
IEDL.DBID RPM
ISSN 2398-6352
IngestDate Tue Dec 17 15:26:17 EST 2024
Tue Sep 17 21:00:27 EDT 2024
Sat Oct 26 05:53:56 EDT 2024
Thu Oct 10 17:56:55 EDT 2024
Fri Nov 22 02:41:14 EST 2024
Sat Nov 02 12:24:49 EDT 2024
Fri Oct 11 20:44:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image processing
Cardiovascular diseases
Machine learning
Language English
License The Author(s) 2020.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-755b218478e17d4a7ec88ef86fe90ff714763229f3444e27f4f12113beb7f9a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9418-9577
0000-0001-8880-4764
0000-0002-3813-7518
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981156/
PMID 31993508
PQID 2528864060
PQPubID 5061815
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_914a9b08ef9d49d596f7dc8d8a6c2fa6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6981156
proquest_miscellaneous_2348238067
proquest_journals_2528864060
crossref_primary_10_1038_s41746_019_0216_8
pubmed_primary_31993508
springer_journals_10_1038_s41746_019_0216_8
PublicationCentury 2000
PublicationDate 2020-01-24
PublicationDateYYYYMMDD 2020-01-24
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Portfolio
– name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kälsch (CR37) 2017; 6
MK, WS, DN (CR22) 2010; 152
Coudray (CR14) 2018; 24
CR38
CR36
Madani, Arnaout, Mofrad, Arnaout (CR24) 2018; 1
Madani, Ong, Tiberwal, Mofrad (CR6) 2018; 1
Bach (CR53) 2015; 10
Madani, Ong, Tiberwal, Mofrad (CR4) 2016; 67
Chen, Asch (CR7) 2017; 376
de Gonzalez A, P, JR (CR33) 2018; 6
CR8
Bhaskaran, dos Santos Silva, Leon, Douglas, Smeeth (CR32) 2010; 363
Havranek (CR3) 2015; 132
Xu, Cupples, Stokes, Liu (CR34) 2018; 1
Madu (CR35) 2000; 117
Aurigemma (CR39) 2009; 2
CR9
CR49
CR48
CR47
CR46
CR45
JA, JM (CR20) 2017; 31
CR44
CR43
CR42
Heidenreich (CR1) 2011; 123
Kou (CR27) 2014; 15
Cohen (CR2) 2010; 121
Ounkomol, Seshamani, Maleckar, Collman, Johnson (CR15) 2018; 15
CR18
CR16
Ardila (CR41) 2019; 25
CR57
CR56
CR11
CR55
CR10
CR54
CR52
CR50
Munagala (CR30) 2003; 16
Zhang (CR5) 2018; 138
Bello (CR40) 2019; 1
Abdel-Qadir (CR23) 2017; 2
Douglas (CR17) 2011; 24
Geer, Oscarsson, Engvall (CR19) 2015; 13
Poplin (CR12) 2018; 2
CR26
CR25
Esteva (CR13) 2017; 542
Baehrens (CR51) 2010; 11
CR21
Attia (CR29) 2019; 12
D’Andrea (CR31) 2013; 30
Pfaffenberger (CR28) 2013; 6
A JA (216_CR20) 2017; 31
G Aurigemma (216_CR39) 2009; 2
P Douglas (216_CR17) 2011; 24
B de Gonzalez A (216_CR33) 2018; 6
H Xu (216_CR34) 2018; 1
H Kälsch (216_CR37) 2017; 6
N Coudray (216_CR14) 2018; 24
216_CR49
S Kou (216_CR27) 2014; 15
216_CR45
216_CR46
216_CR47
216_CR48
216_CR42
216_CR43
216_CR44
D Ardila (216_CR41) 2019; 25
C Ounkomol (216_CR15) 2018; 15
P Heidenreich (216_CR1) 2011; 123
A Madani (216_CR6) 2018; 1
216_CR16
DD Geer (216_CR19) 2015; 13
216_CR18
EC Madu (216_CR35) 2000; 117
216_CR56
216_CR57
H Abdel-Qadir (216_CR23) 2017; 2
216_CR52
216_CR10
216_CR54
216_CR11
216_CR55
216_CR50
F MK (216_CR22) 2010; 152
A Esteva (216_CR13) 2017; 542
S Bach (216_CR53) 2015; 10
M Cohen (216_CR2) 2010; 121
S Pfaffenberger (216_CR28) 2013; 6
GA Bello (216_CR40) 2019; 1
A D’Andrea (216_CR31) 2013; 30
K Bhaskaran (216_CR32) 2010; 363
216_CR25
V Munagala (216_CR30) 2003; 16
JH Chen (216_CR7) 2017; 376
216_CR26
216_CR21
J Zhang (216_CR5) 2018; 138
A Madani (216_CR24) 2018; 1
D Baehrens (216_CR51) 2010; 11
R Poplin (216_CR12) 2018; 2
Z Attia (216_CR29) 2019; 12
216_CR38
A Madani (216_CR4) 2016; 67
216_CR36
E Havranek (216_CR3) 2015; 132
216_CR9
216_CR8
References_xml – ident: CR45
– volume: 25
  start-page: 954
  year: 2019
  end-page: 961
  ident: CR41
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0447-x
  contributor:
    fullname: Ardila
– ident: CR49
– volume: 1
  year: 2018
  ident: CR24
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-017-0013-1
  contributor:
    fullname: Arnaout
– ident: CR16
– volume: 30
  start-page: 1001
  year: 2013
  end-page: 1007
  ident: CR31
  article-title: Left atrial volume index in healthy subjects: clinical and echocardiographic correlates
  publication-title: Echocardiography
  contributor:
    fullname: D’Andrea
– volume: 542
  start-page: 115
  year: 2017
  ident: CR13
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
  contributor:
    fullname: Esteva
– volume: 2
  start-page: 282
  year: 2009
  end-page: 289
  ident: CR39
  article-title: Left atrial volume and geometry in healthy aging: the cardiovascular health study
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.108.826602
  contributor:
    fullname: Aurigemma
– ident: CR54
– ident: CR8
– ident: CR25
– volume: 67
  start-page: 502
  year: 2016
  end-page: 511
  ident: CR4
  article-title: US hospital use of echocardiography: Insights from the nationwide inpatient sample
  publication-title: J. Am. Coll. Cardiol.
  contributor:
    fullname: Mofrad
– volume: 24
  start-page: 229
  year: 2011
  end-page: 267
  ident: CR17
  article-title: Accf/ase/aha/asnc/hfsa/hrs/scai/sccm/scct/scmr 2011 appropriate use criteria for echocardiography
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2010.12.008
  contributor:
    fullname: Douglas
– ident: CR42
– volume: 15
  start-page: 680
  year: 2014
  end-page: 690
  ident: CR27
  article-title: Echocardiographic reference ranges for normal cardiac chamber size: results from the norre study
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jet284
  contributor:
    fullname: Kou
– ident: CR21
– volume: 132
  start-page: 873
  year: 2015
  end-page: 898
  ident: CR3
  article-title: Social determinants of risk and outcomes of cardiovascular disease a scientific statement from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000228
  contributor:
    fullname: Havranek
– volume: 24
  start-page: 1559
  year: 2018
  ident: CR14
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
  contributor:
    fullname: Coudray
– volume: 13
  start-page: 19
  year: 2015
  ident: CR19
  article-title: Variability in echocardiographic measurements of left ventricular function in septic shock patients
  publication-title: J. Cardiovasc Ultrasound.
  doi: 10.1186/s12947-015-0015-6
  contributor:
    fullname: Engvall
– ident: CR46
– volume: 6
  start-page: 944
  year: 2018
  end-page: 953
  ident: CR33
  article-title: Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30288-2
  contributor:
    fullname: JR
– volume: 1
  year: 2018
  ident: CR6
  article-title: Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-018-0065-x
  contributor:
    fullname: Mofrad
– ident: CR50
– volume: 1
  start-page: 95
  year: 2019
  ident: CR40
  article-title: Deep-learning cardiac motion analysis for human survival prediction
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0019-2
  contributor:
    fullname: Bello
– volume: 31
  start-page: 1622
  year: 2017
  end-page: 1628
  ident: CR20
  article-title: Echocardiographic variables used to estimate pulmonary artery pressure in dogs
  publication-title: J. Vet. Intern. Med.
  doi: 10.1111/jvim.14846
  contributor:
    fullname: JM
– volume: 2
  start-page: 88
  year: 2017
  end-page: 93
  ident: CR23
  article-title: A population-based study of cardiovascular mortality following early-stage breast cancer
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2016.3841
  contributor:
    fullname: Abdel-Qadir
– ident: CR11
– ident: CR9
– ident: CR57
– volume: 1
  year: 2018
  ident: CR34
  article-title: Association of obesity with mortality over 24 years of weight history findings from the framingham heart study
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2018.4587
  contributor:
    fullname: Liu
– volume: 376
  start-page: 2507
  year: 2017
  ident: CR7
  article-title: Machine learning and prediction in medicine-beyond the peak of inflated expectations
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1702071
  contributor:
    fullname: Asch
– ident: CR36
– volume: 16
  start-page: 1049
  year: 2003
  end-page: 1056
  ident: CR30
  article-title: Association of newer diastolic function parameters with age in healthy subjects: a population-based study
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/S0894-7317(03)00516-9
  contributor:
    fullname: Munagala
– volume: 6
  year: 2017
  ident: CR37
  article-title: Aortic calcification onset and progression: Association with the development of coronary atherosclerosis
  publication-title: J Am Heart Assoc.
  doi: 10.1161/JAHA.116.005093
  contributor:
    fullname: Kälsch
– volume: 6
  start-page: 1073
  year: 2013
  end-page: 1079
  ident: CR28
  article-title: Size matters! Impact of age, sex, height, and weight on the normal heart size
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.113.000690
  contributor:
    fullname: Pfaffenberger
– ident: CR26
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 2
  start-page: 158
  year: 2018
  ident: CR12
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: Poplin
– volume: 11
  start-page: 1803
  year: 2010
  end-page: 1831
  ident: CR51
  article-title: How to explain individual classification decisions
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Baehrens
– ident: CR10
– ident: CR56
– volume: 121
  start-page: 2294
  year: 2010
  end-page: 2301
  ident: CR2
  article-title: Racial and ethnic differences in the treatment of acute myocardial infarction: findings from the get with the guidelines-coronary artery disease program
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.922286
  contributor:
    fullname: Cohen
– volume: 138
  start-page: 1623
  year: 2018
  end-page: 1635
  ident: CR5
  article-title: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 917
  year: 2018
  ident: CR15
  article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0111-2
  contributor:
    fullname: Johnson
– ident: CR44
– volume: 152
  start-page: 26
  year: 2010
  end-page: 35
  ident: CR22
  article-title: Systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-152-1-201001050-00007
  contributor:
    fullname: DN
– ident: CR48
– volume: 10
  year: 2015
  ident: CR53
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0130140
  contributor:
    fullname: Bach
– ident: CR38
– ident: CR52
– volume: 117
  start-page: 657
  year: 2000
  end-page: 661
  ident: CR35
  article-title: Transesophageal dobutamine stress echocardiography in the evaluation of myocardial ischemia in morbidly obese subjects
  publication-title: Chest.
  doi: 10.1378/chest.117.3.657
  contributor:
    fullname: Madu
– volume: 12
  year: 2019
  ident: CR29
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ecgs
  publication-title: Circ.: Arrhythm. Electrophysiol.
  contributor:
    fullname: Attia
– volume: 363
  start-page: 2211
  year: 2010
  end-page: 2219
  ident: CR32
  article-title: Body-mass index and mortality among 1.46 million white adults
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1000367
  contributor:
    fullname: Smeeth
– ident: CR55
– volume: 123
  start-page: 933
  year: 2011
  end-page: 944
  ident: CR1
  article-title: Forecasting the future of cardiovascular disease in the united states: a policy statement from the american heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e31820a55f5
  contributor:
    fullname: Heidenreich
– volume: 12
  year: 2019
  ident: 216_CR29
  publication-title: Circ.: Arrhythm. Electrophysiol.
  contributor:
    fullname: Z Attia
– ident: 216_CR8
  doi: 10.1007/978-3-319-10593-2_13
– ident: 216_CR54
– volume: 15
  start-page: 680
  year: 2014
  ident: 216_CR27
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jet284
  contributor:
    fullname: S Kou
– volume: 152
  start-page: 26
  year: 2010
  ident: 216_CR22
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-152-1-201001050-00007
  contributor:
    fullname: F MK
– ident: 216_CR10
  doi: 10.1609/aaai.v31i1.11231
– ident: 216_CR50
– volume: 15
  start-page: 917
  year: 2018
  ident: 216_CR15
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0111-2
  contributor:
    fullname: C Ounkomol
– ident: 216_CR9
  doi: 10.1007/s11263-015-0816-y
– volume: 2
  start-page: 88
  year: 2017
  ident: 216_CR23
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2016.3841
  contributor:
    fullname: H Abdel-Qadir
– volume: 1
  year: 2018
  ident: 216_CR24
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-017-0013-1
  contributor:
    fullname: A Madani
– ident: 216_CR44
– volume: 1
  year: 2018
  ident: 216_CR6
  publication-title: npj Digital Med.
  doi: 10.1038/s41746-018-0065-x
  contributor:
    fullname: A Madani
– volume: 542
  start-page: 115
  year: 2017
  ident: 216_CR13
  publication-title: Nature
  doi: 10.1038/nature21056
  contributor:
    fullname: A Esteva
– ident: 216_CR25
– volume: 67
  start-page: 502
  year: 2016
  ident: 216_CR4
  publication-title: J. Am. Coll. Cardiol.
  contributor:
    fullname: A Madani
– ident: 216_CR48
  doi: 10.1109/ICCV.2017.324
– ident: 216_CR16
  doi: 10.1038/s41746-019-0196-8
– ident: 216_CR21
– ident: 216_CR55
– volume: 25
  start-page: 954
  year: 2019
  ident: 216_CR41
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0447-x
  contributor:
    fullname: D Ardila
– volume: 1
  start-page: 95
  year: 2019
  ident: 216_CR40
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0019-2
  contributor:
    fullname: GA Bello
– volume: 6
  year: 2017
  ident: 216_CR37
  publication-title: J Am Heart Assoc.
  doi: 10.1161/JAHA.116.005093
  contributor:
    fullname: H Kälsch
– volume: 376
  start-page: 2507
  year: 2017
  ident: 216_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1702071
  contributor:
    fullname: JH Chen
– ident: 216_CR11
  doi: 10.1109/CVPR.2014.223
– ident: 216_CR38
  doi: 10.1016/j.jcmg.2016.09.001
– ident: 216_CR45
– volume: 117
  start-page: 657
  year: 2000
  ident: 216_CR35
  publication-title: Chest.
  doi: 10.1378/chest.117.3.657
  contributor:
    fullname: EC Madu
– volume: 123
  start-page: 933
  year: 2011
  ident: 216_CR1
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e31820a55f5
  contributor:
    fullname: P Heidenreich
– ident: 216_CR49
– volume: 11
  start-page: 1803
  year: 2010
  ident: 216_CR51
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: D Baehrens
– volume: 138
  start-page: 1623
  year: 2018
  ident: 216_CR5
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
  contributor:
    fullname: J Zhang
– volume: 2
  start-page: 282
  year: 2009
  ident: 216_CR39
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.108.826602
  contributor:
    fullname: G Aurigemma
– volume: 121
  start-page: 2294
  year: 2010
  ident: 216_CR2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.922286
  contributor:
    fullname: M Cohen
– volume: 363
  start-page: 2211
  year: 2010
  ident: 216_CR32
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1000367
  contributor:
    fullname: K Bhaskaran
– ident: 216_CR52
– volume: 13
  start-page: 19
  year: 2015
  ident: 216_CR19
  publication-title: J. Cardiovasc Ultrasound.
  doi: 10.1186/s12947-015-0015-6
  contributor:
    fullname: DD Geer
– volume: 24
  start-page: 229
  year: 2011
  ident: 216_CR17
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2010.12.008
  contributor:
    fullname: P Douglas
– ident: 216_CR46
– volume: 6
  start-page: 1073
  year: 2013
  ident: 216_CR28
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.113.000690
  contributor:
    fullname: S Pfaffenberger
– volume: 30
  start-page: 1001
  year: 2013
  ident: 216_CR31
  publication-title: Echocardiography
  doi: 10.1111/echo.12217
  contributor:
    fullname: A D’Andrea
– volume: 6
  start-page: 944
  year: 2018
  ident: 216_CR33
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30288-2
  contributor:
    fullname: B de Gonzalez A
– volume: 1
  year: 2018
  ident: 216_CR34
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2018.4587
  contributor:
    fullname: H Xu
– volume: 16
  start-page: 1049
  year: 2003
  ident: 216_CR30
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/S0894-7317(03)00516-9
  contributor:
    fullname: V Munagala
– volume: 132
  start-page: 873
  year: 2015
  ident: 216_CR3
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000228
  contributor:
    fullname: E Havranek
– ident: 216_CR42
– ident: 216_CR56
  doi: 10.1609/aaai.v33i01.33013681
– ident: 216_CR57
– volume: 24
  start-page: 1559
  year: 2018
  ident: 216_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
  contributor:
    fullname: N Coudray
– ident: 216_CR36
– volume: 31
  start-page: 1622
  year: 2017
  ident: 216_CR20
  publication-title: J. Vet. Intern. Med.
  doi: 10.1111/jvim.14846
  contributor:
    fullname: A JA
– ident: 216_CR43
  doi: 10.1109/CVPR.2016.308
– ident: 216_CR18
  doi: 10.1111/echo.12331
– volume: 10
  year: 2015
  ident: 216_CR53
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0130140
  contributor:
    fullname: S Bach
– volume: 2
  start-page: 158
  year: 2018
  ident: 216_CR12
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: R Poplin
– ident: 216_CR47
  doi: 10.1007/978-1-4612-4380-9_35
– ident: 216_CR26
SSID ssj0002048946
Score 2.5981112
Snippet Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most...
Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10
SubjectTerms 631/114/1305
631/114/1564
692/699/75
Biomedicine
Biotechnology
Deep learning
Digital technology
Health informatics
Medicine
Medicine & Public Health
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHlAvFYUCoQUFqaeiaLP2-OtYWqoKqT21Um-WHdtQDtmK3f7_jp3s0lAQFy45xD6M3ovtN5nRM8ChUCqo2CLlJiHSw3eNYcI1pLRFTjGcLP87Li7l-TV-vRE3j676yj1hgz3wANzMzNEZ3-qYTEAThJFJhU4H7WTHkhvMtlv2KJn6UcprqA3KdRmT69kSSXvn5Nk0FINs9OQgKn79fxKZT3slfyuYlnPo7AXsjAKyPh4C34VnsX8Jzy_GEvkrmJ3GeFePl0F8q28nTYX1ItWRNryudKHmxqzlHlyffbk6OW_GWxGaTnC5apQQPudlSse5CuhU7DSho2WKpk1JzZG2DMZM4ogYmUqYso0b99GrZJzir2GrX_TxLdSEIcZsIYXBk6wKjnvsQlBOe814hxUcrSGyd4P5hS1Fa67tgKclPG3G0-oKPmcQNxOzb3V5QWzakU37LzYrOFhTYMfFtLRMMK0lKY-2go-bYVoGubbh-ri4pznZpIdrOnsreDMwtomE5yZFEqIVqAmXk1CnI_3t92K1LY0myUxhfVqz_iusvyLx7n8gsQ_bLKf27bxheABbq5_38T3pn5X_UD71BxMpAJQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLanmGtihInEDWJn77hKClqpDKiUp7s_wsvSTb7vb_M_Y6W4XXJYfEh8mMPfONZ_QNQu-5lEHGjkFuEiI8nMeacIsBafOcYlhR7jsuvovzS_ZtyZf1wm1d2yonn1gcdRh9viNfEE6UEhB-uk-rG5ynRuXqah2h8RA96gmEctjPcil3dyyZlFYzMRUzqVqsGSDwnEJrDJIIrGbhqLD2_w1q_tkx-VvZtESjs330tMLI9vPW7gfoQRyeoccXtVD-HC1OY1y1dSTEVXs9ay1sx9RGcHu-9KLm9qz1C3R59vXHyTmusxGw51RssOTc5exMqtjLwKyMXqmYlEhRdynJnoHjIEQnyhiLRCaWMpkbddHJpK2kL9HeMA7xNWqVFSxmIikWHICrYKljPgRplVOEetagD5OKzGpLgWFK6Zoqs9WnAX2arE-jGvQlK3G3MLNXlxfj7ZWph8HonlntOpBXB6YD1yLJ4FUASTxJVjToaDKBqUdqbe43QIPe7T7DYcgVDjvE8Q7WZKoeqiACN-jV1mI7SWhuVQQ42iA5s-VM1PmX4fpnIdwWWgFwBrE-Tla_F-ufmnjz_584RE9ITt27HhN2hPY2t3fxGPDNxr0tm_gXSVj27w
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkBCXqqWFhgJKpZ5AEVl7_DqWpWiFtJyKxM2yYxu4ZFF3-f8dZ7OLUuiBSw6xLY1mJp5vPJPPAD-EUkHFGik3CZEevqkME64ipC1yiuFkd94xvZGTW7y-E3c9WXT-F2ZQv-f6fI4EmXPOaypaKiu9CdsUglV25rEcr49TMv-sQbmqW761chB5OoL-t1Dl6-bIfyqkXeC5-ggfesRY_lya-BNsxHYPdqZ9TfwznF_G-FT2tz_cl4-DLsJylspIO1zTtZ3mTqz5F7i9-vV7PKn6axCqRnC5qJQQPidiSseRCuhUbLSOScsUTZ2SGiHtEYyZxBExMpUwZd427qNXyTjF92GrnbXxK5TaSYyZMwqDJxwVHPfYhKCc9prxBgs4XanIPi3ZLmxXpebaLvVpSZ8269PqAi6yEtcTM1F194LsZ3u_t2aEzvia5DUBTRBGJhUaHUiShiUnCzhamcD2X8_cMsG0lgQ16gK-r4fJ73Mxw7Vx9kxzMisP1xRsCzhYWmwtCc9diYQ8C1ADWw5EHY60jw8dt7Y0mjAyiXW2svqLWP_VxOG7Zn-DXZaT9npUMTyCrcWf53hMyGbhTzqf_gs7du91
  priority: 102
  providerName: Springer Nature
Title Deep learning interpretation of echocardiograms
URI https://link.springer.com/article/10.1038/s41746-019-0216-8
https://www.ncbi.nlm.nih.gov/pubmed/31993508
https://www.proquest.com/docview/2528864060
https://search.proquest.com/docview/2348238067
https://pubmed.ncbi.nlm.nih.gov/PMC6981156
https://doaj.org/article/914a9b08ef9d49d596f7dc8d8a6c2fa6
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SFEovpe-qTY0KPbUokrXvo-MmBINDaBvwbdG-EpdGNrHz_zu7lty4j0svEmgXdpjZxzc7n2YAPjAhnPAVRd_EeXwYW6iaNQUibRZdjIan-47pOT-7pJMZm-0B6_-FSaR9a-ZH7Y-bo3Z-nbiVyxtb9jyx8mI65koikOHlPuzj8XvPRf-eImtUKsr7CCaR5Yoi7I5-sypweF7EGn0kEtdYLCp57zhKWfv_BjX_ZEz-FjZNp9HpE3jcwch8tBH3Kez59hk8nHaB8udQfvZ-mXclIa7y-Q61MF-E3OO2ZxMXNdKzVi_g8vTk2_is6GojFJYRvi4EYyZ6Z0L6oXC0Ed5K6YPkwasqBDGkuHHUtQqEUuprEWiIydyI8UYE1QjyEg7aRetfQy4bTn1MJEWdQXDlGmKodU400siaWJrBx15FerlJgaFT6JpIvVGtRtXqqFotMziOStx2jNmr04fF7ZXubKjVkDbKVCivclQ5pngQzkqHktg6NDyDw94EultSK12zWkqO-KPK4P22GRdDjHA0rV_cYZ-YqodIPIEzeLWx2FaS3uIZiB1b7oi624LzLyXc7uZbBp96q_8S65-aePPf47yFR3X06qthUdNDOFjf3vl3CH3WZoATfiYG8GA0mnyd4Pv45PziC34d8_EgXScM0mL4CUc9Bes
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiDeBAkHiBLI26_h5QhRaLdBdIdRKvVl2bJdekqW7_f-Ms85W4XXJIfFhMmOPv3noG4A3XEovQ8UwNvEBH64hmnJLEGnzFGJY0ec7FksxP2VfzvhZTritc1vl4BN7R-27JuXIp5RTpQReP9X71U-Spkal6moeoXET9hJzOp_A3sHh8tv3XZYl0dJqJoZyZq2ma4YYPAXRmqAsgqjRhdTz9v8NbP7ZM_lb4bS_j47uwd0MJMsPW8vfhxuhfQC3FrlU_hCmn0JYlXkoxHl5MWouLLtYBnR8Td-Nmhq01o_g9Ojw5OOc5OkIpOG12BDJuUvxmVRhJj2zMjRKhahEDLqKUc4Yug5KdawZY4HKyGKic6tdcDJqK-vHMGm7NjyFUlnBQqKSYt4hvPK2dqzxXlrlFK0bVsDbQUVmtSXBMH3xulZmq0-D-jRJn0YVcJCUuFuY-Kv7F93lucnHwegZs9pVKK_2THuuRZS-UR4laWi0ooD9wQQmH6q1ud4CBbzefcbjkGoctg3dFa5JZD24FYQs4MnWYjtJ6tSsiIC0ADmy5UjU8Zf24kdPuS20QuiMYr0brH4t1j818ez_P_EKbs9PFsfm-PPy63O4Q1MgX80IZfsw2VxehReIdjbuZd7SvwBITftF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSouFW9SCgSJEyhN1m8foWVVHlv1QKXeLDu2yyKaXXW3_5-xN1l2eVy45BBbymhm7Pkm82kG4DWX0svQMMxNfMCHaytNuK0QafOUYliR_3dMTsXJOft0wS82Rn1l0n7rpofdj6vDbvotcyvnV2098MTqs8mR0AqBjKjnPta34Q6n6GQbifr3XF9jSjMx1DGpqhcMwXfKnnWFQogqTeqjib7G02jJjaCUe_f_DXD-yZv8rXiaY9L4Huz1YLJ8txL6PtwK3QPYnfTl8odQH4cwL_vBEJfldItgWM5iGfDyazMjNZG0Fo_gfPzh69FJ1U9IqFpOxbKSnLuUo0kVRtIzK0OrVIhKxKCbGOWI4fVBiI6UMRaIjCymlm7UBSejtpI-hp1u1oWnUCorWEjtpJh3CLG8pY613kurnCK0ZQW8GVRk5qtGGCYXsKkyK9UaVK1JqjWqgPdJieuNqYd1fjG7vjS9JY0eMatdg_Jqz7TnWkTpW-VRkpZEKwo4GExg-oO1MIQTpQSikKaAV-tlPBKpzmG7MLvBPalhD1UYhwt4srLYWpLB4gXILVtuibq9gl6Y2273XlfA28Hqv8T6pyb2__s7L2H37Hhsvnw8_fwM7pKU5jejirAD2Fle34TniIWW7kX2-p9JOgR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+interpretation+of+echocardiograms&rft.jtitle=NPJ+digital+medicine&rft.au=Ghorbani+Amirata&rft.au=Ouyang%2C+David&rft.au=Abubakar%2C+Abid&rft.au=He%2C+Bryan&rft.date=2020-01-24&rft.pub=Nature+Publishing+Group&rft.eissn=2398-6352&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-019-0216-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon