Deep learning interpretation of echocardiograms
Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning appli...
Saved in:
Published in | NPJ digital medicine Vol. 3; no. 1; p. 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (
R
2
= 0.74 and
R
2
= 0.70), and ejection fraction (
R
2
= 0.50), as well as predicted systemic phenotypes of age (
R
2
= 0.46), sex (AUC = 0.88), weight (
R
2
= 0.56), and height (
R
2
= 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. |
---|---|
AbstractList | Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (
= 0.74 and
= 0.70), and ejection fraction (
= 0.50), as well as predicted systemic phenotypes of age (
= 0.46), sex (AUC = 0.88), weight (
= 0.56), and height (
= 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R 2 = 0.74 and R 2 = 0.70), and ejection fraction ( R 2 = 0.50), as well as predicted systemic phenotypes of age ( R 2 = 0.46), sex (AUC = 0.88), weight ( R 2 = 0.56), and height ( R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.74 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.70), and ejection fraction ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.50), as well as predicted systemic phenotypes of age ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.46), sex (AUC = 0.88), weight ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.56), and height ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2 = 0.74 and $${R}^{2}$$ R 2 = 0.70), and ejection fraction ( $${R}^{2}$$ R 2 = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2 = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2 = 0.56), and height ( $${R}^{2}$$ R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( $${R}^{2}$$ R 2 = 0.74 and $${R}^{2}$$ R 2 = 0.70), and ejection fraction ( $${R}^{2}$$ R 2 = 0.50), as well as predicted systemic phenotypes of age ( $${R}^{2}$$ R 2 = 0.46), sex (AUC = 0.88), weight ( $${R}^{2}$$ R 2 = 0.56), and height ( $${R}^{2}$$ R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes ( R 2 = 0.74 and R 2 = 0.70), and ejection fraction ( R 2 = 0.50), as well as predicted systemic phenotypes of age ( R 2 = 0.46), sex (AUC = 0.88), weight ( R 2 = 0.56), and height ( R 2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most common imaging modality in cardiovascular medicine. Using convolutional neural networks on a large new dataset, we show that deep learning applied to echocardiography can identify local cardiac structures, estimate cardiac function, and predict systemic phenotypes that modify cardiovascular risk but not readily identifiable to human interpretation. Our deep learning model, EchoNet, accurately identified the presence of pacemaker leads (AUC = 0.89), enlarged left atrium (AUC = 0.86), left ventricular hypertrophy (AUC = 0.75), left ventricular end systolic and diastolic volumes (R2 = 0.74 and R2 = 0.70), and ejection fraction (R2 = 0.50), as well as predicted systemic phenotypes of age (R2 = 0.46), sex (AUC = 0.88), weight (R2 = 0.56), and height (R2 = 0.33). Interpretation analysis validates that EchoNet shows appropriate attention to key cardiac structures when performing human-explainable tasks and highlights hypothesis-generating regions of interest when predicting systemic phenotypes difficult for human interpretation. Machine learning on echocardiography images can streamline repetitive tasks in the clinical workflow, provide preliminary interpretation in areas with insufficient qualified cardiologists, and predict phenotypes challenging for human evaluation. |
ArticleNumber | 10 |
Author | Zou, James Y. Liang, David H. Abid, Abubakar Harrington, Robert A. Ghorbani, Amirata Chen, Jonathan H. Ashley, Euan A. Ouyang, David He, Bryan |
Author_xml | – sequence: 1 givenname: Amirata surname: Ghorbani fullname: Ghorbani, Amirata organization: Department of Electrical Engineering, Stanford University – sequence: 2 givenname: David orcidid: 0000-0002-3813-7518 surname: Ouyang fullname: Ouyang, David email: ouyangd@stanford.edu organization: Department of Medicine, Stanford University – sequence: 3 givenname: Abubakar surname: Abid fullname: Abid, Abubakar organization: Department of Electrical Engineering, Stanford University – sequence: 4 givenname: Bryan surname: He fullname: He, Bryan organization: Department of Computer Science, Stanford University – sequence: 5 givenname: Jonathan H. surname: Chen fullname: Chen, Jonathan H. organization: Department of Medicine, Stanford University – sequence: 6 givenname: Robert A. surname: Harrington fullname: Harrington, Robert A. organization: Department of Medicine, Stanford University – sequence: 7 givenname: David H. surname: Liang fullname: Liang, David H. organization: Department of Medicine, Stanford University – sequence: 8 givenname: Euan A. orcidid: 0000-0001-9418-9577 surname: Ashley fullname: Ashley, Euan A. organization: Department of Medicine, Stanford University – sequence: 9 givenname: James Y. orcidid: 0000-0001-8880-4764 surname: Zou fullname: Zou, James Y. email: jamesz@stanford.edu organization: Department of Electrical Engineering, Stanford University, Department of Computer Science, Stanford University, Department of Biomedical Data Science, Stanford University, Chan-Zuckerberg Biohub |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31993508$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PFTEUhhsDEUR-gBtzEzduRvo17enGxCAqCQkbXTedzunQm7nttZ1L4r93LgMIJqza9Lzn6WmfN-Qg5YSEvGP0E6MCzqpkWqqGMtNQzlQDr8gxFwYaJVp-8GR_RE5rXVNKOZVgpHpNjgQzRrQUjsnZV8TtakRXUkzDKqYJy7bg5KaY0yqHFfqb7F3pYx6K29S35DC4seLp_XpCfn27-Hn-o7m6_n55_uWq8a1QU6PbtuMMpAZkupdOowfAACqgoSFoJrUSnJsgpJTIdZCBccZEh50OxmlxQi4Xbp_d2m5L3Ljyx2YX7d1BLoN1ZYp-RGuYdKajM9700vStUUH3HnpwyvPg1Mz6vLC2u26Dvcc0FTc-gz6vpHhjh3xrlQHG2j3g4z2g5N87rJPdxOpxHF3CvKuWCwlcAFX7uT_8F13nXUnzV1necgAlqaJzii0pX3KtBcPjMIzavV272LWzXbu3a2Huef_0FY8dDy7nAF8CdS6lAcu_q1-m_gWIibB2 |
CitedBy_id | crossref_primary_10_3390_cancers13236116 crossref_primary_10_1007_s00330_023_09478_3 crossref_primary_10_1016_j_cmet_2024_02_002 crossref_primary_10_1016_j_media_2022_102648 crossref_primary_10_1002_uog_22122 crossref_primary_10_1016_j_jcmg_2021_08_015 crossref_primary_10_1053_j_jvca_2022_05_004 crossref_primary_10_1109_TMI_2022_3229136 crossref_primary_10_1002_ima_22885 crossref_primary_10_1007_s11936_020_00838_6 crossref_primary_10_1016_j_nuclcard_2024_101881 crossref_primary_10_3390_diagnostics13071298 crossref_primary_10_3390_jcm10071391 crossref_primary_10_1038_d41586_020_00819_6 crossref_primary_10_3389_fncom_2024_1423051 crossref_primary_10_1002_admt_202201702 crossref_primary_10_1038_s42256_021_00399_8 crossref_primary_10_1016_j_media_2022_102438 crossref_primary_10_1109_ACCESS_2024_3418936 crossref_primary_10_1161_CIRCIMAGING_122_014519 crossref_primary_10_1016_j_inffus_2022_11_004 crossref_primary_10_1016_j_artmed_2023_102539 crossref_primary_10_1136_heartjnl_2020_318686 crossref_primary_10_1016_j_amjmed_2022_04_032 crossref_primary_10_1016_j_ijhcs_2023_103082 crossref_primary_10_3390_s22062329 crossref_primary_10_1016_j_jcmg_2021_09_028 crossref_primary_10_1097_CRD_0000000000000691 crossref_primary_10_1161_CIRCIMAGING_123_015495 crossref_primary_10_1007_s12181_021_00466_9 crossref_primary_10_1007_s12574_023_00611_1 crossref_primary_10_7759_cureus_55991 crossref_primary_10_1016_j_ultrasmedbio_2022_06_004 crossref_primary_10_1016_j_ebiom_2021_103613 crossref_primary_10_1007_s00256_023_04447_9 crossref_primary_10_3389_fnins_2023_1118340 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_3389_fcvm_2022_829512 crossref_primary_10_1053_j_jvca_2024_01_005 crossref_primary_10_1016_j_jcmg_2021_04_018 crossref_primary_10_1002_ajum_12368 crossref_primary_10_1038_s41525_022_00320_1 crossref_primary_10_1038_s41598_021_83278_x crossref_primary_10_1038_s41586_020_2145_8 crossref_primary_10_1213_ANE_0000000000005952 crossref_primary_10_1007_s12574_020_00496_4 crossref_primary_10_1063_5_0176850 crossref_primary_10_3389_fcvm_2022_873582 crossref_primary_10_1109_ACCESS_2020_3010326 crossref_primary_10_1016_j_compbiomed_2020_104095 crossref_primary_10_1016_j_jacc_2023_09_799 crossref_primary_10_26442_20751753_2023_1_202095 crossref_primary_10_3390_bioengineering11030219 crossref_primary_10_7759_cureus_57310 crossref_primary_10_1016_j_irbm_2023_100799 crossref_primary_10_1155_2022_4134864 crossref_primary_10_1007_s00335_023_09996_x crossref_primary_10_1016_j_compbiomed_2021_105111 crossref_primary_10_1016_j_echo_2024_05_013 crossref_primary_10_1093_eurheartj_ehab874 crossref_primary_10_3389_fcvm_2023_1195235 crossref_primary_10_3390_life13041029 crossref_primary_10_1001_jamacardio_2021_6059 crossref_primary_10_1007_s12181_022_00548_2 crossref_primary_10_1186_s12911_021_01535_5 crossref_primary_10_1109_ACCESS_2022_3215973 crossref_primary_10_1142_S0219519423400833 crossref_primary_10_1007_s40140_021_00456_3 crossref_primary_10_1136_heartjnl_2020_317160 crossref_primary_10_1016_j_xcrm_2022_100869 crossref_primary_10_1016_j_echo_2020_07_016 crossref_primary_10_1093_eurheartj_ehaa1035 crossref_primary_10_1109_ACCESS_2021_3131518 crossref_primary_10_3390_s21238007 crossref_primary_10_1016_S2589_7500_20_30138_2 crossref_primary_10_1007_s12410_022_09563_z crossref_primary_10_1038_s41591_021_01354_1 crossref_primary_10_1038_s41467_022_34245_1 crossref_primary_10_1097_HCO_0000000000000888 crossref_primary_10_1007_s44163_024_00114_7 crossref_primary_10_1152_ajpheart_00208_2022 crossref_primary_10_1016_j_echo_2023_07_001 crossref_primary_10_3390_cancers16091700 crossref_primary_10_1016_j_bspc_2022_103724 crossref_primary_10_3389_fcvm_2022_829553 crossref_primary_10_1038_s41598_024_52480_y crossref_primary_10_1016_j_crbiot_2023_100164 crossref_primary_10_1001_jamacardio_2022_0183 crossref_primary_10_1016_j_echo_2022_12_014 crossref_primary_10_1038_s41746_024_01090_z crossref_primary_10_15420_aer_2022_42 crossref_primary_10_1038_s41746_020_00376_2 crossref_primary_10_1186_s12911_020_01255_2 crossref_primary_10_3390_diagnostics13132155 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1007_s12265_022_10260_x crossref_primary_10_3389_fmed_2024_1354070 crossref_primary_10_1007_s10554_021_02461_3 crossref_primary_10_3389_fcvm_2021_711611 crossref_primary_10_1142_S1793351X23630011 crossref_primary_10_12968_jowc_2024_33_4_229 crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1016_j_artmed_2024_102866 crossref_primary_10_3390_jimaging9020050 crossref_primary_10_1016_j_compbiomed_2023_106804 crossref_primary_10_1038_s41372_023_01719_z crossref_primary_10_1001_jamacardio_2021_0185 crossref_primary_10_15836_ccar2021_117 crossref_primary_10_1111_echo_15318 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1093_ehjci_jead280 crossref_primary_10_1016_j_echo_2024_04_017 crossref_primary_10_2139_ssrn_4184447 crossref_primary_10_1002_aet2_10733 crossref_primary_10_3390_jimaging9020048 crossref_primary_10_1038_s41591_024_02959_y crossref_primary_10_1007_s10554_024_03095_x crossref_primary_10_1161_CIRCRESAHA_121_318224 crossref_primary_10_1016_j_echo_2023_06_007 crossref_primary_10_1093_eurheartj_ehad456 crossref_primary_10_1073_pnas_2310012121 crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_1097_CORR_0000000000002612 crossref_primary_10_1093_ehjdh_ztad072 crossref_primary_10_3389_fcvm_2022_1067760 crossref_primary_10_1093_biolre_ioac105 crossref_primary_10_3390_biomedicines9070720 crossref_primary_10_1007_s11263_024_01996_x crossref_primary_10_1109_JBHI_2023_3303573 crossref_primary_10_1111_echo_15417 crossref_primary_10_14366_usg_20102 crossref_primary_10_1002_mp_14818 crossref_primary_10_3390_sym13122439 crossref_primary_10_3389_fcvm_2022_937068 crossref_primary_10_1016_j_jacc_2023_09_800 crossref_primary_10_3390_diagnostics12102549 crossref_primary_10_3389_fphy_2024_1398393 crossref_primary_10_1038_s41598_022_25467_w crossref_primary_10_1038_s41598_023_50735_8 crossref_primary_10_1016_j_echo_2023_01_006 crossref_primary_10_1016_j_eclinm_2021_101115 crossref_primary_10_3390_info13010015 crossref_primary_10_1016_j_cardfail_2023_12_005 crossref_primary_10_1093_bjrai_ubae008 crossref_primary_10_2217_fca_2020_0225 crossref_primary_10_3390_jcm10050921 crossref_primary_10_1007_s10554_020_02046_6 crossref_primary_10_1080_14779072_2023_2223978 crossref_primary_10_36660_abcimg_2023371i crossref_primary_10_1016_j_media_2024_103146 crossref_primary_10_1002_jum_15527 crossref_primary_10_1016_j_echo_2023_01_015 crossref_primary_10_1038_s41467_021_25503_9 crossref_primary_10_1109_ACCESS_2020_3034367 crossref_primary_10_3389_fcvm_2021_648877 crossref_primary_10_1016_j_anclin_2021_03_012 crossref_primary_10_23736_S2723_9284_23_00249_9 crossref_primary_10_2174_1389201023666220929145220 crossref_primary_10_1109_ACCESS_2022_3206782 crossref_primary_10_1093_jamiaopen_ooae012 crossref_primary_10_3389_fcvm_2024_1345761 crossref_primary_10_3389_fcvm_2024_1397921 crossref_primary_10_4330_wjc_v15_i6_284 crossref_primary_10_1038_s43856_024_00538_3 crossref_primary_10_1038_s41372_023_01606_7 crossref_primary_10_1259_bjro_20220021 crossref_primary_10_3390_diagnostics13121995 crossref_primary_10_1053_j_jvca_2024_02_004 crossref_primary_10_1038_s41591_021_01614_0 crossref_primary_10_1007_s11886_020_01348_4 crossref_primary_10_1038_s41551_020_00667_9 crossref_primary_10_1093_jamia_ocab061 crossref_primary_10_1097_HCO_0000000000000812 crossref_primary_10_1016_S0140_6736_20_31875_4 crossref_primary_10_1016_j_hfc_2021_11_005 crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_1007_s11897_022_00547_0 crossref_primary_10_1016_j_artmed_2021_102165 crossref_primary_10_1097_ALN_0000000000005013 crossref_primary_10_1016_j_jacadv_2024_100998 crossref_primary_10_1002_jum_15868 crossref_primary_10_1038_s41598_021_01779_1 crossref_primary_10_1007_s40119_024_00368_3 crossref_primary_10_1016_j_jksuci_2024_102096 crossref_primary_10_1038_s41746_022_00720_8 crossref_primary_10_3390_rs15143498 crossref_primary_10_1001_jamacardio_2023_3142 crossref_primary_10_1016_j_ahjo_2022_100126 crossref_primary_10_1001_jamacardio_2022_0901 crossref_primary_10_1016_j_jneumeth_2021_109098 crossref_primary_10_1053_j_semnuclmed_2022_11_003 crossref_primary_10_1177_20552076221089099 crossref_primary_10_1016_j_drugalcdep_2020_108029 crossref_primary_10_1111_ijcp_13686 crossref_primary_10_1016_j_compeleceng_2022_108356 crossref_primary_10_1016_S2589_7500_20_30160_6 crossref_primary_10_1016_S2589_7500_21_00235_1 crossref_primary_10_1177_1074248420928651 |
Cites_doi | 10.1038/s41591-019-0447-x 10.1038/s41746-017-0013-1 10.1038/nature21056 10.1161/CIRCIMAGING.108.826602 10.1016/j.echo.2010.12.008 10.1093/ehjci/jet284 10.1161/CIR.0000000000000228 10.1038/s41591-018-0177-5 10.1186/s12947-015-0015-6 10.1016/S2213-8587(18)30288-2 10.1038/s41746-018-0065-x 10.1038/s42256-019-0019-2 10.1111/jvim.14846 10.1001/jamacardio.2016.3841 10.1001/jamanetworkopen.2018.4587 10.1056/NEJMp1702071 10.1016/S0894-7317(03)00516-9 10.1161/JAHA.116.005093 10.1161/CIRCIMAGING.113.000690 10.1038/s41551-018-0195-0 10.1161/CIRCULATIONAHA.109.922286 10.1161/CIRCULATIONAHA.118.034338 10.1038/s41592-018-0111-2 10.7326/0003-4819-152-1-201001050-00007 10.1371/journal.pone.0130140 10.1378/chest.117.3.657 10.1056/NEJMoa1000367 10.1161/CIR.0b013e31820a55f5 10.1007/978-3-319-10593-2_13 10.1609/aaai.v31i1.11231 10.1007/s11263-015-0816-y 10.1109/ICCV.2017.324 10.1038/s41746-019-0196-8 10.1109/CVPR.2014.223 10.1016/j.jcmg.2016.09.001 10.1111/echo.12217 10.1609/aaai.v33i01.33013681 10.1109/CVPR.2016.308 10.1111/echo.12331 10.1007/978-1-4612-4380-9_35 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41746-019-0216-8 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: Health & Medical Collection (Proquest) url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2398-6352 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_914a9b08ef9d49d596f7dc8d8a6c2fa6 10_1038_s41746_019_0216_8 31993508 |
Genre | Journal Article |
GrantInformation_xml | – fundername: American College of Cardiology/ Merck Research Fellowship – fundername: NIEHS NIH HHS grantid: K01 ES026837 – fundername: NIMHD NIH HHS grantid: R21 MD012867 – fundername: NIA NIH HHS grantid: P30 AG059307 – fundername: ; |
GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP EJD NPM AAYXX CITATION 3V. 7XB 8FK AZQEC DWQXO K9. PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-755b218478e17d4a7ec88ef86fe90ff714763229f3444e27f4f12113beb7f9a73 |
IEDL.DBID | RPM |
ISSN | 2398-6352 |
IngestDate | Tue Dec 17 15:26:17 EST 2024 Tue Sep 17 21:00:27 EDT 2024 Sat Oct 26 05:53:56 EDT 2024 Thu Oct 10 17:56:55 EDT 2024 Fri Nov 22 02:41:14 EST 2024 Sat Nov 02 12:24:49 EDT 2024 Fri Oct 11 20:44:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Image processing Cardiovascular diseases Machine learning |
Language | English |
License | The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-755b218478e17d4a7ec88ef86fe90ff714763229f3444e27f4f12113beb7f9a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9418-9577 0000-0001-8880-4764 0000-0002-3813-7518 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981156/ |
PMID | 31993508 |
PQID | 2528864060 |
PQPubID | 5061815 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_914a9b08ef9d49d596f7dc8d8a6c2fa6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6981156 proquest_miscellaneous_2348238067 proquest_journals_2528864060 crossref_primary_10_1038_s41746_019_0216_8 pubmed_primary_31993508 springer_journals_10_1038_s41746_019_0216_8 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-24 |
PublicationDateYYYYMMDD | 2020-01-24 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ digital medicine |
PublicationTitleAbbrev | npj Digit. Med |
PublicationTitleAlternate | NPJ Digit Med |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – sequence: 0 name: Nature Portfolio – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kälsch (CR37) 2017; 6 MK, WS, DN (CR22) 2010; 152 Coudray (CR14) 2018; 24 CR38 CR36 Madani, Arnaout, Mofrad, Arnaout (CR24) 2018; 1 Madani, Ong, Tiberwal, Mofrad (CR6) 2018; 1 Bach (CR53) 2015; 10 Madani, Ong, Tiberwal, Mofrad (CR4) 2016; 67 Chen, Asch (CR7) 2017; 376 de Gonzalez A, P, JR (CR33) 2018; 6 CR8 Bhaskaran, dos Santos Silva, Leon, Douglas, Smeeth (CR32) 2010; 363 Havranek (CR3) 2015; 132 Xu, Cupples, Stokes, Liu (CR34) 2018; 1 Madu (CR35) 2000; 117 Aurigemma (CR39) 2009; 2 CR9 CR49 CR48 CR47 CR46 CR45 JA, JM (CR20) 2017; 31 CR44 CR43 CR42 Heidenreich (CR1) 2011; 123 Kou (CR27) 2014; 15 Cohen (CR2) 2010; 121 Ounkomol, Seshamani, Maleckar, Collman, Johnson (CR15) 2018; 15 CR18 CR16 Ardila (CR41) 2019; 25 CR57 CR56 CR11 CR55 CR10 CR54 CR52 CR50 Munagala (CR30) 2003; 16 Zhang (CR5) 2018; 138 Bello (CR40) 2019; 1 Abdel-Qadir (CR23) 2017; 2 Douglas (CR17) 2011; 24 Geer, Oscarsson, Engvall (CR19) 2015; 13 Poplin (CR12) 2018; 2 CR26 CR25 Esteva (CR13) 2017; 542 Baehrens (CR51) 2010; 11 CR21 Attia (CR29) 2019; 12 D’Andrea (CR31) 2013; 30 Pfaffenberger (CR28) 2013; 6 A JA (216_CR20) 2017; 31 G Aurigemma (216_CR39) 2009; 2 P Douglas (216_CR17) 2011; 24 B de Gonzalez A (216_CR33) 2018; 6 H Xu (216_CR34) 2018; 1 H Kälsch (216_CR37) 2017; 6 N Coudray (216_CR14) 2018; 24 216_CR49 S Kou (216_CR27) 2014; 15 216_CR45 216_CR46 216_CR47 216_CR48 216_CR42 216_CR43 216_CR44 D Ardila (216_CR41) 2019; 25 C Ounkomol (216_CR15) 2018; 15 P Heidenreich (216_CR1) 2011; 123 A Madani (216_CR6) 2018; 1 216_CR16 DD Geer (216_CR19) 2015; 13 216_CR18 EC Madu (216_CR35) 2000; 117 216_CR56 216_CR57 H Abdel-Qadir (216_CR23) 2017; 2 216_CR52 216_CR10 216_CR54 216_CR11 216_CR55 216_CR50 F MK (216_CR22) 2010; 152 A Esteva (216_CR13) 2017; 542 S Bach (216_CR53) 2015; 10 M Cohen (216_CR2) 2010; 121 S Pfaffenberger (216_CR28) 2013; 6 GA Bello (216_CR40) 2019; 1 A D’Andrea (216_CR31) 2013; 30 K Bhaskaran (216_CR32) 2010; 363 216_CR25 V Munagala (216_CR30) 2003; 16 JH Chen (216_CR7) 2017; 376 216_CR26 216_CR21 J Zhang (216_CR5) 2018; 138 A Madani (216_CR24) 2018; 1 D Baehrens (216_CR51) 2010; 11 R Poplin (216_CR12) 2018; 2 Z Attia (216_CR29) 2019; 12 216_CR38 A Madani (216_CR4) 2016; 67 216_CR36 E Havranek (216_CR3) 2015; 132 216_CR9 216_CR8 |
References_xml | – ident: CR45 – volume: 25 start-page: 954 year: 2019 end-page: 961 ident: CR41 article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x contributor: fullname: Ardila – ident: CR49 – volume: 1 year: 2018 ident: CR24 article-title: Fast and accurate view classification of echocardiograms using deep learning publication-title: npj Digital Med. doi: 10.1038/s41746-017-0013-1 contributor: fullname: Arnaout – ident: CR16 – volume: 30 start-page: 1001 year: 2013 end-page: 1007 ident: CR31 article-title: Left atrial volume index in healthy subjects: clinical and echocardiographic correlates publication-title: Echocardiography contributor: fullname: D’Andrea – volume: 542 start-page: 115 year: 2017 ident: CR13 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 contributor: fullname: Esteva – volume: 2 start-page: 282 year: 2009 end-page: 289 ident: CR39 article-title: Left atrial volume and geometry in healthy aging: the cardiovascular health study publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.108.826602 contributor: fullname: Aurigemma – ident: CR54 – ident: CR8 – ident: CR25 – volume: 67 start-page: 502 year: 2016 end-page: 511 ident: CR4 article-title: US hospital use of echocardiography: Insights from the nationwide inpatient sample publication-title: J. Am. Coll. Cardiol. contributor: fullname: Mofrad – volume: 24 start-page: 229 year: 2011 end-page: 267 ident: CR17 article-title: Accf/ase/aha/asnc/hfsa/hrs/scai/sccm/scct/scmr 2011 appropriate use criteria for echocardiography publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2010.12.008 contributor: fullname: Douglas – ident: CR42 – volume: 15 start-page: 680 year: 2014 end-page: 690 ident: CR27 article-title: Echocardiographic reference ranges for normal cardiac chamber size: results from the norre study publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jet284 contributor: fullname: Kou – ident: CR21 – volume: 132 start-page: 873 year: 2015 end-page: 898 ident: CR3 article-title: Social determinants of risk and outcomes of cardiovascular disease a scientific statement from the american heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000228 contributor: fullname: Havranek – volume: 24 start-page: 1559 year: 2018 ident: CR14 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 contributor: fullname: Coudray – volume: 13 start-page: 19 year: 2015 ident: CR19 article-title: Variability in echocardiographic measurements of left ventricular function in septic shock patients publication-title: J. Cardiovasc Ultrasound. doi: 10.1186/s12947-015-0015-6 contributor: fullname: Engvall – ident: CR46 – volume: 6 start-page: 944 year: 2018 end-page: 953 ident: CR33 article-title: Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(18)30288-2 contributor: fullname: JR – volume: 1 year: 2018 ident: CR6 article-title: Deep echocardiography: data-efficient supervised and semisupervised deep learning towards automated diagnosis of cardiac disease publication-title: npj Digital Med. doi: 10.1038/s41746-018-0065-x contributor: fullname: Mofrad – ident: CR50 – volume: 1 start-page: 95 year: 2019 ident: CR40 article-title: Deep-learning cardiac motion analysis for human survival prediction publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0019-2 contributor: fullname: Bello – volume: 31 start-page: 1622 year: 2017 end-page: 1628 ident: CR20 article-title: Echocardiographic variables used to estimate pulmonary artery pressure in dogs publication-title: J. Vet. Intern. Med. doi: 10.1111/jvim.14846 contributor: fullname: JM – volume: 2 start-page: 88 year: 2017 end-page: 93 ident: CR23 article-title: A population-based study of cardiovascular mortality following early-stage breast cancer publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2016.3841 contributor: fullname: Abdel-Qadir – ident: CR11 – ident: CR9 – ident: CR57 – volume: 1 year: 2018 ident: CR34 article-title: Association of obesity with mortality over 24 years of weight history findings from the framingham heart study publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2018.4587 contributor: fullname: Liu – volume: 376 start-page: 2507 year: 2017 ident: CR7 article-title: Machine learning and prediction in medicine-beyond the peak of inflated expectations publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1702071 contributor: fullname: Asch – ident: CR36 – volume: 16 start-page: 1049 year: 2003 end-page: 1056 ident: CR30 article-title: Association of newer diastolic function parameters with age in healthy subjects: a population-based study publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/S0894-7317(03)00516-9 contributor: fullname: Munagala – volume: 6 year: 2017 ident: CR37 article-title: Aortic calcification onset and progression: Association with the development of coronary atherosclerosis publication-title: J Am Heart Assoc. doi: 10.1161/JAHA.116.005093 contributor: fullname: Kälsch – volume: 6 start-page: 1073 year: 2013 end-page: 1079 ident: CR28 article-title: Size matters! Impact of age, sex, height, and weight on the normal heart size publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.113.000690 contributor: fullname: Pfaffenberger – ident: CR26 – ident: CR18 – ident: CR43 – ident: CR47 – volume: 2 start-page: 158 year: 2018 ident: CR12 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 contributor: fullname: Poplin – volume: 11 start-page: 1803 year: 2010 end-page: 1831 ident: CR51 article-title: How to explain individual classification decisions publication-title: Journal of Machine Learning Research contributor: fullname: Baehrens – ident: CR10 – ident: CR56 – volume: 121 start-page: 2294 year: 2010 end-page: 2301 ident: CR2 article-title: Racial and ethnic differences in the treatment of acute myocardial infarction: findings from the get with the guidelines-coronary artery disease program publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.922286 contributor: fullname: Cohen – volume: 138 start-page: 1623 year: 2018 end-page: 1635 ident: CR5 article-title: Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 contributor: fullname: Zhang – volume: 15 start-page: 917 year: 2018 ident: CR15 article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0111-2 contributor: fullname: Johnson – ident: CR44 – volume: 152 start-page: 26 year: 2010 end-page: 35 ident: CR22 article-title: Systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-152-1-201001050-00007 contributor: fullname: DN – ident: CR48 – volume: 10 year: 2015 ident: CR53 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PloS ONE doi: 10.1371/journal.pone.0130140 contributor: fullname: Bach – ident: CR38 – ident: CR52 – volume: 117 start-page: 657 year: 2000 end-page: 661 ident: CR35 article-title: Transesophageal dobutamine stress echocardiography in the evaluation of myocardial ischemia in morbidly obese subjects publication-title: Chest. doi: 10.1378/chest.117.3.657 contributor: fullname: Madu – volume: 12 year: 2019 ident: CR29 article-title: Age and sex estimation using artificial intelligence from standard 12-lead ecgs publication-title: Circ.: Arrhythm. Electrophysiol. contributor: fullname: Attia – volume: 363 start-page: 2211 year: 2010 end-page: 2219 ident: CR32 article-title: Body-mass index and mortality among 1.46 million white adults publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1000367 contributor: fullname: Smeeth – ident: CR55 – volume: 123 start-page: 933 year: 2011 end-page: 944 ident: CR1 article-title: Forecasting the future of cardiovascular disease in the united states: a policy statement from the american heart association publication-title: Circulation doi: 10.1161/CIR.0b013e31820a55f5 contributor: fullname: Heidenreich – volume: 12 year: 2019 ident: 216_CR29 publication-title: Circ.: Arrhythm. Electrophysiol. contributor: fullname: Z Attia – ident: 216_CR8 doi: 10.1007/978-3-319-10593-2_13 – ident: 216_CR54 – volume: 15 start-page: 680 year: 2014 ident: 216_CR27 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jet284 contributor: fullname: S Kou – volume: 152 start-page: 26 year: 2010 ident: 216_CR22 publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-152-1-201001050-00007 contributor: fullname: F MK – ident: 216_CR10 doi: 10.1609/aaai.v31i1.11231 – ident: 216_CR50 – volume: 15 start-page: 917 year: 2018 ident: 216_CR15 publication-title: Nat. Methods doi: 10.1038/s41592-018-0111-2 contributor: fullname: C Ounkomol – ident: 216_CR9 doi: 10.1007/s11263-015-0816-y – volume: 2 start-page: 88 year: 2017 ident: 216_CR23 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2016.3841 contributor: fullname: H Abdel-Qadir – volume: 1 year: 2018 ident: 216_CR24 publication-title: npj Digital Med. doi: 10.1038/s41746-017-0013-1 contributor: fullname: A Madani – ident: 216_CR44 – volume: 1 year: 2018 ident: 216_CR6 publication-title: npj Digital Med. doi: 10.1038/s41746-018-0065-x contributor: fullname: A Madani – volume: 542 start-page: 115 year: 2017 ident: 216_CR13 publication-title: Nature doi: 10.1038/nature21056 contributor: fullname: A Esteva – ident: 216_CR25 – volume: 67 start-page: 502 year: 2016 ident: 216_CR4 publication-title: J. Am. Coll. Cardiol. contributor: fullname: A Madani – ident: 216_CR48 doi: 10.1109/ICCV.2017.324 – ident: 216_CR16 doi: 10.1038/s41746-019-0196-8 – ident: 216_CR21 – ident: 216_CR55 – volume: 25 start-page: 954 year: 2019 ident: 216_CR41 publication-title: Nat. Med. doi: 10.1038/s41591-019-0447-x contributor: fullname: D Ardila – volume: 1 start-page: 95 year: 2019 ident: 216_CR40 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0019-2 contributor: fullname: GA Bello – volume: 6 year: 2017 ident: 216_CR37 publication-title: J Am Heart Assoc. doi: 10.1161/JAHA.116.005093 contributor: fullname: H Kälsch – volume: 376 start-page: 2507 year: 2017 ident: 216_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1702071 contributor: fullname: JH Chen – ident: 216_CR11 doi: 10.1109/CVPR.2014.223 – ident: 216_CR38 doi: 10.1016/j.jcmg.2016.09.001 – ident: 216_CR45 – volume: 117 start-page: 657 year: 2000 ident: 216_CR35 publication-title: Chest. doi: 10.1378/chest.117.3.657 contributor: fullname: EC Madu – volume: 123 start-page: 933 year: 2011 ident: 216_CR1 publication-title: Circulation doi: 10.1161/CIR.0b013e31820a55f5 contributor: fullname: P Heidenreich – ident: 216_CR49 – volume: 11 start-page: 1803 year: 2010 ident: 216_CR51 publication-title: Journal of Machine Learning Research contributor: fullname: D Baehrens – volume: 138 start-page: 1623 year: 2018 ident: 216_CR5 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 contributor: fullname: J Zhang – volume: 2 start-page: 282 year: 2009 ident: 216_CR39 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.108.826602 contributor: fullname: G Aurigemma – volume: 121 start-page: 2294 year: 2010 ident: 216_CR2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.922286 contributor: fullname: M Cohen – volume: 363 start-page: 2211 year: 2010 ident: 216_CR32 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1000367 contributor: fullname: K Bhaskaran – ident: 216_CR52 – volume: 13 start-page: 19 year: 2015 ident: 216_CR19 publication-title: J. Cardiovasc Ultrasound. doi: 10.1186/s12947-015-0015-6 contributor: fullname: DD Geer – volume: 24 start-page: 229 year: 2011 ident: 216_CR17 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2010.12.008 contributor: fullname: P Douglas – ident: 216_CR46 – volume: 6 start-page: 1073 year: 2013 ident: 216_CR28 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.113.000690 contributor: fullname: S Pfaffenberger – volume: 30 start-page: 1001 year: 2013 ident: 216_CR31 publication-title: Echocardiography doi: 10.1111/echo.12217 contributor: fullname: A D’Andrea – volume: 6 start-page: 944 year: 2018 ident: 216_CR33 publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(18)30288-2 contributor: fullname: B de Gonzalez A – volume: 1 year: 2018 ident: 216_CR34 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2018.4587 contributor: fullname: H Xu – volume: 16 start-page: 1049 year: 2003 ident: 216_CR30 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/S0894-7317(03)00516-9 contributor: fullname: V Munagala – volume: 132 start-page: 873 year: 2015 ident: 216_CR3 publication-title: Circulation doi: 10.1161/CIR.0000000000000228 contributor: fullname: E Havranek – ident: 216_CR42 – ident: 216_CR56 doi: 10.1609/aaai.v33i01.33013681 – ident: 216_CR57 – volume: 24 start-page: 1559 year: 2018 ident: 216_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 contributor: fullname: N Coudray – ident: 216_CR36 – volume: 31 start-page: 1622 year: 2017 ident: 216_CR20 publication-title: J. Vet. Intern. Med. doi: 10.1111/jvim.14846 contributor: fullname: A JA – ident: 216_CR43 doi: 10.1109/CVPR.2016.308 – ident: 216_CR18 doi: 10.1111/echo.12331 – volume: 10 year: 2015 ident: 216_CR53 publication-title: PloS ONE doi: 10.1371/journal.pone.0130140 contributor: fullname: S Bach – volume: 2 start-page: 158 year: 2018 ident: 216_CR12 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 contributor: fullname: R Poplin – ident: 216_CR47 doi: 10.1007/978-1-4612-4380-9_35 – ident: 216_CR26 |
SSID | ssj0002048946 |
Score | 2.5981112 |
Snippet | Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the most... Abstract Echocardiography uses ultrasound technology to capture high temporal and spatial resolution images of the heart and surrounding structures, and is the... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10 |
SubjectTerms | 631/114/1305 631/114/1564 692/699/75 Biomedicine Biotechnology Deep learning Digital technology Health informatics Medicine Medicine & Public Health |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHlAvFYUCoQUFqaeiaLP2-OtYWqoKqT21Um-WHdtQDtmK3f7_jp3s0lAQFy45xD6M3ovtN5nRM8ChUCqo2CLlJiHSw3eNYcI1pLRFTjGcLP87Li7l-TV-vRE3j676yj1hgz3wANzMzNEZ3-qYTEAThJFJhU4H7WTHkhvMtlv2KJn6UcprqA3KdRmT69kSSXvn5Nk0FINs9OQgKn79fxKZT3slfyuYlnPo7AXsjAKyPh4C34VnsX8Jzy_GEvkrmJ3GeFePl0F8q28nTYX1ItWRNryudKHmxqzlHlyffbk6OW_GWxGaTnC5apQQPudlSse5CuhU7DSho2WKpk1JzZG2DMZM4ogYmUqYso0b99GrZJzir2GrX_TxLdSEIcZsIYXBk6wKjnvsQlBOe814hxUcrSGyd4P5hS1Fa67tgKclPG3G0-oKPmcQNxOzb3V5QWzakU37LzYrOFhTYMfFtLRMMK0lKY-2go-bYVoGubbh-ri4pznZpIdrOnsreDMwtomE5yZFEqIVqAmXk1CnI_3t92K1LY0myUxhfVqz_iusvyLx7n8gsQ_bLKf27bxheABbq5_38T3pn5X_UD71BxMpAJQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLanmGtihInEDWJn77hKClqpDKiUp7s_wsvSTb7vb_M_Y6W4XXJYfEh8mMPfONZ_QNQu-5lEHGjkFuEiI8nMeacIsBafOcYlhR7jsuvovzS_ZtyZf1wm1d2yonn1gcdRh9viNfEE6UEhB-uk-rG5ynRuXqah2h8RA96gmEctjPcil3dyyZlFYzMRUzqVqsGSDwnEJrDJIIrGbhqLD2_w1q_tkx-VvZtESjs330tMLI9vPW7gfoQRyeoccXtVD-HC1OY1y1dSTEVXs9ay1sx9RGcHu-9KLm9qz1C3R59vXHyTmusxGw51RssOTc5exMqtjLwKyMXqmYlEhRdynJnoHjIEQnyhiLRCaWMpkbddHJpK2kL9HeMA7xNWqVFSxmIikWHICrYKljPgRplVOEetagD5OKzGpLgWFK6Zoqs9WnAX2arE-jGvQlK3G3MLNXlxfj7ZWph8HonlntOpBXB6YD1yLJ4FUASTxJVjToaDKBqUdqbe43QIPe7T7DYcgVDjvE8Q7WZKoeqiACN-jV1mI7SWhuVQQ42iA5s-VM1PmX4fpnIdwWWgFwBrE-Tla_F-ufmnjz_584RE9ITt27HhN2hPY2t3fxGPDNxr0tm_gXSVj27w priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkBCXqqWFhgJKpZ5AEVl7_DqWpWiFtJyKxM2yYxu4ZFF3-f8dZ7OLUuiBSw6xLY1mJp5vPJPPAD-EUkHFGik3CZEevqkME64ipC1yiuFkd94xvZGTW7y-E3c9WXT-F2ZQv-f6fI4EmXPOaypaKiu9CdsUglV25rEcr49TMv-sQbmqW761chB5OoL-t1Dl6-bIfyqkXeC5-ggfesRY_lya-BNsxHYPdqZ9TfwznF_G-FT2tz_cl4-DLsJylspIO1zTtZ3mTqz5F7i9-vV7PKn6axCqRnC5qJQQPidiSseRCuhUbLSOScsUTZ2SGiHtEYyZxBExMpUwZd427qNXyTjF92GrnbXxK5TaSYyZMwqDJxwVHPfYhKCc9prxBgs4XanIPi3ZLmxXpebaLvVpSZ8269PqAi6yEtcTM1F194LsZ3u_t2aEzvia5DUBTRBGJhUaHUiShiUnCzhamcD2X8_cMsG0lgQ16gK-r4fJ73Mxw7Vx9kxzMisP1xRsCzhYWmwtCc9diYQ8C1ADWw5EHY60jw8dt7Y0mjAyiXW2svqLWP_VxOG7Zn-DXZaT9npUMTyCrcWf53hMyGbhTzqf_gs7du91 priority: 102 providerName: Springer Nature |
Title | Deep learning interpretation of echocardiograms |
URI | https://link.springer.com/article/10.1038/s41746-019-0216-8 https://www.ncbi.nlm.nih.gov/pubmed/31993508 https://www.proquest.com/docview/2528864060 https://search.proquest.com/docview/2348238067 https://pubmed.ncbi.nlm.nih.gov/PMC6981156 https://doaj.org/article/914a9b08ef9d49d596f7dc8d8a6c2fa6 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6SFEovpe-qTY0KPbUokrXvo-MmBINDaBvwbdG-EpdGNrHz_zu7lty4j0svEmgXdpjZxzc7n2YAPjAhnPAVRd_EeXwYW6iaNQUibRZdjIan-47pOT-7pJMZm-0B6_-FSaR9a-ZH7Y-bo3Z-nbiVyxtb9jyx8mI65koikOHlPuzj8XvPRf-eImtUKsr7CCaR5Yoi7I5-sypweF7EGn0kEtdYLCp57zhKWfv_BjX_ZEz-FjZNp9HpE3jcwch8tBH3Kez59hk8nHaB8udQfvZ-mXclIa7y-Q61MF-E3OO2ZxMXNdKzVi_g8vTk2_is6GojFJYRvi4EYyZ6Z0L6oXC0Ed5K6YPkwasqBDGkuHHUtQqEUuprEWiIydyI8UYE1QjyEg7aRetfQy4bTn1MJEWdQXDlGmKodU400siaWJrBx15FerlJgaFT6JpIvVGtRtXqqFotMziOStx2jNmr04fF7ZXubKjVkDbKVCivclQ5pngQzkqHktg6NDyDw94EultSK12zWkqO-KPK4P22GRdDjHA0rV_cYZ-YqodIPIEzeLWx2FaS3uIZiB1b7oi624LzLyXc7uZbBp96q_8S65-aePPf47yFR3X06qthUdNDOFjf3vl3CH3WZoATfiYG8GA0mnyd4Pv45PziC34d8_EgXScM0mL4CUc9Bes |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiDeBAkHiBLI26_h5QhRaLdBdIdRKvVl2bJdekqW7_f-Ms85W4XXJIfFhMmOPv3noG4A3XEovQ8UwNvEBH64hmnJLEGnzFGJY0ec7FksxP2VfzvhZTritc1vl4BN7R-27JuXIp5RTpQReP9X71U-Spkal6moeoXET9hJzOp_A3sHh8tv3XZYl0dJqJoZyZq2ma4YYPAXRmqAsgqjRhdTz9v8NbP7ZM_lb4bS_j47uwd0MJMsPW8vfhxuhfQC3FrlU_hCmn0JYlXkoxHl5MWouLLtYBnR8Td-Nmhq01o_g9Ojw5OOc5OkIpOG12BDJuUvxmVRhJj2zMjRKhahEDLqKUc4Yug5KdawZY4HKyGKic6tdcDJqK-vHMGm7NjyFUlnBQqKSYt4hvPK2dqzxXlrlFK0bVsDbQUVmtSXBMH3xulZmq0-D-jRJn0YVcJCUuFuY-Kv7F93lucnHwegZs9pVKK_2THuuRZS-UR4laWi0ooD9wQQmH6q1ud4CBbzefcbjkGoctg3dFa5JZD24FYQs4MnWYjtJ6tSsiIC0ADmy5UjU8Zf24kdPuS20QuiMYr0brH4t1j818ez_P_EKbs9PFsfm-PPy63O4Q1MgX80IZfsw2VxehReIdjbuZd7SvwBITftF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSouFW9SCgSJEyhN1m8foWVVHlv1QKXeLDu2yyKaXXW3_5-xN1l2eVy45BBbymhm7Pkm82kG4DWX0svQMMxNfMCHaytNuK0QafOUYliR_3dMTsXJOft0wS82Rn1l0n7rpofdj6vDbvotcyvnV2098MTqs8mR0AqBjKjnPta34Q6n6GQbifr3XF9jSjMx1DGpqhcMwXfKnnWFQogqTeqjib7G02jJjaCUe_f_DXD-yZv8rXiaY9L4Huz1YLJ8txL6PtwK3QPYnfTl8odQH4cwL_vBEJfldItgWM5iGfDyazMjNZG0Fo_gfPzh69FJ1U9IqFpOxbKSnLuUo0kVRtIzK0OrVIhKxKCbGOWI4fVBiI6UMRaIjCymlm7UBSejtpI-hp1u1oWnUCorWEjtpJh3CLG8pY613kurnCK0ZQW8GVRk5qtGGCYXsKkyK9UaVK1JqjWqgPdJieuNqYd1fjG7vjS9JY0eMatdg_Jqz7TnWkTpW-VRkpZEKwo4GExg-oO1MIQTpQSikKaAV-tlPBKpzmG7MLvBPalhD1UYhwt4srLYWpLB4gXILVtuibq9gl6Y2273XlfA28Hqv8T6pyb2__s7L2H37Hhsvnw8_fwM7pKU5jejirAD2Fle34TniIWW7kX2-p9JOgR0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+interpretation+of+echocardiograms&rft.jtitle=NPJ+digital+medicine&rft.au=Ghorbani+Amirata&rft.au=Ouyang%2C+David&rft.au=Abubakar%2C+Abid&rft.au=He%2C+Bryan&rft.date=2020-01-24&rft.pub=Nature+Publishing+Group&rft.eissn=2398-6352&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-019-0216-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |