A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation
Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variabil...
Saved in:
Published in | Frontiers in neuroscience Vol. 14; p. 579469 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
22.10.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2020.579469 |
Cover
Abstract | Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into 7 groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ~23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system. |
---|---|
AbstractList | Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system. Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system. Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into 7 groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ~23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system. |
Author | Zheng, Li Gao, Xiaorong Pei, Weihua Zhang, Lijian Sun, Sen Wang, Yijun Zhao, Hongze Chen, Hongda |
AuthorAffiliation | 1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China 3 Department of Control Engineering, School of Information Science and Engineering, East China University of Science and Technology , Shanghai , China 2 School of Future Technology, University of Chinese Academy of Sciences , Beijing , China 5 Beijing Machine and Equipment Institute , Beijing , China 4 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China |
AuthorAffiliation_xml | – name: 4 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China – name: 2 School of Future Technology, University of Chinese Academy of Sciences , Beijing , China – name: 5 Beijing Machine and Equipment Institute , Beijing , China – name: 3 Department of Control Engineering, School of Information Science and Engineering, East China University of Science and Technology , Shanghai , China – name: 1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China |
Author_xml | – sequence: 1 givenname: Li surname: Zheng fullname: Zheng, Li – sequence: 2 givenname: Sen surname: Sun fullname: Sun, Sen – sequence: 3 givenname: Hongze surname: Zhao fullname: Zhao, Hongze – sequence: 4 givenname: Weihua surname: Pei fullname: Pei, Weihua – sequence: 5 givenname: Hongda surname: Chen fullname: Chen, Hongda – sequence: 6 givenname: Xiaorong surname: Gao fullname: Gao, Xiaorong – sequence: 7 givenname: Lijian surname: Zhang fullname: Zhang, Lijian – sequence: 8 givenname: Yijun surname: Wang fullname: Wang, Yijun |
BookMark | eNp1kktv1TAQhSNURB_wA9hZYsMml3js2MkGqQ2vK1UCUUDsLMeeFF8l9q2dVOLf49sUiVZi47Hscz5rjue0OPLBY1G8pNWGsaZ9M3jn0wYqqDa1bLlonxQnVAgoec1-Hv2zPy5OU9pVlYCGw7PimDHaAoj6pJjOSRdDSuUVpuSCJ-_0rBPOZAiRdGEcdR-int0tkouonS-7MO2XGSPZ-rwO2mAiF9lhSTZ_1XtnyRVGp0fyw6Ully8RE_o5M4J_Xjwd9JjwxX09K75_eP-t-1Refv647c4vS1MzMZcCkTHdg-WsAiN7GLitRattw9pGoqWikRQbQ4WVFu2ggWkLlTCyAWpoy86K7cq1Qe_UPrpJx98qaKfuDkK8VjrOzoyoBgGIBrDPQE7N0DT9wHlNGzDAMj2z3q6s_dJPaE3uJerxAfThjXe_1HW4VVJwkFxmwOt7QAw3C6ZZTS4ZzNF6DEtSwAWtKgptnaWvHkl3YYk-R5VVNash58GySq4qc_i5iIMybs03v-9GRSt1GA91Nx7qMB5qHY_spI-cf9v4v-cPoU7BOA |
CitedBy_id | crossref_primary_10_3390_bioengineering11040347 crossref_primary_10_1016_j_bspc_2024_106583 crossref_primary_10_1109_COMST_2024_3396847 crossref_primary_10_3389_fnins_2022_991136 crossref_primary_10_1142_S0129065722500101 crossref_primary_10_1109_TCDS_2023_3245048 crossref_primary_10_1088_1741_2552_ac8451 crossref_primary_10_1088_1741_2552_ad2710 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1016_j_compbiomed_2021_104685 crossref_primary_10_1080_27706710_2024_2447576 crossref_primary_10_3389_fnins_2023_1132290 crossref_primary_10_3389_fnins_2024_1402154 crossref_primary_10_1007_s11571_024_10214_w crossref_primary_10_1109_TBME_2023_3309255 |
Cites_doi | 10.3758/BF03214320 10.1371/journal.pone.0102693 10.1109/NER.2015.7146599 10.1088/1741-2552/aabb82/meta 10.1109/NER.2013.6696128 10.1109/TPAMI.2010.125 10.1109/TBME.2014.2300164 10.1088/1741-2552/aab2f2/meta 10.1109/TNNLS.2014.2302898 10.1073/pnas.0700622104 10.1109/CNE.2003.1196297 10.1371/journal.pone.0178498 10.1097/00004691-199210000-00002 10.1016/B978-012375731-9/50045-8 10.1109/TNSRE.2008.2003381 10.1023/A:1009715923555 10.1109/TBME.2017.2694818 10.1088/1741-2552/aa9817 10.1109/BMEI.2011.6098286 10.1016/j.neuroimage.2005.06.026 10.1163/156856897X00357 10.1016/j.tics.2004.06.003 10.1037/0096-1523.21.1.109 10.1109/IEMBS.2011.6091575 10.1038/s41598-017-08265-7 10.1371/journal.pone.0020422 10.3758/BF03210498 10.1016/j.neucom.2010.12.025 10.3390/brainsci4020335 10.1371/journal.pone.0002967 10.1016/S1388-2457(02)00057-3 10.1109/JPROC.2009.2038406 10.1109/IEMBS.2011.6091759 10.1088/1741-2560/8/3/036025 10.1109/EMBC.2019.8856309 10.1016/j.clinph.2012.12.050 10.1016/j.neuroimage.2010.06.048 10.1109/NER.2019.8716892 10.1109/TBME.2016.2598875 10.1109/TNSRE.2019.2953975 10.1109/TBME.2009.2012869 10.3389/fpsyg.2011.00042 10.1145/1358628.1358849 10.1109/EMBC.2014.6943832 10.1109/IEMBS.2010.5626548 10.1109/TBME.2013.2289898 10.1109/EMBC.2012.6346284 10.1109/86.895946 10.1038/381520a0 10.1016/S0893-6080(00)00026-5 10.1109/SMC.2014.6974360 10.3758/BF03201180 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. – notice: Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2020.579469 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_f62eec2eb1e841cf88bf445182c237de PMC7642747 10_3389_fnins_2020_579469 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61671424 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c536t-6ee33ab2d4302c7b2f4d569ad83987ed16871e8c16d7dedfa23ad206c7821c193 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:27:41 EDT 2025 Thu Aug 21 18:06:55 EDT 2025 Fri Sep 05 08:06:46 EDT 2025 Fri Jul 25 11:47:25 EDT 2025 Tue Jul 01 01:39:14 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-6ee33ab2d4302c7b2f4d569ad83987ed16871e8c16d7dedfa23ad206c7821c193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Reviewed by: Alan F. Smeaton, Dublin City University, Ireland; Hubert Cecotti, California State University, Fresno, United States Edited by: Ana Matran-Fernandez, University of Essex, United Kingdom |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2020.579469 |
PMID | 33192265 |
PQID | 2453523023 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f62eec2eb1e841cf88bf445182c237de pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642747 proquest_miscellaneous_2461001295 proquest_journals_2453523023 crossref_citationtrail_10_3389_fnins_2020_579469 crossref_primary_10_3389_fnins_2020_579469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-22 |
PublicationDateYYYYMMDD | 2020-10-22 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Gerson (B17) 2005; 28 Hyvärinen (B19) 2000; 13 Rivet (B36) 2009; 56 Valeriani (B45) 2015 Chun (B15) 1995; 21 Broadbent (B8) 1987; 42 Serre (B40) 2007; 104 Bigdely-Shamlo (B5) 2008; 16 Nakanishi (B30) 2018; 65 Yuan (B51) 2012 Lawrence (B22) 1971; 10 Cecotti (B11) Valeriani (B44) 2017; 7 Wang (B47) 2011; 6 Rousselet (B37) 2004; 8 Cecotti (B14) 2011 Wolpaw (B49) 2002; 113 Pohlmeyer (B33) 2011; 8 Wang (B48) 2011 Matran-Fernandez (B28) 2017; 12 Zhao (B53) 2019 Krauledat (B21) 2008; 3 Touryan (B42) 2011; 2 Zhou (B54) 2009; 22 Thorpe (B41) 1996; 381 Gao (B16) 2014; 61 Poli (B34) 2014; 9 Acqualagna (B1) 2013; 124 Cecotti (B10); 25 Wu (B50) 2011 Cecotti (B12) 2010; 33 Brainard (B7) 1997; 10 Alpert (B3) 2013; 61 Sajda (B39) 2010; 98 Zhang (B52) 2018; 15 Huang (B18) 2011; 74 Bhattacharyya (B4) 2019 Lees (B24) 2019; 28 Blankertz (B6) 2011; 56 Matran-Fernandez (B29) 2013 Acqualagna (B2) 2010 Picton (B32) 1992; 9 Sajda (B38) 2003 Valeriani (B46) 2016; 64 Jolicoeur (B20) 1998; 26 Lees (B23) 2018; 15 Oliva (B31) 2005 Mathan (B27) 2008 Touyama (B43) 2014 Makeig (B26) 1996 Cecotti (B13) 2014; 4 Ramoser (B35) 2000; 8 Burges (B9) 1998; 2 Lotte (B25) 2018; 15 |
References_xml | – volume: 10 start-page: 85 year: 1971 ident: B22 article-title: Two studies of visual search for word targets with controlled rates of presentation. publication-title: Percept. Psychophys. doi: 10.3758/BF03214320 – volume: 9 year: 2014 ident: B34 article-title: Collaborative brain-computer interface for aiding decision-making. publication-title: PLoS One doi: 10.1371/journal.pone.0102693 – start-page: 218 year: 2015 ident: B45 article-title: A collaborative brain-computer Interface to improve human performance in a visual search task publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER.2015.7146599 – volume: 15 year: 2018 ident: B52 article-title: A study on dynamic model of steady-state visual evoked potentials. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aabb82/meta – start-page: 1096 year: 2013 ident: B29 article-title: Collaborative brain-computer interfaces for the automatic classification of images publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER.2013.6696128 – volume: 33 start-page: 433 year: 2010 ident: B12 article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces. publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.125 – volume: 61 start-page: 1436 year: 2014 ident: B16 article-title: Visual and auditory brain–computer interfaces. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2300164 – volume: 15 year: 2018 ident: B25 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2/meta – volume: 25 start-page: 2030 ident: B10 article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering. publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2302898 – volume: 104 start-page: 6424 year: 2007 ident: B40 article-title: A feedforward architecture accounts for rapid categorization. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0700622104 – start-page: 7 year: 2003 ident: B38 article-title: High-throughput image search via single-trial event detection in a rapid serial visual presentation task publication-title: First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings doi: 10.1109/CNE.2003.1196297 – volume: 12 year: 2017 ident: B28 article-title: Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces. publication-title: PLoS One doi: 10.1371/journal.pone.0178498 – volume: 9 start-page: 456 year: 1992 ident: B32 article-title: The P300 wave of the human event-related potential. publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199210000-00002 – start-page: 251 year: 2005 ident: B31 article-title: Gist of the scene publication-title: Neurobiology of Attention doi: 10.1016/B978-012375731-9/50045-8 – volume: 16 start-page: 432 year: 2008 ident: B5 article-title: Brain activity-based image classification from rapid serial visual presentation. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.2003381 – volume: 2 start-page: 121 year: 1998 ident: B9 article-title: A tutorial on support vector machines for pattern recognition. publication-title: Data Min.Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 65 start-page: 104 year: 2018 ident: B30 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2694818 – volume: 15 year: 2018 ident: B23 article-title: A review of rapid serial visual presentation-based brain–computer interfaces. publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/aa9817 – start-page: 580 year: 2011 ident: B48 article-title: A collaborative brain-computer interface publication-title: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI) doi: 10.1109/BMEI.2011.6098286 – volume: 28 start-page: 342 year: 2005 ident: B17 article-title: Cortical origins of response time variability during rapid discrimination of visual objects. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.026 – volume: 10 start-page: 433 year: 1997 ident: B7 article-title: The psychophysics toolbox. publication-title: Spatial Vis. doi: 10.1163/156856897X00357 – volume: 8 start-page: 363 year: 2004 ident: B37 article-title: How parallel is visual processing in the ventral pathway? publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.06.003 – volume: 21 start-page: 109 year: 1995 ident: B15 article-title: A two-stage model for multiple target detection in rapid serial visual presentation. publication-title: J. Exp. Psychol. Human. doi: 10.1037/0096-1523.21.1.109 – start-page: 6381 year: 2011 ident: B14 article-title: Impact of target probability on single-trial EEG target detection in a difficult rapid serial visual presentation task publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/IEMBS.2011.6091575 – volume: 22 start-page: 2286 year: 2009 ident: B54 article-title: Canonical time warping for alignment of human behavior. publication-title: Adv. Neural Informat. Process. Syst. – volume: 7 start-page: 1 year: 2017 ident: B44 article-title: Group augmentation in realistic visual-search decisions via a hybrid brain-computer interface. publication-title: Sci. Rep. doi: 10.1038/s41598-017-08265-7 – volume: 6 year: 2011 ident: B47 article-title: A collaborative brain-computer interface for improving human performance. publication-title: PLoS One doi: 10.1371/journal.pone.0020422 – volume: 42 start-page: 105 year: 1987 ident: B8 article-title: From detection to identification: response to multiple targets in rapid serial visual presentation. publication-title: Percept. Psychophys. doi: 10.3758/BF03210498 – volume: 74 start-page: 2041 year: 2011 ident: B18 article-title: A framework for rapid visual image search using single-trial brain evoked responses. publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.025 – volume: 4 start-page: 335 year: 2014 ident: B13 article-title: Subject combination and electrode selection in cooperative brain-computer interface based on event related potentials. publication-title: Brain Sci. doi: 10.3390/brainsci4020335 – volume: 3 year: 2008 ident: B21 article-title: Towards zero training for brain-computer interfacing. publication-title: PLoS One doi: 10.1371/journal.pone.0002967 – volume: 113 start-page: 767 year: 2002 ident: B49 article-title: Brain–computer interfaces for communication and control. publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 98 start-page: 462 year: 2010 ident: B39 article-title: In a blink of an eye and a switch of a transistor: cortically coupled computer vision. publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2038406 – start-page: 6959 year: 2011 ident: B50 article-title: Learning event-related potentials (ERPs) from multichannel EEG recordings: a spatio-temporal modeling framework with a fast estimation algorithm publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/IEMBS.2011.6091759 – volume: 8 year: 2011 ident: B33 article-title: Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases. publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/8/3/036025 – start-page: 3099 year: 2019 ident: B4 article-title: Collaborative brain-computer interfaces to enhance group decisions in an outpost surveillance task publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) doi: 10.1109/EMBC.2019.8856309 – volume: 124 start-page: 901 year: 2013 ident: B1 article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP). publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.12.050 – volume: 56 start-page: 814 year: 2011 ident: B6 article-title: Single-trial analysis and classification of ERP components—a tutorial. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.048 – start-page: 171 year: 2019 ident: B53 article-title: Obviating session-to-session variability in a rapid serial visual presentation-based brain–computer interface publication-title: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER.2019.8716892 – volume: 64 start-page: 1238 year: 2016 ident: B46 article-title: Enhancement of group perception via a collaborative brain–computer interface. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2598875 – volume: 28 start-page: 113 year: 2019 ident: B24 article-title: Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2953975 – volume: 56 start-page: 2035 year: 2009 ident: B36 article-title: xDAWN algorithm to enhance evoked potentials: application to brain–computer interface. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2012869 – volume: 2 year: 2011 ident: B42 article-title: Real-time measurement of face recognition in rapid serial visual presentation. publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00042 – start-page: 3309 year: 2008 ident: B27 article-title: Rapid image analysis using neural signals publication-title: CHI’08 Extended Abstracts on Human Factors in Computing Systems doi: 10.1145/1358628.1358849 – start-page: 1282 ident: B11 article-title: Single-trial classification of neural responses evoked in rapid serial visual presentation: effects of stimulus onset asynchrony and stimulus repetition publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/EMBC.2014.6943832 – start-page: 2686 year: 2010 ident: B2 article-title: A novel brain-computer interface based on the rapid serial visual presentation paradigm publication-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology doi: 10.1109/IEMBS.2010.5626548 – volume: 61 start-page: 2290 year: 2013 ident: B3 article-title: Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2289898 – start-page: 1736 year: 2012 ident: B51 article-title: Study on an online collaborative BCI to accelerate response to visual targets publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society doi: 10.1109/EMBC.2012.6346284 – start-page: 145 year: 1996 ident: B26 article-title: Independent component analysis of electroencephalographic data publication-title: Advances in Neural Information Processing Systems 8 – volume: 8 start-page: 441 year: 2000 ident: B35 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement. publication-title: IEEE Trans. Rehabil.Eng. doi: 10.1109/86.895946 – volume: 381 start-page: 520 year: 1996 ident: B41 article-title: Speed of processing in the human visual system. publication-title: Nature doi: 10.1038/381520a0 – volume: 13 start-page: 411 year: 2000 ident: B19 article-title: Independent component analysis: algorithms and applications. publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – start-page: 2843 year: 2014 ident: B43 article-title: A collaborative BCI system based on P300 signals as a new tool for life log indexing publication-title: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) doi: 10.1109/SMC.2014.6974360 – volume: 26 start-page: 1014 year: 1998 ident: B20 article-title: Modulation of the attentional blink by on-line response selection: evidence from speeded and unspeeded Task 1 decisions. publication-title: Mem. Cogn. doi: 10.3758/BF03201180 |
SSID | ssj0062842 |
Score | 2.3333917 |
Snippet | Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 579469 |
SubjectTerms | Algorithms Brain brain-computer interfaces (BCI) Classification Collaboration collaborative BCI cross-session transfer Data analysis Datasets EEG electroencephalogram (EEG) Electroencephalography event related potentials (ERP) Event-related potentials Experiments Interfaces Neuroscience Principal components analysis rapid serial visual presentation (RSVP) Signal processing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KXiXOCxVCDwUntmTJ8nF32xAKLaV5kJuxXmQhUULrDeTfZ0bybuJLc-nJYGkseWY0mtHjG0KOauZ1WXuT45ZWXlnNcyUcB10G5RBgDB3Hi8I_fsqzy-r7tbh-leoLz4QleODEuBMvmXOGgUlx8DnjldIeQbUUM4zX1qH1LZpiGUwlGyzB6LK0hwkhWHPiwzwgNjcrjgUiqjejWSiC9Y88zPH5yFcTzuk6-TB4inSSerhB3rmwSbYmAaLkuyf6mcazm3FRfIvcTegMG8rPE8wG_dr1MD31FFxSOnsR9aOjU8wJkS-TOdC4IujxXBadAoWlQPy7e5hbmtbN6NX87wIev16uKYVtcnn67WJ2lg-JFHIjuOxz6RznnWa24gUztWa-skI2nQXvSNXOlhLCJqdMKS1w1PqO8c6yQhpwH0oDLt5Hshbug9shtDZKSc4s16WtpC27SgmgM7qR1jVCZ6RYMrY1A8o4Jru4bSHaQFm0URYtyqJNssjIlxXJQ4LY-FflKUprVRHRseML0Jl20Jn2LZ3JyP5S1u0wZKGRCpFuMIdSRj6timGw4Q5KF9z9AuvIMi7diYzUIx0ZdWhcEuY3Eba7hlAPgrfd__EHe-Q9MgUnUcb2yVr_Z-EOwDvq9WEcCM-_4xFC priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBB0IIIFGSkigOS6caOHeeEdretqkpUVaGotyh-BFai3m2brcS_Z8ZxtuTSU6TElmPPeJ72N4Tsl7w1edlahiktVjgjmJZeAC8Dc0gQhl7gReFvZ-rksji9klcp4HaXjlUOMjEKare0GCM_4AUCkWCJm6-rG4ZVozC7mkpoPCXbIII18Pn27Ojs_GKQxQqEb8x3KrwbBMZ5n9cEt6w6aMMiIF43n3yRiLJejTRTBPAfWZ3jM5P_KaHjF-R5sh7ptCf3S_LEhx2yOw3gOV__pZ9oPM8ZA-W75HpK5zgQ-95Db9DDpgOV1VEwU-n8gfz3ns6wTgQbCjzQGCVs8awWnUEPR6HzRbNaONrH0ujPxd0aHucPV5fCK3J5fPRjfsJScQVmpVAdU94L0RjuClhTWxreFk6qqnFgMenSu1yBK-W1zZUrnXdtw0Xj-ERZMClyC2bfa7IVlsG_IbS0WivBnTC5K5TLm0JL6GdNpZyvpMnIZFjY2ibkcSyA8acGDwRpUUda1EiLuqdFRj5vuqx62I3HGs-QWpuGiJgdXyxvf9VpA9at4t5bDqrJA1vaVmvTIjib5pYLmGFG9gZa12kbwyAbpsvIx81n2ICYVWmCX66xjcpjOE9mpBzxyOiHxl_C4neE8i7B_QOH7u3jg78jz3C6qDI53yNb3e3avwdbqDMfEsP_A5WdCwY priority: 102 providerName: ProQuest |
Title | A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation |
URI | https://www.proquest.com/docview/2453523023 https://www.proquest.com/docview/2461001295 https://pubmed.ncbi.nlm.nih.gov/PMC7642747 https://doaj.org/article/f62eec2eb1e841cf88bf445182c237de |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qC9IXUasYW48VxAch9bKb3ew9iNydLUVoKdWTvoXsj9SDNlevuWL_e2c2ydVA8cGng2Qnd7czm_lmZvcbgHcZL02SlTamklacOiNiLb1AW0bjkPgy9IIOCh-fqKNZ-vVcnm9A196qncCbB0M76ic1W17u__519xkX_CeKONHffiyreUXM23y4L4kvffQIttAxKYrFjtN1UUHhmzgUPxUdFEKk3hQ5H37ENjwWaJ0ITmTPYwVi_x4a7e-l_Ms5HT6FJy2qZOPGDJ7Bhq-ew864woj66o69Z2GfZ0ig78DVmE3pi-JvDSUH-1LU6MpqhvCVTe_N4tazCfWPiLvGDyxkD0vaw8UmKOEYCp8V13PHmhwb-zG_WeHH6f2RpuoFzA4Pvk-P4rbpQmylUHWsvBeiMNylYshtZniZOqlGhUMkpTPvEoUhltc2US5z3pUFF4XjQ2URaiQW4eBL2KwWlX8FLLNaK8GdMIlLlUuKVEuUs2aknB9JE8Gwm9jctozk1BjjMsfIhNSSB7XkpJa8UUsEH9Yi1w0dx78GT0hb64HEpB0uLJYXebsw81Jx7y1Hl-XRXG2ptSmJtE1zywX-wwj2Ol3nnXXmPCVWHOq3FMHb9W1cmFRtKSq_WNEYlYQ0n4wg69lI7wf171Tzn4HiO8OwEAO91_8tuQvbNBPkZTnfg816ufJvED7VZgBbk4OT07NBSD8MwhL5A1zyHZg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH8hy0EvRkRjFXFM1INJZTvTTtsDMbsLZBHYEATDrbTzoZtId4Uuhn_Kv9H3pu1iL9w4NdnOdLZ9b97nvN8DeB9zWwSxVT6ltPxQF8JPIiOQl5E5IhSGRlCh8NFEjs_Cr-fR-Qr8bWth6FhlKxOdoNYzRTHyLR4SEAm1uPky_-1T1yjKrrYtNGq2ODC3f9Blu97e30H6fuB8b_d0NPabrgK-ioSsfGmMEHnBdYgPU3HBbagjmeYaTYUkNjqQ6EOYRAVSx9pom3ORa96XCnVpoAICX0KRvxpSRWsPVoe7k-OTVvZLFPYuvyqpFgmdgTqPim5gumXLaUn44Lz_OSJU97SjCV3DgI6V2z2j-Z_S23sKTxprlQ1q9lqDFVM-g_VBiZ765S37yNz5UReYX4fLARvRQv63GuqD7eQVqsiKoVnMRnfsdmPYkPpS-G1DCeaikpbOhrEhztAMJ5_k86lmdeyOfZ9eL_ByfFcqVT6Hswf57C-gV85K8xJYrJJECq5FEehQ6iAPkwjnqSKV2qRR4UG__bCZapDOqeHGrww9HqJF5miRES2ymhYefFpOmdcwH_cNHhK1lgMJodv9MLv6kTUbPrOSG6M4qkKD20DZJCksgcElXHGBb-jBRkvrrBEbuMiSyT14t7yNG56yOHlpZgsaIwMXPow8iDs80vlD3Tvl9KeDDo_R3UQH8tX9i7-FR-PTo8PscH9y8Boe06uTuuZ8A3rV1cK8QTusKjYb5mdw8dD77R_8CUgn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS4oEJBGAosEnBAMol37bV9QCiPRi2FKCoU9WbsfdBI1AmtA-pf49cxs7ZTfOmtJ0vxrjf2vGd2vwF4FXNbBLFVPpW0_FAXwk8iI5CXkTkiVIZG0EHhzzN5cBJ-PI1Ot-BvexaGtlW2OtEpar1UlCPv85CASKjFTd822yLmk-mH1S-fOkhRpbVtp1GzyJG5-oPh2-X7wwnS-jXn0_2v4wO_6TDgq0jIypfGCJEXXIf4YBUX3IY6kmmu0W1IYqMDifGESVQgdayNtjkXueYDqdCuBiogICZU_9sxWsWwB9uj_dn8uLUDEhW_q7VKOpeEgUFdU8WQMO3bclESVjgfvIsI4T3tWEXXPKDj8Xb3a_5nAKc7cK_xXNmwZrX7sGXKB7A7LDFqP79ib5jbS-qS9LtwPmRjWsj_UsN-sEleobmsGLrIbHzNer8NG1GPCr9tLsFchtLSPjE2whma4eTjfLXQrM7jsW-LyzVe5tfHpsqHcHIrn_0R9MplaR4Di1WSSMG1KAIdSh3kYRLhPFWkUps0KjwYtB82Uw3qOTXf-Jlh9EO0yBwtMqJFVtPCg7ebKasa8uOmwSOi1mYgoXW7H5YXP7JG-DMruTGKo1k0KBLKJklhCRgu4YoLfEMP9lpaZ40KwUU2DO_By81tFH6q6OSlWa5pjAxcKjHyIO7wSOcPde-UizMHIx5j6InB5JObF38Bd1DOsk-Hs6OncJfenCw353vQqy7W5hm6ZFXxvOF9Bt9vW9z-AfCITFM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cross-Session+Dataset+for+Collaborative+Brain-Computer+Interfaces+Based+on+Rapid+Serial+Visual+Presentation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zheng%2C+Li&rft.au=Sun%2C+Sen&rft.au=Zhao%2C+Hongze&rft.au=Pei%2C+Weihua&rft.date=2020-10-22&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.579469&rft_id=info%3Apmid%2F33192265&rft.externalDocID=PMC7642747 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |