A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation

Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variabil...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 14; p. 579469
Main Authors Zheng, Li, Sun, Sen, Zhao, Hongze, Pei, Weihua, Chen, Hongda, Gao, Xiaorong, Zhang, Lijian, Wang, Yijun
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 22.10.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2020.579469

Cover

Abstract Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into 7 groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ~23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.
AbstractList Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.
Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into seven groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ∼23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.
Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it is still a challenge to detect single-trial event related potentials (ERPs) from electroencephalography (EEG) signals. Besides, the variability of EEG signal over time may cause difficulties of calibration in long-term system use. Recently, collaborative BCIs have been proposed to improve the overall BCI performance by fusing brain activities acquired from multiple subjects. For both individual and collaborative BCIs, feature extraction and classification algorithms that can be transferred across sessions can significantly facilitate system calibration. Although open datasets are highly efficient for developing algorithms, currently there is still a lack of datasets for a collaborative RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative RSVP-based BCI system from 14 subjects, who were divided into 7 groups. In collaborative BCI experiments, two subjects did the same target image detection tasks synchronously. All subjects participated in the same experiment twice with an average interval of ~23 days. The results in data evaluation indicate that adequate signal processing algorithms can greatly enhance the cross-session BCI performance in both individual and collaborative conditions. Besides, compared with individual BCIs, the collaborative methods that fuse information from multiple subjects obtain significantly improved BCI performance. This dataset can be used for developing more efficient algorithms to enhance performance and practicality of a collaborative RSVP-based BCI system.
Author Zheng, Li
Gao, Xiaorong
Pei, Weihua
Zhang, Lijian
Sun, Sen
Wang, Yijun
Zhao, Hongze
Chen, Hongda
AuthorAffiliation 1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China
3 Department of Control Engineering, School of Information Science and Engineering, East China University of Science and Technology , Shanghai , China
2 School of Future Technology, University of Chinese Academy of Sciences , Beijing , China
5 Beijing Machine and Equipment Institute , Beijing , China
4 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China
AuthorAffiliation_xml – name: 4 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China
– name: 2 School of Future Technology, University of Chinese Academy of Sciences , Beijing , China
– name: 5 Beijing Machine and Equipment Institute , Beijing , China
– name: 3 Department of Control Engineering, School of Information Science and Engineering, East China University of Science and Technology , Shanghai , China
– name: 1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Li
  surname: Zheng
  fullname: Zheng, Li
– sequence: 2
  givenname: Sen
  surname: Sun
  fullname: Sun, Sen
– sequence: 3
  givenname: Hongze
  surname: Zhao
  fullname: Zhao, Hongze
– sequence: 4
  givenname: Weihua
  surname: Pei
  fullname: Pei, Weihua
– sequence: 5
  givenname: Hongda
  surname: Chen
  fullname: Chen, Hongda
– sequence: 6
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
– sequence: 7
  givenname: Lijian
  surname: Zhang
  fullname: Zhang, Lijian
– sequence: 8
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
BookMark eNp1kktv1TAQhSNURB_wA9hZYsMml3js2MkGqQ2vK1UCUUDsLMeeFF8l9q2dVOLf49sUiVZi47Hscz5rjue0OPLBY1G8pNWGsaZ9M3jn0wYqqDa1bLlonxQnVAgoec1-Hv2zPy5OU9pVlYCGw7PimDHaAoj6pJjOSRdDSuUVpuSCJ-_0rBPOZAiRdGEcdR-int0tkouonS-7MO2XGSPZ-rwO2mAiF9lhSTZ_1XtnyRVGp0fyw6Ully8RE_o5M4J_Xjwd9JjwxX09K75_eP-t-1Refv647c4vS1MzMZcCkTHdg-WsAiN7GLitRattw9pGoqWikRQbQ4WVFu2ggWkLlTCyAWpoy86K7cq1Qe_UPrpJx98qaKfuDkK8VjrOzoyoBgGIBrDPQE7N0DT9wHlNGzDAMj2z3q6s_dJPaE3uJerxAfThjXe_1HW4VVJwkFxmwOt7QAw3C6ZZTS4ZzNF6DEtSwAWtKgptnaWvHkl3YYk-R5VVNash58GySq4qc_i5iIMybs03v-9GRSt1GA91Nx7qMB5qHY_spI-cf9v4v-cPoU7BOA
CitedBy_id crossref_primary_10_3390_bioengineering11040347
crossref_primary_10_1016_j_bspc_2024_106583
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_3389_fnins_2022_991136
crossref_primary_10_1142_S0129065722500101
crossref_primary_10_1109_TCDS_2023_3245048
crossref_primary_10_1088_1741_2552_ac8451
crossref_primary_10_1088_1741_2552_ad2710
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1016_j_compbiomed_2021_104685
crossref_primary_10_1080_27706710_2024_2447576
crossref_primary_10_3389_fnins_2023_1132290
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_1007_s11571_024_10214_w
crossref_primary_10_1109_TBME_2023_3309255
Cites_doi 10.3758/BF03214320
10.1371/journal.pone.0102693
10.1109/NER.2015.7146599
10.1088/1741-2552/aabb82/meta
10.1109/NER.2013.6696128
10.1109/TPAMI.2010.125
10.1109/TBME.2014.2300164
10.1088/1741-2552/aab2f2/meta
10.1109/TNNLS.2014.2302898
10.1073/pnas.0700622104
10.1109/CNE.2003.1196297
10.1371/journal.pone.0178498
10.1097/00004691-199210000-00002
10.1016/B978-012375731-9/50045-8
10.1109/TNSRE.2008.2003381
10.1023/A:1009715923555
10.1109/TBME.2017.2694818
10.1088/1741-2552/aa9817
10.1109/BMEI.2011.6098286
10.1016/j.neuroimage.2005.06.026
10.1163/156856897X00357
10.1016/j.tics.2004.06.003
10.1037/0096-1523.21.1.109
10.1109/IEMBS.2011.6091575
10.1038/s41598-017-08265-7
10.1371/journal.pone.0020422
10.3758/BF03210498
10.1016/j.neucom.2010.12.025
10.3390/brainsci4020335
10.1371/journal.pone.0002967
10.1016/S1388-2457(02)00057-3
10.1109/JPROC.2009.2038406
10.1109/IEMBS.2011.6091759
10.1088/1741-2560/8/3/036025
10.1109/EMBC.2019.8856309
10.1016/j.clinph.2012.12.050
10.1016/j.neuroimage.2010.06.048
10.1109/NER.2019.8716892
10.1109/TBME.2016.2598875
10.1109/TNSRE.2019.2953975
10.1109/TBME.2009.2012869
10.3389/fpsyg.2011.00042
10.1145/1358628.1358849
10.1109/EMBC.2014.6943832
10.1109/IEMBS.2010.5626548
10.1109/TBME.2013.2289898
10.1109/EMBC.2012.6346284
10.1109/86.895946
10.1038/381520a0
10.1016/S0893-6080(00)00026-5
10.1109/SMC.2014.6974360
10.3758/BF03201180
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang.
Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang.
– notice: Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.579469
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_f62eec2eb1e841cf88bf445182c237de
PMC7642747
10_3389_fnins_2020_579469
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61671424
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c536t-6ee33ab2d4302c7b2f4d569ad83987ed16871e8c16d7dedfa23ad206c7821c193
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:27:41 EDT 2025
Thu Aug 21 18:06:55 EDT 2025
Fri Sep 05 08:06:46 EDT 2025
Fri Jul 25 11:47:25 EDT 2025
Tue Jul 01 01:39:14 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-6ee33ab2d4302c7b2f4d569ad83987ed16871e8c16d7dedfa23ad206c7821c193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Reviewed by: Alan F. Smeaton, Dublin City University, Ireland; Hubert Cecotti, California State University, Fresno, United States
Edited by: Ana Matran-Fernandez, University of Essex, United Kingdom
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2020.579469
PMID 33192265
PQID 2453523023
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_f62eec2eb1e841cf88bf445182c237de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642747
proquest_miscellaneous_2461001295
proquest_journals_2453523023
crossref_citationtrail_10_3389_fnins_2020_579469
crossref_primary_10_3389_fnins_2020_579469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-22
PublicationDateYYYYMMDD 2020-10-22
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-22
  day: 22
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Gerson (B17) 2005; 28
Hyvärinen (B19) 2000; 13
Rivet (B36) 2009; 56
Valeriani (B45) 2015
Chun (B15) 1995; 21
Broadbent (B8) 1987; 42
Serre (B40) 2007; 104
Bigdely-Shamlo (B5) 2008; 16
Nakanishi (B30) 2018; 65
Yuan (B51) 2012
Lawrence (B22) 1971; 10
Cecotti (B11)
Valeriani (B44) 2017; 7
Wang (B47) 2011; 6
Rousselet (B37) 2004; 8
Cecotti (B14) 2011
Wolpaw (B49) 2002; 113
Pohlmeyer (B33) 2011; 8
Wang (B48) 2011
Matran-Fernandez (B28) 2017; 12
Zhao (B53) 2019
Krauledat (B21) 2008; 3
Touryan (B42) 2011; 2
Zhou (B54) 2009; 22
Thorpe (B41) 1996; 381
Gao (B16) 2014; 61
Poli (B34) 2014; 9
Acqualagna (B1) 2013; 124
Cecotti (B10); 25
Wu (B50) 2011
Cecotti (B12) 2010; 33
Brainard (B7) 1997; 10
Alpert (B3) 2013; 61
Sajda (B39) 2010; 98
Zhang (B52) 2018; 15
Huang (B18) 2011; 74
Bhattacharyya (B4) 2019
Lees (B24) 2019; 28
Blankertz (B6) 2011; 56
Matran-Fernandez (B29) 2013
Acqualagna (B2) 2010
Picton (B32) 1992; 9
Sajda (B38) 2003
Valeriani (B46) 2016; 64
Jolicoeur (B20) 1998; 26
Lees (B23) 2018; 15
Oliva (B31) 2005
Mathan (B27) 2008
Touyama (B43) 2014
Makeig (B26) 1996
Cecotti (B13) 2014; 4
Ramoser (B35) 2000; 8
Burges (B9) 1998; 2
Lotte (B25) 2018; 15
References_xml – volume: 10
  start-page: 85
  year: 1971
  ident: B22
  article-title: Two studies of visual search for word targets with controlled rates of presentation.
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03214320
– volume: 9
  year: 2014
  ident: B34
  article-title: Collaborative brain-computer interface for aiding decision-making.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0102693
– start-page: 218
  year: 2015
  ident: B45
  article-title: A collaborative brain-computer Interface to improve human performance in a visual search task
  publication-title: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
  doi: 10.1109/NER.2015.7146599
– volume: 15
  year: 2018
  ident: B52
  article-title: A study on dynamic model of steady-state visual evoked potentials.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aabb82/meta
– start-page: 1096
  year: 2013
  ident: B29
  article-title: Collaborative brain-computer interfaces for the automatic classification of images
  publication-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
  doi: 10.1109/NER.2013.6696128
– volume: 33
  start-page: 433
  year: 2010
  ident: B12
  article-title: Convolutional neural networks for P300 detection with application to brain-computer interfaces.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.125
– volume: 61
  start-page: 1436
  year: 2014
  ident: B16
  article-title: Visual and auditory brain–computer interfaces.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2300164
– volume: 15
  year: 2018
  ident: B25
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2/meta
– volume: 25
  start-page: 2030
  ident: B10
  article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering.
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2302898
– volume: 104
  start-page: 6424
  year: 2007
  ident: B40
  article-title: A feedforward architecture accounts for rapid categorization.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0700622104
– start-page: 7
  year: 2003
  ident: B38
  article-title: High-throughput image search via single-trial event detection in a rapid serial visual presentation task
  publication-title: First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings
  doi: 10.1109/CNE.2003.1196297
– volume: 12
  year: 2017
  ident: B28
  article-title: Towards the automated localisation of targets in rapid image-sifting by collaborative brain-computer interfaces.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178498
– volume: 9
  start-page: 456
  year: 1992
  ident: B32
  article-title: The P300 wave of the human event-related potential.
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199210000-00002
– start-page: 251
  year: 2005
  ident: B31
  article-title: Gist of the scene
  publication-title: Neurobiology of Attention
  doi: 10.1016/B978-012375731-9/50045-8
– volume: 16
  start-page: 432
  year: 2008
  ident: B5
  article-title: Brain activity-based image classification from rapid serial visual presentation.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.2003381
– volume: 2
  start-page: 121
  year: 1998
  ident: B9
  article-title: A tutorial on support vector machines for pattern recognition.
  publication-title: Data Min.Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 65
  start-page: 104
  year: 2018
  ident: B30
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2694818
– volume: 15
  year: 2018
  ident: B23
  article-title: A review of rapid serial visual presentation-based brain–computer interfaces.
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aa9817
– start-page: 580
  year: 2011
  ident: B48
  article-title: A collaborative brain-computer interface
  publication-title: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)
  doi: 10.1109/BMEI.2011.6098286
– volume: 28
  start-page: 342
  year: 2005
  ident: B17
  article-title: Cortical origins of response time variability during rapid discrimination of visual objects.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.026
– volume: 10
  start-page: 433
  year: 1997
  ident: B7
  article-title: The psychophysics toolbox.
  publication-title: Spatial Vis.
  doi: 10.1163/156856897X00357
– volume: 8
  start-page: 363
  year: 2004
  ident: B37
  article-title: How parallel is visual processing in the ventral pathway?
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.06.003
– volume: 21
  start-page: 109
  year: 1995
  ident: B15
  article-title: A two-stage model for multiple target detection in rapid serial visual presentation.
  publication-title: J. Exp. Psychol. Human.
  doi: 10.1037/0096-1523.21.1.109
– start-page: 6381
  year: 2011
  ident: B14
  article-title: Impact of target probability on single-trial EEG target detection in a difficult rapid serial visual presentation task
  publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/IEMBS.2011.6091575
– volume: 22
  start-page: 2286
  year: 2009
  ident: B54
  article-title: Canonical time warping for alignment of human behavior.
  publication-title: Adv. Neural Informat. Process. Syst.
– volume: 7
  start-page: 1
  year: 2017
  ident: B44
  article-title: Group augmentation in realistic visual-search decisions via a hybrid brain-computer interface.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08265-7
– volume: 6
  year: 2011
  ident: B47
  article-title: A collaborative brain-computer interface for improving human performance.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020422
– volume: 42
  start-page: 105
  year: 1987
  ident: B8
  article-title: From detection to identification: response to multiple targets in rapid serial visual presentation.
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03210498
– volume: 74
  start-page: 2041
  year: 2011
  ident: B18
  article-title: A framework for rapid visual image search using single-trial brain evoked responses.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.025
– volume: 4
  start-page: 335
  year: 2014
  ident: B13
  article-title: Subject combination and electrode selection in cooperative brain-computer interface based on event related potentials.
  publication-title: Brain Sci.
  doi: 10.3390/brainsci4020335
– volume: 3
  year: 2008
  ident: B21
  article-title: Towards zero training for brain-computer interfacing.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002967
– volume: 113
  start-page: 767
  year: 2002
  ident: B49
  article-title: Brain–computer interfaces for communication and control.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 98
  start-page: 462
  year: 2010
  ident: B39
  article-title: In a blink of an eye and a switch of a transistor: cortically coupled computer vision.
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2038406
– start-page: 6959
  year: 2011
  ident: B50
  article-title: Learning event-related potentials (ERPs) from multichannel EEG recordings: a spatio-temporal modeling framework with a fast estimation algorithm
  publication-title: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/IEMBS.2011.6091759
– volume: 8
  year: 2011
  ident: B33
  article-title: Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases.
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/8/3/036025
– start-page: 3099
  year: 2019
  ident: B4
  article-title: Collaborative brain-computer interfaces to enhance group decisions in an outpost surveillance task
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  doi: 10.1109/EMBC.2019.8856309
– volume: 124
  start-page: 901
  year: 2013
  ident: B1
  article-title: Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP).
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.12.050
– volume: 56
  start-page: 814
  year: 2011
  ident: B6
  article-title: Single-trial analysis and classification of ERP components—a tutorial.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.048
– start-page: 171
  year: 2019
  ident: B53
  article-title: Obviating session-to-session variability in a rapid serial visual presentation-based brain–computer interface
  publication-title: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)
  doi: 10.1109/NER.2019.8716892
– volume: 64
  start-page: 1238
  year: 2016
  ident: B46
  article-title: Enhancement of group perception via a collaborative brain–computer interface.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2598875
– volume: 28
  start-page: 113
  year: 2019
  ident: B24
  article-title: Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2953975
– volume: 56
  start-page: 2035
  year: 2009
  ident: B36
  article-title: xDAWN algorithm to enhance evoked potentials: application to brain–computer interface.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2012869
– volume: 2
  year: 2011
  ident: B42
  article-title: Real-time measurement of face recognition in rapid serial visual presentation.
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2011.00042
– start-page: 3309
  year: 2008
  ident: B27
  article-title: Rapid image analysis using neural signals
  publication-title: CHI’08 Extended Abstracts on Human Factors in Computing Systems
  doi: 10.1145/1358628.1358849
– start-page: 1282
  ident: B11
  article-title: Single-trial classification of neural responses evoked in rapid serial visual presentation: effects of stimulus onset asynchrony and stimulus repetition
  publication-title: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/EMBC.2014.6943832
– start-page: 2686
  year: 2010
  ident: B2
  article-title: A novel brain-computer interface based on the rapid serial visual presentation paradigm
  publication-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
  doi: 10.1109/IEMBS.2010.5626548
– volume: 61
  start-page: 2290
  year: 2013
  ident: B3
  article-title: Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2289898
– start-page: 1736
  year: 2012
  ident: B51
  article-title: Study on an online collaborative BCI to accelerate response to visual targets
  publication-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/EMBC.2012.6346284
– start-page: 145
  year: 1996
  ident: B26
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Advances in Neural Information Processing Systems 8
– volume: 8
  start-page: 441
  year: 2000
  ident: B35
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement.
  publication-title: IEEE Trans. Rehabil.Eng.
  doi: 10.1109/86.895946
– volume: 381
  start-page: 520
  year: 1996
  ident: B41
  article-title: Speed of processing in the human visual system.
  publication-title: Nature
  doi: 10.1038/381520a0
– volume: 13
  start-page: 411
  year: 2000
  ident: B19
  article-title: Independent component analysis: algorithms and applications.
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– start-page: 2843
  year: 2014
  ident: B43
  article-title: A collaborative BCI system based on P300 signals as a new tool for life log indexing
  publication-title: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
  doi: 10.1109/SMC.2014.6974360
– volume: 26
  start-page: 1014
  year: 1998
  ident: B20
  article-title: Modulation of the attentional blink by on-line response selection: evidence from speeded and unspeeded Task 1 decisions.
  publication-title: Mem. Cogn.
  doi: 10.3758/BF03201180
SSID ssj0062842
Score 2.3333917
Snippet Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP) have been widely used to categorize target and non-target images. However, it...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 579469
SubjectTerms Algorithms
Brain
brain-computer interfaces (BCI)
Classification
Collaboration
collaborative BCI
cross-session transfer
Data analysis
Datasets
EEG
electroencephalogram (EEG)
Electroencephalography
event related potentials (ERP)
Event-related potentials
Experiments
Interfaces
Neuroscience
Principal components analysis
rapid serial visual presentation (RSVP)
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KXiXOCxVCDwUntmTJ8nF32xAKLaV5kJuxXmQhUULrDeTfZ0bybuJLc-nJYGkseWY0mtHjG0KOauZ1WXuT45ZWXlnNcyUcB10G5RBgDB3Hi8I_fsqzy-r7tbh-leoLz4QleODEuBMvmXOGgUlx8DnjldIeQbUUM4zX1qH1LZpiGUwlGyzB6LK0hwkhWHPiwzwgNjcrjgUiqjejWSiC9Y88zPH5yFcTzuk6-TB4inSSerhB3rmwSbYmAaLkuyf6mcazm3FRfIvcTegMG8rPE8wG_dr1MD31FFxSOnsR9aOjU8wJkS-TOdC4IujxXBadAoWlQPy7e5hbmtbN6NX87wIev16uKYVtcnn67WJ2lg-JFHIjuOxz6RznnWa24gUztWa-skI2nQXvSNXOlhLCJqdMKS1w1PqO8c6yQhpwH0oDLt5Hshbug9shtDZKSc4s16WtpC27SgmgM7qR1jVCZ6RYMrY1A8o4Jru4bSHaQFm0URYtyqJNssjIlxXJQ4LY-FflKUprVRHRseML0Jl20Jn2LZ3JyP5S1u0wZKGRCpFuMIdSRj6timGw4Q5KF9z9AuvIMi7diYzUIx0ZdWhcEuY3Eba7hlAPgrfd__EHe-Q9MgUnUcb2yVr_Z-EOwDvq9WEcCM-_4xFC
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBB0IIIFGSkigOS6caOHeeEdretqkpUVaGotyh-BFai3m2brcS_Z8ZxtuTSU6TElmPPeJ72N4Tsl7w1edlahiktVjgjmJZeAC8Dc0gQhl7gReFvZ-rksji9klcp4HaXjlUOMjEKare0GCM_4AUCkWCJm6-rG4ZVozC7mkpoPCXbIII18Pn27Ojs_GKQxQqEb8x3KrwbBMZ5n9cEt6w6aMMiIF43n3yRiLJejTRTBPAfWZ3jM5P_KaHjF-R5sh7ptCf3S_LEhx2yOw3gOV__pZ9oPM8ZA-W75HpK5zgQ-95Db9DDpgOV1VEwU-n8gfz3ns6wTgQbCjzQGCVs8awWnUEPR6HzRbNaONrH0ujPxd0aHucPV5fCK3J5fPRjfsJScQVmpVAdU94L0RjuClhTWxreFk6qqnFgMenSu1yBK-W1zZUrnXdtw0Xj-ERZMClyC2bfa7IVlsG_IbS0WivBnTC5K5TLm0JL6GdNpZyvpMnIZFjY2ibkcSyA8acGDwRpUUda1EiLuqdFRj5vuqx62I3HGs-QWpuGiJgdXyxvf9VpA9at4t5bDqrJA1vaVmvTIjib5pYLmGFG9gZa12kbwyAbpsvIx81n2ICYVWmCX66xjcpjOE9mpBzxyOiHxl_C4neE8i7B_QOH7u3jg78jz3C6qDI53yNb3e3avwdbqDMfEsP_A5WdCwY
  priority: 102
  providerName: ProQuest
Title A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation
URI https://www.proquest.com/docview/2453523023
https://www.proquest.com/docview/2461001295
https://pubmed.ncbi.nlm.nih.gov/PMC7642747
https://doaj.org/article/f62eec2eb1e841cf88bf445182c237de
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qC9IXUasYW48VxAch9bKb3ew9iNydLUVoKdWTvoXsj9SDNlevuWL_e2c2ydVA8cGng2Qnd7czm_lmZvcbgHcZL02SlTamklacOiNiLb1AW0bjkPgy9IIOCh-fqKNZ-vVcnm9A196qncCbB0M76ic1W17u__519xkX_CeKONHffiyreUXM23y4L4kvffQIttAxKYrFjtN1UUHhmzgUPxUdFEKk3hQ5H37ENjwWaJ0ITmTPYwVi_x4a7e-l_Ms5HT6FJy2qZOPGDJ7Bhq-ew864woj66o69Z2GfZ0ig78DVmE3pi-JvDSUH-1LU6MpqhvCVTe_N4tazCfWPiLvGDyxkD0vaw8UmKOEYCp8V13PHmhwb-zG_WeHH6f2RpuoFzA4Pvk-P4rbpQmylUHWsvBeiMNylYshtZniZOqlGhUMkpTPvEoUhltc2US5z3pUFF4XjQ2URaiQW4eBL2KwWlX8FLLNaK8GdMIlLlUuKVEuUs2aknB9JE8Gwm9jctozk1BjjMsfIhNSSB7XkpJa8UUsEH9Yi1w0dx78GT0hb64HEpB0uLJYXebsw81Jx7y1Hl-XRXG2ptSmJtE1zywX-wwj2Ol3nnXXmPCVWHOq3FMHb9W1cmFRtKSq_WNEYlYQ0n4wg69lI7wf171Tzn4HiO8OwEAO91_8tuQvbNBPkZTnfg816ufJvED7VZgBbk4OT07NBSD8MwhL5A1zyHZg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH8hy0EvRkRjFXFM1INJZTvTTtsDMbsLZBHYEATDrbTzoZtId4Uuhn_Kv9H3pu1iL9w4NdnOdLZ9b97nvN8DeB9zWwSxVT6ltPxQF8JPIiOQl5E5IhSGRlCh8NFEjs_Cr-fR-Qr8bWth6FhlKxOdoNYzRTHyLR4SEAm1uPky_-1T1yjKrrYtNGq2ODC3f9Blu97e30H6fuB8b_d0NPabrgK-ioSsfGmMEHnBdYgPU3HBbagjmeYaTYUkNjqQ6EOYRAVSx9pom3ORa96XCnVpoAICX0KRvxpSRWsPVoe7k-OTVvZLFPYuvyqpFgmdgTqPim5gumXLaUn44Lz_OSJU97SjCV3DgI6V2z2j-Z_S23sKTxprlQ1q9lqDFVM-g_VBiZ765S37yNz5UReYX4fLARvRQv63GuqD7eQVqsiKoVnMRnfsdmPYkPpS-G1DCeaikpbOhrEhztAMJ5_k86lmdeyOfZ9eL_ByfFcqVT6Hswf57C-gV85K8xJYrJJECq5FEehQ6iAPkwjnqSKV2qRR4UG__bCZapDOqeHGrww9HqJF5miRES2ymhYefFpOmdcwH_cNHhK1lgMJodv9MLv6kTUbPrOSG6M4qkKD20DZJCksgcElXHGBb-jBRkvrrBEbuMiSyT14t7yNG56yOHlpZgsaIwMXPow8iDs80vlD3Tvl9KeDDo_R3UQH8tX9i7-FR-PTo8PscH9y8Boe06uTuuZ8A3rV1cK8QTusKjYb5mdw8dD77R_8CUgn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqYS4oEJBGAosEnBAMol37bV9QCiPRi2FKCoU9WbsfdBI1AmtA-pf49cxs7ZTfOmtJ0vxrjf2vGd2vwF4FXNbBLFVPpW0_FAXwk8iI5CXkTkiVIZG0EHhzzN5cBJ-PI1Ot-BvexaGtlW2OtEpar1UlCPv85CASKjFTd822yLmk-mH1S-fOkhRpbVtp1GzyJG5-oPh2-X7wwnS-jXn0_2v4wO_6TDgq0jIypfGCJEXXIf4YBUX3IY6kmmu0W1IYqMDifGESVQgdayNtjkXueYDqdCuBiogICZU_9sxWsWwB9uj_dn8uLUDEhW_q7VKOpeEgUFdU8WQMO3bclESVjgfvIsI4T3tWEXXPKDj8Xb3a_5nAKc7cK_xXNmwZrX7sGXKB7A7LDFqP79ib5jbS-qS9LtwPmRjWsj_UsN-sEleobmsGLrIbHzNer8NG1GPCr9tLsFchtLSPjE2whma4eTjfLXQrM7jsW-LyzVe5tfHpsqHcHIrn_0R9MplaR4Di1WSSMG1KAIdSh3kYRLhPFWkUps0KjwYtB82Uw3qOTXf-Jlh9EO0yBwtMqJFVtPCg7ebKasa8uOmwSOi1mYgoXW7H5YXP7JG-DMruTGKo1k0KBLKJklhCRgu4YoLfEMP9lpaZ40KwUU2DO_By81tFH6q6OSlWa5pjAxcKjHyIO7wSOcPde-UizMHIx5j6InB5JObF38Bd1DOsk-Hs6OncJfenCw353vQqy7W5hm6ZFXxvOF9Bt9vW9z-AfCITFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cross-Session+Dataset+for+Collaborative+Brain-Computer+Interfaces+Based+on+Rapid+Serial+Visual+Presentation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zheng%2C+Li&rft.au=Sun%2C+Sen&rft.au=Zhao%2C+Hongze&rft.au=Pei%2C+Weihua&rft.date=2020-10-22&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.579469&rft_id=info%3Apmid%2F33192265&rft.externalDocID=PMC7642747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon