Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice
Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed...
Saved in:
Published in | Gastroenterology (New York, N.Y. 1943) Vol. 155; no. 3; pp. 865 - 879.e12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.
We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.
Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.
We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.
[Display omitted] |
---|---|
AbstractList | Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.
We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfeb
albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.
Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.
We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage. Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.BACKGROUND & AIMSDefects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.METHODSWe performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.RESULTSLiver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.CONCLUSIONSWe found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage. Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage. [Display omitted] |
Author | He, Xi C. Krishnamurthy, Partha Li, Linheng Chao, Xiaojuan Ding, Wen-Xing Li, Tiangang Zhao, Katrina Ni, Hong-Min Li, Yuan Ballabio, Andrea Williams, Jessica A. Wang, Shaogui Chavan, Hemantkumar |
AuthorAffiliation | 3 Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy 4 Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy 2 Stowers Institute for Medical Research, Kansas City, MO 64110, USA 5 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA – name: 3 Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy – name: 2 Stowers Institute for Medical Research, Kansas City, MO 64110, USA – name: 5 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA – name: 4 Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy |
Author_xml | – sequence: 1 givenname: Xiaojuan orcidid: 0000-0002-8731-7785 surname: Chao fullname: Chao, Xiaojuan organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 2 givenname: Shaogui surname: Wang fullname: Wang, Shaogui organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 3 givenname: Katrina surname: Zhao fullname: Zhao, Katrina organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 4 givenname: Yuan orcidid: 0000-0002-3171-8053 surname: Li fullname: Li, Yuan organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 5 givenname: Jessica A. surname: Williams fullname: Williams, Jessica A. organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 6 givenname: Tiangang surname: Li fullname: Li, Tiangang organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 7 givenname: Hemantkumar orcidid: 0000-0002-9963-6230 surname: Chavan fullname: Chavan, Hemantkumar organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 8 givenname: Partha surname: Krishnamurthy fullname: Krishnamurthy, Partha organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 9 givenname: Xi C. surname: He fullname: He, Xi C. organization: Stowers Institute for Medical Research, Kansas City, Missouri – sequence: 10 givenname: Linheng surname: Li fullname: Li, Linheng organization: Stowers Institute for Medical Research, Kansas City, Missouri – sequence: 11 givenname: Andrea surname: Ballabio fullname: Ballabio, Andrea organization: Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy – sequence: 12 givenname: Hong-Min surname: Ni fullname: Ni, Hong-Min organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas – sequence: 13 givenname: Wen-Xing orcidid: 0000-0002-3167-5073 surname: Ding fullname: Ding, Wen-Xing email: wxding@kumc.edu organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29782848$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd-KEzEUh4OsuN3VNxCZS2-mJpn_IsJu6a6FLgqu1-FM5kybOpPUJFMY8GF8Fp9sU1sX3ZtehZDf7zvhfBfkTBuNhLxmdMpolrzbTFfgvDVTTlk5pdmU8uIZmbCMlzGljJ-RSTjyOKNldk4unNtQSqukZC_IOa-KkpdpOSE_F_0WlMUmur-ZX8d32Cjw4bYcnXGmx-hamRVqdMpFoJvoavBmu4bVGH2xpjceo9naGq1kNPdr0KaLF7oZ5J6gdmijhd4MdvxT_eoRvNmDlP79605JfEmet9A5fHU8L8m3m_n97FO8_Hy7mF0tY5kluY_zBgqWQJFgAi2wHGkNgLWsK1lLxlJZpVVZFbykRZtKkC2kNZZplXPMkyZhySX5eOBuh7rHRqL2FjqxtaoHOwoDSvz_otVarMxO5IzTouAB8PYIsObHgM6LXjmJXQcazeAEpykvMpYWNETf_DvrccjflYdAeghIa5yz2D5GGBV7s2IjDmbF3qygmQhmQ-39k5pUHrwy-x-r7lT5uAAMW94ptMJJhTpoCuqlF41RpwAfngBkp4J16L7jeLr-AOOL2fE |
CitedBy_id | crossref_primary_10_1016_j_apsb_2022_01_017 crossref_primary_10_3390_antiox12020493 crossref_primary_10_1016_j_joim_2024_10_002 crossref_primary_10_1016_j_clgc_2022_08_008 crossref_primary_10_1097_HEP_0000000000000373 crossref_primary_10_3748_wjg_v30_i28_3428 crossref_primary_10_1016_j_it_2019_12_003 crossref_primary_10_3390_ijms241511899 crossref_primary_10_3390_biom12081035 crossref_primary_10_3390_nu14173600 crossref_primary_10_1016_j_livres_2018_08_004 crossref_primary_10_1016_j_livres_2023_12_001 crossref_primary_10_1080_15548627_2022_2046457 crossref_primary_10_3389_fmars_2020_00363 crossref_primary_10_1016_j_bbadis_2019_03_009 crossref_primary_10_3390_curroncol30060406 crossref_primary_10_1038_s41467_022_33465_9 crossref_primary_10_3389_fimmu_2022_1083780 crossref_primary_10_1016_j_biomaterials_2022_121743 crossref_primary_10_1021_acs_analchem_2c03351 crossref_primary_10_1152_ajpgi_00376_2018 crossref_primary_10_1016_j_taap_2024_117117 crossref_primary_10_1016_j_ajpath_2024_11_011 crossref_primary_10_1186_s40104_021_00624_9 crossref_primary_10_1016_j_transproceed_2024_03_001 crossref_primary_10_3390_cancers13051181 crossref_primary_10_1161_ATVBAHA_120_315310 crossref_primary_10_48022_mbl_2108_08004 crossref_primary_10_1016_j_biopha_2018_11_030 crossref_primary_10_1016_j_heliyon_2024_e32480 crossref_primary_10_3724_abbs_2023060 crossref_primary_10_3389_fphar_2021_794298 crossref_primary_10_1002_hep4_1785 crossref_primary_10_1016_j_fct_2020_111575 crossref_primary_10_1016_j_apsb_2021_07_021 crossref_primary_10_1002_hep4_1427 crossref_primary_10_3350_cmh_2024_0107 crossref_primary_10_3389_fcell_2021_650846 crossref_primary_10_3390_ijms232012584 crossref_primary_10_1016_j_biocel_2021_105937 crossref_primary_10_1097_HEP_0000000000001214 crossref_primary_10_3390_ijms20205029 crossref_primary_10_1016_j_cophys_2022_100594 crossref_primary_10_1016_j_apsb_2021_11_010 crossref_primary_10_1016_j_taap_2024_117210 crossref_primary_10_3390_biom12050672 crossref_primary_10_1016_j_jcmgh_2020_11_013 crossref_primary_10_3390_cells8010016 crossref_primary_10_1016_j_intimp_2022_108712 crossref_primary_10_1080_15548627_2019_1596486 crossref_primary_10_3389_fphar_2019_00495 crossref_primary_10_1002_fft2_204 crossref_primary_10_1016_j_jare_2024_07_002 crossref_primary_10_1016_j_biopha_2024_117297 crossref_primary_10_1016_j_jcmgh_2023_01_016 crossref_primary_10_1016_j_jep_2024_118662 crossref_primary_10_1016_j_bbadis_2023_166723 crossref_primary_10_1111_bph_15466 crossref_primary_10_1111_jdi_13305 crossref_primary_10_1016_j_livres_2019_09_002 crossref_primary_10_3389_fmolb_2021_804097 crossref_primary_10_3390_biom13020222 crossref_primary_10_5009_gnl18486 crossref_primary_10_1016_j_apsb_2023_10_017 crossref_primary_10_1152_ajpcell_00281_2022 crossref_primary_10_3389_fnut_2024_1511682 crossref_primary_10_3390_cancers14071806 crossref_primary_10_1016_j_tox_2023_153468 crossref_primary_10_1172_jci_insight_140180 crossref_primary_10_3389_fmicb_2024_1335036 crossref_primary_10_1016_j_ultsonch_2023_106304 crossref_primary_10_1016_j_biopha_2020_110272 crossref_primary_10_1016_j_ajpath_2023_02_015 crossref_primary_10_3389_fphar_2022_865689 crossref_primary_10_33549_physiolres_934549 crossref_primary_10_1016_j_ecoenv_2023_114674 crossref_primary_10_1016_j_lfs_2023_122343 crossref_primary_10_1016_j_chemosphere_2023_138071 crossref_primary_10_1021_acs_jafc_9b03338 crossref_primary_10_1155_2019_8506195 crossref_primary_10_7554_eLife_92243 crossref_primary_10_1016_j_abb_2020_108694 crossref_primary_10_1002_biot_202200147 crossref_primary_10_3389_fphys_2022_970292 crossref_primary_10_3390_nu14030658 crossref_primary_10_3390_ani13030341 crossref_primary_10_1016_j_jcmgh_2023_02_005 crossref_primary_10_1155_2021_6675762 crossref_primary_10_3390_ijms20020300 crossref_primary_10_1016_j_phrs_2021_105964 crossref_primary_10_1016_j_mam_2021_100973 crossref_primary_10_1080_15548627_2024_2329476 crossref_primary_10_3389_fcell_2021_638759 crossref_primary_10_3390_biom11101497 crossref_primary_10_1038_s41467_025_57351_2 crossref_primary_10_1080_15548627_2018_1489170 crossref_primary_10_1016_j_livres_2019_11_001 crossref_primary_10_1016_j_fct_2019_111075 crossref_primary_10_1172_jci_insight_183560 crossref_primary_10_1172_jci_insight_136496 crossref_primary_10_1007_s11033_023_08264_0 crossref_primary_10_3390_biom9120851 crossref_primary_10_3390_livers4030027 crossref_primary_10_1111_acer_13877 crossref_primary_10_1038_s41420_024_02224_8 crossref_primary_10_1111_jcmm_16593 crossref_primary_10_3390_biomedicines12030559 crossref_primary_10_1016_j_livres_2023_02_002 crossref_primary_10_1016_j_jcmgh_2020_01_008 crossref_primary_10_1186_s13018_020_1573_3 crossref_primary_10_1016_j_jnutbio_2019_07_005 crossref_primary_10_1534_g3_118_200963 crossref_primary_10_1016_j_livres_2019_11_006 crossref_primary_10_1016_j_heliyon_2023_e15316 crossref_primary_10_1002_iub_2760 crossref_primary_10_1016_j_apsb_2021_12_012 crossref_primary_10_1016_j_livres_2022_11_006 crossref_primary_10_1016_j_cellsig_2023_110905 crossref_primary_10_1038_s41401_024_01423_4 crossref_primary_10_1038_s41419_022_04841_6 crossref_primary_10_1016_j_ajpath_2019_05_011 crossref_primary_10_1248_bpb_b20_00021 crossref_primary_10_1002_fsn3_3281 crossref_primary_10_1016_j_jnutbio_2022_109060 crossref_primary_10_1111_iej_13924 crossref_primary_10_1016_j_biopha_2019_108929 crossref_primary_10_1016_j_ajpath_2018_11_008 crossref_primary_10_1016_j_bcp_2023_115698 crossref_primary_10_1016_j_bcp_2023_115576 crossref_primary_10_1016_j_jnutbio_2023_109332 crossref_primary_10_1186_s13578_024_01267_9 crossref_primary_10_1016_j_jcmgh_2021_07_002 crossref_primary_10_1016_j_jare_2024_01_027 crossref_primary_10_1146_annurev_pathmechdis_031521_030435 crossref_primary_10_1038_s41419_022_05422_3 crossref_primary_10_1016_j_livres_2018_11_002 crossref_primary_10_7717_peerj_16398 crossref_primary_10_1016_j_phymed_2024_156056 crossref_primary_10_18632_aging_205312 crossref_primary_10_3390_cells11193153 crossref_primary_10_1002_jcb_30396 crossref_primary_10_1038_s41419_021_03865_8 crossref_primary_10_31083_j_fbl2801006 crossref_primary_10_3390_ijms21041266 crossref_primary_10_1021_acs_jafc_4c08211 crossref_primary_10_1073_pnas_2011442117 crossref_primary_10_1002_smll_202204310 crossref_primary_10_1007_s12272_023_01460_3 crossref_primary_10_1002_tox_23420 crossref_primary_10_14348_molcells_2021_0067 crossref_primary_10_1186_s13287_022_02981_2 crossref_primary_10_1080_15548627_2023_2179781 crossref_primary_10_1016_j_expneurol_2023_114436 crossref_primary_10_1007_s10620_024_08778_y crossref_primary_10_1016_j_jhep_2021_10_014 crossref_primary_10_3390_ijms25115890 crossref_primary_10_3390_cells9040837 crossref_primary_10_1111_fcp_12634 crossref_primary_10_1002_mnfr_202200812 crossref_primary_10_3350_cmh_2020_0142 crossref_primary_10_1016_j_jinorgbio_2018_12_008 crossref_primary_10_3168_jds_2023_24000 crossref_primary_10_1016_j_freeradbiomed_2023_12_020 crossref_primary_10_1371_journal_pone_0239625 crossref_primary_10_1002_tox_23677 crossref_primary_10_1016_j_bbrc_2024_149887 crossref_primary_10_1002_ddr_21981 crossref_primary_10_1016_j_jhep_2019_01_026 crossref_primary_10_1002_hep_30766 crossref_primary_10_1186_s13020_023_00824_7 crossref_primary_10_3390_ijms22126469 crossref_primary_10_1080_15548627_2024_2407709 crossref_primary_10_1016_j_jep_2023_116365 crossref_primary_10_3389_fphar_2021_747325 crossref_primary_10_1016_j_bioorg_2022_106272 crossref_primary_10_1016_j_phrs_2024_107162 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3390_ijms21249407 crossref_primary_10_1016_j_bbadis_2024_167259 crossref_primary_10_1016_j_fct_2018_12_028 crossref_primary_10_1136_gutjnl_2019_319720 crossref_primary_10_3389_fmed_2025_1482089 crossref_primary_10_3389_fonc_2019_01247 crossref_primary_10_1089_ars_2022_0051 crossref_primary_10_7554_eLife_92243_3 crossref_primary_10_1016_j_bioorg_2023_106795 crossref_primary_10_3168_jds_2021_20892 crossref_primary_10_1172_jci_insight_162498 crossref_primary_10_1016_j_livres_2018_09_005 crossref_primary_10_1097_HC9_0000000000000566 crossref_primary_10_3390_nu15020372 crossref_primary_10_1016_j_jcmgh_2019_03_005 crossref_primary_10_1016_j_livres_2018_09_004 crossref_primary_10_1016_j_ajpath_2021_10_004 crossref_primary_10_1016_j_jep_2024_117721 crossref_primary_10_1177_00368504211043766 crossref_primary_10_3390_biom14121537 crossref_primary_10_3350_cmh_2020_0169 crossref_primary_10_3168_jds_2022_22801 crossref_primary_10_1016_j_talanta_2023_124819 crossref_primary_10_1126_scitranslmed_adi0284 crossref_primary_10_1038_s42003_024_07234_x crossref_primary_10_1007_s12274_022_4167_z crossref_primary_10_1038_s41575_023_00822_y crossref_primary_10_1002_hep_32604 crossref_primary_10_1111_bph_16268 crossref_primary_10_1016_j_fsi_2020_06_025 crossref_primary_10_1016_j_lfs_2020_117418 crossref_primary_10_3389_fimmu_2023_1282469 crossref_primary_10_1038_s42003_024_06427_8 crossref_primary_10_1016_j_phymed_2022_154148 crossref_primary_10_1039_D2FO02719D crossref_primary_10_1136_egastro_2023_100020 crossref_primary_10_1016_j_intimp_2024_113596 crossref_primary_10_1016_j_freeradbiomed_2021_05_018 crossref_primary_10_1016_j_freeradbiomed_2021_11_008 crossref_primary_10_1016_j_lfs_2020_118043 crossref_primary_10_3390_antiox12071425 crossref_primary_10_3389_fcell_2020_602574 crossref_primary_10_1111_acer_14695 crossref_primary_10_1097_HC9_0000000000000547 crossref_primary_10_1038_s41419_022_05303_9 crossref_primary_10_1002_hep_32612 crossref_primary_10_1038_s41420_024_01850_6 crossref_primary_10_1080_15548627_2019_1703355 crossref_primary_10_1080_01913123_2022_2059041 crossref_primary_10_1016_j_phymed_2024_155703 crossref_primary_10_4254_wjh_v13_i1_6 crossref_primary_10_1016_j_bbadis_2021_166290 crossref_primary_10_1016_j_bbadis_2025_167668 crossref_primary_10_1002_advs_202403389 crossref_primary_10_1016_j_cej_2022_136141 crossref_primary_10_1038_s41467_020_17363_6 crossref_primary_10_4103_1673_5374_379051 crossref_primary_10_1016_j_toxlet_2024_03_002 crossref_primary_10_1055_a_2186_3557 crossref_primary_10_1038_s43587_021_00098_4 crossref_primary_10_1089_adt_2021_119 crossref_primary_10_3390_cells10020333 crossref_primary_10_1016_j_fct_2023_114119 crossref_primary_10_1097_HEP_0000000000000717 crossref_primary_10_1097_HC9_0000000000000534 crossref_primary_10_3389_fcell_2019_00185 |
Cites_doi | 10.1016/0304-4165(95)00121-2 10.1080/15548627.2017.1371394 10.1007/s10735-013-9483-x 10.3748/wjg.v20.i36.12908 10.1128/MCB.00289-08 10.1053/j.gastro.2010.07.041 10.1038/nprot.2013.032 10.1016/S0891-5849(98)00079-3 10.1111/acer.12931 10.1016/j.jhep.2013.01.011 10.1126/science.1207056 10.1038/nrm3522 10.1073/pnas.072071099 10.1080/15548627.2016.1271514 10.1074/jbc.M114.602284 10.1016/j.ajpath.2013.08.011 10.1016/j.tcb.2014.03.003 10.1126/science.1198096 10.1002/hep.20310 10.4161/auto.25063 10.1016/j.cell.2010.02.024 10.1007/s00018-014-1565-8 10.1053/j.gastro.2016.02.043 10.1101/gad.265116.115 10.1111/acer.12904 10.1002/hep.29645 10.1080/15548627.2015.1100356 10.1038/ncb2718 10.1126/science.1204592 10.1371/journal.pone.0115849 10.1053/j.gastro.2011.09.002 10.1002/hep.24690 10.1258/ebm.2011.010360 10.1038/ncb3114 10.1038/nrm3565 10.1101/gad.213827.113 10.1038/nrm3025 10.1038/emboj.2012.32 10.3109/00498254.2014.986250 10.1053/j.gastro.2016.02.035 10.15252/embj.201796699 |
ContentType | Journal Article |
Copyright | 2018 AGA Institute Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 AGA Institute – notice: Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1053/j.gastro.2018.05.027 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-0012 |
EndPage | 879.e12 |
ExternalDocumentID | PMC6120772 29782848 10_1053_j_gastro_2018_05_027 S0016508518345608 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: 9P20GM104936 – fundername: National Institutes on Alcohol Abuse and Alcoholism grantid: R01 AA020518; U01 AA024733 – fundername: National Cancer Institute Cancer Center grantid: P30 CA168524 – fundername: National Institute of General Medical Sciences grantid: P20GM103549; P30GM118247 – fundername: NIAAA NIH HHS grantid: R37 AA020518 – fundername: NIAAA NIH HHS grantid: R24 AA025017 – fundername: NIDDK NIH HHS grantid: R01 DK102487 – fundername: NIDDK NIH HHS grantid: R01 DK102142 – fundername: NIGMS NIH HHS grantid: P20 GM103549 – fundername: NIGMS NIH HHS grantid: P20 GM104936 – fundername: NIAAA NIH HHS grantid: R01 AA020518 – fundername: NIGMS NIH HHS grantid: P30 GM118247 – fundername: NIAAA NIH HHS grantid: U01 AA024733 |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 1B1 1CY 1P~ 1~5 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 AAEDT AAEDW AAFWJ AAIKJ AALRI AAQFI AAQOH AAQQT AAQXK AAXUO ABCQX ABDPE ABJNI ABLJU ABMAC ABOCM ABWVN ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO AENEX AEVXI AFFNX AFHKK AFJKZ AFRHN AFTJW AGCQF AGHFR AGQPQ AI. AITUG AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BELOY BR6 C5W CAG COF CS3 DU5 EBS EFJIC EFKBS EJD F5P FD8 FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A NQ- O9- OC. OHT ON0 P2P PC. QTD R2- ROL RPZ SEL SES SJN SSZ UDS UGJ UV1 VH1 WH7 X7M XH2 Y6R YQJ Z5R ZGI ZXP AAIAV AAYOK ADPAM AFCTW AGZHU AHPSJ ALXNB G8K RIG TWZ ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 5PM |
ID | FETCH-LOGICAL-c536t-6da713a73e3afa16e0baaebcb9cbc114c9498972807f4cacfa4be84962e63d313 |
ISSN | 0016-5085 1528-0012 |
IngestDate | Thu Aug 21 18:40:19 EDT 2025 Fri Jul 11 04:24:05 EDT 2025 Wed Feb 19 02:31:28 EST 2025 Tue Jul 01 03:30:55 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 Fri Feb 23 02:32:18 EST 2024 Tue Aug 26 19:39:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | GTP Ad PGC1α ALT EtOH Gene Regulation GFP ATP6V1H ATP6V1D LC3 Ly6B WT Mouse Model ATP6V0E1 KO Lamp1 H&E AH TFE3 TFEB DKO TSC1 Ctrl EGTA PKCβ Fatty Liver Hepatic Protection ERK1/2 TG Tor ALD LDs Leu mTORC1 |
Language | English |
License | Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c536t-6da713a73e3afa16e0baaebcb9cbc114c9498972807f4cacfa4be84962e63d313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-3171-8053 0000-0002-9963-6230 0000-0002-8731-7785 0000-0002-3167-5073 |
PMID | 29782848 |
PQID | 2042751470 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120772 proquest_miscellaneous_2042751470 pubmed_primary_29782848 crossref_primary_10_1053_j_gastro_2018_05_027 crossref_citationtrail_10_1053_j_gastro_2018_05_027 elsevier_sciencedirect_doi_10_1053_j_gastro_2018_05_027 elsevier_clinicalkey_doi_10_1053_j_gastro_2018_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Gastroenterology (New York, N.Y. 1943) |
PublicationTitleAlternate | Gastroenterology |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zoncu, Efeyan, Sabatini (bib16) 2011; 12 Ding, Ni, DiFrancesca (bib26) 2004; 40 Martina, Diab, Li (bib30) 2014; 71 Klionsky, Abdelmohsen, Abe (bib27) 2016; 12 Domenicotti, Paola, Vitali (bib34) 1998; 25 Baraona, Leo, Borowsky (bib13) 1975; 190 Ni, Du, You (bib9) 2013; 183 Medina, Di Paola, Peluso (bib33) 2015; 17 Nagy, Ding, Cresci (bib2) 2016; 150 Gao, Bataller (bib3) 2011; 141 Jewell, Russell, Guan (bib20) 2013; 14 Li, Zong, Ding (bib39) 2017; 13 Zoncu, Bar-Peled, Efeyan (bib19) 2011; 334 Williams, Ni, Haynes (bib37) 2015; 290 Ding, Manley, Ni (bib6) 2011; 236 Khanova, Wu, Wang (bib28) 2018; 67 Ding, Li, Chen (bib5) 2010; 139 Lin, Zhang, Li (bib10) 2013; 58 Yuan, Wang, Yu (bib36) 2015; 29 Williams, Manley, Ding (bib4) 2014; 20 Settembre, De Cegli, Mansueto (bib22) 2013; 15 Eid, Ito, Maemura (bib11) 2013; 44 Vega-Rubin-de-Celis, Pena-Llopis, Konda (bib31) 2017; 13 Settembre, Fraldi, Medina (bib21) 2013; 14 Sha, Rao, Settembre (bib29) 2017; 36 Li, Ding (bib8) 2016; 40 Settembre, Zoncu, Medina (bib14) 2012; 31 Huang, Dibble, Matsuzaki (bib17) 2008; 28 Ni, Bockus, Boggess (bib25) 2012; 55 Kharbanda, McVicker, Zetterman (bib12) 1995; 1245 Settembre, Di Malta, Polito (bib15) 2011; 332 Ferron, Settembre, Shimazu (bib32) 2013; 27 Bertola, Mathews, Ki (bib23) 2013; 8 Sancak, Bar-Peled, Zoncu (bib18) 2010; 141 Thomes, Trambly, Fox (bib7) 2015; 39 Steingrimsson, Tessarollo, Pathak (bib24) 2002; 99 Bar-Peled, Sabatini (bib35) 2014; 24 Liangpunsakul, Haber, McCaughan (bib1) 2016; 150 Czaja, Ding, Donohue (bib38) 2013; 9 Yuan (10.1053/j.gastro.2018.05.027_bib36) 2015; 29 Martina (10.1053/j.gastro.2018.05.027_bib30) 2014; 71 Baraona (10.1053/j.gastro.2018.05.027_bib13) 1975; 190 Sha (10.1053/j.gastro.2018.05.027_bib29) 2017; 36 Vega-Rubin-de-Celis (10.1053/j.gastro.2018.05.027_bib31) 2017; 13 Gao (10.1053/j.gastro.2018.05.027_bib3) 2011; 141 Li (10.1053/j.gastro.2018.05.027_bib8) 2016; 40 Settembre (10.1053/j.gastro.2018.05.027_bib14) 2012; 31 Khanova (10.1053/j.gastro.2018.05.027_bib44) 2018; 67 Zoncu (10.1053/j.gastro.2018.05.027_bib16) 2011; 12 Huang (10.1053/j.gastro.2018.05.027_bib17) 2008; 28 Klionsky (10.1053/j.gastro.2018.05.027_bib27) 2016; 12 Ni (10.1053/j.gastro.2018.05.027_bib9) 2013; 183 Williams (10.1053/j.gastro.2018.05.027_bib4) 2014; 20 Ni (10.1053/j.gastro.2018.05.027_bib25) 2012; 55 Liangpunsakul (10.1053/j.gastro.2018.05.027_bib1) 2016; 150 Ding (10.1053/j.gastro.2018.05.027_bib41) 2010; 139 Williams (10.1053/j.gastro.2018.05.027_bib37) 2015; 290 Domenicotti (10.1053/j.gastro.2018.05.027_bib34) 1998; 25 Ding (10.1053/j.gastro.2018.05.027_bib6) 2011; 236 Bertola (10.1053/j.gastro.2018.05.027_bib23) 2013; 8 Medina (10.1053/j.gastro.2018.05.027_bib33) 2015; 17 Czaja (10.1053/j.gastro.2018.05.027_bib38) 2013; 9 Khanova (10.1053/j.gastro.2018.05.027_bib28) 2018; 67 Bar-Peled (10.1053/j.gastro.2018.05.027_bib35) 2014; 24 Settembre (10.1053/j.gastro.2018.05.027_bib22) 2013; 15 Ni (10.1053/j.gastro.2018.05.027_bib42) 2014; 9 Lin (10.1053/j.gastro.2018.05.027_bib10) 2013; 58 Jewell (10.1053/j.gastro.2018.05.027_bib20) 2013; 14 Eid (10.1053/j.gastro.2018.05.027_bib11) 2013; 44 Li (10.1053/j.gastro.2018.05.027_bib39) 2017; 13 Steingrimsson (10.1053/j.gastro.2018.05.027_bib24) 2002; 99 McGill (10.1053/j.gastro.2018.05.027_bib43) 2015; 45 Settembre (10.1053/j.gastro.2018.05.027_bib15) 2011; 332 Sancak (10.1053/j.gastro.2018.05.027_bib18) 2010; 141 Ding (10.1053/j.gastro.2018.05.027_bib5) 2010; 139 Settembre (10.1053/j.gastro.2018.05.027_bib21) 2013; 14 Kharbanda (10.1053/j.gastro.2018.05.027_bib12) 1995; 1245 Zoncu (10.1053/j.gastro.2018.05.027_bib19) 2011; 334 Ding (10.1053/j.gastro.2018.05.027_bib26) 2004; 40 Ferron (10.1053/j.gastro.2018.05.027_bib32) 2013; 27 Nagy (10.1053/j.gastro.2018.05.027_bib2) 2016; 150 Thomes (10.1053/j.gastro.2018.05.027_bib7) 2015; 39 29969942 - Autophagy. 2018;14(9):1646-1648 30450489 - Dig Med Res. 2018 Sep;1 |
References_xml | – volume: 13 start-page: 1995 year: 2017 end-page: 1997 ident: bib39 article-title: Recycling the danger via lipid droplet biogenesis after autophagy publication-title: Autophagy – volume: 14 start-page: 283 year: 2013 end-page: 296 ident: bib21 article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism publication-title: Nat Rev Mol Cell Biol – volume: 141 start-page: 290 year: 2010 end-page: 303 ident: bib18 article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell – volume: 20 start-page: 12908 year: 2014 end-page: 12933 ident: bib4 article-title: New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases publication-title: World J Gastroenterol – volume: 17 start-page: 288 year: 2015 end-page: 299 ident: bib33 article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB publication-title: Nat Cell Biol – volume: 14 start-page: 133 year: 2013 end-page: 139 ident: bib20 article-title: Amino acid signalling upstream of mTOR publication-title: Nat Rev Mol Cell Biol – volume: 99 start-page: 4477 year: 2002 end-page: 4482 ident: bib24 article-title: Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development publication-title: Proc Natl Acad Sci U S A – volume: 28 start-page: 4104 year: 2008 end-page: 4115 ident: bib17 article-title: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2 publication-title: Mol Cell Biol – volume: 236 start-page: 546 year: 2011 end-page: 556 ident: bib6 article-title: The emerging role of autophagy in alcoholic liver disease publication-title: Exp Biol Med (Maywood) – volume: 58 start-page: 993 year: 2013 end-page: 999 ident: bib10 article-title: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice publication-title: J Hepatol – volume: 332 start-page: 1429 year: 2011 end-page: 1433 ident: bib15 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science – volume: 25 start-page: 529 year: 1998 end-page: 535 ident: bib34 article-title: Mechanisms of inactivation of hepatocyte protein kinase C isoforms following acute ethanol treatment publication-title: Free Radic Biol Med – volume: 71 start-page: 2483 year: 2014 end-page: 2497 ident: bib30 article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis publication-title: Cell Mol Life Sci – volume: 150 start-page: 1756 year: 2016 end-page: 1768 ident: bib2 article-title: Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes publication-title: Gastroenterology – volume: 55 start-page: 222 year: 2012 end-page: 232 ident: bib25 article-title: Activation of autophagy protects against acetaminophen-induced hepatotoxicity publication-title: Hepatology – volume: 8 start-page: 627 year: 2013 end-page: 637 ident: bib23 article-title: Mouse model of chronic and binge ethanol feeding (the NIAAA model) publication-title: Nat Protoc – volume: 24 start-page: 400 year: 2014 end-page: 406 ident: bib35 article-title: Regulation of mTORC1 by amino acids publication-title: Trends Cell Biol – volume: 183 start-page: 1815 year: 2013 end-page: 1825 ident: bib9 article-title: Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity publication-title: Am J Pathol – volume: 141 start-page: 1572 year: 2011 end-page: 1585 ident: bib3 article-title: Alcoholic liver disease: pathogenesis and new therapeutic targets publication-title: Gastroenterology – volume: 29 start-page: 2362 year: 2015 end-page: 2376 ident: bib36 article-title: NLK phosphorylates raptor to mediate stress-induced mTORC1 inhibition publication-title: Genes Dev – volume: 290 start-page: 10934 year: 2015 end-page: 10946 ident: bib37 article-title: Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice publication-title: J Biol Chem – volume: 334 start-page: 678 year: 2011 end-page: 683 ident: bib19 article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase publication-title: Science – volume: 44 start-page: 311 year: 2013 end-page: 326 ident: bib11 article-title: Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: an immunohistochemical and electron microscopic study publication-title: J Mol Histol – volume: 40 start-page: 403 year: 2004 end-page: 413 ident: bib26 article-title: Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes publication-title: Hepatology – volume: 36 start-page: 2544 year: 2017 end-page: 2552 ident: bib29 article-title: STUB1 regulates TFEB-induced autophagy-lysosome pathway publication-title: EMBO J – volume: 9 start-page: 1131 year: 2013 end-page: 1158 ident: bib38 article-title: Functions of autophagy in normal and diseased liver publication-title: Autophagy – volume: 15 start-page: 647 year: 2013 end-page: 658 ident: bib22 article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop publication-title: Nat Cell Biol – volume: 27 start-page: 955 year: 2013 end-page: 969 ident: bib32 article-title: A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts publication-title: Genes Dev – volume: 13 start-page: 464 year: 2017 end-page: 472 ident: bib31 article-title: Multistep regulation of TFEB by MTORC1 publication-title: Autophagy – volume: 139 start-page: 1740 year: 2010 end-page: 1752 ident: bib5 article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice publication-title: Gastroenterology – volume: 67 start-page: 1737 year: 2018 end-page: 1753 ident: bib28 article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis publication-title: Hepatology – volume: 1245 start-page: 421 year: 1995 end-page: 429 ident: bib12 article-title: Ethanol consumption reduces the proteolytic capacity and protease activities of hepatic lysosomes publication-title: Biochim Biophys Acta – volume: 190 start-page: 794 year: 1975 end-page: 795 ident: bib13 article-title: Alcoholic hepatomegaly: accumulation of protein in the liver publication-title: Science – volume: 40 start-page: 47 year: 2016 end-page: 49 ident: bib8 article-title: A gene transcription program decides the differential regulation of autophagy by acute versus chronic ethanol? publication-title: Alcohol Clin Exp Res – volume: 12 start-page: 1 year: 2016 end-page: 222 ident: bib27 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy – volume: 150 start-page: 1786 year: 2016 end-page: 1797 ident: bib1 article-title: Alcoholic liver disease in Asia, Europe, and North America publication-title: Gastroenterology – volume: 39 start-page: 2354 year: 2015 end-page: 2363 ident: bib7 article-title: Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB publication-title: Alcohol Clin Exp Res – volume: 31 start-page: 1095 year: 2012 end-page: 1108 ident: bib14 article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB publication-title: EMBO J – volume: 12 start-page: 21 year: 2011 end-page: 35 ident: bib16 article-title: mTOR: from growth signal integration to cancer, diabetes and ageing publication-title: Nat Rev Mol Cell Biol – volume: 1245 start-page: 421 year: 1995 ident: 10.1053/j.gastro.2018.05.027_bib12 article-title: Ethanol consumption reduces the proteolytic capacity and protease activities of hepatic lysosomes publication-title: Biochim Biophys Acta doi: 10.1016/0304-4165(95)00121-2 – volume: 13 start-page: 1995 year: 2017 ident: 10.1053/j.gastro.2018.05.027_bib39 article-title: Recycling the danger via lipid droplet biogenesis after autophagy publication-title: Autophagy doi: 10.1080/15548627.2017.1371394 – volume: 44 start-page: 311 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib11 article-title: Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: an immunohistochemical and electron microscopic study publication-title: J Mol Histol doi: 10.1007/s10735-013-9483-x – volume: 20 start-page: 12908 year: 2014 ident: 10.1053/j.gastro.2018.05.027_bib4 article-title: New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i36.12908 – volume: 28 start-page: 4104 year: 2008 ident: 10.1053/j.gastro.2018.05.027_bib17 article-title: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2 publication-title: Mol Cell Biol doi: 10.1128/MCB.00289-08 – volume: 139 start-page: 1740 year: 2010 ident: 10.1053/j.gastro.2018.05.027_bib41 article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.07.041 – volume: 8 start-page: 627 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib23 article-title: Mouse model of chronic and binge ethanol feeding (the NIAAA model) publication-title: Nat Protoc doi: 10.1038/nprot.2013.032 – volume: 25 start-page: 529 year: 1998 ident: 10.1053/j.gastro.2018.05.027_bib34 article-title: Mechanisms of inactivation of hepatocyte protein kinase C isoforms following acute ethanol treatment publication-title: Free Radic Biol Med doi: 10.1016/S0891-5849(98)00079-3 – volume: 40 start-page: 47 year: 2016 ident: 10.1053/j.gastro.2018.05.027_bib8 article-title: A gene transcription program decides the differential regulation of autophagy by acute versus chronic ethanol? publication-title: Alcohol Clin Exp Res doi: 10.1111/acer.12931 – volume: 58 start-page: 993 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib10 article-title: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice publication-title: J Hepatol doi: 10.1016/j.jhep.2013.01.011 – volume: 334 start-page: 678 year: 2011 ident: 10.1053/j.gastro.2018.05.027_bib19 article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase publication-title: Science doi: 10.1126/science.1207056 – volume: 14 start-page: 133 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib20 article-title: Amino acid signalling upstream of mTOR publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3522 – volume: 99 start-page: 4477 year: 2002 ident: 10.1053/j.gastro.2018.05.027_bib24 article-title: Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.072071099 – volume: 13 start-page: 464 year: 2017 ident: 10.1053/j.gastro.2018.05.027_bib31 article-title: Multistep regulation of TFEB by MTORC1 publication-title: Autophagy doi: 10.1080/15548627.2016.1271514 – volume: 290 start-page: 10934 year: 2015 ident: 10.1053/j.gastro.2018.05.027_bib37 article-title: Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice publication-title: J Biol Chem doi: 10.1074/jbc.M114.602284 – volume: 183 start-page: 1815 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib9 article-title: Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity publication-title: Am J Pathol doi: 10.1016/j.ajpath.2013.08.011 – volume: 24 start-page: 400 year: 2014 ident: 10.1053/j.gastro.2018.05.027_bib35 article-title: Regulation of mTORC1 by amino acids publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2014.03.003 – volume: 190 start-page: 794 year: 1975 ident: 10.1053/j.gastro.2018.05.027_bib13 article-title: Alcoholic hepatomegaly: accumulation of protein in the liver publication-title: Science doi: 10.1126/science.1198096 – volume: 40 start-page: 403 year: 2004 ident: 10.1053/j.gastro.2018.05.027_bib26 article-title: Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes publication-title: Hepatology doi: 10.1002/hep.20310 – volume: 9 start-page: 1131 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib38 article-title: Functions of autophagy in normal and diseased liver publication-title: Autophagy doi: 10.4161/auto.25063 – volume: 141 start-page: 290 year: 2010 ident: 10.1053/j.gastro.2018.05.027_bib18 article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell doi: 10.1016/j.cell.2010.02.024 – volume: 71 start-page: 2483 year: 2014 ident: 10.1053/j.gastro.2018.05.027_bib30 article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis publication-title: Cell Mol Life Sci doi: 10.1007/s00018-014-1565-8 – volume: 150 start-page: 1786 year: 2016 ident: 10.1053/j.gastro.2018.05.027_bib1 article-title: Alcoholic liver disease in Asia, Europe, and North America publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.02.043 – volume: 29 start-page: 2362 year: 2015 ident: 10.1053/j.gastro.2018.05.027_bib36 article-title: NLK phosphorylates raptor to mediate stress-induced mTORC1 inhibition publication-title: Genes Dev doi: 10.1101/gad.265116.115 – volume: 39 start-page: 2354 year: 2015 ident: 10.1053/j.gastro.2018.05.027_bib7 article-title: Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB publication-title: Alcohol Clin Exp Res doi: 10.1111/acer.12904 – volume: 67 start-page: 1737 year: 2018 ident: 10.1053/j.gastro.2018.05.027_bib28 article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis publication-title: Hepatology doi: 10.1002/hep.29645 – volume: 12 start-page: 1 year: 2016 ident: 10.1053/j.gastro.2018.05.027_bib27 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 139 start-page: 1740 year: 2010 ident: 10.1053/j.gastro.2018.05.027_bib5 article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.07.041 – volume: 15 start-page: 647 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib22 article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop publication-title: Nat Cell Biol doi: 10.1038/ncb2718 – volume: 332 start-page: 1429 year: 2011 ident: 10.1053/j.gastro.2018.05.027_bib15 article-title: TFEB links autophagy to lysosomal biogenesis publication-title: Science doi: 10.1126/science.1204592 – volume: 9 start-page: e115849 year: 2014 ident: 10.1053/j.gastro.2018.05.027_bib42 article-title: Role of hypoxia inducing factor-1beta in alcohol-induced autophagy, steatosis and liver injury in mice publication-title: PLoS One doi: 10.1371/journal.pone.0115849 – volume: 141 start-page: 1572 year: 2011 ident: 10.1053/j.gastro.2018.05.027_bib3 article-title: Alcoholic liver disease: pathogenesis and new therapeutic targets publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.09.002 – volume: 55 start-page: 222 year: 2012 ident: 10.1053/j.gastro.2018.05.027_bib25 article-title: Activation of autophagy protects against acetaminophen-induced hepatotoxicity publication-title: Hepatology doi: 10.1002/hep.24690 – volume: 236 start-page: 546 year: 2011 ident: 10.1053/j.gastro.2018.05.027_bib6 article-title: The emerging role of autophagy in alcoholic liver disease publication-title: Exp Biol Med (Maywood) doi: 10.1258/ebm.2011.010360 – volume: 17 start-page: 288 year: 2015 ident: 10.1053/j.gastro.2018.05.027_bib33 article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB publication-title: Nat Cell Biol doi: 10.1038/ncb3114 – volume: 14 start-page: 283 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib21 article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3565 – volume: 27 start-page: 955 year: 2013 ident: 10.1053/j.gastro.2018.05.027_bib32 article-title: A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts publication-title: Genes Dev doi: 10.1101/gad.213827.113 – volume: 12 start-page: 21 year: 2011 ident: 10.1053/j.gastro.2018.05.027_bib16 article-title: mTOR: from growth signal integration to cancer, diabetes and ageing publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3025 – volume: 31 start-page: 1095 year: 2012 ident: 10.1053/j.gastro.2018.05.027_bib14 article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB publication-title: EMBO J doi: 10.1038/emboj.2012.32 – volume: 45 start-page: 442 year: 2015 ident: 10.1053/j.gastro.2018.05.027_bib43 article-title: The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury publication-title: Xenobiotica doi: 10.3109/00498254.2014.986250 – volume: 150 start-page: 1756 year: 2016 ident: 10.1053/j.gastro.2018.05.027_bib2 article-title: Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.02.035 – volume: 36 start-page: 2544 year: 2017 ident: 10.1053/j.gastro.2018.05.027_bib29 article-title: STUB1 regulates TFEB-induced autophagy-lysosome pathway publication-title: EMBO J doi: 10.15252/embj.201796699 – volume: 67 start-page: 1737 year: 2018 ident: 10.1053/j.gastro.2018.05.027_bib44 article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis publication-title: Hepatology doi: 10.1002/hep.29645 – reference: 30450489 - Dig Med Res. 2018 Sep;1: – reference: 29969942 - Autophagy. 2018;14(9):1646-1648 |
SSID | ssj0009381 |
Score | 2.6480174 |
Snippet | Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 865 |
SubjectTerms | Animals Autophagy - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology Ethanol Fatty Liver Fatty Liver - genetics Gene Regulation Hepatic Protection Hepatocytes - physiology Liver - metabolism Liver Diseases, Alcoholic - genetics Lysosomes - physiology Mice Mice, Knockout Mouse Model Organelle Biogenesis TOR Serine-Threonine Kinases - physiology |
Title | Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0016508518345608 https://dx.doi.org/10.1053/j.gastro.2018.05.027 https://www.ncbi.nlm.nih.gov/pubmed/29782848 https://www.proquest.com/docview/2042751470 https://pubmed.ncbi.nlm.nih.gov/PMC6120772 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65jlT1UvUd96Wt1JwiUmBhgaNj5dEq7slp3RNa1uBgJRDZcGjVH9Jjf0t_WWfYXWwnjpL2gmxgF8F8zM4s335DyHuUeIPA24PITQosYeZbkZTSihjPXB5kzBO4OHn4mR-fep_G_rjT-bXCWqqrZE_-2Liu5H-sCvvArrhK9h8s23YKO-A32Be2YGHY3snGH-FdzpFAPjo82LeGTdUN-HfyfVEuyosUC01O0ZflSoi5X6OKgJjiokAk4aW7WhoXWe-iKM8tLOSBhIATZGuA75jBE1fkzgqzc-woL3YG7k7fHmrSnIlsj8Simpeo8DlXsk4byvzsOpG3OrM7OBPNTO04F-WsXuL0q5nEhuPTOl-Z3C41A2Suq343XKKGkPDNtNdTGE7YcrRgBNJuF3WybWfdLyv9Xg1AtuJlQ1Ve4pr3t5sSHrO9aXPHyNsLG1lWpT6wAojLiwYRLqTQMDyHy7GwZSiaQ_fIlgsJiNslW0f7J1_6S0FnCHXMUkyffdh0URSa1t3cFPVcz2quknNXop3RI_JQpym0rzD3mHTS4gm5P9REjKfkp4EeXYMeNdCjS-hRwA9toUc19KiGHr0CPdpAjyroNU1b6NG8-PMbYfeMnB4ejAbHli7kYUmf8criExE4TAQsZSITDk_tRIg0kUkkEwkJuYy8KIywUFqQeVLITHhJGnoRd1POJsxhz0m3KIt0m1DBk0nkTziXPPHAn4SeYzM_TJyUCzsIsh5h5kHHUqvcY7GV87hhW_gMsl1lqRgtFdt-DJbqEattdalUXm453zc2jM0KZhhzYwDiLe2Ctp2OcFXkeoeW7wxUYhgA8KueKNKyXsBJnhtA2hPYPfJCQae9BwM_uO4aqNoTUFx-_UiRnzUi85D5wPN0X97Y5yvyYPkuvybdal6nbyBAr5K3-l35C4Jg6Vg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+TFEB-Mediated+Lysosome+Biogenesis+and+Autophagy+Promote+Chronic+Ethanol-Induced+Liver+Injury+and+Steatosis+in%C2%A0Mice&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Chao%2C+Xiaojuan&rft.au=Wang%2C+Shaogui&rft.au=Zhao%2C+Katrina&rft.au=Li%2C+Yuan&rft.date=2018-09-01&rft.eissn=1528-0012&rft.volume=155&rft.issue=3&rft.spage=865&rft_id=info:doi/10.1053%2Fj.gastro.2018.05.027&rft_id=info%3Apmid%2F29782848&rft.externalDocID=29782848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon |