Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice

Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 155; no. 3; pp. 865 - 879.e12
Main Authors Chao, Xiaojuan, Wang, Shaogui, Zhao, Katrina, Li, Yuan, Williams, Jessica A., Li, Tiangang, Chavan, Hemantkumar, Krishnamurthy, Partha, He, Xi C., Li, Linheng, Ballabio, Andrea, Ni, Hong-Min, Ding, Wen-Xing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage. [Display omitted]
AbstractList Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfeb albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.
Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.BACKGROUND & AIMSDefects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis.We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.METHODSWe performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry.Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.RESULTSLiver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues.We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.CONCLUSIONSWe found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.
Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage. [Display omitted]
Author He, Xi C.
Krishnamurthy, Partha
Li, Linheng
Chao, Xiaojuan
Ding, Wen-Xing
Li, Tiangang
Zhao, Katrina
Ni, Hong-Min
Li, Yuan
Ballabio, Andrea
Williams, Jessica A.
Wang, Shaogui
Chavan, Hemantkumar
AuthorAffiliation 3 Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
4 Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
2 Stowers Institute for Medical Research, Kansas City, MO 64110, USA
5 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
AuthorAffiliation_xml – name: 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
– name: 3 Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
– name: 2 Stowers Institute for Medical Research, Kansas City, MO 64110, USA
– name: 5 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
– name: 4 Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
Author_xml – sequence: 1
  givenname: Xiaojuan
  orcidid: 0000-0002-8731-7785
  surname: Chao
  fullname: Chao, Xiaojuan
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 2
  givenname: Shaogui
  surname: Wang
  fullname: Wang, Shaogui
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 3
  givenname: Katrina
  surname: Zhao
  fullname: Zhao, Katrina
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 4
  givenname: Yuan
  orcidid: 0000-0002-3171-8053
  surname: Li
  fullname: Li, Yuan
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 5
  givenname: Jessica A.
  surname: Williams
  fullname: Williams, Jessica A.
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 6
  givenname: Tiangang
  surname: Li
  fullname: Li, Tiangang
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 7
  givenname: Hemantkumar
  orcidid: 0000-0002-9963-6230
  surname: Chavan
  fullname: Chavan, Hemantkumar
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 8
  givenname: Partha
  surname: Krishnamurthy
  fullname: Krishnamurthy, Partha
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 9
  givenname: Xi C.
  surname: He
  fullname: He, Xi C.
  organization: Stowers Institute for Medical Research, Kansas City, Missouri
– sequence: 10
  givenname: Linheng
  surname: Li
  fullname: Li, Linheng
  organization: Stowers Institute for Medical Research, Kansas City, Missouri
– sequence: 11
  givenname: Andrea
  surname: Ballabio
  fullname: Ballabio, Andrea
  organization: Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
– sequence: 12
  givenname: Hong-Min
  surname: Ni
  fullname: Ni, Hong-Min
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
– sequence: 13
  givenname: Wen-Xing
  orcidid: 0000-0002-3167-5073
  surname: Ding
  fullname: Ding, Wen-Xing
  email: wxding@kumc.edu
  organization: Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29782848$$D View this record in MEDLINE/PubMed
BookMark eNqFkd-KEzEUh4OsuN3VNxCZS2-mJpn_IsJu6a6FLgqu1-FM5kybOpPUJFMY8GF8Fp9sU1sX3ZtehZDf7zvhfBfkTBuNhLxmdMpolrzbTFfgvDVTTlk5pdmU8uIZmbCMlzGljJ-RSTjyOKNldk4unNtQSqukZC_IOa-KkpdpOSE_F_0WlMUmur-ZX8d32Cjw4bYcnXGmx-hamRVqdMpFoJvoavBmu4bVGH2xpjceo9naGq1kNPdr0KaLF7oZ5J6gdmijhd4MdvxT_eoRvNmDlP79605JfEmet9A5fHU8L8m3m_n97FO8_Hy7mF0tY5kluY_zBgqWQJFgAi2wHGkNgLWsK1lLxlJZpVVZFbykRZtKkC2kNZZplXPMkyZhySX5eOBuh7rHRqL2FjqxtaoHOwoDSvz_otVarMxO5IzTouAB8PYIsObHgM6LXjmJXQcazeAEpykvMpYWNETf_DvrccjflYdAeghIa5yz2D5GGBV7s2IjDmbF3qygmQhmQ-39k5pUHrwy-x-r7lT5uAAMW94ptMJJhTpoCuqlF41RpwAfngBkp4J16L7jeLr-AOOL2fE
CitedBy_id crossref_primary_10_1016_j_apsb_2022_01_017
crossref_primary_10_3390_antiox12020493
crossref_primary_10_1016_j_joim_2024_10_002
crossref_primary_10_1016_j_clgc_2022_08_008
crossref_primary_10_1097_HEP_0000000000000373
crossref_primary_10_3748_wjg_v30_i28_3428
crossref_primary_10_1016_j_it_2019_12_003
crossref_primary_10_3390_ijms241511899
crossref_primary_10_3390_biom12081035
crossref_primary_10_3390_nu14173600
crossref_primary_10_1016_j_livres_2018_08_004
crossref_primary_10_1016_j_livres_2023_12_001
crossref_primary_10_1080_15548627_2022_2046457
crossref_primary_10_3389_fmars_2020_00363
crossref_primary_10_1016_j_bbadis_2019_03_009
crossref_primary_10_3390_curroncol30060406
crossref_primary_10_1038_s41467_022_33465_9
crossref_primary_10_3389_fimmu_2022_1083780
crossref_primary_10_1016_j_biomaterials_2022_121743
crossref_primary_10_1021_acs_analchem_2c03351
crossref_primary_10_1152_ajpgi_00376_2018
crossref_primary_10_1016_j_taap_2024_117117
crossref_primary_10_1016_j_ajpath_2024_11_011
crossref_primary_10_1186_s40104_021_00624_9
crossref_primary_10_1016_j_transproceed_2024_03_001
crossref_primary_10_3390_cancers13051181
crossref_primary_10_1161_ATVBAHA_120_315310
crossref_primary_10_48022_mbl_2108_08004
crossref_primary_10_1016_j_biopha_2018_11_030
crossref_primary_10_1016_j_heliyon_2024_e32480
crossref_primary_10_3724_abbs_2023060
crossref_primary_10_3389_fphar_2021_794298
crossref_primary_10_1002_hep4_1785
crossref_primary_10_1016_j_fct_2020_111575
crossref_primary_10_1016_j_apsb_2021_07_021
crossref_primary_10_1002_hep4_1427
crossref_primary_10_3350_cmh_2024_0107
crossref_primary_10_3389_fcell_2021_650846
crossref_primary_10_3390_ijms232012584
crossref_primary_10_1016_j_biocel_2021_105937
crossref_primary_10_1097_HEP_0000000000001214
crossref_primary_10_3390_ijms20205029
crossref_primary_10_1016_j_cophys_2022_100594
crossref_primary_10_1016_j_apsb_2021_11_010
crossref_primary_10_1016_j_taap_2024_117210
crossref_primary_10_3390_biom12050672
crossref_primary_10_1016_j_jcmgh_2020_11_013
crossref_primary_10_3390_cells8010016
crossref_primary_10_1016_j_intimp_2022_108712
crossref_primary_10_1080_15548627_2019_1596486
crossref_primary_10_3389_fphar_2019_00495
crossref_primary_10_1002_fft2_204
crossref_primary_10_1016_j_jare_2024_07_002
crossref_primary_10_1016_j_biopha_2024_117297
crossref_primary_10_1016_j_jcmgh_2023_01_016
crossref_primary_10_1016_j_jep_2024_118662
crossref_primary_10_1016_j_bbadis_2023_166723
crossref_primary_10_1111_bph_15466
crossref_primary_10_1111_jdi_13305
crossref_primary_10_1016_j_livres_2019_09_002
crossref_primary_10_3389_fmolb_2021_804097
crossref_primary_10_3390_biom13020222
crossref_primary_10_5009_gnl18486
crossref_primary_10_1016_j_apsb_2023_10_017
crossref_primary_10_1152_ajpcell_00281_2022
crossref_primary_10_3389_fnut_2024_1511682
crossref_primary_10_3390_cancers14071806
crossref_primary_10_1016_j_tox_2023_153468
crossref_primary_10_1172_jci_insight_140180
crossref_primary_10_3389_fmicb_2024_1335036
crossref_primary_10_1016_j_ultsonch_2023_106304
crossref_primary_10_1016_j_biopha_2020_110272
crossref_primary_10_1016_j_ajpath_2023_02_015
crossref_primary_10_3389_fphar_2022_865689
crossref_primary_10_33549_physiolres_934549
crossref_primary_10_1016_j_ecoenv_2023_114674
crossref_primary_10_1016_j_lfs_2023_122343
crossref_primary_10_1016_j_chemosphere_2023_138071
crossref_primary_10_1021_acs_jafc_9b03338
crossref_primary_10_1155_2019_8506195
crossref_primary_10_7554_eLife_92243
crossref_primary_10_1016_j_abb_2020_108694
crossref_primary_10_1002_biot_202200147
crossref_primary_10_3389_fphys_2022_970292
crossref_primary_10_3390_nu14030658
crossref_primary_10_3390_ani13030341
crossref_primary_10_1016_j_jcmgh_2023_02_005
crossref_primary_10_1155_2021_6675762
crossref_primary_10_3390_ijms20020300
crossref_primary_10_1016_j_phrs_2021_105964
crossref_primary_10_1016_j_mam_2021_100973
crossref_primary_10_1080_15548627_2024_2329476
crossref_primary_10_3389_fcell_2021_638759
crossref_primary_10_3390_biom11101497
crossref_primary_10_1038_s41467_025_57351_2
crossref_primary_10_1080_15548627_2018_1489170
crossref_primary_10_1016_j_livres_2019_11_001
crossref_primary_10_1016_j_fct_2019_111075
crossref_primary_10_1172_jci_insight_183560
crossref_primary_10_1172_jci_insight_136496
crossref_primary_10_1007_s11033_023_08264_0
crossref_primary_10_3390_biom9120851
crossref_primary_10_3390_livers4030027
crossref_primary_10_1111_acer_13877
crossref_primary_10_1038_s41420_024_02224_8
crossref_primary_10_1111_jcmm_16593
crossref_primary_10_3390_biomedicines12030559
crossref_primary_10_1016_j_livres_2023_02_002
crossref_primary_10_1016_j_jcmgh_2020_01_008
crossref_primary_10_1186_s13018_020_1573_3
crossref_primary_10_1016_j_jnutbio_2019_07_005
crossref_primary_10_1534_g3_118_200963
crossref_primary_10_1016_j_livres_2019_11_006
crossref_primary_10_1016_j_heliyon_2023_e15316
crossref_primary_10_1002_iub_2760
crossref_primary_10_1016_j_apsb_2021_12_012
crossref_primary_10_1016_j_livres_2022_11_006
crossref_primary_10_1016_j_cellsig_2023_110905
crossref_primary_10_1038_s41401_024_01423_4
crossref_primary_10_1038_s41419_022_04841_6
crossref_primary_10_1016_j_ajpath_2019_05_011
crossref_primary_10_1248_bpb_b20_00021
crossref_primary_10_1002_fsn3_3281
crossref_primary_10_1016_j_jnutbio_2022_109060
crossref_primary_10_1111_iej_13924
crossref_primary_10_1016_j_biopha_2019_108929
crossref_primary_10_1016_j_ajpath_2018_11_008
crossref_primary_10_1016_j_bcp_2023_115698
crossref_primary_10_1016_j_bcp_2023_115576
crossref_primary_10_1016_j_jnutbio_2023_109332
crossref_primary_10_1186_s13578_024_01267_9
crossref_primary_10_1016_j_jcmgh_2021_07_002
crossref_primary_10_1016_j_jare_2024_01_027
crossref_primary_10_1146_annurev_pathmechdis_031521_030435
crossref_primary_10_1038_s41419_022_05422_3
crossref_primary_10_1016_j_livres_2018_11_002
crossref_primary_10_7717_peerj_16398
crossref_primary_10_1016_j_phymed_2024_156056
crossref_primary_10_18632_aging_205312
crossref_primary_10_3390_cells11193153
crossref_primary_10_1002_jcb_30396
crossref_primary_10_1038_s41419_021_03865_8
crossref_primary_10_31083_j_fbl2801006
crossref_primary_10_3390_ijms21041266
crossref_primary_10_1021_acs_jafc_4c08211
crossref_primary_10_1073_pnas_2011442117
crossref_primary_10_1002_smll_202204310
crossref_primary_10_1007_s12272_023_01460_3
crossref_primary_10_1002_tox_23420
crossref_primary_10_14348_molcells_2021_0067
crossref_primary_10_1186_s13287_022_02981_2
crossref_primary_10_1080_15548627_2023_2179781
crossref_primary_10_1016_j_expneurol_2023_114436
crossref_primary_10_1007_s10620_024_08778_y
crossref_primary_10_1016_j_jhep_2021_10_014
crossref_primary_10_3390_ijms25115890
crossref_primary_10_3390_cells9040837
crossref_primary_10_1111_fcp_12634
crossref_primary_10_1002_mnfr_202200812
crossref_primary_10_3350_cmh_2020_0142
crossref_primary_10_1016_j_jinorgbio_2018_12_008
crossref_primary_10_3168_jds_2023_24000
crossref_primary_10_1016_j_freeradbiomed_2023_12_020
crossref_primary_10_1371_journal_pone_0239625
crossref_primary_10_1002_tox_23677
crossref_primary_10_1016_j_bbrc_2024_149887
crossref_primary_10_1002_ddr_21981
crossref_primary_10_1016_j_jhep_2019_01_026
crossref_primary_10_1002_hep_30766
crossref_primary_10_1186_s13020_023_00824_7
crossref_primary_10_3390_ijms22126469
crossref_primary_10_1080_15548627_2024_2407709
crossref_primary_10_1016_j_jep_2023_116365
crossref_primary_10_3389_fphar_2021_747325
crossref_primary_10_1016_j_bioorg_2022_106272
crossref_primary_10_1016_j_phrs_2024_107162
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3390_ijms21249407
crossref_primary_10_1016_j_bbadis_2024_167259
crossref_primary_10_1016_j_fct_2018_12_028
crossref_primary_10_1136_gutjnl_2019_319720
crossref_primary_10_3389_fmed_2025_1482089
crossref_primary_10_3389_fonc_2019_01247
crossref_primary_10_1089_ars_2022_0051
crossref_primary_10_7554_eLife_92243_3
crossref_primary_10_1016_j_bioorg_2023_106795
crossref_primary_10_3168_jds_2021_20892
crossref_primary_10_1172_jci_insight_162498
crossref_primary_10_1016_j_livres_2018_09_005
crossref_primary_10_1097_HC9_0000000000000566
crossref_primary_10_3390_nu15020372
crossref_primary_10_1016_j_jcmgh_2019_03_005
crossref_primary_10_1016_j_livres_2018_09_004
crossref_primary_10_1016_j_ajpath_2021_10_004
crossref_primary_10_1016_j_jep_2024_117721
crossref_primary_10_1177_00368504211043766
crossref_primary_10_3390_biom14121537
crossref_primary_10_3350_cmh_2020_0169
crossref_primary_10_3168_jds_2022_22801
crossref_primary_10_1016_j_talanta_2023_124819
crossref_primary_10_1126_scitranslmed_adi0284
crossref_primary_10_1038_s42003_024_07234_x
crossref_primary_10_1007_s12274_022_4167_z
crossref_primary_10_1038_s41575_023_00822_y
crossref_primary_10_1002_hep_32604
crossref_primary_10_1111_bph_16268
crossref_primary_10_1016_j_fsi_2020_06_025
crossref_primary_10_1016_j_lfs_2020_117418
crossref_primary_10_3389_fimmu_2023_1282469
crossref_primary_10_1038_s42003_024_06427_8
crossref_primary_10_1016_j_phymed_2022_154148
crossref_primary_10_1039_D2FO02719D
crossref_primary_10_1136_egastro_2023_100020
crossref_primary_10_1016_j_intimp_2024_113596
crossref_primary_10_1016_j_freeradbiomed_2021_05_018
crossref_primary_10_1016_j_freeradbiomed_2021_11_008
crossref_primary_10_1016_j_lfs_2020_118043
crossref_primary_10_3390_antiox12071425
crossref_primary_10_3389_fcell_2020_602574
crossref_primary_10_1111_acer_14695
crossref_primary_10_1097_HC9_0000000000000547
crossref_primary_10_1038_s41419_022_05303_9
crossref_primary_10_1002_hep_32612
crossref_primary_10_1038_s41420_024_01850_6
crossref_primary_10_1080_15548627_2019_1703355
crossref_primary_10_1080_01913123_2022_2059041
crossref_primary_10_1016_j_phymed_2024_155703
crossref_primary_10_4254_wjh_v13_i1_6
crossref_primary_10_1016_j_bbadis_2021_166290
crossref_primary_10_1016_j_bbadis_2025_167668
crossref_primary_10_1002_advs_202403389
crossref_primary_10_1016_j_cej_2022_136141
crossref_primary_10_1038_s41467_020_17363_6
crossref_primary_10_4103_1673_5374_379051
crossref_primary_10_1016_j_toxlet_2024_03_002
crossref_primary_10_1055_a_2186_3557
crossref_primary_10_1038_s43587_021_00098_4
crossref_primary_10_1089_adt_2021_119
crossref_primary_10_3390_cells10020333
crossref_primary_10_1016_j_fct_2023_114119
crossref_primary_10_1097_HEP_0000000000000717
crossref_primary_10_1097_HC9_0000000000000534
crossref_primary_10_3389_fcell_2019_00185
Cites_doi 10.1016/0304-4165(95)00121-2
10.1080/15548627.2017.1371394
10.1007/s10735-013-9483-x
10.3748/wjg.v20.i36.12908
10.1128/MCB.00289-08
10.1053/j.gastro.2010.07.041
10.1038/nprot.2013.032
10.1016/S0891-5849(98)00079-3
10.1111/acer.12931
10.1016/j.jhep.2013.01.011
10.1126/science.1207056
10.1038/nrm3522
10.1073/pnas.072071099
10.1080/15548627.2016.1271514
10.1074/jbc.M114.602284
10.1016/j.ajpath.2013.08.011
10.1016/j.tcb.2014.03.003
10.1126/science.1198096
10.1002/hep.20310
10.4161/auto.25063
10.1016/j.cell.2010.02.024
10.1007/s00018-014-1565-8
10.1053/j.gastro.2016.02.043
10.1101/gad.265116.115
10.1111/acer.12904
10.1002/hep.29645
10.1080/15548627.2015.1100356
10.1038/ncb2718
10.1126/science.1204592
10.1371/journal.pone.0115849
10.1053/j.gastro.2011.09.002
10.1002/hep.24690
10.1258/ebm.2011.010360
10.1038/ncb3114
10.1038/nrm3565
10.1101/gad.213827.113
10.1038/nrm3025
10.1038/emboj.2012.32
10.3109/00498254.2014.986250
10.1053/j.gastro.2016.02.035
10.15252/embj.201796699
ContentType Journal Article
Copyright 2018 AGA Institute
Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 AGA Institute
– notice: Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1053/j.gastro.2018.05.027
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-0012
EndPage 879.e12
ExternalDocumentID PMC6120772
29782848
10_1053_j_gastro_2018_05_027
S0016508518345608
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: 9P20GM104936
– fundername: National Institutes on Alcohol Abuse and Alcoholism
  grantid: R01 AA020518; U01 AA024733
– fundername: National Cancer Institute Cancer Center
  grantid: P30 CA168524
– fundername: National Institute of General Medical Sciences
  grantid: P20GM103549; P30GM118247
– fundername: NIAAA NIH HHS
  grantid: R37 AA020518
– fundername: NIAAA NIH HHS
  grantid: R24 AA025017
– fundername: NIDDK NIH HHS
  grantid: R01 DK102487
– fundername: NIDDK NIH HHS
  grantid: R01 DK102142
– fundername: NIGMS NIH HHS
  grantid: P20 GM103549
– fundername: NIGMS NIH HHS
  grantid: P20 GM104936
– fundername: NIAAA NIH HHS
  grantid: R01 AA020518
– fundername: NIGMS NIH HHS
  grantid: P30 GM118247
– fundername: NIAAA NIH HHS
  grantid: U01 AA024733
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1CY
1P~
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
AAEDT
AAEDW
AAFWJ
AAIKJ
AALRI
AAQFI
AAQOH
AAQQT
AAQXK
AAXUO
ABCQX
ABDPE
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
AENEX
AEVXI
AFFNX
AFHKK
AFJKZ
AFRHN
AFTJW
AGCQF
AGHFR
AGQPQ
AI.
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
BR6
C5W
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FD8
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
NQ-
O9-
OC.
OHT
ON0
P2P
PC.
QTD
R2-
ROL
RPZ
SEL
SES
SJN
SSZ
UDS
UGJ
UV1
VH1
WH7
X7M
XH2
Y6R
YQJ
Z5R
ZGI
ZXP
AAIAV
AAYOK
ADPAM
AFCTW
AGZHU
AHPSJ
ALXNB
G8K
RIG
TWZ
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
5PM
ID FETCH-LOGICAL-c536t-6da713a73e3afa16e0baaebcb9cbc114c9498972807f4cacfa4be84962e63d313
ISSN 0016-5085
1528-0012
IngestDate Thu Aug 21 18:40:19 EDT 2025
Fri Jul 11 04:24:05 EDT 2025
Wed Feb 19 02:31:28 EST 2025
Tue Jul 01 03:30:55 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
Fri Feb 23 02:32:18 EST 2024
Tue Aug 26 19:39:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GTP
Ad
PGC1α
ALT
EtOH
Gene Regulation
GFP
ATP6V1H
ATP6V1D
LC3
Ly6B
WT
Mouse Model
ATP6V0E1
KO
Lamp1
H&E
AH
TFE3
TFEB
DKO
TSC1
Ctrl
EGTA
PKCβ
Fatty Liver
Hepatic Protection
ERK1/2
TG
Tor
ALD
LDs
Leu
mTORC1
Language English
License Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c536t-6da713a73e3afa16e0baaebcb9cbc114c9498972807f4cacfa4be84962e63d313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3171-8053
0000-0002-9963-6230
0000-0002-8731-7785
0000-0002-3167-5073
PMID 29782848
PQID 2042751470
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6120772
proquest_miscellaneous_2042751470
pubmed_primary_29782848
crossref_primary_10_1053_j_gastro_2018_05_027
crossref_citationtrail_10_1053_j_gastro_2018_05_027
elsevier_sciencedirect_doi_10_1053_j_gastro_2018_05_027
elsevier_clinicalkey_doi_10_1053_j_gastro_2018_05_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastroenterology (New York, N.Y. 1943)
PublicationTitleAlternate Gastroenterology
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zoncu, Efeyan, Sabatini (bib16) 2011; 12
Ding, Ni, DiFrancesca (bib26) 2004; 40
Martina, Diab, Li (bib30) 2014; 71
Klionsky, Abdelmohsen, Abe (bib27) 2016; 12
Domenicotti, Paola, Vitali (bib34) 1998; 25
Baraona, Leo, Borowsky (bib13) 1975; 190
Ni, Du, You (bib9) 2013; 183
Medina, Di Paola, Peluso (bib33) 2015; 17
Nagy, Ding, Cresci (bib2) 2016; 150
Gao, Bataller (bib3) 2011; 141
Jewell, Russell, Guan (bib20) 2013; 14
Li, Zong, Ding (bib39) 2017; 13
Zoncu, Bar-Peled, Efeyan (bib19) 2011; 334
Williams, Ni, Haynes (bib37) 2015; 290
Ding, Manley, Ni (bib6) 2011; 236
Khanova, Wu, Wang (bib28) 2018; 67
Ding, Li, Chen (bib5) 2010; 139
Lin, Zhang, Li (bib10) 2013; 58
Yuan, Wang, Yu (bib36) 2015; 29
Williams, Manley, Ding (bib4) 2014; 20
Settembre, De Cegli, Mansueto (bib22) 2013; 15
Eid, Ito, Maemura (bib11) 2013; 44
Vega-Rubin-de-Celis, Pena-Llopis, Konda (bib31) 2017; 13
Settembre, Fraldi, Medina (bib21) 2013; 14
Sha, Rao, Settembre (bib29) 2017; 36
Li, Ding (bib8) 2016; 40
Settembre, Zoncu, Medina (bib14) 2012; 31
Huang, Dibble, Matsuzaki (bib17) 2008; 28
Ni, Bockus, Boggess (bib25) 2012; 55
Kharbanda, McVicker, Zetterman (bib12) 1995; 1245
Settembre, Di Malta, Polito (bib15) 2011; 332
Ferron, Settembre, Shimazu (bib32) 2013; 27
Bertola, Mathews, Ki (bib23) 2013; 8
Sancak, Bar-Peled, Zoncu (bib18) 2010; 141
Thomes, Trambly, Fox (bib7) 2015; 39
Steingrimsson, Tessarollo, Pathak (bib24) 2002; 99
Bar-Peled, Sabatini (bib35) 2014; 24
Liangpunsakul, Haber, McCaughan (bib1) 2016; 150
Czaja, Ding, Donohue (bib38) 2013; 9
Yuan (10.1053/j.gastro.2018.05.027_bib36) 2015; 29
Martina (10.1053/j.gastro.2018.05.027_bib30) 2014; 71
Baraona (10.1053/j.gastro.2018.05.027_bib13) 1975; 190
Sha (10.1053/j.gastro.2018.05.027_bib29) 2017; 36
Vega-Rubin-de-Celis (10.1053/j.gastro.2018.05.027_bib31) 2017; 13
Gao (10.1053/j.gastro.2018.05.027_bib3) 2011; 141
Li (10.1053/j.gastro.2018.05.027_bib8) 2016; 40
Settembre (10.1053/j.gastro.2018.05.027_bib14) 2012; 31
Khanova (10.1053/j.gastro.2018.05.027_bib44) 2018; 67
Zoncu (10.1053/j.gastro.2018.05.027_bib16) 2011; 12
Huang (10.1053/j.gastro.2018.05.027_bib17) 2008; 28
Klionsky (10.1053/j.gastro.2018.05.027_bib27) 2016; 12
Ni (10.1053/j.gastro.2018.05.027_bib9) 2013; 183
Williams (10.1053/j.gastro.2018.05.027_bib4) 2014; 20
Ni (10.1053/j.gastro.2018.05.027_bib25) 2012; 55
Liangpunsakul (10.1053/j.gastro.2018.05.027_bib1) 2016; 150
Ding (10.1053/j.gastro.2018.05.027_bib41) 2010; 139
Williams (10.1053/j.gastro.2018.05.027_bib37) 2015; 290
Domenicotti (10.1053/j.gastro.2018.05.027_bib34) 1998; 25
Ding (10.1053/j.gastro.2018.05.027_bib6) 2011; 236
Bertola (10.1053/j.gastro.2018.05.027_bib23) 2013; 8
Medina (10.1053/j.gastro.2018.05.027_bib33) 2015; 17
Czaja (10.1053/j.gastro.2018.05.027_bib38) 2013; 9
Khanova (10.1053/j.gastro.2018.05.027_bib28) 2018; 67
Bar-Peled (10.1053/j.gastro.2018.05.027_bib35) 2014; 24
Settembre (10.1053/j.gastro.2018.05.027_bib22) 2013; 15
Ni (10.1053/j.gastro.2018.05.027_bib42) 2014; 9
Lin (10.1053/j.gastro.2018.05.027_bib10) 2013; 58
Jewell (10.1053/j.gastro.2018.05.027_bib20) 2013; 14
Eid (10.1053/j.gastro.2018.05.027_bib11) 2013; 44
Li (10.1053/j.gastro.2018.05.027_bib39) 2017; 13
Steingrimsson (10.1053/j.gastro.2018.05.027_bib24) 2002; 99
McGill (10.1053/j.gastro.2018.05.027_bib43) 2015; 45
Settembre (10.1053/j.gastro.2018.05.027_bib15) 2011; 332
Sancak (10.1053/j.gastro.2018.05.027_bib18) 2010; 141
Ding (10.1053/j.gastro.2018.05.027_bib5) 2010; 139
Settembre (10.1053/j.gastro.2018.05.027_bib21) 2013; 14
Kharbanda (10.1053/j.gastro.2018.05.027_bib12) 1995; 1245
Zoncu (10.1053/j.gastro.2018.05.027_bib19) 2011; 334
Ding (10.1053/j.gastro.2018.05.027_bib26) 2004; 40
Ferron (10.1053/j.gastro.2018.05.027_bib32) 2013; 27
Nagy (10.1053/j.gastro.2018.05.027_bib2) 2016; 150
Thomes (10.1053/j.gastro.2018.05.027_bib7) 2015; 39
29969942 - Autophagy. 2018;14(9):1646-1648
30450489 - Dig Med Res. 2018 Sep;1
References_xml – volume: 13
  start-page: 1995
  year: 2017
  end-page: 1997
  ident: bib39
  article-title: Recycling the danger via lipid droplet biogenesis after autophagy
  publication-title: Autophagy
– volume: 14
  start-page: 283
  year: 2013
  end-page: 296
  ident: bib21
  article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism
  publication-title: Nat Rev Mol Cell Biol
– volume: 141
  start-page: 290
  year: 2010
  end-page: 303
  ident: bib18
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
– volume: 20
  start-page: 12908
  year: 2014
  end-page: 12933
  ident: bib4
  article-title: New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases
  publication-title: World J Gastroenterol
– volume: 17
  start-page: 288
  year: 2015
  end-page: 299
  ident: bib33
  article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
  publication-title: Nat Cell Biol
– volume: 14
  start-page: 133
  year: 2013
  end-page: 139
  ident: bib20
  article-title: Amino acid signalling upstream of mTOR
  publication-title: Nat Rev Mol Cell Biol
– volume: 99
  start-page: 4477
  year: 2002
  end-page: 4482
  ident: bib24
  article-title: Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development
  publication-title: Proc Natl Acad Sci U S A
– volume: 28
  start-page: 4104
  year: 2008
  end-page: 4115
  ident: bib17
  article-title: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
  publication-title: Mol Cell Biol
– volume: 236
  start-page: 546
  year: 2011
  end-page: 556
  ident: bib6
  article-title: The emerging role of autophagy in alcoholic liver disease
  publication-title: Exp Biol Med (Maywood)
– volume: 58
  start-page: 993
  year: 2013
  end-page: 999
  ident: bib10
  article-title: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice
  publication-title: J Hepatol
– volume: 332
  start-page: 1429
  year: 2011
  end-page: 1433
  ident: bib15
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science
– volume: 25
  start-page: 529
  year: 1998
  end-page: 535
  ident: bib34
  article-title: Mechanisms of inactivation of hepatocyte protein kinase C isoforms following acute ethanol treatment
  publication-title: Free Radic Biol Med
– volume: 71
  start-page: 2483
  year: 2014
  end-page: 2497
  ident: bib30
  article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis
  publication-title: Cell Mol Life Sci
– volume: 150
  start-page: 1756
  year: 2016
  end-page: 1768
  ident: bib2
  article-title: Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes
  publication-title: Gastroenterology
– volume: 55
  start-page: 222
  year: 2012
  end-page: 232
  ident: bib25
  article-title: Activation of autophagy protects against acetaminophen-induced hepatotoxicity
  publication-title: Hepatology
– volume: 8
  start-page: 627
  year: 2013
  end-page: 637
  ident: bib23
  article-title: Mouse model of chronic and binge ethanol feeding (the NIAAA model)
  publication-title: Nat Protoc
– volume: 24
  start-page: 400
  year: 2014
  end-page: 406
  ident: bib35
  article-title: Regulation of mTORC1 by amino acids
  publication-title: Trends Cell Biol
– volume: 183
  start-page: 1815
  year: 2013
  end-page: 1825
  ident: bib9
  article-title: Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity
  publication-title: Am J Pathol
– volume: 141
  start-page: 1572
  year: 2011
  end-page: 1585
  ident: bib3
  article-title: Alcoholic liver disease: pathogenesis and new therapeutic targets
  publication-title: Gastroenterology
– volume: 29
  start-page: 2362
  year: 2015
  end-page: 2376
  ident: bib36
  article-title: NLK phosphorylates raptor to mediate stress-induced mTORC1 inhibition
  publication-title: Genes Dev
– volume: 290
  start-page: 10934
  year: 2015
  end-page: 10946
  ident: bib37
  article-title: Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice
  publication-title: J Biol Chem
– volume: 334
  start-page: 678
  year: 2011
  end-page: 683
  ident: bib19
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
– volume: 44
  start-page: 311
  year: 2013
  end-page: 326
  ident: bib11
  article-title: Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: an immunohistochemical and electron microscopic study
  publication-title: J Mol Histol
– volume: 40
  start-page: 403
  year: 2004
  end-page: 413
  ident: bib26
  article-title: Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes
  publication-title: Hepatology
– volume: 36
  start-page: 2544
  year: 2017
  end-page: 2552
  ident: bib29
  article-title: STUB1 regulates TFEB-induced autophagy-lysosome pathway
  publication-title: EMBO J
– volume: 9
  start-page: 1131
  year: 2013
  end-page: 1158
  ident: bib38
  article-title: Functions of autophagy in normal and diseased liver
  publication-title: Autophagy
– volume: 15
  start-page: 647
  year: 2013
  end-page: 658
  ident: bib22
  article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
  publication-title: Nat Cell Biol
– volume: 27
  start-page: 955
  year: 2013
  end-page: 969
  ident: bib32
  article-title: A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts
  publication-title: Genes Dev
– volume: 13
  start-page: 464
  year: 2017
  end-page: 472
  ident: bib31
  article-title: Multistep regulation of TFEB by MTORC1
  publication-title: Autophagy
– volume: 139
  start-page: 1740
  year: 2010
  end-page: 1752
  ident: bib5
  article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
  publication-title: Gastroenterology
– volume: 67
  start-page: 1737
  year: 2018
  end-page: 1753
  ident: bib28
  article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis
  publication-title: Hepatology
– volume: 1245
  start-page: 421
  year: 1995
  end-page: 429
  ident: bib12
  article-title: Ethanol consumption reduces the proteolytic capacity and protease activities of hepatic lysosomes
  publication-title: Biochim Biophys Acta
– volume: 190
  start-page: 794
  year: 1975
  end-page: 795
  ident: bib13
  article-title: Alcoholic hepatomegaly: accumulation of protein in the liver
  publication-title: Science
– volume: 40
  start-page: 47
  year: 2016
  end-page: 49
  ident: bib8
  article-title: A gene transcription program decides the differential regulation of autophagy by acute versus chronic ethanol?
  publication-title: Alcohol Clin Exp Res
– volume: 12
  start-page: 1
  year: 2016
  end-page: 222
  ident: bib27
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
  publication-title: Autophagy
– volume: 150
  start-page: 1786
  year: 2016
  end-page: 1797
  ident: bib1
  article-title: Alcoholic liver disease in Asia, Europe, and North America
  publication-title: Gastroenterology
– volume: 39
  start-page: 2354
  year: 2015
  end-page: 2363
  ident: bib7
  article-title: Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB
  publication-title: Alcohol Clin Exp Res
– volume: 31
  start-page: 1095
  year: 2012
  end-page: 1108
  ident: bib14
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: EMBO J
– volume: 12
  start-page: 21
  year: 2011
  end-page: 35
  ident: bib16
  article-title: mTOR: from growth signal integration to cancer, diabetes and ageing
  publication-title: Nat Rev Mol Cell Biol
– volume: 1245
  start-page: 421
  year: 1995
  ident: 10.1053/j.gastro.2018.05.027_bib12
  article-title: Ethanol consumption reduces the proteolytic capacity and protease activities of hepatic lysosomes
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0304-4165(95)00121-2
– volume: 13
  start-page: 1995
  year: 2017
  ident: 10.1053/j.gastro.2018.05.027_bib39
  article-title: Recycling the danger via lipid droplet biogenesis after autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1371394
– volume: 44
  start-page: 311
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib11
  article-title: Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: an immunohistochemical and electron microscopic study
  publication-title: J Mol Histol
  doi: 10.1007/s10735-013-9483-x
– volume: 20
  start-page: 12908
  year: 2014
  ident: 10.1053/j.gastro.2018.05.027_bib4
  article-title: New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i36.12908
– volume: 28
  start-page: 4104
  year: 2008
  ident: 10.1053/j.gastro.2018.05.027_bib17
  article-title: The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00289-08
– volume: 139
  start-page: 1740
  year: 2010
  ident: 10.1053/j.gastro.2018.05.027_bib41
  article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.07.041
– volume: 8
  start-page: 627
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib23
  article-title: Mouse model of chronic and binge ethanol feeding (the NIAAA model)
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2013.032
– volume: 25
  start-page: 529
  year: 1998
  ident: 10.1053/j.gastro.2018.05.027_bib34
  article-title: Mechanisms of inactivation of hepatocyte protein kinase C isoforms following acute ethanol treatment
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(98)00079-3
– volume: 40
  start-page: 47
  year: 2016
  ident: 10.1053/j.gastro.2018.05.027_bib8
  article-title: A gene transcription program decides the differential regulation of autophagy by acute versus chronic ethanol?
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/acer.12931
– volume: 58
  start-page: 993
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib10
  article-title: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2013.01.011
– volume: 334
  start-page: 678
  year: 2011
  ident: 10.1053/j.gastro.2018.05.027_bib19
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
  doi: 10.1126/science.1207056
– volume: 14
  start-page: 133
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib20
  article-title: Amino acid signalling upstream of mTOR
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3522
– volume: 99
  start-page: 4477
  year: 2002
  ident: 10.1053/j.gastro.2018.05.027_bib24
  article-title: Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.072071099
– volume: 13
  start-page: 464
  year: 2017
  ident: 10.1053/j.gastro.2018.05.027_bib31
  article-title: Multistep regulation of TFEB by MTORC1
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1271514
– volume: 290
  start-page: 10934
  year: 2015
  ident: 10.1053/j.gastro.2018.05.027_bib37
  article-title: Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.602284
– volume: 183
  start-page: 1815
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib9
  article-title: Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2013.08.011
– volume: 24
  start-page: 400
  year: 2014
  ident: 10.1053/j.gastro.2018.05.027_bib35
  article-title: Regulation of mTORC1 by amino acids
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2014.03.003
– volume: 190
  start-page: 794
  year: 1975
  ident: 10.1053/j.gastro.2018.05.027_bib13
  article-title: Alcoholic hepatomegaly: accumulation of protein in the liver
  publication-title: Science
  doi: 10.1126/science.1198096
– volume: 40
  start-page: 403
  year: 2004
  ident: 10.1053/j.gastro.2018.05.027_bib26
  article-title: Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes
  publication-title: Hepatology
  doi: 10.1002/hep.20310
– volume: 9
  start-page: 1131
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib38
  article-title: Functions of autophagy in normal and diseased liver
  publication-title: Autophagy
  doi: 10.4161/auto.25063
– volume: 141
  start-page: 290
  year: 2010
  ident: 10.1053/j.gastro.2018.05.027_bib18
  article-title: Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
– volume: 71
  start-page: 2483
  year: 2014
  ident: 10.1053/j.gastro.2018.05.027_bib30
  article-title: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-014-1565-8
– volume: 150
  start-page: 1786
  year: 2016
  ident: 10.1053/j.gastro.2018.05.027_bib1
  article-title: Alcoholic liver disease in Asia, Europe, and North America
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.02.043
– volume: 29
  start-page: 2362
  year: 2015
  ident: 10.1053/j.gastro.2018.05.027_bib36
  article-title: NLK phosphorylates raptor to mediate stress-induced mTORC1 inhibition
  publication-title: Genes Dev
  doi: 10.1101/gad.265116.115
– volume: 39
  start-page: 2354
  year: 2015
  ident: 10.1053/j.gastro.2018.05.027_bib7
  article-title: Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/acer.12904
– volume: 67
  start-page: 1737
  year: 2018
  ident: 10.1053/j.gastro.2018.05.027_bib28
  article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.29645
– volume: 12
  start-page: 1
  year: 2016
  ident: 10.1053/j.gastro.2018.05.027_bib27
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100356
– volume: 139
  start-page: 1740
  year: 2010
  ident: 10.1053/j.gastro.2018.05.027_bib5
  article-title: Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.07.041
– volume: 15
  start-page: 647
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib22
  article-title: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2718
– volume: 332
  start-page: 1429
  year: 2011
  ident: 10.1053/j.gastro.2018.05.027_bib15
  article-title: TFEB links autophagy to lysosomal biogenesis
  publication-title: Science
  doi: 10.1126/science.1204592
– volume: 9
  start-page: e115849
  year: 2014
  ident: 10.1053/j.gastro.2018.05.027_bib42
  article-title: Role of hypoxia inducing factor-1beta in alcohol-induced autophagy, steatosis and liver injury in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115849
– volume: 141
  start-page: 1572
  year: 2011
  ident: 10.1053/j.gastro.2018.05.027_bib3
  article-title: Alcoholic liver disease: pathogenesis and new therapeutic targets
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.09.002
– volume: 55
  start-page: 222
  year: 2012
  ident: 10.1053/j.gastro.2018.05.027_bib25
  article-title: Activation of autophagy protects against acetaminophen-induced hepatotoxicity
  publication-title: Hepatology
  doi: 10.1002/hep.24690
– volume: 236
  start-page: 546
  year: 2011
  ident: 10.1053/j.gastro.2018.05.027_bib6
  article-title: The emerging role of autophagy in alcoholic liver disease
  publication-title: Exp Biol Med (Maywood)
  doi: 10.1258/ebm.2011.010360
– volume: 17
  start-page: 288
  year: 2015
  ident: 10.1053/j.gastro.2018.05.027_bib33
  article-title: Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3114
– volume: 14
  start-page: 283
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib21
  article-title: Signals from the lysosome: a control centre for cellular clearance and energy metabolism
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3565
– volume: 27
  start-page: 955
  year: 2013
  ident: 10.1053/j.gastro.2018.05.027_bib32
  article-title: A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts
  publication-title: Genes Dev
  doi: 10.1101/gad.213827.113
– volume: 12
  start-page: 21
  year: 2011
  ident: 10.1053/j.gastro.2018.05.027_bib16
  article-title: mTOR: from growth signal integration to cancer, diabetes and ageing
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3025
– volume: 31
  start-page: 1095
  year: 2012
  ident: 10.1053/j.gastro.2018.05.027_bib14
  article-title: A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.32
– volume: 45
  start-page: 442
  year: 2015
  ident: 10.1053/j.gastro.2018.05.027_bib43
  article-title: The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2014.986250
– volume: 150
  start-page: 1756
  year: 2016
  ident: 10.1053/j.gastro.2018.05.027_bib2
  article-title: Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.02.035
– volume: 36
  start-page: 2544
  year: 2017
  ident: 10.1053/j.gastro.2018.05.027_bib29
  article-title: STUB1 regulates TFEB-induced autophagy-lysosome pathway
  publication-title: EMBO J
  doi: 10.15252/embj.201796699
– volume: 67
  start-page: 1737
  year: 2018
  ident: 10.1053/j.gastro.2018.05.027_bib44
  article-title: Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.29645
– reference: 30450489 - Dig Med Res. 2018 Sep;1:
– reference: 29969942 - Autophagy. 2018;14(9):1646-1648
SSID ssj0009381
Score 2.6480174
Snippet Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 865
SubjectTerms Animals
Autophagy - genetics
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - physiology
Ethanol
Fatty Liver
Fatty Liver - genetics
Gene Regulation
Hepatic Protection
Hepatocytes - physiology
Liver - metabolism
Liver Diseases, Alcoholic - genetics
Lysosomes - physiology
Mice
Mice, Knockout
Mouse Model
Organelle Biogenesis
TOR Serine-Threonine Kinases - physiology
Title Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016508518345608
https://dx.doi.org/10.1053/j.gastro.2018.05.027
https://www.ncbi.nlm.nih.gov/pubmed/29782848
https://www.proquest.com/docview/2042751470
https://pubmed.ncbi.nlm.nih.gov/PMC6120772
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65jlT1UvUd96Wt1JwiUmBhgaNj5dEq7slp3RNa1uBgJRDZcGjVH9Jjf0t_WWfYXWwnjpL2gmxgF8F8zM4s335DyHuUeIPA24PITQosYeZbkZTSihjPXB5kzBO4OHn4mR-fep_G_rjT-bXCWqqrZE_-2Liu5H-sCvvArrhK9h8s23YKO-A32Be2YGHY3snGH-FdzpFAPjo82LeGTdUN-HfyfVEuyosUC01O0ZflSoi5X6OKgJjiokAk4aW7WhoXWe-iKM8tLOSBhIATZGuA75jBE1fkzgqzc-woL3YG7k7fHmrSnIlsj8Simpeo8DlXsk4byvzsOpG3OrM7OBPNTO04F-WsXuL0q5nEhuPTOl-Z3C41A2Suq343XKKGkPDNtNdTGE7YcrRgBNJuF3WybWfdLyv9Xg1AtuJlQ1Ve4pr3t5sSHrO9aXPHyNsLG1lWpT6wAojLiwYRLqTQMDyHy7GwZSiaQ_fIlgsJiNslW0f7J1_6S0FnCHXMUkyffdh0URSa1t3cFPVcz2quknNXop3RI_JQpym0rzD3mHTS4gm5P9REjKfkp4EeXYMeNdCjS-hRwA9toUc19KiGHr0CPdpAjyroNU1b6NG8-PMbYfeMnB4ejAbHli7kYUmf8criExE4TAQsZSITDk_tRIg0kUkkEwkJuYy8KIywUFqQeVLITHhJGnoRd1POJsxhz0m3KIt0m1DBk0nkTziXPPHAn4SeYzM_TJyUCzsIsh5h5kHHUqvcY7GV87hhW_gMsl1lqRgtFdt-DJbqEattdalUXm453zc2jM0KZhhzYwDiLe2Ctp2OcFXkeoeW7wxUYhgA8KueKNKyXsBJnhtA2hPYPfJCQae9BwM_uO4aqNoTUFx-_UiRnzUi85D5wPN0X97Y5yvyYPkuvybdal6nbyBAr5K3-l35C4Jg6Vg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+TFEB-Mediated+Lysosome+Biogenesis+and+Autophagy+Promote+Chronic+Ethanol-Induced+Liver+Injury+and+Steatosis+in%C2%A0Mice&rft.jtitle=Gastroenterology+%28New+York%2C+N.Y.+1943%29&rft.au=Chao%2C+Xiaojuan&rft.au=Wang%2C+Shaogui&rft.au=Zhao%2C+Katrina&rft.au=Li%2C+Yuan&rft.date=2018-09-01&rft.eissn=1528-0012&rft.volume=155&rft.issue=3&rft.spage=865&rft_id=info:doi/10.1053%2Fj.gastro.2018.05.027&rft_id=info%3Apmid%2F29782848&rft.externalDocID=29782848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5085&client=summon