Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 3256 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.
Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses. |
---|---|
AbstractList | Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses. Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses. Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses. |
ArticleNumber | 3256 |
Author | Hao, Xiaotao Liu, Yanan Adil, Muhammad Abdullah Shi, Yanan Ma, Wei Zhang, Jianqi Chang, Yilin Yan, Yangjun Zhu, Lingyun Lu, Kun Wei, Zhixiang Chen, Zhihao Qiu, Dingding |
Author_xml | – sequence: 1 givenname: Yanan surname: Shi fullname: Shi, Yanan organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 2 givenname: Yilin surname: Chang fullname: Chang, Yilin organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 3 givenname: Kun orcidid: 0000-0002-3403-2516 surname: Lu fullname: Lu, Kun email: lvk@nanoctr.cn organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 4 givenname: Zhihao surname: Chen fullname: Chen, Zhihao organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 5 givenname: Jianqi orcidid: 0000-0002-3549-1482 surname: Zhang fullname: Zhang, Jianqi organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology – sequence: 6 givenname: Yangjun surname: Yan fullname: Yan, Yangjun organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology – sequence: 7 givenname: Dingding surname: Qiu fullname: Qiu, Dingding organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences – sequence: 8 givenname: Yanan surname: Liu fullname: Liu, Yanan organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology – sequence: 9 givenname: Muhammad Abdullah orcidid: 0000-0002-7658-5370 surname: Adil fullname: Adil, Muhammad Abdullah organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology – sequence: 10 givenname: Wei orcidid: 0000-0002-7239-2010 surname: Ma fullname: Ma, Wei organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 11 givenname: Xiaotao orcidid: 0000-0002-0197-6545 surname: Hao fullname: Hao, Xiaotao email: haoxt@sdu.edu.cn organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 12 givenname: Lingyun orcidid: 0000-0001-7391-1866 surname: Zhu fullname: Zhu, Lingyun email: zhuly@nanoctr.cn organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology – sequence: 13 givenname: Zhixiang orcidid: 0000-0001-6188-3634 surname: Wei fullname: Wei, Zhixiang email: weizx@nanoctr.cn organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35672325$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4qabUT6HYWNiGj-aNHGhrgkwd5688OAJM5rnry_vTVvbLsoCyL3nHA5wXqKjmCIg9JrgdwSz_n3hhHeyxZS2DCsq290zdEIxJy2RlB3d2x-js1LWuA6mSM_5C3TMRFcbVJwg931jQmgypLwy0f8zk0-xgQh5tWuMc7CdUi61YGyAJqS_t72QSoHS-NhUY-04hwC5tppFxzUlBZMbByGUV-j5aEKBs5v1FP38_OnHxdf26tuXy4uPV60TrJvazmImlB0Vp5ZR6BlwaYwVo3ME97ajwvZK2oFKTp1yhnIrQEkqRiElYQM7RZeL7pDMWm-z35i808l4fShUZ9rkybsA2g1AsbOUOYs5dLaXdSbcUtFTrKSrWh8Wre1sNzA4iFM24YHow070v_Qq_dGKVHtCVYHzG4Gcfs9QJr3xZf8cJkKai6ad5ExgwnmFvn0EXac5x_pUexSTWAnOKurNfUd3Vm7_sgLoAnC5_k2G8Q5CsN5nRi-Z0TUz-pAZvauk_hHJ-ekQgnorH56msoVa6jlxBfm_7SdY1y1E10Y |
CitedBy_id | crossref_primary_10_1016_j_macse_2024_100001 crossref_primary_10_1039_D4QM00917G crossref_primary_10_1002_anie_202408960 crossref_primary_10_1039_D2TC05333K crossref_primary_10_1016_j_jmgm_2023_108588 crossref_primary_10_1021_acsami_2c17235 crossref_primary_10_1002_marc_202300102 crossref_primary_10_1016_j_comptc_2024_114542 crossref_primary_10_1002_cjoc_202300605 crossref_primary_10_1016_j_cej_2025_160548 crossref_primary_10_1002_adma_202312635 crossref_primary_10_1002_anie_202318360 crossref_primary_10_1093_nsr_nwae409 crossref_primary_10_1021_jacs_4c00090 crossref_primary_10_1002_eem2_12856 crossref_primary_10_1002_adma_202307398 crossref_primary_10_1021_acs_chemmater_4c02548 crossref_primary_10_1002_aesr_202400028 crossref_primary_10_1063_5_0185076 crossref_primary_10_1039_D4CC05634E crossref_primary_10_1002_adfm_202413864 crossref_primary_10_1002_aenm_202403747 crossref_primary_10_1016_j_jpowsour_2025_236206 crossref_primary_10_1016_j_esci_2023_100171 crossref_primary_10_1021_jacs_2c03161 crossref_primary_10_1002_adma_202209030 crossref_primary_10_1002_adma_202304225 crossref_primary_10_1021_accountsmr_3c00093 crossref_primary_10_1016_j_matchemphys_2024_129871 crossref_primary_10_1039_D4CC03236E crossref_primary_10_1002_adma_202406690 crossref_primary_10_1002_ange_202420453 crossref_primary_10_1039_D2EE01848A crossref_primary_10_1002_eem2_12875 crossref_primary_10_1039_D4EE00540F crossref_primary_10_1039_D4EE03000A crossref_primary_10_1002_ange_202418926 crossref_primary_10_1002_anie_202313016 crossref_primary_10_1039_D3EE00294B crossref_primary_10_1002_adfm_202301573 crossref_primary_10_1002_solr_202200989 crossref_primary_10_1007_s40843_024_3123_2 crossref_primary_10_1039_D2EE03902H crossref_primary_10_1039_D3CS00233K crossref_primary_10_1002_advs_202308652 crossref_primary_10_1002_aenm_202400938 crossref_primary_10_1002_chem_202403972 crossref_primary_10_1016_j_joule_2024_06_010 crossref_primary_10_1002_aenm_202403162 crossref_primary_10_1039_D2TA10030D crossref_primary_10_1002_adfm_202406501 crossref_primary_10_1002_adfm_202213429 crossref_primary_10_1016_j_biomaterials_2024_122498 crossref_primary_10_1039_D5TC00204D crossref_primary_10_1002_anie_202314362 crossref_primary_10_1002_adma_202408858 crossref_primary_10_1016_j_chphi_2024_100489 crossref_primary_10_1021_acsami_4c06326 crossref_primary_10_1039_D4SC01481B crossref_primary_10_1002_adma_202403294 crossref_primary_10_1021_acsami_4c16494 crossref_primary_10_1016_j_molstruc_2024_138606 crossref_primary_10_1016_j_cej_2023_145215 crossref_primary_10_1002_solr_202300413 crossref_primary_10_1002_ange_202408960 crossref_primary_10_1002_ange_202312630 crossref_primary_10_1038_s44221_024_00236_3 crossref_primary_10_1002_smll_202408308 crossref_primary_10_1039_D4MH00699B crossref_primary_10_1002_cjoc_202400543 crossref_primary_10_1002_smtd_202301554 crossref_primary_10_1002_aenm_202303976 crossref_primary_10_1016_j_nanoen_2024_109540 crossref_primary_10_1021_acsaem_4c00212 crossref_primary_10_1021_acs_jpclett_5c00427 crossref_primary_10_1021_acsami_4c15255 crossref_primary_10_1002_anie_202312630 crossref_primary_10_1002_ange_202316227 crossref_primary_10_1039_D3EE00344B crossref_primary_10_1002_aenm_202401561 crossref_primary_10_1021_jacs_4c07548 crossref_primary_10_1002_adma_202207336 crossref_primary_10_1360_TB_2023_0575 crossref_primary_10_1038_s41467_023_42018_7 crossref_primary_10_1002_cey2_579 crossref_primary_10_1002_ange_202308832 crossref_primary_10_1002_smm2_1176 crossref_primary_10_1002_ange_202311686 crossref_primary_10_1002_smll_202305529 crossref_primary_10_1039_D4EE02841D crossref_primary_10_1002_adma_202407517 crossref_primary_10_1002_aenm_202303756 crossref_primary_10_1109_JEDS_2024_3358087 crossref_primary_10_1002_anie_202308832 crossref_primary_10_1002_adma_202300363 crossref_primary_10_1007_s00894_024_05977_2 crossref_primary_10_1002_smll_202311596 crossref_primary_10_1002_anie_202418926 crossref_primary_10_1016_j_apsusc_2024_161907 crossref_primary_10_1021_acs_energyfuels_5c00379 crossref_primary_10_1002_aenm_202403121 crossref_primary_10_1002_anie_202311686 crossref_primary_10_1039_D4EE01474J crossref_primary_10_1002_ange_202313016 crossref_primary_10_1007_s11426_024_2060_9 crossref_primary_10_1016_j_joule_2024_01_005 crossref_primary_10_1002_smll_202307414 crossref_primary_10_1007_s11082_024_07196_8 crossref_primary_10_1021_acsami_2c23190 crossref_primary_10_1007_s00894_024_05966_5 crossref_primary_10_1007_s40843_023_2672_7 crossref_primary_10_1002_adma_202407297 crossref_primary_10_1039_D3EE00908D crossref_primary_10_1021_acsomega_3c04437 crossref_primary_10_1039_D2TC05318G crossref_primary_10_1002_anie_202316227 crossref_primary_10_1002_anie_202420453 crossref_primary_10_1016_j_mssp_2025_109478 crossref_primary_10_1039_D4EE02467B crossref_primary_10_1002_adfm_202411286 crossref_primary_10_1002_adma_202312101 crossref_primary_10_1002_adma_202310046 crossref_primary_10_1002_jccs_202400033 crossref_primary_10_1039_D4EE03394A crossref_primary_10_1039_D3EE01333B crossref_primary_10_1016_j_jpcs_2023_111337 crossref_primary_10_1002_ange_202412691 crossref_primary_10_1039_D4EE00860J crossref_primary_10_1021_acsnano_3c11193 crossref_primary_10_1002_anie_202415994 crossref_primary_10_1002_advs_202403334 crossref_primary_10_1002_ange_202314362 crossref_primary_10_1002_adfm_202213324 crossref_primary_10_1002_smll_202401054 crossref_primary_10_1021_jacs_2c13247 crossref_primary_10_1002_adma_202500115 crossref_primary_10_1021_acsenergylett_4c01252 crossref_primary_10_1016_j_jmgm_2023_108518 crossref_primary_10_1039_D4TA04725G crossref_primary_10_1002_marc_202300407 crossref_primary_10_1021_acsami_4c06589 crossref_primary_10_1002_aenm_202300458 crossref_primary_10_1016_j_nanoen_2022_108059 crossref_primary_10_1016_j_cej_2024_148648 crossref_primary_10_1021_acsomega_3c05665 crossref_primary_10_1016_j_nanoen_2024_110204 crossref_primary_10_1002_marc_202400687 crossref_primary_10_1021_acsaem_5c00099 crossref_primary_10_1039_D3CS00895A crossref_primary_10_1002_adma_202501671 crossref_primary_10_1002_aenm_202403806 crossref_primary_10_1016_j_dyepig_2022_111049 crossref_primary_10_1007_s11051_024_05997_2 crossref_primary_10_1016_j_colsurfa_2024_133882 crossref_primary_10_1038_s41467_023_38673_5 crossref_primary_10_1002_adfm_202304449 crossref_primary_10_1002_adma_202302452 crossref_primary_10_1002_adma_202413270 crossref_primary_10_1039_D4TA00594E crossref_primary_10_1007_s12274_023_5723_x crossref_primary_10_1002_solr_202300927 crossref_primary_10_1039_D4EE02296C crossref_primary_10_1039_D2MH01228F crossref_primary_10_1016_j_jmgm_2023_108664 crossref_primary_10_1039_D5EE00031A crossref_primary_10_1016_j_cej_2023_142909 crossref_primary_10_1016_j_cej_2024_153417 crossref_primary_10_1002_ange_202415994 crossref_primary_10_1016_j_jechem_2023_09_035 crossref_primary_10_1039_D3NR05077G crossref_primary_10_1002_anie_202417244 crossref_primary_10_1039_D4TA07953A crossref_primary_10_1002_adma_202404660 crossref_primary_10_1002_ange_202315625 crossref_primary_10_1016_j_jpcs_2023_111495 crossref_primary_10_1002_agt2_308 crossref_primary_10_1016_j_fmre_2023_03_010 crossref_primary_10_1002_adma_202302915 crossref_primary_10_1002_ente_202301019 crossref_primary_10_1002_aenm_202400285 crossref_primary_10_1039_D3NH00122A crossref_primary_10_1021_jacs_4c02361 crossref_primary_10_1002_adma_202413376 crossref_primary_10_1002_ange_202308307 crossref_primary_10_1002_ange_202417244 crossref_primary_10_1007_s00894_024_05978_1 crossref_primary_10_1016_j_nanoen_2024_110016 crossref_primary_10_1515_nanoph_2023_0800 crossref_primary_10_1002_adma_202207172 crossref_primary_10_1002_slct_202401831 crossref_primary_10_1038_s41467_023_40423_6 crossref_primary_10_1021_acsami_4c13907 crossref_primary_10_1002_anie_202315625 crossref_primary_10_1002_ange_202404297 crossref_primary_10_1016_j_comptc_2023_114201 crossref_primary_10_1021_acs_jpcc_3c05022 crossref_primary_10_1039_D3CC02560H crossref_primary_10_1002_adma_202309672 crossref_primary_10_1002_agt2_322 crossref_primary_10_1002_anie_202412691 crossref_primary_10_1039_D4EE01409J crossref_primary_10_1039_D3RA03317A crossref_primary_10_1002_anie_202308307 crossref_primary_10_1021_acsenergylett_2c01364 crossref_primary_10_1002_adma_202302259 crossref_primary_10_1039_D3EE01690K crossref_primary_10_1021_acs_jpcc_3c02535 crossref_primary_10_1002_anie_202404297 crossref_primary_10_1021_acssuschemeng_4c09617 crossref_primary_10_1002_ange_202318360 crossref_primary_10_1002_aenm_202404537 |
Cites_doi | 10.1038/ncomms13651 10.1002/anie.202105156 10.1002/aenm.201904234 10.1038/nmat1500 10.1016/j.joule.2017.09.020 10.1002/adma.201903441 10.1039/b209469j 10.1038/nenergy.2017.32 10.1038/s41467-020-17867-1 10.1002/adma.202100830 10.1016/j.chempr.2020.08.003 10.1002/adma.201906324 10.1002/adma.201004311 10.1038/nenergy.2015.27 10.1038/s41560-020-00684-7 10.1126/science.aat2612 10.1038/nmat5063 10.1016/j.synthmet.2013.04.024 10.1021/nn401267s 10.1002/adma.201707353 10.1002/solr.202100008 10.1039/C9TA11285E 10.1038/s41560-021-00820-x 10.1016/j.joule.2021.12.017 10.1002/aenm.201702743 10.1016/j.joule.2019.01.004 10.1002/aenm.201600228 10.1051/epjap/2018180070 10.1002/adma.201807577 10.1002/adma.202102420 10.1038/nphoton.2012.11 10.1063/1.116583 10.1021/acs.jpclett.0c03260 10.1021/acsenergylett.8b01906 10.1039/C8TA04665D 10.1021/cr050149z 10.1039/D0TA01032D 10.1038/s41566-019-0573-5 10.1039/D0QM00034E 10.1103/RevModPhys.65.599 10.1038/s41467-020-19029-9 10.1038/s41563-018-0128-z 10.1021/acs.jpclett.9b02161 10.1038/s41467-019-13292-1 10.1103/PhysRevApplied.4.014020 10.1039/D0TC00587H 10.1038/nenergy.2017.53 10.1021/acsami.1c04273 10.1016/j.scib.2019.07.005 10.1002/anie.201806291 10.1039/C7SE00601B 10.1021/jacs.0c05560 10.1002/adma.202104161 10.1038/s41467-019-09428-y |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-30927-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_cde20cb23cb04e6b874e614b2582097c PMC9174259 35672325 10_1038_s41467_022_30927_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB36000000 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002 – fundername: ; – fundername: ; grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-6b0359bf942b32e83e47aab5fcc108b625b897bd2742c9ca24b5e9725f57713d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:21:58 EDT 2025 Thu Aug 21 14:22:46 EDT 2025 Fri Jul 11 11:46:36 EDT 2025 Wed Aug 13 04:54:29 EDT 2025 Mon Jul 21 06:03:25 EDT 2025 Tue Jul 01 00:58:14 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:38:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-6b0359bf942b32e83e47aab5fcc108b625b897bd2742c9ca24b5e9725f57713d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3549-1482 0000-0002-7239-2010 0000-0002-0197-6545 0000-0002-7658-5370 0000-0002-3403-2516 0000-0001-6188-3634 0000-0001-7391-1866 |
OpenAccessLink | https://www.nature.com/articles/s41467-022-30927-y |
PMID | 35672325 |
PQID | 2673709543 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cde20cb23cb04e6b874e614b2582097c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9174259 proquest_miscellaneous_2674350144 proquest_journals_2673709543 pubmed_primary_35672325 crossref_primary_10_1038_s41467_022_30927_y crossref_citationtrail_10_1038_s41467_022_30927_y springer_journals_10_1038_s41467_022_30927_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-07 |
PublicationDateYYYYMMDD | 2022-06-07 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Koster, Kemerink, Wienk, Maturova, Janssen (CR45) 2011; 23 Hou, Inganas, Friend, Gao (CR4) 2018; 17 Zhao (CR35) 2020; 4 Fu, Wang, Sun (CR51) 2019; 58 Zhu (CR43) 2020; 142 Sun, Wang, Yang, Li (CR36) 2003; 13 Zheng (CR13) 2022; 6 Erray, Hanine, Boufounas, El Amrani (CR38) 2018; 82 Qin (CR8) 2019; 7 Bin (CR37) 2016; 7 Liu (CR34) 2021; 33 Liu (CR15) 2018; 4 Hong (CR18) 2019; 31 Yuan (CR7) 2019; 3 Zhang (CR31) 2013; 175 Zhang (CR42) 2020; 11 Xiao, Li, Liu, Zhang, Li (CR40) 2020; 8 Zhu, Yang, Yi, Wei (CR24) 2020; 11 Pan (CR21) 2021; 13 Menke, Ran, Bazan, Friend (CR28) 2018; 2 Sun, Zhu, Meng, Li (CR30) 2021; 34 Zhao (CR3) 2016; 1 Shi (CR20) 2021; 5 Zhu (CR25) 2021; 60 Qian (CR22) 2018; 17 Zhou (CR49) 2019; 10 Yuan (CR9) 2019; 10 Li (CR10) 2021; 6 Firdaus (CR54) 2020; 11 Gunes, Neugebauer, Sariciftci (CR1) 2007; 107 Badgujar (CR39) 2016; 6 Han, Yi, Shuai (CR27) 2018; 8 Cui (CR12) 2021; 33 Zhu, Tu, Yi, Wei (CR23) 2019; 10 Blom, deJong, Vleggaar (CR44) 1996; 68 Kyaw (CR46) 2013; 7 Li (CR2) 2005; 4 Liu (CR19) 2020; 14 Vandewal, Benduhn, Nikolis (CR50) 2018; 2 Zhou (CR32) 2020; 32 Yoshikawa (CR14) 2017; 2 Liu (CR52) 2018; 30 Yuan (CR16) 2020; 6 Benduhn (CR26) 2017; 2 Zhu (CR41) 2020; 10 Meng (CR11) 2018; 361 Liu, Zhang, Xu, Zhu (CR33) 2019; 64 Classen (CR53) 2020; 5 Li, Zhu, Yang (CR5) 2012; 6 Yao (CR17) 2015; 4 Yang (CR48) 2018; 6 Marcus (CR29) 1993; 65 Yuan (CR6) 2019; 31 Li (CR47) 2020; 8 L Meng (30927_CR11) 2018; 361 P Blom (30927_CR44) 1996; 68 L Hong (30927_CR18) 2019; 31 C Xiao (30927_CR40) 2020; 8 G Li (30927_CR47) 2020; 8 J Zhao (30927_CR3) 2016; 1 Z Zheng (30927_CR13) 2022; 6 K Vandewal (30927_CR50) 2018; 2 D Qian (30927_CR22) 2018; 17 H Fu (30927_CR51) 2019; 58 W Liu (30927_CR33) 2019; 64 J Yuan (30927_CR7) 2019; 3 L Koster (30927_CR45) 2011; 23 J Yuan (30927_CR6) 2019; 31 J Pan (30927_CR21) 2021; 13 D Yang (30927_CR48) 2018; 6 S Menke (30927_CR28) 2018; 2 J Yuan (30927_CR16) 2020; 6 L Zhu (30927_CR25) 2021; 60 M Erray (30927_CR38) 2018; 82 T Liu (30927_CR52) 2018; 30 J Yao (30927_CR17) 2015; 4 S Liu (30927_CR19) 2020; 14 F Liu (30927_CR34) 2021; 33 G Li (30927_CR2) 2005; 4 H Bin (30927_CR37) 2016; 7 Y Cui (30927_CR12) 2021; 33 Z Zhou (30927_CR32) 2020; 32 G Zhang (30927_CR42) 2020; 11 Y Zhao (30927_CR35) 2020; 4 L Zhu (30927_CR41) 2020; 10 R Zhou (30927_CR49) 2019; 10 Q Sun (30927_CR36) 2003; 13 J Benduhn (30927_CR26) 2017; 2 C Li (30927_CR10) 2021; 6 G Han (30927_CR27) 2018; 8 J Hou (30927_CR4) 2018; 17 R Marcus (30927_CR29) 1993; 65 J Yuan (30927_CR9) 2019; 10 S Gunes (30927_CR1) 2007; 107 W Zhu (30927_CR43) 2020; 142 K Kyaw (30927_CR46) 2013; 7 Y Firdaus (30927_CR54) 2020; 11 Z Liu (30927_CR15) 2018; 4 K Yoshikawa (30927_CR14) 2017; 2 C Sun (30927_CR30) 2021; 34 L Zhu (30927_CR24) 2020; 11 Z Zhang (30927_CR31) 2013; 175 S Badgujar (30927_CR39) 2016; 6 G Li (30927_CR5) 2012; 6 R Qin (30927_CR8) 2019; 7 A Classen (30927_CR53) 2020; 5 Y Shi (30927_CR20) 2021; 5 L Zhu (30927_CR23) 2019; 10 |
References_xml | – volume: 7 year: 2016 ident: CR37 article-title: 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor publication-title: Nat. Commun. doi: 10.1038/ncomms13651 – volume: 60 start-page: 15348 year: 2021 end-page: 15353 ident: CR25 article-title: Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105156 – volume: 10 start-page: 1904234 year: 2020 ident: CR41 article-title: Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904234 – volume: 4 start-page: 864 year: 2005 end-page: 868 ident: CR2 article-title: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends publication-title: Nat. Mater. doi: 10.1038/nmat1500 – volume: 2 start-page: 25 year: 2018 end-page: 35 ident: CR28 article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime publication-title: Joule doi: 10.1016/j.joule.2017.09.020 – volume: 31 start-page: e1903441 year: 2019 ident: CR18 article-title: Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201903441 – volume: 13 start-page: 800 year: 2003 end-page: 806 ident: CR36 article-title: Synthesis and electroluminescence of novel copolymers containing crown ether spacers publication-title: J. Mater. Chem. doi: 10.1039/b209469j – volume: 2 start-page: 17032 year: 2017 ident: CR14 article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 – volume: 11 year: 2020 ident: CR42 article-title: Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-020-17867-1 – volume: 33 start-page: 2100830 year: 2021 ident: CR34 article-title: Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy publication-title: Adv. Mater. doi: 10.1002/adma.202100830 – volume: 6 start-page: 2147 year: 2020 end-page: 2161 ident: CR16 article-title: Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells publication-title: Chem doi: 10.1016/j.chempr.2020.08.003 – volume: 32 start-page: 1906324 year: 2020 ident: CR32 article-title: Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation publication-title: Adv. Mater. doi: 10.1002/adma.201906324 – volume: 23 start-page: 1670 year: 2011 end-page: 1674 ident: CR45 article-title: Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201004311 – volume: 1 start-page: 15027 year: 2016 ident: CR3 article-title: Efficient organic solar cells processed from hydrocarbon solvents publication-title: Nat. Energy doi: 10.1038/nenergy.2015.27 – volume: 5 start-page: 711 year: 2020 end-page: 719 ident: CR53 article-title: The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets publication-title: Nat. Energy doi: 10.1038/s41560-020-00684-7 – volume: 361 start-page: 1094 year: 2018 end-page: 1098 ident: CR11 article-title: Organic and solution-processed tandem solar cells with 17.3% efficiency publication-title: Science doi: 10.1126/science.aat2612 – volume: 17 start-page: 119 year: 2018 end-page: 128 ident: CR4 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 175 start-page: 21 year: 2013 end-page: 29 ident: CR31 article-title: Novel conjugated polymers with planar backbone bearing acenaphtho 1,2-b quinoxaline acceptor subunit for polymer solar cells publication-title: Synth. Met. doi: 10.1016/j.synthmet.2013.04.024 – volume: 7 start-page: 4569 year: 2013 end-page: 4577 ident: CR46 article-title: Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells publication-title: ACS Nano doi: 10.1021/nn401267s – volume: 30 start-page: e1707353 year: 2018 ident: CR52 article-title: Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201707353 – volume: 5 start-page: 2100008 year: 2021 ident: CR20 article-title: Optimizing the charge carrier and light management of nonfullerene acceptors for efficient organic solar cells with small nonradiative energy losses publication-title: Sol. RRL doi: 10.1002/solr.202100008 – volume: 7 start-page: 27632 year: 2019 end-page: 27639 ident: CR8 article-title: Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11285E – volume: 6 start-page: 605 year: 2021 end-page: 613 ident: CR10 article-title: Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells publication-title: Nat. Energy doi: 10.1038/s41560-021-00820-x – volume: 6 start-page: 171 year: 2022 end-page: 184 ident: CR13 article-title: Tandem organic solar cell with 20.2% efficiency publication-title: Joule doi: 10.1016/j.joule.2021.12.017 – volume: 8 start-page: 1702743 year: 2018 ident: CR27 article-title: From molecular packing structures to electronic processes: theoretical simulations for organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702743 – volume: 3 start-page: 1140 year: 2019 end-page: 1151 ident: CR7 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 6 start-page: 1600228 year: 2016 ident: CR39 article-title: High-performance small molecule via tailoring intermolecular interactions and its application in large-area organic photovoltaic modules publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600228 – volume: 82 start-page: 30201 year: 2018 ident: CR38 article-title: Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2018180070 – volume: 31 start-page: e1807577 year: 2019 ident: CR6 article-title: Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201807577 – volume: 33 start-page: 2102420 year: 2021 ident: CR12 article-title: Single-junction organic photovoltaic cell with 19% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.202102420 – volume: 6 start-page: 153 year: 2012 end-page: 161 ident: CR5 article-title: Polymer solar cells publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.11 – volume: 68 start-page: 3308 year: 1996 end-page: 3310 ident: CR44 article-title: Electron and hole transport in poly(p-phenylene vinylene) devices publication-title: Appl. Phys. Lett. doi: 10.1063/1.116583 – volume: 11 start-page: 10227 year: 2020 end-page: 10232 ident: CR24 article-title: Effective modulation of exciton binding energies in polymorphs of a small-molecule acceptor for organic photovoltaics publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03260 – volume: 4 start-page: 110 year: 2018 end-page: 117 ident: CR15 article-title: Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01906 – volume: 6 start-page: 13918 year: 2018 end-page: 13924 ident: CR48 article-title: A minimal non-radiative recombination loss for efficient non- fullerene all- small- molecule organic solar cells with a low energy loss of 0.54 eV and high open- circuit voltage of 1.15 V+ publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04665D – volume: 107 start-page: 1324 year: 2007 end-page: 1338 ident: CR1 article-title: Conjugated polymer-based organic solar cells publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 8 start-page: 5927 year: 2020 end-page: 5935 ident: CR47 article-title: Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01032D – volume: 14 start-page: 300 year: 2020 end-page: 305 ident: CR19 article-title: High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder publication-title: Nat. Photon. doi: 10.1038/s41566-019-0573-5 – volume: 4 start-page: 3310 year: 2020 end-page: 3318 ident: CR35 article-title: Fine-tuning the energy levels and morphology via fluorination and thermal annealing enable high efficiency non-fullerene organic solar cells publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00034E – volume: 65 start-page: 599 year: 1993 end-page: 610 ident: CR29 article-title: Electron transfer reactions in chemistry. Theory and experiment publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.599 – volume: 11 year: 2020 ident: CR54 article-title: Long-range exciton diffusion in molecular non-fullerene acceptors publication-title: Nat. Commun. doi: 10.1038/s41467-020-19029-9 – volume: 17 start-page: 703 year: 2018 end-page: 709 ident: CR22 article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells publication-title: Nat. Mater. doi: 10.1038/s41563-018-0128-z – volume: 10 start-page: 4888 year: 2019 end-page: 4894 ident: CR23 article-title: Achieving small exciton binding energies in small molecule acceptors for organic solar cells: effect of molecular packing publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02161 – volume: 10 year: 2019 ident: CR49 article-title: All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies publication-title: Nat. Commun. doi: 10.1038/s41467-019-13292-1 – volume: 4 start-page: 014020 year: 2015 ident: CR17 article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.014020 – volume: 8 start-page: 5370 year: 2020 ident: CR40 article-title: Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC00587H – volume: 2 start-page: 17053 year: 2017 ident: CR26 article-title: Intrinsic non-radiative voltage losses in fullerene-based organic solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2017.53 – volume: 13 start-page: 22531 year: 2021 end-page: 22539 ident: CR21 article-title: pi-Extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04273 – volume: 64 start-page: 1144 year: 2019 end-page: 1147 ident: CR33 article-title: Efficient organic solar cells achieved at a low energy loss publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.005 – volume: 58 start-page: 4442 year: 2019 end-page: 4453 ident: CR51 article-title: Polymer donors for high-performance non-fullerene organic solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806291 – volume: 2 start-page: 538 year: 2018 end-page: 544 ident: CR50 article-title: How to determine optical gaps and voltage losses in organic photovoltaic materials publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00601B – volume: 142 start-page: 14532 year: 2020 end-page: 14547 ident: CR43 article-title: Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05560 – volume: 34 start-page: 2104161 year: 2021 ident: CR30 article-title: Quinoxaline-based D-A copolymers for the applications as polymer donor and hole transport material in polymer/perovskite solar cells publication-title: Adv. Mater doi: 10.1002/adma.202104161 – volume: 10 year: 2019 ident: CR9 article-title: Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics publication-title: Nat. Commun. doi: 10.1038/s41467-019-09428-y – volume: 1 start-page: 15027 year: 2016 ident: 30927_CR3 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.27 – volume: 10 year: 2019 ident: 30927_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09428-y – volume: 33 start-page: 2102420 year: 2021 ident: 30927_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.202102420 – volume: 4 start-page: 014020 year: 2015 ident: 30927_CR17 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.014020 – volume: 142 start-page: 14532 year: 2020 ident: 30927_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05560 – volume: 3 start-page: 1140 year: 2019 ident: 30927_CR7 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 13 start-page: 22531 year: 2021 ident: 30927_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04273 – volume: 4 start-page: 110 year: 2018 ident: 30927_CR15 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01906 – volume: 13 start-page: 800 year: 2003 ident: 30927_CR36 publication-title: J. Mater. Chem. doi: 10.1039/b209469j – volume: 5 start-page: 711 year: 2020 ident: 30927_CR53 publication-title: Nat. Energy doi: 10.1038/s41560-020-00684-7 – volume: 361 start-page: 1094 year: 2018 ident: 30927_CR11 publication-title: Science doi: 10.1126/science.aat2612 – volume: 8 start-page: 5927 year: 2020 ident: 30927_CR47 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01032D – volume: 7 start-page: 4569 year: 2013 ident: 30927_CR46 publication-title: ACS Nano doi: 10.1021/nn401267s – volume: 82 start-page: 30201 year: 2018 ident: 30927_CR38 publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2018180070 – volume: 17 start-page: 119 year: 2018 ident: 30927_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 8 start-page: 1702743 year: 2018 ident: 30927_CR27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702743 – volume: 10 start-page: 4888 year: 2019 ident: 30927_CR23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02161 – volume: 2 start-page: 25 year: 2018 ident: 30927_CR28 publication-title: Joule doi: 10.1016/j.joule.2017.09.020 – volume: 175 start-page: 21 year: 2013 ident: 30927_CR31 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2013.04.024 – volume: 64 start-page: 1144 year: 2019 ident: 30927_CR33 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.005 – volume: 23 start-page: 1670 year: 2011 ident: 30927_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201004311 – volume: 32 start-page: 1906324 year: 2020 ident: 30927_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201906324 – volume: 4 start-page: 864 year: 2005 ident: 30927_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat1500 – volume: 6 start-page: 153 year: 2012 ident: 30927_CR5 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.11 – volume: 11 year: 2020 ident: 30927_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17867-1 – volume: 2 start-page: 17032 year: 2017 ident: 30927_CR14 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 – volume: 68 start-page: 3308 year: 1996 ident: 30927_CR44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.116583 – volume: 7 year: 2016 ident: 30927_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms13651 – volume: 6 start-page: 605 year: 2021 ident: 30927_CR10 publication-title: Nat. Energy doi: 10.1038/s41560-021-00820-x – volume: 31 start-page: e1807577 year: 2019 ident: 30927_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201807577 – volume: 58 start-page: 4442 year: 2019 ident: 30927_CR51 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806291 – volume: 107 start-page: 1324 year: 2007 ident: 30927_CR1 publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 60 start-page: 15348 year: 2021 ident: 30927_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105156 – volume: 34 start-page: 2104161 year: 2021 ident: 30927_CR30 publication-title: Adv. Mater doi: 10.1002/adma.202104161 – volume: 33 start-page: 2100830 year: 2021 ident: 30927_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.202100830 – volume: 31 start-page: e1903441 year: 2019 ident: 30927_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201903441 – volume: 8 start-page: 5370 year: 2020 ident: 30927_CR40 publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC00587H – volume: 2 start-page: 538 year: 2018 ident: 30927_CR50 publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00601B – volume: 10 start-page: 1904234 year: 2020 ident: 30927_CR41 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904234 – volume: 6 start-page: 13918 year: 2018 ident: 30927_CR48 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04665D – volume: 11 year: 2020 ident: 30927_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19029-9 – volume: 65 start-page: 599 year: 1993 ident: 30927_CR29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.599 – volume: 7 start-page: 27632 year: 2019 ident: 30927_CR8 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11285E – volume: 6 start-page: 1600228 year: 2016 ident: 30927_CR39 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600228 – volume: 2 start-page: 17053 year: 2017 ident: 30927_CR26 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.53 – volume: 17 start-page: 703 year: 2018 ident: 30927_CR22 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0128-z – volume: 10 year: 2019 ident: 30927_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13292-1 – volume: 6 start-page: 171 year: 2022 ident: 30927_CR13 publication-title: Joule doi: 10.1016/j.joule.2021.12.017 – volume: 4 start-page: 3310 year: 2020 ident: 30927_CR35 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00034E – volume: 5 start-page: 2100008 year: 2021 ident: 30927_CR20 publication-title: Sol. RRL doi: 10.1002/solr.202100008 – volume: 11 start-page: 10227 year: 2020 ident: 30927_CR24 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03260 – volume: 14 start-page: 300 year: 2020 ident: 30927_CR19 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0573-5 – volume: 6 start-page: 2147 year: 2020 ident: 30927_CR16 publication-title: Chem doi: 10.1016/j.chempr.2020.08.003 – volume: 30 start-page: e1707353 year: 2018 ident: 30927_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.201707353 |
SSID | ssj0000391844 |
Score | 2.6987696 |
Snippet | Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a... Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3256 |
SubjectTerms | 119/118 140/131 140/58 147/143 147/3 639/301/299/946 639/638/675 Charge transport Conversion Diffusion length Energy Energy loss Excitons Fullerenes Humanities and Social Sciences multidisciplinary Open circuit voltage Photoelectricity Photovoltaic cells Radiative recombination Recombination Science Science (multidisciplinary) Solar cells Solar energy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0KoqIfVS8WoJFGQkbhDV60ccHwFRVUhwoZV6s-xZR60UErTZCu3fM-Nkl93yunDJwY9kMg97xuOZYexVk-oAdGpTCduUOkRbBjEXpVGiQf051jJ7zz99rs4v9ccrc7VV6ovuhI3pgUfEncI8SQFRKohCJ5xs8TnTURrcu5wFWn1xz9sypvIarByaLnqKkhGqPh10XhPy5XXhpC1XOztRTtj_Oy3z18uSdzymeSM6u88OJw2Svx0hf8D2UveQ3RtrSq4eMfjyNbQtX6R-K8qSpxzixwPQLZZ-MWADxUzxtv--7mt78v_ym453fVfSsXwunMLH9wAfyAjmdNA_PGaXZx8u3p-XUyWFEoyqlmUVKVNfbJyWUclUq6RtCNE0ADNRR7SBYu1snJPfFhwEqaNJzkrTGItW7FwdsX38dnrCuNIOQDVaB-m0qiwSAlSCKlrZoPGlCjZbY9XDlGacql20Pru7Ve1HSnikhM-U8KuCvd7M-TYm2fjr6HdErM1ISpCdGxAffmIb_y-2KdjJmtR-ktrBSyragzqnxr94uelGeSPchi71t3mMzs5YXbDjkTM2kChTWdRQTcHsDs_sgLrb091c55zeaDXj6ukK9mbNXT_B-jMqnv4PVDxjB5LEgo6W7AnbXy5u03PUtJbxRRaqH1QuJJc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtUwcARFSFwQO4GCjMQNouZ5ieMTAkRVIcEFKr2bZU8cUSkk5eVV6P09Hmcpj6WXHGwnmczizOYZgJdNqByS16YsdJNL53XuirrIlSiaqD_7iqfo-afP5cmp_LhW68nhNkxplfOemDbqukfykR9xaqgS9QEp3pz_yKlrFEVXpxYa1-EGlS6jlC691ouPhaqfV1JOZ2UKUR0NMu0MKYW9MFznu73_USrb_y9d8--UyT_ipul3dHwHbk96JHs7Ev4uXAvdPbg5dpbc3Qf88t21LduE_rezliykg37MIeWy9JshDtDJKdb2P-e5tqcoMDvrWNd3OTnnU_sUNj4H2UCmMCN3__AATo8_fH1_kk_9FHJUotzmpad6fb4xknvBQyWC1M551SCuispHS8hXRvuaordo0HHpVTCaq0bpaMvW4iEcxHeHx8CENIiikdJxI0WpPVcoApZe8yaaYCKD1YxVi1Oxcep50doU9BaVHSlhIyVsooTdZfBqued8LLVx5ep3RKxlJZXJTgMRH3aSOot14AV6LtAXMkTO0_G6khHaqPgYjRkczqS2k-wO9pLTMnixTEepI9y6LvQXaY1MIVmZwaORMxZIhCp11FNVBnqPZ_ZA3Z_pzr6lyt7Rdo57qMng9cxdl2D9HxVPrv6Kp3CLE8OT60gfwsF2cxGeRU1q658ncfkFqeUcIA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqLzTFmQkbhCR9SOOj2VFVSHBBSr1ZtleR1QKCdpshfbfd8Z50IWCxGUPsbM765lJ5vkNwOs6Vi5Q1KYsdJ1L53XuilWRK1HUaD_7iqfs-afP5dm5_HihLvaAT70wqWg_QVqmx_RUHfaul0mlU-15YbjOt3fgLkG3k1Qvy-UcVyHE80rKsT-mENUtt-68gxJU_2325Z9lkr_lStMr6PQAHoy2IzsZqH0Ie7F9BPeGaZLbxxC-fHdNw9axu9FfyWJq7mMuUP1Kt-7xAnVLsab7Oa01HWV-2WXL2q7NKSCfRqaw4XsC68n9ZRTi75_A-emHr8uzfJyhkAclyk1eesLo87WR3AseKxGlds6rOoRFUXn0fnxltF9RxjaY4Lj0KhrNVa00-q8r8RT28bfjc2BCmhBELaXjRopSe66CiKH0mtfodokMFtOp2jACjNOci8amRLeo7MAJi5ywiRN2m8Gb-Z4fA7zGP3e_J2bNOwkaO13A87CjqNiwirwInovgCxlR2jR-LiRSi8aO0SGD44nVdtTX3nIa14PWpsR_8WpeRk2js3Vt7K7SHpnSsDKDZ4NkzJQIVWq0TVUGekdmdkjdXWkvvyU0b_SX8blpMng7Sdcvsv5-FIf_t_0I7nNSAAof6WPY36yv4gu0pjb-ZVKfa9RkGmg priority: 102 providerName: Springer Nature |
Title | Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells |
URI | https://link.springer.com/article/10.1038/s41467-022-30927-y https://www.ncbi.nlm.nih.gov/pubmed/35672325 https://www.proquest.com/docview/2673709543 https://www.proquest.com/docview/2674350144 https://pubmed.ncbi.nlm.nih.gov/PMC9174259 https://doaj.org/article/cde20cb23cb04e6b874e614b2582097c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQPIfGC-CYwKiPxBoHUH3H8gFBXrUyVNiFGpb5ZseuISSHZmk7Qf8_ZSQqFgnhJJNtJLvdh3_l8dwAvC5fl1u_apIksYp4bGefJIokFSwrUn01Gg_f87Dw9nfHpXMz3oC931CGw2Wna-XpSs2X55vv1-j0K_Ls2ZDx72_Ag7uFceqKojNf7cIgrk_SCetap-2FmZgoNGu9opgkfxrh2sy6OZvdrttaqkNJ_lx7653HK33yqYama3IU7nY5JRi1T3IM9V92HW23VyfUDsBdf87IkS1f_EodJXAgCJLn151zqZYMNPqqKlPW3vq-svYeYXFakqqvYb9yH0iqkfY8ljccl8a6A5iHMJiefx6dxV2shtoKlqzg1PpefKRSnhlGXMcdlnhtRWDtMMoNWksmUNAvv2bXK5pQb4ZSkohAS7dwFewQH-G33BAjjylpWcJ5TxVkqDRWWOZsaSQs0z1gEwx6r2naJyH09jFIHhzjLdEsJjZTQgRJ6HcGrzTNXbRqOf44-9sTajPQptEMD4kN3EqntwtHEGsqsSbhDrpR4HXKEFpUiJW0ERz2pdc-WmvqyPqiVcvyLF5tulEiP27xy9U0Yw4O7lkfwuOWMDSRMpMh0VEQgt3hmC9TtnuryS8j6jXY1zq8qgtc9d_0E6--oePofYD6D29Rzvd9bkkdwsFreuOeoaq3MAPblXOI1m3wYwOFoNL2Y4v345PzjJ2wdp-NB2MQYBDn7Af2qKiA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaJmbSdODgjxqrb0caGV9mZixxGV0qTdbFXtn-I3MuM8yvLorZc9xN6sd16e8eeZAXhVujS3dGqTRKoMZW5UmEdFFMYiKtF_Nin36PnefjI9lF9n8WwNfg65MHStcrCJ3lAXjaUz8k1ODVXQH5Di_clpSF2jCF0dWmh0YrHjlucYsrXvtj8jf19zvvXl4NM07LsKhDYWySJMDFWtM2UmuRHcpcJJlecmLq2dRKnBeMCkmTIFYZg2szmXJnaZ4nEZK4zoCoHvvQbXceONSKPUTI1nOlRtPZWyz82JRLrZSm-J_JX5KOMqXK7sf75NwL9827-vaP6B0_rtb-sO3O79VvahE7S7sObqe3Cj62S5vA_223FeVWzumt9yO5nziYUst3R3ppm3-IAytVjVnA9jVUOoMzuqWd3UIYEBvl0L695jWUuhNyN4oX0Ah1dC6Yewjr_tHgMTMrNWlFLmPJMiUYbHVjibGMVLDPlEAJOBqtr2xc2px0alPcguUt1xQiMntOeEXgbwZvzOSVfa49LZH4lZ40wqy-0fID10r-XaFo5H1nBhTSQdSrrCz4nE1aKjlSkbwMbAat3bilZfSHYAL8dh1HKibV675szPkR4ClgE86iRjXImIE4V-cRyAWpGZlaWujtRHP3wlcYzV0WZnAbwdpOtiWf8nxZPL_8ULuDk92NvVu9v7O0_hFifhp2MrtQHri_mZe4Ze3MI896rD4PtV6-ovedtYcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjAQniDbrR5wcEALKqqVQIUGlvbmx1xGVQlI2W1X7a3wdM06yZXn01ksOtpM488qM5wXwrPRZ4ejUJk10GcvC6rhIZkmsRFKi_mwzHrznn_bTnQP5YaqmG_BzyIWhsMpBJgZBPWscnZGPODVUQX1AilHZh0V83p68Pv4RUwcp8rQO7TQ6Etnzy1M039pXu9uI6-ecT95_fbcT9x0GYqdEuohTSxXsbJlLbgX3mfBSF4VVpXPjJLNoG9gs13ZG_kyXu4JLq3yuuSqVRutuJvC5l-CyFmpMPKanenW-Q5XXMyn7PJ1EZKNWBqkUwueTnOt4ufYvDC0D_qXn_h2u-YfPNvwKJzfgeq_Dsjcd0d2EDV_fgitdV8vlbXBfvhdVxea--S3Pk_mQZMgKR3E0zbzFAcraYlVzOsxVDXmg2VHN6qaOCf6hdQvrnuNYS2Y4I1dDewcOLgTSd2ET3-3vAxMyd06UUhY8lyLVlisnvEut5iWafyKC8QBV4_pC59RvozLB4S4y02HCICZMwIRZRvBidc9xV-bj3NVvCVmrlVSiOwwgPEzP8cbNPE-c5cLZRHqkeo3XscTdotKVaxfB1oBq08uN1pxReQRPV9PI8QTbovbNSVgjgztYRnCvo4zVToRKNerIKgK9RjNrW12fqY--hariaLej_M4jeDlQ19m2_g-KB-d_xRO4ilxqPu7u7z2Ea5xon06w9BZsLuYn_hEqdAv7OHAOg8OLZtVflp5cqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+reorganization+energy+acceptors+enable+low+energy+losses+in+non-fullerene+organic+solar+cells&rft.jtitle=Nature+communications&rft.au=Shi%2C+Yanan&rft.au=Chang%2C+Yilin&rft.au=Lu%2C+Kun&rft.au=Chen%2C+Zhihao&rft.date=2022-06-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=3256&rft_id=info:doi/10.1038%2Fs41467-022-30927-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |