Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells

Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3256 - 10
Main Authors Shi, Yanan, Chang, Yilin, Lu, Kun, Chen, Zhihao, Zhang, Jianqi, Yan, Yangjun, Qiu, Dingding, Liu, Yanan, Adil, Muhammad Abdullah, Ma, Wei, Hao, Xiaotao, Zhu, Lingyun, Wei, Zhixiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses.
AbstractList Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells. Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses.
Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses.
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small reorganisation energies and reveal the relationship between reorganisation energy and energy losses.
ArticleNumber 3256
Author Hao, Xiaotao
Liu, Yanan
Adil, Muhammad Abdullah
Shi, Yanan
Ma, Wei
Zhang, Jianqi
Chang, Yilin
Yan, Yangjun
Zhu, Lingyun
Lu, Kun
Wei, Zhixiang
Chen, Zhihao
Qiu, Dingding
Author_xml – sequence: 1
  givenname: Yanan
  surname: Shi
  fullname: Shi, Yanan
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yilin
  surname: Chang
  fullname: Chang, Yilin
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Kun
  orcidid: 0000-0002-3403-2516
  surname: Lu
  fullname: Lu, Kun
  email: lvk@nanoctr.cn
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Zhihao
  surname: Chen
  fullname: Chen, Zhihao
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 5
  givenname: Jianqi
  orcidid: 0000-0002-3549-1482
  surname: Zhang
  fullname: Zhang, Jianqi
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology
– sequence: 6
  givenname: Yangjun
  surname: Yan
  fullname: Yan, Yangjun
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology
– sequence: 7
  givenname: Dingding
  surname: Qiu
  fullname: Qiu, Dingding
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences
– sequence: 8
  givenname: Yanan
  surname: Liu
  fullname: Liu, Yanan
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology
– sequence: 9
  givenname: Muhammad Abdullah
  orcidid: 0000-0002-7658-5370
  surname: Adil
  fullname: Adil, Muhammad Abdullah
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology
– sequence: 10
  givenname: Wei
  orcidid: 0000-0002-7239-2010
  surname: Ma
  fullname: Ma, Wei
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
– sequence: 11
  givenname: Xiaotao
  orcidid: 0000-0002-0197-6545
  surname: Hao
  fullname: Hao, Xiaotao
  email: haoxt@sdu.edu.cn
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 12
  givenname: Lingyun
  orcidid: 0000-0001-7391-1866
  surname: Zhu
  fullname: Zhu, Lingyun
  email: zhuly@nanoctr.cn
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology
– sequence: 13
  givenname: Zhixiang
  orcidid: 0000-0001-6188-3634
  surname: Wei
  fullname: Wei, Zhixiang
  email: weizx@nanoctr.cn
  organization: Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35672325$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4qabUT6HYWNiGj-aNHGhrgkwd5688OAJM5rnry_vTVvbLsoCyL3nHA5wXqKjmCIg9JrgdwSz_n3hhHeyxZS2DCsq290zdEIxJy2RlB3d2x-js1LWuA6mSM_5C3TMRFcbVJwg931jQmgypLwy0f8zk0-xgQh5tWuMc7CdUi61YGyAJqS_t72QSoHS-NhUY-04hwC5tppFxzUlBZMbByGUV-j5aEKBs5v1FP38_OnHxdf26tuXy4uPV60TrJvazmImlB0Vp5ZR6BlwaYwVo3ME97ajwvZK2oFKTp1yhnIrQEkqRiElYQM7RZeL7pDMWm-z35i808l4fShUZ9rkybsA2g1AsbOUOYs5dLaXdSbcUtFTrKSrWh8Wre1sNzA4iFM24YHow070v_Qq_dGKVHtCVYHzG4Gcfs9QJr3xZf8cJkKai6ad5ExgwnmFvn0EXac5x_pUexSTWAnOKurNfUd3Vm7_sgLoAnC5_k2G8Q5CsN5nRi-Z0TUz-pAZvauk_hHJ-ekQgnorH56msoVa6jlxBfm_7SdY1y1E10Y
CitedBy_id crossref_primary_10_1016_j_macse_2024_100001
crossref_primary_10_1039_D4QM00917G
crossref_primary_10_1002_anie_202408960
crossref_primary_10_1039_D2TC05333K
crossref_primary_10_1016_j_jmgm_2023_108588
crossref_primary_10_1021_acsami_2c17235
crossref_primary_10_1002_marc_202300102
crossref_primary_10_1016_j_comptc_2024_114542
crossref_primary_10_1002_cjoc_202300605
crossref_primary_10_1016_j_cej_2025_160548
crossref_primary_10_1002_adma_202312635
crossref_primary_10_1002_anie_202318360
crossref_primary_10_1093_nsr_nwae409
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1002_eem2_12856
crossref_primary_10_1002_adma_202307398
crossref_primary_10_1021_acs_chemmater_4c02548
crossref_primary_10_1002_aesr_202400028
crossref_primary_10_1063_5_0185076
crossref_primary_10_1039_D4CC05634E
crossref_primary_10_1002_adfm_202413864
crossref_primary_10_1002_aenm_202403747
crossref_primary_10_1016_j_jpowsour_2025_236206
crossref_primary_10_1016_j_esci_2023_100171
crossref_primary_10_1021_jacs_2c03161
crossref_primary_10_1002_adma_202209030
crossref_primary_10_1002_adma_202304225
crossref_primary_10_1021_accountsmr_3c00093
crossref_primary_10_1016_j_matchemphys_2024_129871
crossref_primary_10_1039_D4CC03236E
crossref_primary_10_1002_adma_202406690
crossref_primary_10_1002_ange_202420453
crossref_primary_10_1039_D2EE01848A
crossref_primary_10_1002_eem2_12875
crossref_primary_10_1039_D4EE00540F
crossref_primary_10_1039_D4EE03000A
crossref_primary_10_1002_ange_202418926
crossref_primary_10_1002_anie_202313016
crossref_primary_10_1039_D3EE00294B
crossref_primary_10_1002_adfm_202301573
crossref_primary_10_1002_solr_202200989
crossref_primary_10_1007_s40843_024_3123_2
crossref_primary_10_1039_D2EE03902H
crossref_primary_10_1039_D3CS00233K
crossref_primary_10_1002_advs_202308652
crossref_primary_10_1002_aenm_202400938
crossref_primary_10_1002_chem_202403972
crossref_primary_10_1016_j_joule_2024_06_010
crossref_primary_10_1002_aenm_202403162
crossref_primary_10_1039_D2TA10030D
crossref_primary_10_1002_adfm_202406501
crossref_primary_10_1002_adfm_202213429
crossref_primary_10_1016_j_biomaterials_2024_122498
crossref_primary_10_1039_D5TC00204D
crossref_primary_10_1002_anie_202314362
crossref_primary_10_1002_adma_202408858
crossref_primary_10_1016_j_chphi_2024_100489
crossref_primary_10_1021_acsami_4c06326
crossref_primary_10_1039_D4SC01481B
crossref_primary_10_1002_adma_202403294
crossref_primary_10_1021_acsami_4c16494
crossref_primary_10_1016_j_molstruc_2024_138606
crossref_primary_10_1016_j_cej_2023_145215
crossref_primary_10_1002_solr_202300413
crossref_primary_10_1002_ange_202408960
crossref_primary_10_1002_ange_202312630
crossref_primary_10_1038_s44221_024_00236_3
crossref_primary_10_1002_smll_202408308
crossref_primary_10_1039_D4MH00699B
crossref_primary_10_1002_cjoc_202400543
crossref_primary_10_1002_smtd_202301554
crossref_primary_10_1002_aenm_202303976
crossref_primary_10_1016_j_nanoen_2024_109540
crossref_primary_10_1021_acsaem_4c00212
crossref_primary_10_1021_acs_jpclett_5c00427
crossref_primary_10_1021_acsami_4c15255
crossref_primary_10_1002_anie_202312630
crossref_primary_10_1002_ange_202316227
crossref_primary_10_1039_D3EE00344B
crossref_primary_10_1002_aenm_202401561
crossref_primary_10_1021_jacs_4c07548
crossref_primary_10_1002_adma_202207336
crossref_primary_10_1360_TB_2023_0575
crossref_primary_10_1038_s41467_023_42018_7
crossref_primary_10_1002_cey2_579
crossref_primary_10_1002_ange_202308832
crossref_primary_10_1002_smm2_1176
crossref_primary_10_1002_ange_202311686
crossref_primary_10_1002_smll_202305529
crossref_primary_10_1039_D4EE02841D
crossref_primary_10_1002_adma_202407517
crossref_primary_10_1002_aenm_202303756
crossref_primary_10_1109_JEDS_2024_3358087
crossref_primary_10_1002_anie_202308832
crossref_primary_10_1002_adma_202300363
crossref_primary_10_1007_s00894_024_05977_2
crossref_primary_10_1002_smll_202311596
crossref_primary_10_1002_anie_202418926
crossref_primary_10_1016_j_apsusc_2024_161907
crossref_primary_10_1021_acs_energyfuels_5c00379
crossref_primary_10_1002_aenm_202403121
crossref_primary_10_1002_anie_202311686
crossref_primary_10_1039_D4EE01474J
crossref_primary_10_1002_ange_202313016
crossref_primary_10_1007_s11426_024_2060_9
crossref_primary_10_1016_j_joule_2024_01_005
crossref_primary_10_1002_smll_202307414
crossref_primary_10_1007_s11082_024_07196_8
crossref_primary_10_1021_acsami_2c23190
crossref_primary_10_1007_s00894_024_05966_5
crossref_primary_10_1007_s40843_023_2672_7
crossref_primary_10_1002_adma_202407297
crossref_primary_10_1039_D3EE00908D
crossref_primary_10_1021_acsomega_3c04437
crossref_primary_10_1039_D2TC05318G
crossref_primary_10_1002_anie_202316227
crossref_primary_10_1002_anie_202420453
crossref_primary_10_1016_j_mssp_2025_109478
crossref_primary_10_1039_D4EE02467B
crossref_primary_10_1002_adfm_202411286
crossref_primary_10_1002_adma_202312101
crossref_primary_10_1002_adma_202310046
crossref_primary_10_1002_jccs_202400033
crossref_primary_10_1039_D4EE03394A
crossref_primary_10_1039_D3EE01333B
crossref_primary_10_1016_j_jpcs_2023_111337
crossref_primary_10_1002_ange_202412691
crossref_primary_10_1039_D4EE00860J
crossref_primary_10_1021_acsnano_3c11193
crossref_primary_10_1002_anie_202415994
crossref_primary_10_1002_advs_202403334
crossref_primary_10_1002_ange_202314362
crossref_primary_10_1002_adfm_202213324
crossref_primary_10_1002_smll_202401054
crossref_primary_10_1021_jacs_2c13247
crossref_primary_10_1002_adma_202500115
crossref_primary_10_1021_acsenergylett_4c01252
crossref_primary_10_1016_j_jmgm_2023_108518
crossref_primary_10_1039_D4TA04725G
crossref_primary_10_1002_marc_202300407
crossref_primary_10_1021_acsami_4c06589
crossref_primary_10_1002_aenm_202300458
crossref_primary_10_1016_j_nanoen_2022_108059
crossref_primary_10_1016_j_cej_2024_148648
crossref_primary_10_1021_acsomega_3c05665
crossref_primary_10_1016_j_nanoen_2024_110204
crossref_primary_10_1002_marc_202400687
crossref_primary_10_1021_acsaem_5c00099
crossref_primary_10_1039_D3CS00895A
crossref_primary_10_1002_adma_202501671
crossref_primary_10_1002_aenm_202403806
crossref_primary_10_1016_j_dyepig_2022_111049
crossref_primary_10_1007_s11051_024_05997_2
crossref_primary_10_1016_j_colsurfa_2024_133882
crossref_primary_10_1038_s41467_023_38673_5
crossref_primary_10_1002_adfm_202304449
crossref_primary_10_1002_adma_202302452
crossref_primary_10_1002_adma_202413270
crossref_primary_10_1039_D4TA00594E
crossref_primary_10_1007_s12274_023_5723_x
crossref_primary_10_1002_solr_202300927
crossref_primary_10_1039_D4EE02296C
crossref_primary_10_1039_D2MH01228F
crossref_primary_10_1016_j_jmgm_2023_108664
crossref_primary_10_1039_D5EE00031A
crossref_primary_10_1016_j_cej_2023_142909
crossref_primary_10_1016_j_cej_2024_153417
crossref_primary_10_1002_ange_202415994
crossref_primary_10_1016_j_jechem_2023_09_035
crossref_primary_10_1039_D3NR05077G
crossref_primary_10_1002_anie_202417244
crossref_primary_10_1039_D4TA07953A
crossref_primary_10_1002_adma_202404660
crossref_primary_10_1002_ange_202315625
crossref_primary_10_1016_j_jpcs_2023_111495
crossref_primary_10_1002_agt2_308
crossref_primary_10_1016_j_fmre_2023_03_010
crossref_primary_10_1002_adma_202302915
crossref_primary_10_1002_ente_202301019
crossref_primary_10_1002_aenm_202400285
crossref_primary_10_1039_D3NH00122A
crossref_primary_10_1021_jacs_4c02361
crossref_primary_10_1002_adma_202413376
crossref_primary_10_1002_ange_202308307
crossref_primary_10_1002_ange_202417244
crossref_primary_10_1007_s00894_024_05978_1
crossref_primary_10_1016_j_nanoen_2024_110016
crossref_primary_10_1515_nanoph_2023_0800
crossref_primary_10_1002_adma_202207172
crossref_primary_10_1002_slct_202401831
crossref_primary_10_1038_s41467_023_40423_6
crossref_primary_10_1021_acsami_4c13907
crossref_primary_10_1002_anie_202315625
crossref_primary_10_1002_ange_202404297
crossref_primary_10_1016_j_comptc_2023_114201
crossref_primary_10_1021_acs_jpcc_3c05022
crossref_primary_10_1039_D3CC02560H
crossref_primary_10_1002_adma_202309672
crossref_primary_10_1002_agt2_322
crossref_primary_10_1002_anie_202412691
crossref_primary_10_1039_D4EE01409J
crossref_primary_10_1039_D3RA03317A
crossref_primary_10_1002_anie_202308307
crossref_primary_10_1021_acsenergylett_2c01364
crossref_primary_10_1002_adma_202302259
crossref_primary_10_1039_D3EE01690K
crossref_primary_10_1021_acs_jpcc_3c02535
crossref_primary_10_1002_anie_202404297
crossref_primary_10_1021_acssuschemeng_4c09617
crossref_primary_10_1002_ange_202318360
crossref_primary_10_1002_aenm_202404537
Cites_doi 10.1038/ncomms13651
10.1002/anie.202105156
10.1002/aenm.201904234
10.1038/nmat1500
10.1016/j.joule.2017.09.020
10.1002/adma.201903441
10.1039/b209469j
10.1038/nenergy.2017.32
10.1038/s41467-020-17867-1
10.1002/adma.202100830
10.1016/j.chempr.2020.08.003
10.1002/adma.201906324
10.1002/adma.201004311
10.1038/nenergy.2015.27
10.1038/s41560-020-00684-7
10.1126/science.aat2612
10.1038/nmat5063
10.1016/j.synthmet.2013.04.024
10.1021/nn401267s
10.1002/adma.201707353
10.1002/solr.202100008
10.1039/C9TA11285E
10.1038/s41560-021-00820-x
10.1016/j.joule.2021.12.017
10.1002/aenm.201702743
10.1016/j.joule.2019.01.004
10.1002/aenm.201600228
10.1051/epjap/2018180070
10.1002/adma.201807577
10.1002/adma.202102420
10.1038/nphoton.2012.11
10.1063/1.116583
10.1021/acs.jpclett.0c03260
10.1021/acsenergylett.8b01906
10.1039/C8TA04665D
10.1021/cr050149z
10.1039/D0TA01032D
10.1038/s41566-019-0573-5
10.1039/D0QM00034E
10.1103/RevModPhys.65.599
10.1038/s41467-020-19029-9
10.1038/s41563-018-0128-z
10.1021/acs.jpclett.9b02161
10.1038/s41467-019-13292-1
10.1103/PhysRevApplied.4.014020
10.1039/D0TC00587H
10.1038/nenergy.2017.53
10.1021/acsami.1c04273
10.1016/j.scib.2019.07.005
10.1002/anie.201806291
10.1039/C7SE00601B
10.1021/jacs.0c05560
10.1002/adma.202104161
10.1038/s41467-019-09428-y
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-30927-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_cde20cb23cb04e6b874e614b2582097c
PMC9174259
35672325
10_1038_s41467_022_30927_y
Genre Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB36000000
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002
– fundername: ;
– fundername: ;
  grantid: 22073020, 21822503, 51973043, 21773040, 22135001, 21721002
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-6b0359bf942b32e83e47aab5fcc108b625b897bd2742c9ca24b5e9725f57713d3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:58 EDT 2025
Thu Aug 21 14:22:46 EDT 2025
Fri Jul 11 11:46:36 EDT 2025
Wed Aug 13 04:54:29 EDT 2025
Mon Jul 21 06:03:25 EDT 2025
Tue Jul 01 00:58:14 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:38:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-6b0359bf942b32e83e47aab5fcc108b625b897bd2742c9ca24b5e9725f57713d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3549-1482
0000-0002-7239-2010
0000-0002-0197-6545
0000-0002-7658-5370
0000-0002-3403-2516
0000-0001-6188-3634
0000-0001-7391-1866
OpenAccessLink https://www.nature.com/articles/s41467-022-30927-y
PMID 35672325
PQID 2673709543
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_cde20cb23cb04e6b874e614b2582097c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9174259
proquest_miscellaneous_2674350144
proquest_journals_2673709543
pubmed_primary_35672325
crossref_primary_10_1038_s41467_022_30927_y
crossref_citationtrail_10_1038_s41467_022_30927_y
springer_journals_10_1038_s41467_022_30927_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-07
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Koster, Kemerink, Wienk, Maturova, Janssen (CR45) 2011; 23
Hou, Inganas, Friend, Gao (CR4) 2018; 17
Zhao (CR35) 2020; 4
Fu, Wang, Sun (CR51) 2019; 58
Zhu (CR43) 2020; 142
Sun, Wang, Yang, Li (CR36) 2003; 13
Zheng (CR13) 2022; 6
Erray, Hanine, Boufounas, El Amrani (CR38) 2018; 82
Qin (CR8) 2019; 7
Bin (CR37) 2016; 7
Liu (CR34) 2021; 33
Liu (CR15) 2018; 4
Hong (CR18) 2019; 31
Yuan (CR7) 2019; 3
Zhang (CR31) 2013; 175
Zhang (CR42) 2020; 11
Xiao, Li, Liu, Zhang, Li (CR40) 2020; 8
Zhu, Yang, Yi, Wei (CR24) 2020; 11
Pan (CR21) 2021; 13
Menke, Ran, Bazan, Friend (CR28) 2018; 2
Sun, Zhu, Meng, Li (CR30) 2021; 34
Zhao (CR3) 2016; 1
Shi (CR20) 2021; 5
Zhu (CR25) 2021; 60
Qian (CR22) 2018; 17
Zhou (CR49) 2019; 10
Yuan (CR9) 2019; 10
Li (CR10) 2021; 6
Firdaus (CR54) 2020; 11
Gunes, Neugebauer, Sariciftci (CR1) 2007; 107
Badgujar (CR39) 2016; 6
Han, Yi, Shuai (CR27) 2018; 8
Cui (CR12) 2021; 33
Zhu, Tu, Yi, Wei (CR23) 2019; 10
Blom, deJong, Vleggaar (CR44) 1996; 68
Kyaw (CR46) 2013; 7
Li (CR2) 2005; 4
Liu (CR19) 2020; 14
Vandewal, Benduhn, Nikolis (CR50) 2018; 2
Zhou (CR32) 2020; 32
Yoshikawa (CR14) 2017; 2
Liu (CR52) 2018; 30
Yuan (CR16) 2020; 6
Benduhn (CR26) 2017; 2
Zhu (CR41) 2020; 10
Meng (CR11) 2018; 361
Liu, Zhang, Xu, Zhu (CR33) 2019; 64
Classen (CR53) 2020; 5
Li, Zhu, Yang (CR5) 2012; 6
Yao (CR17) 2015; 4
Yang (CR48) 2018; 6
Marcus (CR29) 1993; 65
Yuan (CR6) 2019; 31
Li (CR47) 2020; 8
L Meng (30927_CR11) 2018; 361
P Blom (30927_CR44) 1996; 68
L Hong (30927_CR18) 2019; 31
C Xiao (30927_CR40) 2020; 8
G Li (30927_CR47) 2020; 8
J Zhao (30927_CR3) 2016; 1
Z Zheng (30927_CR13) 2022; 6
K Vandewal (30927_CR50) 2018; 2
D Qian (30927_CR22) 2018; 17
H Fu (30927_CR51) 2019; 58
W Liu (30927_CR33) 2019; 64
J Yuan (30927_CR7) 2019; 3
L Koster (30927_CR45) 2011; 23
J Yuan (30927_CR6) 2019; 31
J Pan (30927_CR21) 2021; 13
D Yang (30927_CR48) 2018; 6
S Menke (30927_CR28) 2018; 2
J Yuan (30927_CR16) 2020; 6
L Zhu (30927_CR25) 2021; 60
M Erray (30927_CR38) 2018; 82
T Liu (30927_CR52) 2018; 30
J Yao (30927_CR17) 2015; 4
S Liu (30927_CR19) 2020; 14
F Liu (30927_CR34) 2021; 33
G Li (30927_CR2) 2005; 4
H Bin (30927_CR37) 2016; 7
Y Cui (30927_CR12) 2021; 33
Z Zhou (30927_CR32) 2020; 32
G Zhang (30927_CR42) 2020; 11
Y Zhao (30927_CR35) 2020; 4
L Zhu (30927_CR41) 2020; 10
R Zhou (30927_CR49) 2019; 10
Q Sun (30927_CR36) 2003; 13
J Benduhn (30927_CR26) 2017; 2
C Li (30927_CR10) 2021; 6
G Han (30927_CR27) 2018; 8
J Hou (30927_CR4) 2018; 17
R Marcus (30927_CR29) 1993; 65
J Yuan (30927_CR9) 2019; 10
S Gunes (30927_CR1) 2007; 107
W Zhu (30927_CR43) 2020; 142
K Kyaw (30927_CR46) 2013; 7
Y Firdaus (30927_CR54) 2020; 11
Z Liu (30927_CR15) 2018; 4
K Yoshikawa (30927_CR14) 2017; 2
C Sun (30927_CR30) 2021; 34
L Zhu (30927_CR24) 2020; 11
Z Zhang (30927_CR31) 2013; 175
S Badgujar (30927_CR39) 2016; 6
G Li (30927_CR5) 2012; 6
R Qin (30927_CR8) 2019; 7
A Classen (30927_CR53) 2020; 5
Y Shi (30927_CR20) 2021; 5
L Zhu (30927_CR23) 2019; 10
References_xml – volume: 7
  year: 2016
  ident: CR37
  article-title: 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13651
– volume: 60
  start-page: 15348
  year: 2021
  end-page: 15353
  ident: CR25
  article-title: Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105156
– volume: 10
  start-page: 1904234
  year: 2020
  ident: CR41
  article-title: Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904234
– volume: 4
  start-page: 864
  year: 2005
  end-page: 868
  ident: CR2
  article-title: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1500
– volume: 2
  start-page: 25
  year: 2018
  end-page: 35
  ident: CR28
  article-title: Understanding energy loss in organic solar cells: toward a new efficiency regime
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.020
– volume: 31
  start-page: e1903441
  year: 2019
  ident: CR18
  article-title: Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903441
– volume: 13
  start-page: 800
  year: 2003
  end-page: 806
  ident: CR36
  article-title: Synthesis and electroluminescence of novel copolymers containing crown ether spacers
  publication-title: J. Mater. Chem.
  doi: 10.1039/b209469j
– volume: 2
  start-page: 17032
  year: 2017
  ident: CR14
  article-title: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– volume: 11
  year: 2020
  ident: CR42
  article-title: Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17867-1
– volume: 33
  start-page: 2100830
  year: 2021
  ident: CR34
  article-title: Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100830
– volume: 6
  start-page: 2147
  year: 2020
  end-page: 2161
  ident: CR16
  article-title: Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.08.003
– volume: 32
  start-page: 1906324
  year: 2020
  ident: CR32
  article-title: Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906324
– volume: 23
  start-page: 1670
  year: 2011
  end-page: 1674
  ident: CR45
  article-title: Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004311
– volume: 1
  start-page: 15027
  year: 2016
  ident: CR3
  article-title: Efficient organic solar cells processed from hydrocarbon solvents
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 5
  start-page: 711
  year: 2020
  end-page: 719
  ident: CR53
  article-title: The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00684-7
– volume: 361
  start-page: 1094
  year: 2018
  end-page: 1098
  ident: CR11
  article-title: Organic and solution-processed tandem solar cells with 17.3% efficiency
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  ident: CR4
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 175
  start-page: 21
  year: 2013
  end-page: 29
  ident: CR31
  article-title: Novel conjugated polymers with planar backbone bearing acenaphtho 1,2-b quinoxaline acceptor subunit for polymer solar cells
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2013.04.024
– volume: 7
  start-page: 4569
  year: 2013
  end-page: 4577
  ident: CR46
  article-title: Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn401267s
– volume: 30
  start-page: e1707353
  year: 2018
  ident: CR52
  article-title: Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707353
– volume: 5
  start-page: 2100008
  year: 2021
  ident: CR20
  article-title: Optimizing the charge carrier and light management of nonfullerene acceptors for efficient organic solar cells with small nonradiative energy losses
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100008
– volume: 7
  start-page: 27632
  year: 2019
  end-page: 27639
  ident: CR8
  article-title: Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11285E
– volume: 6
  start-page: 605
  year: 2021
  end-page: 613
  ident: CR10
  article-title: Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00820-x
– volume: 6
  start-page: 171
  year: 2022
  end-page: 184
  ident: CR13
  article-title: Tandem organic solar cell with 20.2% efficiency
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.017
– volume: 8
  start-page: 1702743
  year: 2018
  ident: CR27
  article-title: From molecular packing structures to electronic processes: theoretical simulations for organic solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702743
– volume: 3
  start-page: 1140
  year: 2019
  end-page: 1151
  ident: CR7
  article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 6
  start-page: 1600228
  year: 2016
  ident: CR39
  article-title: High-performance small molecule via tailoring intermolecular interactions and its application in large-area organic photovoltaic modules
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600228
– volume: 82
  start-page: 30201
  year: 2018
  ident: CR38
  article-title: Combined effects of carriers charge mobility and electrodes work function on the performances of polymer/fullerene P3HT:PCBM based organic photovoltaic solar cell
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2018180070
– volume: 31
  start-page: e1807577
  year: 2019
  ident: CR6
  article-title: Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807577
– volume: 33
  start-page: 2102420
  year: 2021
  ident: CR12
  article-title: Single-junction organic photovoltaic cell with 19% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102420
– volume: 6
  start-page: 153
  year: 2012
  end-page: 161
  ident: CR5
  article-title: Polymer solar cells
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.11
– volume: 68
  start-page: 3308
  year: 1996
  end-page: 3310
  ident: CR44
  article-title: Electron and hole transport in poly(p-phenylene vinylene) devices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116583
– volume: 11
  start-page: 10227
  year: 2020
  end-page: 10232
  ident: CR24
  article-title: Effective modulation of exciton binding energies in polymorphs of a small-molecule acceptor for organic photovoltaics
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03260
– volume: 4
  start-page: 110
  year: 2018
  end-page: 117
  ident: CR15
  article-title: Open-circuit voltages exceeding 1.26 V in planar methylammonium lead iodide perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01906
– volume: 6
  start-page: 13918
  year: 2018
  end-page: 13924
  ident: CR48
  article-title: A minimal non-radiative recombination loss for efficient non- fullerene all- small- molecule organic solar cells with a low energy loss of 0.54 eV and high open- circuit voltage of 1.15 V+
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04665D
– volume: 107
  start-page: 1324
  year: 2007
  end-page: 1338
  ident: CR1
  article-title: Conjugated polymer-based organic solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 8
  start-page: 5927
  year: 2020
  end-page: 5935
  ident: CR47
  article-title: Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01032D
– volume: 14
  start-page: 300
  year: 2020
  end-page: 305
  ident: CR19
  article-title: High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0573-5
– volume: 4
  start-page: 3310
  year: 2020
  end-page: 3318
  ident: CR35
  article-title: Fine-tuning the energy levels and morphology via fluorination and thermal annealing enable high efficiency non-fullerene organic solar cells
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00034E
– volume: 65
  start-page: 599
  year: 1993
  end-page: 610
  ident: CR29
  article-title: Electron transfer reactions in chemistry. Theory and experiment
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.599
– volume: 11
  year: 2020
  ident: CR54
  article-title: Long-range exciton diffusion in molecular non-fullerene acceptors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19029-9
– volume: 17
  start-page: 703
  year: 2018
  end-page: 709
  ident: CR22
  article-title: Design rules for minimizing voltage losses in high-efficiency organic solar cells
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0128-z
– volume: 10
  start-page: 4888
  year: 2019
  end-page: 4894
  ident: CR23
  article-title: Achieving small exciton binding energies in small molecule acceptors for organic solar cells: effect of molecular packing
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02161
– volume: 10
  year: 2019
  ident: CR49
  article-title: All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13292-1
– volume: 4
  start-page: 014020
  year: 2015
  ident: CR17
  article-title: Quantifying losses in open-circuit voltage in solution-processable solar cells
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.014020
– volume: 8
  start-page: 5370
  year: 2020
  ident: CR40
  article-title: Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC00587H
– volume: 2
  start-page: 17053
  year: 2017
  ident: CR26
  article-title: Intrinsic non-radiative voltage losses in fullerene-based organic solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.53
– volume: 13
  start-page: 22531
  year: 2021
  end-page: 22539
  ident: CR21
  article-title: pi-Extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04273
– volume: 64
  start-page: 1144
  year: 2019
  end-page: 1147
  ident: CR33
  article-title: Efficient organic solar cells achieved at a low energy loss
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.005
– volume: 58
  start-page: 4442
  year: 2019
  end-page: 4453
  ident: CR51
  article-title: Polymer donors for high-performance non-fullerene organic solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806291
– volume: 2
  start-page: 538
  year: 2018
  end-page: 544
  ident: CR50
  article-title: How to determine optical gaps and voltage losses in organic photovoltaic materials
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00601B
– volume: 142
  start-page: 14532
  year: 2020
  end-page: 14547
  ident: CR43
  article-title: Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer:Y6 solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05560
– volume: 34
  start-page: 2104161
  year: 2021
  ident: CR30
  article-title: Quinoxaline-based D-A copolymers for the applications as polymer donor and hole transport material in polymer/perovskite solar cells
  publication-title: Adv. Mater
  doi: 10.1002/adma.202104161
– volume: 10
  year: 2019
  ident: CR9
  article-title: Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09428-y
– volume: 1
  start-page: 15027
  year: 2016
  ident: 30927_CR3
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 10
  year: 2019
  ident: 30927_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09428-y
– volume: 33
  start-page: 2102420
  year: 2021
  ident: 30927_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102420
– volume: 4
  start-page: 014020
  year: 2015
  ident: 30927_CR17
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.014020
– volume: 142
  start-page: 14532
  year: 2020
  ident: 30927_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05560
– volume: 3
  start-page: 1140
  year: 2019
  ident: 30927_CR7
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 13
  start-page: 22531
  year: 2021
  ident: 30927_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04273
– volume: 4
  start-page: 110
  year: 2018
  ident: 30927_CR15
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01906
– volume: 13
  start-page: 800
  year: 2003
  ident: 30927_CR36
  publication-title: J. Mater. Chem.
  doi: 10.1039/b209469j
– volume: 5
  start-page: 711
  year: 2020
  ident: 30927_CR53
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00684-7
– volume: 361
  start-page: 1094
  year: 2018
  ident: 30927_CR11
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 8
  start-page: 5927
  year: 2020
  ident: 30927_CR47
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01032D
– volume: 7
  start-page: 4569
  year: 2013
  ident: 30927_CR46
  publication-title: ACS Nano
  doi: 10.1021/nn401267s
– volume: 82
  start-page: 30201
  year: 2018
  ident: 30927_CR38
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2018180070
– volume: 17
  start-page: 119
  year: 2018
  ident: 30927_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 8
  start-page: 1702743
  year: 2018
  ident: 30927_CR27
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702743
– volume: 10
  start-page: 4888
  year: 2019
  ident: 30927_CR23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02161
– volume: 2
  start-page: 25
  year: 2018
  ident: 30927_CR28
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.020
– volume: 175
  start-page: 21
  year: 2013
  ident: 30927_CR31
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2013.04.024
– volume: 64
  start-page: 1144
  year: 2019
  ident: 30927_CR33
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.005
– volume: 23
  start-page: 1670
  year: 2011
  ident: 30927_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004311
– volume: 32
  start-page: 1906324
  year: 2020
  ident: 30927_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906324
– volume: 4
  start-page: 864
  year: 2005
  ident: 30927_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1500
– volume: 6
  start-page: 153
  year: 2012
  ident: 30927_CR5
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.11
– volume: 11
  year: 2020
  ident: 30927_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17867-1
– volume: 2
  start-page: 17032
  year: 2017
  ident: 30927_CR14
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– volume: 68
  start-page: 3308
  year: 1996
  ident: 30927_CR44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116583
– volume: 7
  year: 2016
  ident: 30927_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13651
– volume: 6
  start-page: 605
  year: 2021
  ident: 30927_CR10
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00820-x
– volume: 31
  start-page: e1807577
  year: 2019
  ident: 30927_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807577
– volume: 58
  start-page: 4442
  year: 2019
  ident: 30927_CR51
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806291
– volume: 107
  start-page: 1324
  year: 2007
  ident: 30927_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 60
  start-page: 15348
  year: 2021
  ident: 30927_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105156
– volume: 34
  start-page: 2104161
  year: 2021
  ident: 30927_CR30
  publication-title: Adv. Mater
  doi: 10.1002/adma.202104161
– volume: 33
  start-page: 2100830
  year: 2021
  ident: 30927_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100830
– volume: 31
  start-page: e1903441
  year: 2019
  ident: 30927_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903441
– volume: 8
  start-page: 5370
  year: 2020
  ident: 30927_CR40
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC00587H
– volume: 2
  start-page: 538
  year: 2018
  ident: 30927_CR50
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00601B
– volume: 10
  start-page: 1904234
  year: 2020
  ident: 30927_CR41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904234
– volume: 6
  start-page: 13918
  year: 2018
  ident: 30927_CR48
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04665D
– volume: 11
  year: 2020
  ident: 30927_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19029-9
– volume: 65
  start-page: 599
  year: 1993
  ident: 30927_CR29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.599
– volume: 7
  start-page: 27632
  year: 2019
  ident: 30927_CR8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11285E
– volume: 6
  start-page: 1600228
  year: 2016
  ident: 30927_CR39
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600228
– volume: 2
  start-page: 17053
  year: 2017
  ident: 30927_CR26
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.53
– volume: 17
  start-page: 703
  year: 2018
  ident: 30927_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0128-z
– volume: 10
  year: 2019
  ident: 30927_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13292-1
– volume: 6
  start-page: 171
  year: 2022
  ident: 30927_CR13
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.017
– volume: 4
  start-page: 3310
  year: 2020
  ident: 30927_CR35
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00034E
– volume: 5
  start-page: 2100008
  year: 2021
  ident: 30927_CR20
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100008
– volume: 11
  start-page: 10227
  year: 2020
  ident: 30927_CR24
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03260
– volume: 14
  start-page: 300
  year: 2020
  ident: 30927_CR19
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0573-5
– volume: 6
  start-page: 2147
  year: 2020
  ident: 30927_CR16
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.08.003
– volume: 30
  start-page: e1707353
  year: 2018
  ident: 30927_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707353
SSID ssj0000391844
Score 2.6987696
Snippet Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a...
Minimising energy loss is important for achieving high-performance organic solar cells. Here, the authors design and synthesise two acceptors with small...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3256
SubjectTerms 119/118
140/131
140/58
147/143
147/3
639/301/299/946
639/638/675
Charge transport
Conversion
Diffusion length
Energy
Energy loss
Excitons
Fullerenes
Humanities and Social Sciences
multidisciplinary
Open circuit voltage
Photoelectricity
Photovoltaic cells
Radiative recombination
Recombination
Science
Science (multidisciplinary)
Solar cells
Solar energy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0KoqIfVS8WoJFGQkbhDV60ccHwFRVUhwoZV6s-xZR60UErTZCu3fM-Nkl93yunDJwY9kMg97xuOZYexVk-oAdGpTCduUOkRbBjEXpVGiQf051jJ7zz99rs4v9ccrc7VV6ovuhI3pgUfEncI8SQFRKohCJ5xs8TnTURrcu5wFWn1xz9sypvIarByaLnqKkhGqPh10XhPy5XXhpC1XOztRTtj_Oy3z18uSdzymeSM6u88OJw2Svx0hf8D2UveQ3RtrSq4eMfjyNbQtX6R-K8qSpxzixwPQLZZ-MWADxUzxtv--7mt78v_ym453fVfSsXwunMLH9wAfyAjmdNA_PGaXZx8u3p-XUyWFEoyqlmUVKVNfbJyWUclUq6RtCNE0ADNRR7SBYu1snJPfFhwEqaNJzkrTGItW7FwdsX38dnrCuNIOQDVaB-m0qiwSAlSCKlrZoPGlCjZbY9XDlGacql20Pru7Ve1HSnikhM-U8KuCvd7M-TYm2fjr6HdErM1ISpCdGxAffmIb_y-2KdjJmtR-ktrBSyragzqnxr94uelGeSPchi71t3mMzs5YXbDjkTM2kChTWdRQTcHsDs_sgLrb091c55zeaDXj6ukK9mbNXT_B-jMqnv4PVDxjB5LEgo6W7AnbXy5u03PUtJbxRRaqH1QuJJc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtUwcARFSFwQO4GCjMQNouZ5ieMTAkRVIcEFKr2bZU8cUSkk5eVV6P09Hmcpj6WXHGwnmczizOYZgJdNqByS16YsdJNL53XuirrIlSiaqD_7iqfo-afP5cmp_LhW68nhNkxplfOemDbqukfykR9xaqgS9QEp3pz_yKlrFEVXpxYa1-EGlS6jlC691ouPhaqfV1JOZ2UKUR0NMu0MKYW9MFznu73_USrb_y9d8--UyT_ipul3dHwHbk96JHs7Ev4uXAvdPbg5dpbc3Qf88t21LduE_rezliykg37MIeWy9JshDtDJKdb2P-e5tqcoMDvrWNd3OTnnU_sUNj4H2UCmMCN3__AATo8_fH1_kk_9FHJUotzmpad6fb4xknvBQyWC1M551SCuispHS8hXRvuaordo0HHpVTCaq0bpaMvW4iEcxHeHx8CENIiikdJxI0WpPVcoApZe8yaaYCKD1YxVi1Oxcep50doU9BaVHSlhIyVsooTdZfBqued8LLVx5ep3RKxlJZXJTgMRH3aSOot14AV6LtAXMkTO0_G6khHaqPgYjRkczqS2k-wO9pLTMnixTEepI9y6LvQXaY1MIVmZwaORMxZIhCp11FNVBnqPZ_ZA3Z_pzr6lyt7Rdo57qMng9cxdl2D9HxVPrv6Kp3CLE8OT60gfwsF2cxGeRU1q658ncfkFqeUcIA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqLzTFmQkbhCR9SOOj2VFVSHBBSr1ZtleR1QKCdpshfbfd8Z50IWCxGUPsbM765lJ5vkNwOs6Vi5Q1KYsdJ1L53XuilWRK1HUaD_7iqfs-afP5dm5_HihLvaAT70wqWg_QVqmx_RUHfaul0mlU-15YbjOt3fgLkG3k1Qvy-UcVyHE80rKsT-mENUtt-68gxJU_2325Z9lkr_lStMr6PQAHoy2IzsZqH0Ie7F9BPeGaZLbxxC-fHdNw9axu9FfyWJq7mMuUP1Kt-7xAnVLsab7Oa01HWV-2WXL2q7NKSCfRqaw4XsC68n9ZRTi75_A-emHr8uzfJyhkAclyk1eesLo87WR3AseKxGlds6rOoRFUXn0fnxltF9RxjaY4Lj0KhrNVa00-q8r8RT28bfjc2BCmhBELaXjRopSe66CiKH0mtfodokMFtOp2jACjNOci8amRLeo7MAJi5ywiRN2m8Gb-Z4fA7zGP3e_J2bNOwkaO13A87CjqNiwirwInovgCxlR2jR-LiRSi8aO0SGD44nVdtTX3nIa14PWpsR_8WpeRk2js3Vt7K7SHpnSsDKDZ4NkzJQIVWq0TVUGekdmdkjdXWkvvyU0b_SX8blpMng7Sdcvsv5-FIf_t_0I7nNSAAof6WPY36yv4gu0pjb-ZVKfa9RkGmg
  priority: 102
  providerName: Springer Nature
Title Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells
URI https://link.springer.com/article/10.1038/s41467-022-30927-y
https://www.ncbi.nlm.nih.gov/pubmed/35672325
https://www.proquest.com/docview/2673709543
https://www.proquest.com/docview/2674350144
https://pubmed.ncbi.nlm.nih.gov/PMC9174259
https://doaj.org/article/cde20cb23cb04e6b874e614b2582097c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQPIfGC-CYwKiPxBoHUH3H8gFBXrUyVNiFGpb5ZseuISSHZmk7Qf8_ZSQqFgnhJJNtJLvdh3_l8dwAvC5fl1u_apIksYp4bGefJIokFSwrUn01Gg_f87Dw9nfHpXMz3oC931CGw2Wna-XpSs2X55vv1-j0K_Ls2ZDx72_Ag7uFceqKojNf7cIgrk_SCetap-2FmZgoNGu9opgkfxrh2sy6OZvdrttaqkNJ_lx7653HK33yqYama3IU7nY5JRi1T3IM9V92HW23VyfUDsBdf87IkS1f_EodJXAgCJLn151zqZYMNPqqKlPW3vq-svYeYXFakqqvYb9yH0iqkfY8ljccl8a6A5iHMJiefx6dxV2shtoKlqzg1PpefKRSnhlGXMcdlnhtRWDtMMoNWksmUNAvv2bXK5pQb4ZSkohAS7dwFewQH-G33BAjjylpWcJ5TxVkqDRWWOZsaSQs0z1gEwx6r2naJyH09jFIHhzjLdEsJjZTQgRJ6HcGrzTNXbRqOf44-9sTajPQptEMD4kN3EqntwtHEGsqsSbhDrpR4HXKEFpUiJW0ERz2pdc-WmvqyPqiVcvyLF5tulEiP27xy9U0Yw4O7lkfwuOWMDSRMpMh0VEQgt3hmC9TtnuryS8j6jXY1zq8qgtc9d_0E6--oePofYD6D29Rzvd9bkkdwsFreuOeoaq3MAPblXOI1m3wYwOFoNL2Y4v345PzjJ2wdp-NB2MQYBDn7Af2qKiA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaJmbSdODgjxqrb0caGV9mZixxGV0qTdbFXtn-I3MuM8yvLorZc9xN6sd16e8eeZAXhVujS3dGqTRKoMZW5UmEdFFMYiKtF_Nin36PnefjI9lF9n8WwNfg65MHStcrCJ3lAXjaUz8k1ODVXQH5Di_clpSF2jCF0dWmh0YrHjlucYsrXvtj8jf19zvvXl4NM07LsKhDYWySJMDFWtM2UmuRHcpcJJlecmLq2dRKnBeMCkmTIFYZg2szmXJnaZ4nEZK4zoCoHvvQbXceONSKPUTI1nOlRtPZWyz82JRLrZSm-J_JX5KOMqXK7sf75NwL9827-vaP6B0_rtb-sO3O79VvahE7S7sObqe3Cj62S5vA_223FeVWzumt9yO5nziYUst3R3ppm3-IAytVjVnA9jVUOoMzuqWd3UIYEBvl0L695jWUuhNyN4oX0Ah1dC6Yewjr_tHgMTMrNWlFLmPJMiUYbHVjibGMVLDPlEAJOBqtr2xc2px0alPcguUt1xQiMntOeEXgbwZvzOSVfa49LZH4lZ40wqy-0fID10r-XaFo5H1nBhTSQdSrrCz4nE1aKjlSkbwMbAat3bilZfSHYAL8dh1HKibV675szPkR4ClgE86iRjXImIE4V-cRyAWpGZlaWujtRHP3wlcYzV0WZnAbwdpOtiWf8nxZPL_8ULuDk92NvVu9v7O0_hFifhp2MrtQHri_mZe4Ze3MI896rD4PtV6-ovedtYcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjAQniDbrR5wcEALKqqVQIUGlvbmx1xGVQlI2W1X7a3wdM06yZXn01ksOtpM488qM5wXwrPRZ4ejUJk10GcvC6rhIZkmsRFKi_mwzHrznn_bTnQP5YaqmG_BzyIWhsMpBJgZBPWscnZGPODVUQX1AilHZh0V83p68Pv4RUwcp8rQO7TQ6Etnzy1M039pXu9uI6-ecT95_fbcT9x0GYqdEuohTSxXsbJlLbgX3mfBSF4VVpXPjJLNoG9gs13ZG_kyXu4JLq3yuuSqVRutuJvC5l-CyFmpMPKanenW-Q5XXMyn7PJ1EZKNWBqkUwueTnOt4ufYvDC0D_qXn_h2u-YfPNvwKJzfgeq_Dsjcd0d2EDV_fgitdV8vlbXBfvhdVxea--S3Pk_mQZMgKR3E0zbzFAcraYlVzOsxVDXmg2VHN6qaOCf6hdQvrnuNYS2Y4I1dDewcOLgTSd2ET3-3vAxMyd06UUhY8lyLVlisnvEut5iWafyKC8QBV4_pC59RvozLB4S4y02HCICZMwIRZRvBidc9xV-bj3NVvCVmrlVSiOwwgPEzP8cbNPE-c5cLZRHqkeo3XscTdotKVaxfB1oBq08uN1pxReQRPV9PI8QTbovbNSVgjgztYRnCvo4zVToRKNerIKgK9RjNrW12fqY--hariaLej_M4jeDlQ19m2_g-KB-d_xRO4ilxqPu7u7z2Ea5xon06w9BZsLuYn_hEqdAv7OHAOg8OLZtVflp5cqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+reorganization+energy+acceptors+enable+low+energy+losses+in+non-fullerene+organic+solar+cells&rft.jtitle=Nature+communications&rft.au=Shi%2C+Yanan&rft.au=Chang%2C+Yilin&rft.au=Lu%2C+Kun&rft.au=Chen%2C+Zhihao&rft.date=2022-06-07&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=3256&rft_id=info:doi/10.1038%2Fs41467-022-30927-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon