Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications
There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of th...
Saved in:
Published in | Microsystems & nanoengineering Vol. 2; no. 1; p. 16043 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.09.2016
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field.
Nanosensors: Flexible future for medical technology
Flexible and wearable sensors show promise for healthcare and biomedical applications. Chwee Teck Lim and his co-workers at the National University of Singapore review recent research into wearable sensors and their potential for medical science. Tiny sensors that monitor physiological details about the body at the microscopic scale could generate health data, and provide insights into the health status or even progression of disease. Despite the many inherent challenges in developing stable and robust sensors for flexible structures, the team are encouraged by recent advances in this field. Some examples include: (
1
) electronic skins that can sense environmental factors, such as temperature, for possible use as skin substitutes or for real-time monitoring of physiological signals, (
2
) devices for monitoring organs which could detect and map diseased tissues, and (
3
) neural implants that sense and interact with the central nervous system to restore the use of paralyzed limbs. |
---|---|
AbstractList | There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field.There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field. There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field. There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field. Nanosensors: Flexible future for medical technology Flexible and wearable sensors show promise for healthcare and biomedical applications. Chwee Teck Lim and his co-workers at the National University of Singapore review recent research into wearable sensors and their potential for medical science. Tiny sensors that monitor physiological details about the body at the microscopic scale could generate health data, and provide insights into the health status or even progression of disease. Despite the many inherent challenges in developing stable and robust sensors for flexible structures, the team are encouraged by recent advances in this field. Some examples include: ( 1 ) electronic skins that can sense environmental factors, such as temperature, for possible use as skin substitutes or for real-time monitoring of physiological signals, ( 2 ) devices for monitoring organs which could detect and map diseased tissues, and ( 3 ) neural implants that sense and interact with the central nervous system to restore the use of paralyzed limbs. |
ArticleNumber | 16043 |
Author | Lim, Chwee Teck Yeo, Joo Chuan Kenry |
Author_xml | – sequence: 1 surname: Kenry fullname: Kenry organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Biomedical Engineering, National University of Singapore – sequence: 2 givenname: Joo Chuan surname: Yeo fullname: Yeo, Joo Chuan organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Department of Biomedical Engineering, National University of Singapore – sequence: 3 givenname: Chwee Teck surname: Lim fullname: Lim, Chwee Teck email: ctlim@nus.edu.sg organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Biomedical Engineering, National University of Singapore, Mechanobiology Institute, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31057833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha0KVCjlB3RTReqmmxlsX8dONpUqRB8SEhu6thzPzYyRY6d2ppR_X4cBNCCVjR_yd47O9XlHDkIMSMgHRpeMQnM2OJtiMCEuOWVyKeANOea0rhdKgDjYOx-R05xvKKVMgWpp_ZYcAaO1agCOyepiwLR2YV31Hv-6zmNlwqq6RZPMfBk3d9lZ46uMIc_Y6M3UxzTkqqzVBo2fNtaknaxzccDVPW_G0ZfD5GLI78lhb3zG04f9hPz6dnF9_mNxefX95_nXy4WtQU4LKcH2lksmG6xb2nSgZMeEQNO0qBgHoF3Tc7PiigICNcBRtErSMkwNyOCEfNn5jtuu5LAYpmS8HpMbTLrT0Tj9_CW4jV7HP1oKIRTMBp8fDFL8vcU86cFli96bgHGbNefAWqCStwX99AK9idsUyniaNRxooxTUhfq4n-gpymMBBVA7oJSZc8JeWzfd_1oJ6LxmVM9t66e29dy2FrOSvVA-mr-m4TtNLmxYY9oL_V_RP9bMwi0 |
CitedBy_id | crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1016_j_sna_2020_112282 crossref_primary_10_1051_itmconf_20171103009 crossref_primary_10_1109_TNANO_2018_2810780 crossref_primary_10_20517_ss_2023_38 crossref_primary_10_1021_acsaelm_1c00130 crossref_primary_10_3390_s19204353 crossref_primary_10_3390_polym15081814 crossref_primary_10_1021_acsmaterialslett_3c00144 crossref_primary_10_1002_smll_202406564 crossref_primary_10_1016_j_cej_2024_155475 crossref_primary_10_1039_C9RA04005F crossref_primary_10_1021_acsami_7b19823 crossref_primary_10_1002_btm2_10190 crossref_primary_10_1016_j_mssp_2017_11_025 crossref_primary_10_1002_admi_201901851 crossref_primary_10_34133_2022_9867378 crossref_primary_10_1002_app_55427 crossref_primary_10_3390_s19173771 crossref_primary_10_1109_JSEN_2023_3310342 crossref_primary_10_1016_j_mee_2019_03_001 crossref_primary_10_1002_adma_201705122 crossref_primary_10_1007_s12633_024_03061_1 crossref_primary_10_1002_admt_201800425 crossref_primary_10_1002_admt_202100798 crossref_primary_10_1038_s41528_019_0056_2 crossref_primary_10_5194_ms_12_143_2021 crossref_primary_10_1016_j_matpr_2017_12_362 crossref_primary_10_1109_JSEN_2020_3009629 crossref_primary_10_1002_mabi_202400287 crossref_primary_10_1063_5_0087672 crossref_primary_10_1038_s41598_018_34538_w crossref_primary_10_1002_admt_201700016 crossref_primary_10_3390_app12062839 crossref_primary_10_1039_D2MA00818A crossref_primary_10_1109_TBME_2021_3110432 crossref_primary_10_1109_JSEN_2020_2986051 crossref_primary_10_1021_acsaem_9b02528 crossref_primary_10_1039_D2SD00201A crossref_primary_10_1088_2058_8585_aac8fc crossref_primary_10_1364_OE_464556 crossref_primary_10_3390_safety5040072 crossref_primary_10_3390_polym16020295 crossref_primary_10_1149_1945_7111_ab7117 crossref_primary_10_1088_1742_6596_1038_1_012065 crossref_primary_10_1109_JSEN_2024_3485702 crossref_primary_10_1149_2162_8777_aba6a2 crossref_primary_10_1021_acsami_1c14687 crossref_primary_10_1063_5_0150084 crossref_primary_10_1002_jbm_b_34517 crossref_primary_10_1002_aelm_201700429 crossref_primary_10_1016_j_apsusc_2019_143839 crossref_primary_10_1109_JSEN_2024_3429515 crossref_primary_10_3390_s24144489 crossref_primary_10_1002_admi_202101312 crossref_primary_10_1126_sciadv_aba5575 crossref_primary_10_1142_S1793292021501587 crossref_primary_10_1002_cnma_201900146 crossref_primary_10_1149_1945_7111_ac0e4b crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1039_D3SD00304C crossref_primary_10_1016_j_sna_2019_111630 crossref_primary_10_1039_C9RA08118F crossref_primary_10_7736_JKSPE_022_007 crossref_primary_10_1016_j_apmt_2025_102665 crossref_primary_10_1063_1_5089900 crossref_primary_10_1088_1361_6463_ac5e8c crossref_primary_10_1016_j_matt_2019_07_016 crossref_primary_10_1002_adbi_201800281 crossref_primary_10_1021_acsami_9b11071 crossref_primary_10_1016_j_smaim_2020_07_005 crossref_primary_10_1039_D4SD00032C crossref_primary_10_1007_s11071_023_08674_6 crossref_primary_10_1039_D1CE00347J crossref_primary_10_1002_adma_201806739 crossref_primary_10_1016_j_cej_2024_150204 crossref_primary_10_1002_inf2_12122 crossref_primary_10_1557_mrs_2018_320 crossref_primary_10_1007_s00339_018_2217_x crossref_primary_10_1039_D2NR04015H crossref_primary_10_1016_j_compositesa_2019_105614 crossref_primary_10_1002_aisy_202200183 crossref_primary_10_1039_C8TC02230E crossref_primary_10_1002_admt_201700232 crossref_primary_10_1039_D1NR06893H crossref_primary_10_1007_s10854_022_09204_7 crossref_primary_10_3390_s24144429 crossref_primary_10_1021_acsami_0c19427 crossref_primary_10_1021_acs_chemrev_7b00024 crossref_primary_10_1016_j_jcis_2017_08_036 crossref_primary_10_1007_s11706_025_0715_2 crossref_primary_10_3390_nano12030334 crossref_primary_10_1021_acsami_0c04739 crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1016_j_coelec_2018_05_014 crossref_primary_10_1089_soro_2022_0207 crossref_primary_10_1016_j_jelechem_2017_10_033 crossref_primary_10_3390_nano11071645 crossref_primary_10_1039_D2NR05444B crossref_primary_10_1021_acsami_2c01353 crossref_primary_10_1039_C8TC00238J crossref_primary_10_1016_j_nanoen_2021_106181 crossref_primary_10_1021_acsami_8b17765 crossref_primary_10_1016_j_ijleo_2018_10_187 crossref_primary_10_1088_1361_6463_ac3c73 crossref_primary_10_1016_j_carbon_2020_09_073 crossref_primary_10_1049_mnl_2017_0428 crossref_primary_10_1089_3dp_2017_0092 crossref_primary_10_1002_aelm_201700067 crossref_primary_10_1016_j_biotechadv_2022_108056 crossref_primary_10_1088_1674_1056_acac16 crossref_primary_10_1109_TCAD_2018_2801227 crossref_primary_10_1002_smtd_201700259 crossref_primary_10_1080_00914037_2022_2118275 crossref_primary_10_1002_adma_202415151 crossref_primary_10_1109_TAP_2023_3266055 crossref_primary_10_1007_s40684_022_00432_0 crossref_primary_10_1016_j_apmt_2024_102141 crossref_primary_10_3389_felec_2020_594003 crossref_primary_10_1007_s00542_017_3453_2 crossref_primary_10_1007_s10854_020_03531_3 crossref_primary_10_1007_s10854_021_06181_1 crossref_primary_10_1039_C9NA00502A crossref_primary_10_1002_cssc_201801248 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1002_adpr_202100311 crossref_primary_10_1016_j_nanoen_2018_02_046 crossref_primary_10_1002_adma_202305917 crossref_primary_10_1016_j_compscitech_2019_02_001 crossref_primary_10_1021_acsami_8b20929 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1063_5_0016485 crossref_primary_10_1080_01691864_2018_1490666 crossref_primary_10_1088_1674_4926_39_1_011010 crossref_primary_10_1109_TDMR_2023_3340711 crossref_primary_10_1088_1361_6528_ab30b6 crossref_primary_10_1088_2053_1591_ab1eea crossref_primary_10_1149_2754_2726_acb21e crossref_primary_10_1016_j_eml_2018_05_003 crossref_primary_10_1038_s41598_019_45399_2 crossref_primary_10_3390_nano9060813 crossref_primary_10_1021_acsapm_1c01606 crossref_primary_10_1021_acs_chemmater_8b02040 crossref_primary_10_3390_bios12111057 crossref_primary_10_1016_j_bios_2021_113384 crossref_primary_10_1088_1361_6439_ac2a13 crossref_primary_10_1109_JSEN_2025_3532916 crossref_primary_10_1126_science_aam5830 crossref_primary_10_1002_ente_202101130 crossref_primary_10_54097_hset_v45i_7333 crossref_primary_10_1039_C7TA05759H crossref_primary_10_1021_acsami_9b18069 crossref_primary_10_1021_acsaelm_1c01175 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_092 crossref_primary_10_1021_acsami_2c16929 crossref_primary_10_20517_ss_2023_23 crossref_primary_10_1002_adma_201704530 crossref_primary_10_1088_1361_6528_aaa709 crossref_primary_10_1021_acsaelm_1c01052 crossref_primary_10_1109_JSEN_2022_3142328 crossref_primary_10_1002_aisy_202000238 crossref_primary_10_3390_s19204448 crossref_primary_10_1108_IJCST_07_2019_0100 crossref_primary_10_1002_adma_201806133 crossref_primary_10_1002_admi_202100430 crossref_primary_10_1149_2162_8777_aba913 crossref_primary_10_1557_mrc_2019_38 crossref_primary_10_1038_s41598_018_29195_y crossref_primary_10_1016_j_nanoen_2017_05_047 crossref_primary_10_1088_2058_8585_ac808a crossref_primary_10_1109_JSEN_2020_3012413 crossref_primary_10_1016_j_sna_2020_112437 crossref_primary_10_1002_adhm_202100116 crossref_primary_10_1007_s10825_024_02135_y crossref_primary_10_1002_mabi_202300283 crossref_primary_10_1007_s10544_018_0273_9 crossref_primary_10_1021_acs_chemrev_8b00311 crossref_primary_10_3390_polym15163391 crossref_primary_10_3390_s19143156 crossref_primary_10_1063_5_0138010 crossref_primary_10_1002_adfm_201805305 crossref_primary_10_1021_acsaelm_9b00428 crossref_primary_10_3389_fnins_2018_00299 crossref_primary_10_1002_aisy_201900138 crossref_primary_10_1002_chem_201806420 crossref_primary_10_3390_s22114228 crossref_primary_10_3390_nano9081182 crossref_primary_10_1021_acsami_0c16351 crossref_primary_10_1002_pssa_202300901 crossref_primary_10_1021_acs_biomac_8b00275 crossref_primary_10_1039_C7NR05218A crossref_primary_10_3390_mi14010121 crossref_primary_10_1002_celc_201801121 crossref_primary_10_1016_j_orgel_2019_01_001 crossref_primary_10_1021_acsami_1c13746 crossref_primary_10_1109_JSEN_2020_2969667 crossref_primary_10_1038_micronano_2017_72 crossref_primary_10_1109_JSEN_2021_3124517 crossref_primary_10_3390_s21020543 crossref_primary_10_3390_cryst12091316 crossref_primary_10_3390_mi11050538 crossref_primary_10_1002_app_50380 crossref_primary_10_1002_cssc_202000462 crossref_primary_10_1049_mna2_12069 crossref_primary_10_1002_advs_202204622 crossref_primary_10_1002_admt_202100717 crossref_primary_10_1016_j_mee_2020_111360 crossref_primary_10_3389_fchem_2020_577327 crossref_primary_10_1016_j_carbpol_2021_117993 crossref_primary_10_1007_s12598_020_01397_2 crossref_primary_10_1016_j_trac_2020_115884 crossref_primary_10_1021_acs_analchem_1c02472 crossref_primary_10_1002_adma_202008452 crossref_primary_10_3389_femat_2022_1023415 crossref_primary_10_1002_admt_201900423 crossref_primary_10_1002_admt_202000652 crossref_primary_10_1016_j_ensm_2024_103312 crossref_primary_10_47836_ifrj_28_4_22 crossref_primary_10_1007_s11696_024_03804_9 crossref_primary_10_1039_C9TC05392A crossref_primary_10_1126_sciadv_ade4075 crossref_primary_10_1016_j_trac_2023_117509 crossref_primary_10_1093_nsr_nwac090 crossref_primary_10_1039_C7RA13284K crossref_primary_10_1088_1361_6528_ada2f4 crossref_primary_10_1016_j_talanta_2020_120906 crossref_primary_10_1021_acsaelm_3c00132 crossref_primary_10_1021_acsapm_0c00828 crossref_primary_10_1016_j_apmt_2018_08_010 crossref_primary_10_1088_2053_1583_ab68a7 crossref_primary_10_1021_acs_nanolett_8b04717 crossref_primary_10_1088_1674_1056_ad19d4 crossref_primary_10_1016_j_matdes_2023_112616 crossref_primary_10_1364_OL_44_005747 crossref_primary_10_1002_adma_201902343 crossref_primary_10_1016_j_susmat_2023_e00739 crossref_primary_10_1021_acsami_0c11475 crossref_primary_10_1021_acsomega_0c03309 crossref_primary_10_1016_j_snb_2019_01_120 crossref_primary_10_3390_s22134765 crossref_primary_10_1039_C7LC00735C crossref_primary_10_1021_acsanm_3c02014 crossref_primary_10_1016_j_compositesa_2022_107144 crossref_primary_10_1088_1361_6579_ab3676 crossref_primary_10_1002_adfm_202201249 crossref_primary_10_1002_admt_202100617 crossref_primary_10_1021_acsami_9b10937 crossref_primary_10_3390_polym11060942 crossref_primary_10_1016_j_apmt_2019_100539 crossref_primary_10_1038_s41598_018_32169_9 crossref_primary_10_3390_mi11020200 crossref_primary_10_3390_s23041869 crossref_primary_10_1016_j_matpr_2018_06_620 crossref_primary_10_1016_j_nanoms_2021_11_002 crossref_primary_10_1002_admt_201900802 crossref_primary_10_1186_s40486_023_00178_7 crossref_primary_10_3762_bjnano_12_41 crossref_primary_10_1002_admt_202000631 crossref_primary_10_1038_s41598_021_02580_w crossref_primary_10_1021_acsanm_4c05362 crossref_primary_10_1021_acs_nanolett_9b02282 crossref_primary_10_1007_s10853_022_07955_6 crossref_primary_10_1039_D3NR05728C crossref_primary_10_1142_S1793048016010037 crossref_primary_10_1149_2_0162003JES crossref_primary_10_1088_1361_665X_ac383a crossref_primary_10_1002_adfm_202003601 crossref_primary_10_1088_2631_8695_acebb9 crossref_primary_10_1126_sciadv_aau9785 crossref_primary_10_3390_s23094300 crossref_primary_10_1021_acsami_0c12073 crossref_primary_10_1002_adma_202001591 crossref_primary_10_1038_s41598_019_49986_1 crossref_primary_10_1016_j_aej_2023_07_060 crossref_primary_10_2217_pme_2018_0044 crossref_primary_10_3390_s20010208 crossref_primary_10_1002_admt_202100352 crossref_primary_10_1039_D3QM00076A crossref_primary_10_1021_acsapm_1c01461 crossref_primary_10_1063_5_0022767 crossref_primary_10_3390_polym14163409 crossref_primary_10_1021_acsami_1c24820 crossref_primary_10_3390_nano10061225 crossref_primary_10_3390_s19173739 crossref_primary_10_3390_s20226653 crossref_primary_10_1002_adfm_201801834 crossref_primary_10_1109_TED_2024_3485032 crossref_primary_10_1021_acs_chemrev_1c00303 crossref_primary_10_1007_s10825_023_02014_y crossref_primary_10_1021_acsami_1c23176 crossref_primary_10_1016_j_sbsr_2021_100403 crossref_primary_10_1002_adhm_201700889 crossref_primary_10_1039_D0RA10929K crossref_primary_10_1021_acssuschemeng_9b02173 crossref_primary_10_1038_s41378_018_0044_z crossref_primary_10_1016_j_mne_2022_100113 crossref_primary_10_3390_s20226657 crossref_primary_10_1002_admt_202001023 crossref_primary_10_3390_s20164484 crossref_primary_10_1039_D3TC02970K crossref_primary_10_1021_acsami_3c12730 crossref_primary_10_1002_adfm_201904532 crossref_primary_10_1002_admt_201800141 crossref_primary_10_1088_1361_6528_abfe8f crossref_primary_10_1109_ACCESS_2020_2982965 crossref_primary_10_1002_aisy_202300482 crossref_primary_10_1002_aelm_202300767 crossref_primary_10_1016_j_sna_2022_113836 crossref_primary_10_1002_admt_201900475 crossref_primary_10_1016_j_mtelec_2023_100075 crossref_primary_10_1088_2058_8585_abe51b crossref_primary_10_1016_j_sna_2021_113314 crossref_primary_10_1088_1361_6528_ac33d1 crossref_primary_10_1016_j_snb_2023_134420 crossref_primary_10_1109_JSEN_2022_3198847 crossref_primary_10_1021_acsomega_7b02055 crossref_primary_10_1016_j_smhl_2018_07_025 crossref_primary_10_1039_C9TC05072H crossref_primary_10_1021_acssensors_9b01403 crossref_primary_10_1063_5_0010766 crossref_primary_10_1039_D3MA00365E crossref_primary_10_3390_chemosensors8030085 crossref_primary_10_3390_polym15244657 crossref_primary_10_1002_hpm_3331 crossref_primary_10_1002_admt_202301895 crossref_primary_10_1016_j_apmt_2021_101361 crossref_primary_10_1038_s41467_019_11583_1 crossref_primary_10_1002_adom_202001693 crossref_primary_10_1016_j_bios_2020_112946 crossref_primary_10_1039_D0NR01456G crossref_primary_10_1109_ACCESS_2022_3216316 crossref_primary_10_1016_j_nanoen_2021_106569 crossref_primary_10_1002_adsr_202300168 crossref_primary_10_1021_acsami_9b06920 crossref_primary_10_1109_JSEN_2020_2999261 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1038_s41699_018_0064_4 crossref_primary_10_1016_j_ica_2024_122305 crossref_primary_10_1016_j_cej_2024_154953 crossref_primary_10_1021_acssensors_2c00942 crossref_primary_10_1016_j_snb_2022_133159 crossref_primary_10_1021_acsami_0c08028 crossref_primary_10_1103_PhysRevLett_128_237801 crossref_primary_10_1016_j_orgel_2019_105401 crossref_primary_10_1021_acsami_0c03011 crossref_primary_10_1038_s41528_022_00201_8 crossref_primary_10_1108_IR_10_2020_0234 crossref_primary_10_1002_marc_202200221 crossref_primary_10_1016_j_mee_2023_112013 crossref_primary_10_3390_bios14010012 crossref_primary_10_1039_C7LC00390K |
Cites_doi | 10.1021/nn505953t 10.1039/c0sm01311k 10.1021/acsnano.5b03975 10.1109/TITB.2005.854512 10.1016/j.ijengsci.2007.09.002 10.1039/C5RA10295B 10.1126/science.1250169 10.1002/pen.760291606 10.1002/anie.201006464 10.1038/ncomms6747 10.1021/acsami.5b03680 10.1002/adhm.201300033 10.1038/nnano.2014.224 10.1039/C5AN00382B 10.1021/nl204052z 10.1038/ncomms7566 10.1038/ncomms5376 10.1021/nn503454h 10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D 10.1021/acsnano.5b02790 10.1021/nl802367t 10.1109/ICSensT.2013.6727727 10.1039/C1CS15270J 10.1039/C4LC00746H 10.1021/jp409851m 10.1021/ar2001233 10.1016/j.sna.2012.03.023 10.1016/j.carbon.2012.08.048 10.1002/adma.201400334 10.1002/adfm.201570139 10.1038/ncomms4266 10.1021/acsnano.5b01613 10.1021/am400757q 10.1021/nn506293y 10.1038/ncomms2832 10.1002/adfm.201504030 10.1109/TBME.1982.325033 10.1109/ROBOT.2010.5509301 10.1007/s10544-011-9598-3 10.1126/science.1222149 10.1002/adfm.201401527 10.1021/nn501204t 10.1021/la103213n 10.1126/science.1126216 10.1039/C4RA07458K 10.1002/adfm.201400279 10.1021/nl072090c 10.1126/science.1160309 10.1002/adma.201501408 10.1016/j.robot.2014.09.007 10.1002/smll.201402109 10.1002/adma.201002229 10.1016/j.jconrel.2014.08.015 10.1016/j.snb.2012.09.036 10.1016/j.bios.2014.10.048 10.1038/ncomms5779 10.1016/j.bios.2012.04.042 10.1021/la304240r 10.1021/nl5029182 10.1038/nature12401 10.1021/nn403838y 10.1038/ncomms4002 10.1038/nphoton.2013.251 10.1016/j.tsf.2011.02.029 10.1002/smll.201500841 10.1126/science.1182383 10.1039/C4NR03295K 10.3390/s140917304 10.1038/nnano.2011.184 10.1109/TRO.2009.2033627 10.1126/science.1168375 10.1039/c0lc00620c 10.1039/C5RA16724H 10.1126/scitranslmed.3006820 10.1021/nl301714x 10.1126/science.1260318 10.1021/nn404889b 10.1002/adfm.201302344 10.1038/nmat4289 10.1038/nnano.2011.36 10.1038/ncomms9356 10.1038/srep05642 10.1590/S1807-59322011000300001 10.1038/nmat2834 10.1016/j.apmr.2006.07.259 10.3390/s150511823 10.1007/s10853-010-4999-x 10.1002/adfm.200701216 10.1002/marc.201100040 10.1109/TIM.2014.2343411 10.1039/C5TB00653H 10.3390/s141120620 10.1002/adma.201403093 10.1126/science.1206157 10.12659/MSM.889145 10.1021/acsnano.5b00599 10.1002/smll.201502911 10.1002/smll.201401635 10.1038/srep11505 10.1073/pnas.1116564108 10.1016/j.sna.2008.08.001 10.1039/C3CP54317J 10.1088/1741-2560/10/6/066014 10.1038/nm.3621 10.1038/nmat2835 10.1002/adma.201403998 10.1016/j.biomaterials.2014.01.038 10.1016/j.matdes.2013.11.029 10.1002/adfm.201404365 10.1016/j.bios.2012.08.024 10.1038/nmat3380 10.1002/adma.201305182 10.1039/C4NR06494A 10.1073/pnas.1317920111 10.1038/nature12314 10.1295/polymj.36.769 10.1021/jz502431r 10.1039/C3NR04521H 10.1109/JSEN.2014.2375203 10.1002/adma.201404850 10.1109/JSEN.2013.2263797 10.1016/j.carbon.2014.05.022 10.1038/ncomms6032 10.1038/nnano.2007.387 10.1039/c001195a 10.1002/adfm.201501086 10.1038/ncomms4132 10.1002/adma.201301921 10.1039/c3lc50994j |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Copyright Nature Publishing Group Sep 2016 Copyright © 2016 The Author(s) 2016 The Author(s) |
Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Nature Publishing Group Sep 2016 – notice: Copyright © 2016 The Author(s) 2016 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/micronano.2016.43 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Flexible sensors for biomedical applications |
EISSN | 2055-7434 |
ExternalDocumentID | PMC6444731 4194248521 31057833 10_1038_micronano_2016_43 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT ADMLS ARCSS NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-663cfc26168e5908b376b144ea89e712330b8f2ad2703e30a32e4976005753e13 |
IEDL.DBID | C6C |
ISSN | 2055-7434 2096-1030 |
IngestDate | Thu Aug 21 18:33:58 EDT 2025 Fri Jul 11 07:19:18 EDT 2025 Wed Aug 13 04:09:55 EDT 2025 Thu Apr 03 07:01:33 EDT 2025 Tue Jul 01 03:27:09 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Fri Feb 21 02:38:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Health monitoring Electronic skins Tactile sensing Microfluidics Flexible sensors Liquid-state devices |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-663cfc26168e5908b376b144ea89e712330b8f2ad2703e30a32e4976005753e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/micronano.2016.43 |
PMID | 31057833 |
PQID | 1823087735 |
PQPubID | 2041946 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6444731 proquest_miscellaneous_2231930629 proquest_journals_1823087735 pubmed_primary_31057833 crossref_citationtrail_10_1038_micronano_2016_43 crossref_primary_10_1038_micronano_2016_43 springer_journals_10_1038_micronano_2016_43 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-26 |
PublicationDateYYYYMMDD | 2016-09-26 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Kim, Lee, Shim (CR8) 2014; 5 Kenry, Yu, Shang (CR107) 2016; 12 Seo, Ahn, Kim (CR111) 2014; 4 Lee, Kim, Lee (CR40) 2014; 6 Xu, Zhang, Jia (CR2) 2014; 344 Lipomi, Vosgueritchian, Tee (CR29) 2011; 6 Jang, Han, Xu (CR57) 2014; 5 Dahiya, Metta, Valle (CR117) 2010; 26 Choong, Shim, Lee (CR17) 2014; 26 Khan, Lorenzelli, Dahiya (CR53) 2015; 15 Jacobson, Knutti, Johnson (CR115) 1982; 29 Mannsfeld, Tee, Stoltenberg (CR28) 2010; 9 Jang, Chung, Xu (CR58) 2015; 6 Chen, Lu, Chen (CR101) 2015; 5 Melzer, Karnaushenko, Lin (CR90) 2015; 27 Yang, Zhang, Lin (CR26) 2013; 7 Raspopovic, Capogrosso, Petrini (CR116) 2014; 6 Gong, Schwalb, Wang (CR3) 2014; 5 Boland, Khan, Backes (CR99) 2014; 8 Drack, Graz, Sekitani (CR88) 2015; 27 Arapov, Rubingh, Abbel (CR64) 2015; 26 Zhang, Zang, Huang (CR127) 2015; 6 Sadasivuni, Kafy, Zhai (CR83) 2015; 11 Gudarzi, Sharif (CR113) 2011; 7 Tai, Yang (CR128) 2015; 3 Li, Zhong, Zhong (CR95) 2015; 7 Yu, Kim, Meng (CR60) 2014; 14 Lechat, Bunsell, Davies (CR87) 2011; 46 Dickey, Chiechi, Larsen (CR104) 2008; 18 Chang, Sun, Yuan (CR110) 2010; 22 Paradiso, Loriga, Taccini (CR16) 2005; 9 Maheshwari, Saraf (CR38) 2006; 312 Kwak, Choi, Kim (CR79) 2012; 37 Li, Nie, Digiglio (CR19) 2014; 24 Yamada, Hayamizu, Yamamoto (CR31) 2011; 6 Janczak, Słoma, Wróblewski (CR62) 2014; 14 Lee, Peters, Mooney (CR125) 2001; 13 Bae, Lee, Sharma (CR81) 2013; 51 Chossat, Yong-Lae, Wood (CR42) 2013; 13 Kenry, Loh, Lim (CR109) 2015; 11 Sekitani, Noguchi, Hata (CR14) 2008; 321 Jeong, Yeo, Akhtar (CR25) 2013; 25 Harada, Kanao, Yamamoto (CR46) 2014; 8 Labroo, Cui (CR78) 2013; 41 Jung, Yang (CR43) 2015; 15 Sardini, Serpelloni, Pasqui (CR96) 2015; 64 Gerratt, Michaud, Lacour (CR114) 2015; 25 Peer, Karp, Hong (CR123) 2007; 2 Büscher, Kõiva, Schürmann (CR94) 2015; 63 Muth, Vogt, Truby (CR89) 2014; 26 Schwartz, Tee, Mei (CR129) 2013; 4 James, Naveen, Kaivon (CR120) 2013; 10 Lee, Lim, Kenry (CR108) 2015; 11 Nie, Li, Brandt (CR106) 2014; 14 Mi, Li, Turng (CR55) 2014; 56 Sarkar, Srinives, Sarkar (CR68) 2014; 118 Tian, Shu, Cui (CR82) 2014; 6 Moshayedi, Ng, Kwok (CR121) 2014; 35 Pradel, Wu, Ding (CR21) 2014; 14 Secor, Hersam (CR63) 2015; 6 Segev-Bar, Landman, Nir-Shapira (CR39) 2013; 5 Amjadi, Pichitpajongkit, Lee (CR98) 2014; 8 Robinson, Minev, Graz (CR92) 2011; 27 Rogers, Someya, Huang (CR12) 2010; 327 Cabrera, de Souza, Job (CR18) 2014; 4 Kim, Lu, Ma (CR44) 2011; 333 Wang, Jiu, Nogi (CR37) 2015; 7 Yan, Chang, Yin (CR75) 2014; 16 Minev, Musienko, Hirsch (CR49) 2015; 347 Park, Kwon, Lee (CR76) 2012; 12 Ahn, Duoss, Motala (CR13) 2009; 323 Lee, Ma, Jang (CR56) 2015; 25 Nie, Li, Brandt (CR105) 2014; 14 Widdle, Bajaj, Davies (CR54) 2008; 46 Lu, Sun, Gu (CR124) 2014; 194 Waller, Lalande, Leterrier (CR52) 2011; 519 Kim, Park, Park (CR35) 2015; 27 Kostarelos, Novoselov (CR72) 2014; 9 Mandal, Yoon, Kim (CR23) 2011; 32 Kulkarni, Reddy, Zhong (CR77) 2014; 5 Takei, Takahashi, Ho (CR36) 2010; 9 Ha, de Vries, John (CR59) 2012; 14 Vosgueritchian, Tok, Bao (CR9) 2013; 7 Park, Lee, Hong (CR7) 2014; 8 Kong, Jang, Kim (CR100) 2014; 77 Wu, Liao, Tung (CR41) 2011; 11 Bauer, Farris (CR86) 1989; 29 Ponce Wong, Posner, Santos (CR1) 2012; 179 Pan, Chortos, Yu (CR33) 2014; 5 Klein, Klein, Linton (CR130) 1992; 33 Chaudhuri, Ebrahimi Warkiani, Jing (CR103) 2016; 141 Wang, Shim, Levinson (CR122) 2014; 24 Ryu, Lee, Chou (CR70) 2015; 9 Roh, Hwang, Kim (CR34) 2015; 9 Mayer, Mooney, Matheson (CR119) 2006; 87 Focke, Kosse, Muller (CR20) 2010; 10 Cohen, Mitra, Peterson (CR30) 2012; 12 Zhang, Kruss, Hilmer (CR66) 2014; 3 CR84 Wang, Liu (CR85) 2015; 5 Borini, White, Wei (CR74) 2013; 7 Shepherd, Ilievski, Choi (CR5) 2011; 108 Wang, Liu, Yang (CR65) 2015; 5 Araci, Su, Quake (CR10) 2014; 20 Yeom, Chen, Kiriya (CR71) 2015; 27 Matsuzaki, Keating, Todoroki (CR27) 2008; 148 Di, Yao, Ye (CR50) 2015; 9 CR97 Morin, Shepherd, Kwok (CR6) 2012; 337 Saetia, Schnorr, Mannarino (CR61) 2014; 24 Ota, Chen, Lin (CR102) 2014; 5 Kaltenbrunner, Sekitani, Reeder (CR11) 2013; 499 Choi, Park, Hyun (CR48) 2015; 9 Lim, Kim (CR51) 2004; 36 Lee, Shin, Lee (CR91) 2015; 25 Kim, Zhu, Yeom (CR15) 2013; 500 Liu, Dong, Chen (CR80) 2012; 41 Hu, Chen, Zhou (CR67) 2013; 176 Gómez-Navarro, Weitz, Bittner (CR112) 2007; 7 Dagdeviren, Shi, Joe (CR47) 2015; 14 Fan, Yeo, Su (CR93) 2014; 5 Petrofsky, Laymon, Lee (CR118) 2013; 19 Ilievski, Mazzeo, Shepherd (CR4) 2011; 50 Zhou, Gu, Fei (CR22) 2008; 8 Pang, Lee, Kim T-i (CR32) 2012; 11 Sokolov, Tee, Bettinger (CR45) 2012; 45 Takei, Yu, Zheng (CR69) 2014; 111 Ng, Kenry, Teck Lim (CR73) 2015; 65 Gao, Meguro, Okamoto (CR24) 2012; 28 Aliberti, MdSX, AdC (CR126) 2011; 66 L Yu (BFmicronano201643_CR60) 2014; 14 IE Araci (BFmicronano201643_CR10) 2014; 20 DJ Cohen (BFmicronano201643_CR30) 2012; 12 AN Sokolov (BFmicronano201643_CR45) 2012; 45 H Ota (BFmicronano201643_CR102) 2014; 5 D Peer (BFmicronano201643_CR123) 2007; 2 K Saetia (BFmicronano201643_CR61) 2014; 24 WC Lee (BFmicronano201643_CR108) 2015; 11 S Xu (BFmicronano201643_CR2) 2014; 344 S Li (BFmicronano201643_CR95) 2015; 7 GH Büscher (BFmicronano201643_CR94) 2015; 63 J-H Kong (BFmicronano201643_CR100) 2014; 77 T Yamada (BFmicronano201643_CR31) 2011; 6 J Park (BFmicronano201643_CR7) 2014; 8 SC Jacobson (BFmicronano201643_CR115) 1982; 29 K Arapov (BFmicronano201643_CR64) 2015; 26 MM Gudarzi (BFmicronano201643_CR113) 2011; 7 Y-L Tai (BFmicronano201643_CR128) 2015; 3 K Takei (BFmicronano201643_CR69) 2014; 111 S Borini (BFmicronano201643_CR74) 2013; 7 JB Chossat (BFmicronano201643_CR42) 2013; 13 BFmicronano201643_CR97 JM Mayer (BFmicronano201643_CR119) 2006; 87 F Ilievski (BFmicronano201643_CR4) 2011; 50 KY Lee (BFmicronano201643_CR125) 2001; 13 J Zhou (BFmicronano201643_CR22) 2008; 8 PK Chaudhuri (BFmicronano201643_CR103) 2016; 141 C Gómez-Navarro (BFmicronano201643_CR112) 2007; 7 H Tian (BFmicronano201643_CR82) 2014; 6 M Focke (BFmicronano201643_CR20) 2010; 10 Y Liu (BFmicronano201643_CR80) 2012; 41 B Nie (BFmicronano201643_CR106) 2014; 14 Y Chen (BFmicronano201643_CR101) 2015; 5 P Moshayedi (BFmicronano201643_CR121) 2014; 35 J-W Jeong (BFmicronano201643_CR25) 2013; 25 C Lechat (BFmicronano201643_CR87) 2011; 46 H Seo (BFmicronano201643_CR111) 2014; 4 FC Cabrera (BFmicronano201643_CR18) 2014; 4 RD Widdle Jr (BFmicronano201643_CR54) 2008; 46 Y Wang (BFmicronano201643_CR122) 2014; 24 K-I Jang (BFmicronano201643_CR57) 2014; 5 J Lee (BFmicronano201643_CR40) 2014; 6 JH Waller (BFmicronano201643_CR52) 2011; 519 CH Lee (BFmicronano201643_CR56) 2015; 25 M Vosgueritchian (BFmicronano201643_CR9) 2013; 7 MD Dickey (BFmicronano201643_CR104) 2008; 18 JA Fan (BFmicronano201643_CR93) 2014; 5 S Harada (BFmicronano201643_CR46) 2014; 8 GS Kulkarni (BFmicronano201643_CR77) 2014; 5 Y Yang (BFmicronano201643_CR26) 2013; 7 C-Y Wu (BFmicronano201643_CR41) 2011; 11 J Kim (BFmicronano201643_CR8) 2014; 5 M Segev-Bar (BFmicronano201643_CR39) 2013; 5 T Sarkar (BFmicronano201643_CR68) 2014; 118 E Roh (BFmicronano201643_CR34) 2015; 9 Kenry (BFmicronano201643_CR109) 2015; 11 K Kostarelos (BFmicronano201643_CR72) 2014; 9 S Wang (BFmicronano201643_CR65) 2015; 5 BY Ahn (BFmicronano201643_CR13) 2009; 323 SJ Park (BFmicronano201643_CR76) 2012; 12 K-I Jang (BFmicronano201643_CR58) 2015; 6 JY Lim (BFmicronano201643_CR51) 2004; 36 D Ha (BFmicronano201643_CR59) 2012; 14 T Jung (BFmicronano201643_CR43) 2015; 15 B Hu (BFmicronano201643_CR67) 2013; 176 T Sekitani (BFmicronano201643_CR14) 2008; 321 JT Muth (BFmicronano201643_CR89) 2014; 26 KC Pradel (BFmicronano201643_CR21) 2014; 14 S Khan (BFmicronano201643_CR53) 2015; 15 H Chang (BFmicronano201643_CR110) 2010; 22 Y Lu (BFmicronano201643_CR124) 2014; 194 IR Minev (BFmicronano201643_CR49) 2015; 347 S Choi (BFmicronano201643_CR48) 2015; 9 B Nie (BFmicronano201643_CR105) 2014; 14 G Schwartz (BFmicronano201643_CR129) 2013; 4 J Di (BFmicronano201643_CR50) 2015; 9 CL Bauer (BFmicronano201643_CR86) 1989; 29 V Maheshwari (BFmicronano201643_CR38) 2006; 312 S Raspopovic (BFmicronano201643_CR116) 2014; 6 C Yeom (BFmicronano201643_CR71) 2015; 27 P Labroo (BFmicronano201643_CR78) 2013; 41 CB James (BFmicronano201643_CR120) 2013; 10 EB Secor (BFmicronano201643_CR63) 2015; 6 Q Gao (BFmicronano201643_CR24) 2012; 28 S-H Bae (BFmicronano201643_CR81) 2013; 51 M Drack (BFmicronano201643_CR88) 2015; 27 M Kaltenbrunner (BFmicronano201643_CR11) 2013; 499 E Sardini (BFmicronano201643_CR96) 2015; 64 SCB Mannsfeld (BFmicronano201643_CR28) 2010; 9 SY Kim (BFmicronano201643_CR35) 2015; 27 RF Shepherd (BFmicronano201643_CR5) 2011; 108 BFmicronano201643_CR84 YeoJC Kenry (BFmicronano201643_CR107) 2016; 12 BE Klein (BFmicronano201643_CR130) 1992; 33 YH Kwak (BFmicronano201643_CR79) 2012; 37 R Matsuzaki (BFmicronano201643_CR27) 2008; 148 AMH Ng (BFmicronano201643_CR73) 2015; 65 KK Sadasivuni (BFmicronano201643_CR83) 2015; 11 Y Kim (BFmicronano201643_CR15) 2013; 500 L Pan (BFmicronano201643_CR33) 2014; 5 D Mandal (BFmicronano201643_CR23) 2011; 32 S Ryu (BFmicronano201643_CR70) 2015; 9 R Li (BFmicronano201643_CR19) 2014; 24 C Dagdeviren (BFmicronano201643_CR47) 2015; 14 H-Y Mi (BFmicronano201643_CR55) 2014; 56 S Aliberti (BFmicronano201643_CR126) 2011; 66 D Janczak (BFmicronano201643_CR62) 2014; 14 SA Morin (BFmicronano201643_CR6) 2012; 337 K Takei (BFmicronano201643_CR36) 2010; 9 L Yan (BFmicronano201643_CR75) 2014; 16 JS Petrofsky (BFmicronano201643_CR118) 2013; 19 M Melzer (BFmicronano201643_CR90) 2015; 27 RS Dahiya (BFmicronano201643_CR117) 2010; 26 R Paradiso (BFmicronano201643_CR16) 2005; 9 C-L Choong (BFmicronano201643_CR17) 2014; 26 S Lee (BFmicronano201643_CR91) 2015; 25 AP Robinson (BFmicronano201643_CR92) 2011; 27 RD Ponce Wong (BFmicronano201643_CR1) 2012; 179 F Zhang (BFmicronano201643_CR127) 2015; 6 J Wang (BFmicronano201643_CR37) 2015; 7 JA Rogers (BFmicronano201643_CR12) 2010; 327 M Amjadi (BFmicronano201643_CR98) 2014; 8 C Pang (BFmicronano201643_CR32) 2012; 11 J Zhang (BFmicronano201643_CR66) 2014; 3 CS Boland (BFmicronano201643_CR99) 2014; 8 S Gong (BFmicronano201643_CR3) 2014; 5 D-H Kim (BFmicronano201643_CR44) 2011; 333 L Wang (BFmicronano201643_CR85) 2015; 5 DJ Lipomi (BFmicronano201643_CR29) 2011; 6 AP Gerratt (BFmicronano201643_CR114) 2015; 25 |
References_xml | – volume: 6 start-page: 788 year: 2011 end-page: 792 ident: CR29 article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nature Nanotechnology – volume: 5 start-page: 5747 year: 2014 ident: CR8 article-title: Stretchable silicon nanoribbon electronics for skin prosthesis publication-title: Nature Communications – volume: 111 start-page: 1703 year: 2014 end-page: 1707 ident: CR69 article-title: Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 859 year: 2010 end-page: 864 ident: CR28 article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers publication-title: Nature Materials – ident: CR97 – volume: 27 start-page: 4279 year: 2011 end-page: 4284 ident: CR92 article-title: Microstructured silicone substrate for printable and stretchable metallic films publication-title: Langmuir – volume: 12 start-page: 5082 year: 2012 end-page: 5090 ident: CR76 article-title: Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose publication-title: Nano Letters – volume: 25 start-page: 2287 year: 2015 end-page: 2295 ident: CR114 article-title: Elastomeric electronic skin for prosthetic tactile sensation publication-title: Advanced Functional Materials – volume: 12 start-page: 1821 year: 2012 end-page: 1825 ident: CR30 article-title: A highly elastic, capacitive strain gauge based on percolating nanotube networks publication-title: Nano Letters – volume: 25 start-page: 3698 year: 2015 end-page: 3704 ident: CR56 article-title: Soft core/shell packages for stretchable electronics publication-title: Advanced Functional Materials – volume: 27 start-page: 1333 year: 2015 end-page: 1338 ident: CR90 article-title: Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics publication-title: Advanced Materials – volume: 9 start-page: 6252 year: 2015 end-page: 6261 ident: CR34 article-title: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers publication-title: ACS Nano – volume: 14 start-page: 20620 year: 2014 ident: CR60 article-title: Chronically implanted pressure sensors: Challenges and state of the field publication-title: Sensors – volume: 24 start-page: 492 year: 2014 end-page: 502 ident: CR61 article-title: Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications publication-title: Advanced Functional Materials – volume: 11 start-page: 1740 year: 2011 end-page: 1746 ident: CR41 article-title: Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems publication-title: Lab on a Chip – volume: 25 start-page: 6839 year: 2013 end-page: 6846 ident: CR25 article-title: Materials and optimized designs for human-machine interfaces via epidermal electronics publication-title: Advanced Materials – volume: 9 start-page: 6626 year: 2015 end-page: 6633 ident: CR48 article-title: Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy publication-title: ACS Nano – volume: 6 start-page: 620 year: 2015 end-page: 626 ident: CR63 article-title: Emerging carbon and post-carbon nanomaterial inks for printed electronics publication-title: The Journal of Physical Chemistry Letters – volume: 11 start-page: 795 year: 2012 end-page: 801 ident: CR32 article-title: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres publication-title: Nature Materials – volume: 4 start-page: 35467 year: 2014 end-page: 35475 ident: CR18 article-title: Natural-rubber-based flexible microfluidic device publication-title: RSC Advances – volume: 8 start-page: 12851 year: 2014 end-page: 12857 ident: CR46 article-title: Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin publication-title: ACS Nano – volume: 176 start-page: 522 year: 2013 end-page: 533 ident: CR67 article-title: High performance flexible sensor based on inorganic nanomaterials publication-title: Sensors and Actuators B: Chemical – volume: 16 start-page: 1576 year: 2014 end-page: 1582 ident: CR75 article-title: Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing publication-title: Physical Chemistry Chemical Physics – volume: 13 start-page: 3405 year: 2013 end-page: 3414 ident: CR42 article-title: A soft strain sensor based on ionic and metal liquids publication-title: IEEE Sensors Journal – volume: 26 start-page: 6307 year: 2014 end-page: 6312 ident: CR89 article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers publication-title: Advanced Materials – volume: 9 start-page: 9407 year: 2015 end-page: 9415 ident: CR50 article-title: Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots publication-title: ACS Nano – volume: 327 start-page: 1603 year: 2010 end-page: 1607 ident: CR12 article-title: Materials and mechanics for stretchable electronics publication-title: Science – volume: 11 start-page: 5105 year: 2015 end-page: 5117 ident: CR109 article-title: Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications publication-title: Small – volume: 7 start-page: 769 year: 2013 end-page: 771 ident: CR9 article-title: Stretchable LEDs: Light-emitting electronic skin publication-title: Nature Photonics – volume: 26 start-page: 3451 year: 2014 end-page: 3458 ident: CR17 article-title: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array publication-title: Advanced Materials – volume: 11 start-page: 994 year: 2015 end-page: 1002 ident: CR83 article-title: Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing publication-title: Small – volume: 5 start-page: 5032 year: 2014 ident: CR102 article-title: Highly deformable liquid-state heterojunction sensors publication-title: Nature Communications – volume: 22 start-page: 4872 year: 2010 end-page: 4876 ident: CR110 article-title: Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films publication-title: Advanced Materials – volume: 19 start-page: 661 year: 2013 end-page: 667 ident: CR118 article-title: Effect of heat and cold on tendon flexibility and force to flex the human knee publication-title: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research – volume: 5 start-page: 11505 year: 2015 ident: CR101 article-title: Breathable and stretchable temperature sensors inspired by skin publication-title: Scientific Reports – volume: 35 start-page: 3919 year: 2014 end-page: 3925 ident: CR121 article-title: The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system publication-title: Biomaterials – volume: 27 start-page: 4178 year: 2015 end-page: 4185 ident: CR35 article-title: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli publication-title: Advanced Materials – volume: 20 start-page: 1074 year: 2014 end-page: 1078 ident: CR10 article-title: An implantable microfluidic device for self-monitoring of intraocular pressure publication-title: Nature Medicine – volume: 11 start-page: 963 year: 2015 end-page: 969 ident: CR108 article-title: Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation publication-title: Small – volume: 344 start-page: 70 year: 2014 end-page: 74 ident: CR2 article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin publication-title: Science – volume: 5 start-page: 85799 year: 2015 end-page: 85805 ident: CR65 article-title: Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors publication-title: RSC Advances – volume: 77 start-page: 199 year: 2014 end-page: 207 ident: CR100 article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors publication-title: Carbon – volume: 499 start-page: 458 year: 2013 end-page: 463 ident: CR11 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature – volume: 64 start-page: 439 year: 2015 end-page: 448 ident: CR96 article-title: Wireless wearable T-shirt for posture monitoring during rehabilitation exercises publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 14 start-page: 207 year: 2012 end-page: 215 ident: CR59 article-title: Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye publication-title: Biomed Microdevices – volume: 46 start-page: 528 year: 2011 end-page: 533 ident: CR87 article-title: Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres publication-title: Journal of Materials Science – volume: 50 start-page: 1890 year: 2011 end-page: 1895 ident: CR4 article-title: Soft robotics for chemists publication-title: Angewandte Chemie International Edition – volume: 7 start-page: 3499 year: 2007 end-page: 3503 ident: CR112 article-title: Electronic transport properties of individual chemically reduced graphene oxide sheets publication-title: Nano Letters – volume: 8 start-page: 12020 year: 2014 end-page: 12029 ident: CR7 article-title: Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures publication-title: ACS Nano – volume: 10 start-page: 066014 year: 2013 ident: CR120 article-title: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates publication-title: Journal of Neural Engineering – volume: 5 start-page: 3002 year: 2014 ident: CR33 article-title: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film publication-title: Nature Communications – volume: 27 start-page: 34 year: 2015 end-page: 40 ident: CR88 article-title: An imperceptible plastic electronic wrap publication-title: Advanced Materials – volume: 500 start-page: 59 year: 2013 end-page: 63 ident: CR15 article-title: Stretchable nanoparticle conductors with self-organized conductive pathways publication-title: Nature – volume: 5 start-page: 3132 year: 2014 ident: CR3 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nature Communications – volume: 8 start-page: 8819 year: 2014 end-page: 8830 ident: CR99 article-title: Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites publication-title: ACS Nano – volume: 29 start-page: 249 year: 1982 end-page: 269 ident: CR115 article-title: Development of the Utah Artificial Arm publication-title: IEEE Transactions on Biomedical Engineering – volume: 37 start-page: 82 year: 2012 end-page: 87 ident: CR79 article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor publication-title: Biosensors and Bioelectronics – volume: 7 start-page: 3432 year: 2011 end-page: 3440 ident: CR113 article-title: Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites publication-title: Soft Matter – volume: 3 start-page: 5436 year: 2015 end-page: 5441 ident: CR128 article-title: Flexible pressure sensing film based on ultra-sensitive SWCNT/PDMS spheres for monitoring human pulse signals publication-title: Journal of Materials Chemistry B – volume: 24 start-page: 6195 year: 2014 end-page: 6203 ident: CR19 article-title: Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film publication-title: Advanced Functional Materials – volume: 194 start-page: 1 year: 2014 end-page: 19 ident: CR124 article-title: Stimuli-responsive nanomaterials for therapeutic protein delivery publication-title: Journal of Controlled Release – volume: 5 start-page: 4779 year: 2014 ident: CR57 article-title: Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring publication-title: Nature Communications – volume: 27 start-page: 1561 year: 2015 end-page: 1566 ident: CR71 article-title: Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes publication-title: Advanced Materials – volume: 9 start-page: 5929 year: 2015 end-page: 5936 ident: CR70 article-title: Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion publication-title: ACS Nano – volume: 8 start-page: 3035 year: 2008 end-page: 3040 ident: CR22 article-title: Flexible piezotronic strain sensor publication-title: Nano Letters – volume: 118 start-page: 1602 year: 2014 end-page: 1610 ident: CR68 article-title: Single-walled carbon nanotube–poly(porphyrin) hybrid for volatile organic compounds detection publication-title: The Journal of Physical Chemistry C – volume: 337 start-page: 828 year: 2012 end-page: 832 ident: CR6 article-title: Camouflage and display for soft machines publication-title: Science – volume: 323 start-page: 1590 year: 2009 end-page: 1593 ident: CR13 article-title: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes publication-title: Science – volume: 6 start-page: 6566 year: 2015 ident: CR58 article-title: Soft network composite materials with deterministic and bio-inspired designs publication-title: Nature Communications – volume: 51 start-page: 236 year: 2013 end-page: 242 ident: CR81 article-title: Graphene-based transparent strain sensor publication-title: Carbon – volume: 2 start-page: 751 year: 2007 end-page: 760 ident: CR123 article-title: Nanocarriers as an emerging platform for cancer therapy publication-title: Nature Nanotechnology – volume: 5 start-page: 3266 year: 2014 ident: CR93 article-title: Fractal design concepts for stretchable electronics publication-title: Nature Communications – volume: 14 start-page: 6897 year: 2014 end-page: 6905 ident: CR21 article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition publication-title: Nano Letters – volume: 8 start-page: 5154 year: 2014 end-page: 5163 ident: CR98 article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite publication-title: ACS Nano – volume: 66 start-page: 367 year: 2011 end-page: 372 ident: CR126 article-title: Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait publication-title: Clinics – volume: 179 start-page: 62 year: 2012 end-page: 69 ident: CR1 article-title: Flexible microfluidic normal force sensor skin for tactile feedback publication-title: Sensors and Actuators A: Physical – volume: 6 start-page: 296 year: 2011 end-page: 301 ident: CR31 article-title: A stretchable carbon nanotube strain sensor for human-motion detection publication-title: Nature Nanotechnology – volume: 7 start-page: 14912 year: 2015 end-page: 14916 ident: CR95 article-title: Cloth-based power shirt for wearable energy harvesting and clothes ornamentation publication-title: ACS Applied Materials & Interfaces – volume: 14 start-page: 17304 year: 2014 ident: CR62 article-title: Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes publication-title: Sensors – volume: 25 start-page: 3105 year: 2015 end-page: 3105 ident: CR91 article-title: Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics publication-title: Advanced Functional Materials – volume: 63 start-page: 244 issue: Part 3 year: 2015 end-page: 252 ident: CR94 article-title: Flexible and stretchable fabric-based tactile sensor publication-title: Robotics and Autonomous Systems – volume: 87 start-page: 1310 year: 2006 end-page: 1317 ident: CR119 article-title: Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial publication-title: Archives of Physical Medicine and Rehabilitation – ident: CR84 – volume: 36 start-page: 769 year: 2004 end-page: 773 ident: CR51 article-title: Yield strain behavior of poly(ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence publication-title: Polymer Journal – volume: 5 start-page: 4376 year: 2014 ident: CR77 article-title: Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection publication-title: Nature Communications – volume: 6 start-page: 699 year: 2014 end-page: 705 ident: CR82 article-title: Scalable fabrication of high-performance and flexible graphene strain sensors publication-title: Nanoscale – volume: 18 start-page: 1097 year: 2008 end-page: 1104 ident: CR104 article-title: Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature publication-title: Advanced Functional Materials – volume: 45 start-page: 361 year: 2012 end-page: 371 ident: CR45 article-title: Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications publication-title: Accounts of Chemical Research – volume: 29 start-page: 1107 year: 1989 end-page: 1110 ident: CR86 article-title: Determination of poisson's ratio for polyimide films publication-title: Polymer Engineering & Science – volume: 3 start-page: 412 year: 2014 end-page: 423 ident: CR66 article-title: A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors publication-title: Advanced Healthcare Materials – volume: 32 start-page: 831 year: 2011 end-page: 837 ident: CR23 article-title: Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor publication-title: Macromolecular Rapid Communications – volume: 56 start-page: 398 year: 2014 end-page: 404 ident: CR55 article-title: Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties publication-title: Materials & Design – volume: 347 start-page: 159 year: 2015 end-page: 163 ident: CR49 article-title: Electronic dura mater for long-term multimodal neural interfaces publication-title: Science – volume: 41 start-page: 852 year: 2013 end-page: 856 ident: CR78 article-title: Flexible graphene bio-nanosensor for lactate publication-title: Biosensors and Bioelectronics – volume: 6 start-page: 222ra219 year: 2014 end-page: 222ra219 ident: CR116 article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses publication-title: Science Translational Medicine – volume: 321 start-page: 1468 year: 2008 end-page: 1472 ident: CR14 article-title: A rubberlike stretchable active matrix using elastic conductors publication-title: Science – volume: 4 start-page: 5642 year: 2014 ident: CR111 article-title: Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control publication-title: Scientific Reports – volume: 6 start-page: 8356 year: 2015 ident: CR127 article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials publication-title: Nature Communications – volume: 9 start-page: 337 year: 2005 end-page: 344 ident: CR16 article-title: A wearable health care system based on knitted integrated sensors publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 41 start-page: 2283 year: 2012 end-page: 2307 ident: CR80 article-title: Biological and chemical sensors based on graphene materials publication-title: Chemical Society Reviews – volume: 7 start-page: 11166 year: 2013 end-page: 11173 ident: CR74 article-title: Ultrafast graphene oxide humidity sensors publication-title: ACS Nano – volume: 9 start-page: 744 year: 2014 end-page: 745 ident: CR72 article-title: Graphene devices for life publication-title: Nature Nanotechnology – volume: 5 start-page: 5531 year: 2013 end-page: 5541 ident: CR39 article-title: Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin publication-title: ACS Applied Materials & Interfaces – volume: 5 start-page: 57686 year: 2015 end-page: 57691 ident: CR85 article-title: Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns publication-title: RSC Advances – volume: 9 start-page: 821 year: 2010 end-page: 826 ident: CR36 article-title: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin publication-title: Nature Materials – volume: 141 start-page: 504 year: 2016 end-page: 524 ident: CR103 article-title: Microfluidics for research and applications in oncology publication-title: Analyst – volume: 24 start-page: 4206 year: 2014 end-page: 4220 ident: CR122 article-title: Stimuli-responsive materials for controlled release of theranostic agents publication-title: Advanced Functional Materials – volume: 519 start-page: 4249 year: 2011 end-page: 4255 ident: CR52 article-title: Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates publication-title: Thin Solid Films – volume: 6 start-page: 11932 year: 2014 end-page: 11939 ident: CR40 article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection publication-title: Nanoscale – volume: 14 start-page: 4344 year: 2014 end-page: 4353 ident: CR106 article-title: Microfluidic tactile sensors for three-dimensional contact force measurements publication-title: Lab on a Chip – volume: 312 start-page: 1501 year: 2006 end-page: 1504 ident: CR38 article-title: High-resolution thin-film device to sense texture by touch publication-title: Science – volume: 65 start-page: 265 year: 2015 end-page: 273 ident: CR73 article-title: Highly sensitive reduced graphene oxide microelectrode array sensor publication-title: Biosensors and Bioelectronics – volume: 15 start-page: 11823 year: 2015 ident: CR43 article-title: Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel publication-title: Sensors – volume: 14 start-page: 1107 year: 2014 end-page: 1116 ident: CR105 article-title: Iontronic microdroplet array for flexible ultrasensitive tactile sensing publication-title: Lab on a Chip – volume: 12 start-page: 1593 year: 2016 end-page: 1604 ident: CR107 article-title: Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor publication-title: Small – volume: 4 start-page: 1859 year: 2013 ident: CR129 article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring publication-title: Nature Communications – volume: 7 start-page: 9213 year: 2013 end-page: 9222 ident: CR26 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano – volume: 46 start-page: 31 year: 2008 end-page: 49 ident: CR54 article-title: Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model publication-title: International Journal of Engineering Science – volume: 33 start-page: 2224 year: 1992 end-page: 2228 ident: CR130 article-title: Intraocular pressure in an American community. The Beaver Dam Eye Study publication-title: Investigative Ophthalmology & Visual Science – volume: 14 start-page: 728 year: 2015 end-page: 736 ident: CR47 article-title: Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics publication-title: Nature Materials – volume: 333 start-page: 838 year: 2011 end-page: 843 ident: CR44 article-title: Epidermal electronics publication-title: Science – volume: 7 start-page: 2926 year: 2015 end-page: 2932 ident: CR37 article-title: A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires publication-title: Nanoscale – volume: 26 start-page: 586 year: 2015 end-page: 593 ident: CR64 article-title: Conductive screen printing inks by gelation of graphene dispersions publication-title: Advanced Functional Materials – volume: 26 start-page: 1 year: 2010 end-page: 20 ident: CR117 article-title: Tactile sensing - from humans to humanoids publication-title: IEEE Transactions on Robotics – volume: 13 start-page: 837 year: 2001 end-page: 839 ident: CR125 article-title: Controlled drug delivery from polymers by mechanical signals publication-title: Advanced Materials – volume: 28 start-page: 17593 year: 2012 end-page: 17596 ident: CR24 article-title: Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies publication-title: Langmuir – volume: 148 start-page: 1 year: 2008 end-page: 9 ident: CR27 article-title: Rubber-based strain sensor fabricated using photolithography for intelligent tires publication-title: Sensors and Actuators A: Physical – volume: 10 start-page: 1365 year: 2010 end-page: 1386 ident: CR20 article-title: Lab-on-a-Foil: Microfluidics on thin and flexible films publication-title: Lab on a Chip – volume: 15 start-page: 3164 year: 2015 end-page: 3185 ident: CR53 article-title: Technologies for printing sensors and electronics over large flexible substrates: a review publication-title: IEEE Sensors Journal – volume: 108 start-page: 20400 year: 2011 end-page: 20403 ident: CR5 article-title: Multigait soft robot publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 12020 year: 2014 ident: BFmicronano201643_CR7 publication-title: ACS Nano doi: 10.1021/nn505953t – volume: 7 start-page: 3432 year: 2011 ident: BFmicronano201643_CR113 publication-title: Soft Matter doi: 10.1039/c0sm01311k – volume: 9 start-page: 9407 year: 2015 ident: BFmicronano201643_CR50 publication-title: ACS Nano doi: 10.1021/acsnano.5b03975 – volume: 9 start-page: 337 year: 2005 ident: BFmicronano201643_CR16 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2005.854512 – volume: 46 start-page: 31 year: 2008 ident: BFmicronano201643_CR54 publication-title: International Journal of Engineering Science doi: 10.1016/j.ijengsci.2007.09.002 – volume: 5 start-page: 57686 year: 2015 ident: BFmicronano201643_CR85 publication-title: RSC Advances doi: 10.1039/C5RA10295B – volume: 344 start-page: 70 year: 2014 ident: BFmicronano201643_CR2 publication-title: Science doi: 10.1126/science.1250169 – volume: 29 start-page: 1107 year: 1989 ident: BFmicronano201643_CR86 publication-title: Polymer Engineering & Science doi: 10.1002/pen.760291606 – volume: 50 start-page: 1890 year: 2011 ident: BFmicronano201643_CR4 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201006464 – volume: 5 start-page: 5747 year: 2014 ident: BFmicronano201643_CR8 publication-title: Nature Communications doi: 10.1038/ncomms6747 – volume: 7 start-page: 14912 year: 2015 ident: BFmicronano201643_CR95 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.5b03680 – volume: 3 start-page: 412 year: 2014 ident: BFmicronano201643_CR66 publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201300033 – volume: 9 start-page: 744 year: 2014 ident: BFmicronano201643_CR72 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2014.224 – volume: 141 start-page: 504 year: 2016 ident: BFmicronano201643_CR103 publication-title: Analyst doi: 10.1039/C5AN00382B – volume: 12 start-page: 1821 year: 2012 ident: BFmicronano201643_CR30 publication-title: Nano Letters doi: 10.1021/nl204052z – volume: 6 start-page: 6566 year: 2015 ident: BFmicronano201643_CR58 publication-title: Nature Communications doi: 10.1038/ncomms7566 – volume: 5 start-page: 4376 year: 2014 ident: BFmicronano201643_CR77 publication-title: Nature Communications doi: 10.1038/ncomms5376 – volume: 8 start-page: 8819 year: 2014 ident: BFmicronano201643_CR99 publication-title: ACS Nano doi: 10.1021/nn503454h – volume: 13 start-page: 837 year: 2001 ident: BFmicronano201643_CR125 publication-title: Advanced Materials doi: 10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D – volume: 9 start-page: 6626 year: 2015 ident: BFmicronano201643_CR48 publication-title: ACS Nano doi: 10.1021/acsnano.5b02790 – volume: 8 start-page: 3035 year: 2008 ident: BFmicronano201643_CR22 publication-title: Nano Letters doi: 10.1021/nl802367t – ident: BFmicronano201643_CR97 doi: 10.1109/ICSensT.2013.6727727 – volume: 41 start-page: 2283 year: 2012 ident: BFmicronano201643_CR80 publication-title: Chemical Society Reviews doi: 10.1039/C1CS15270J – volume: 14 start-page: 4344 year: 2014 ident: BFmicronano201643_CR106 publication-title: Lab on a Chip doi: 10.1039/C4LC00746H – volume: 118 start-page: 1602 year: 2014 ident: BFmicronano201643_CR68 publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp409851m – volume: 45 start-page: 361 year: 2012 ident: BFmicronano201643_CR45 publication-title: Accounts of Chemical Research doi: 10.1021/ar2001233 – volume: 179 start-page: 62 year: 2012 ident: BFmicronano201643_CR1 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2012.03.023 – volume: 51 start-page: 236 year: 2013 ident: BFmicronano201643_CR81 publication-title: Carbon doi: 10.1016/j.carbon.2012.08.048 – volume: 26 start-page: 6307 year: 2014 ident: BFmicronano201643_CR89 publication-title: Advanced Materials doi: 10.1002/adma.201400334 – volume: 25 start-page: 3105 year: 2015 ident: BFmicronano201643_CR91 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201570139 – volume: 5 start-page: 3266 year: 2014 ident: BFmicronano201643_CR93 publication-title: Nature Communications doi: 10.1038/ncomms4266 – volume: 9 start-page: 6252 year: 2015 ident: BFmicronano201643_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.5b01613 – volume: 5 start-page: 5531 year: 2013 ident: BFmicronano201643_CR39 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am400757q – volume: 8 start-page: 12851 year: 2014 ident: BFmicronano201643_CR46 publication-title: ACS Nano doi: 10.1021/nn506293y – volume: 4 start-page: 1859 year: 2013 ident: BFmicronano201643_CR129 publication-title: Nature Communications doi: 10.1038/ncomms2832 – volume: 26 start-page: 586 year: 2015 ident: BFmicronano201643_CR64 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201504030 – volume: 29 start-page: 249 year: 1982 ident: BFmicronano201643_CR115 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.1982.325033 – ident: BFmicronano201643_CR84 doi: 10.1109/ROBOT.2010.5509301 – volume: 14 start-page: 207 year: 2012 ident: BFmicronano201643_CR59 publication-title: Biomed Microdevices doi: 10.1007/s10544-011-9598-3 – volume: 337 start-page: 828 year: 2012 ident: BFmicronano201643_CR6 publication-title: Science doi: 10.1126/science.1222149 – volume: 24 start-page: 6195 year: 2014 ident: BFmicronano201643_CR19 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201401527 – volume: 8 start-page: 5154 year: 2014 ident: BFmicronano201643_CR98 publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 27 start-page: 4279 year: 2011 ident: BFmicronano201643_CR92 publication-title: Langmuir doi: 10.1021/la103213n – volume: 312 start-page: 1501 year: 2006 ident: BFmicronano201643_CR38 publication-title: Science doi: 10.1126/science.1126216 – volume: 4 start-page: 35467 year: 2014 ident: BFmicronano201643_CR18 publication-title: RSC Advances doi: 10.1039/C4RA07458K – volume: 24 start-page: 4206 year: 2014 ident: BFmicronano201643_CR122 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201400279 – volume: 7 start-page: 3499 year: 2007 ident: BFmicronano201643_CR112 publication-title: Nano Letters doi: 10.1021/nl072090c – volume: 321 start-page: 1468 year: 2008 ident: BFmicronano201643_CR14 publication-title: Science doi: 10.1126/science.1160309 – volume: 27 start-page: 4178 year: 2015 ident: BFmicronano201643_CR35 publication-title: Advanced Materials doi: 10.1002/adma.201501408 – volume: 63 start-page: 244 issue: Part 3 year: 2015 ident: BFmicronano201643_CR94 publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2014.09.007 – volume: 11 start-page: 994 year: 2015 ident: BFmicronano201643_CR83 publication-title: Small doi: 10.1002/smll.201402109 – volume: 22 start-page: 4872 year: 2010 ident: BFmicronano201643_CR110 publication-title: Advanced Materials doi: 10.1002/adma.201002229 – volume: 194 start-page: 1 year: 2014 ident: BFmicronano201643_CR124 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2014.08.015 – volume: 176 start-page: 522 year: 2013 ident: BFmicronano201643_CR67 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2012.09.036 – volume: 65 start-page: 265 year: 2015 ident: BFmicronano201643_CR73 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2014.10.048 – volume: 5 start-page: 4779 year: 2014 ident: BFmicronano201643_CR57 publication-title: Nature Communications doi: 10.1038/ncomms5779 – volume: 37 start-page: 82 year: 2012 ident: BFmicronano201643_CR79 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2012.04.042 – volume: 28 start-page: 17593 year: 2012 ident: BFmicronano201643_CR24 publication-title: Langmuir doi: 10.1021/la304240r – volume: 14 start-page: 6897 year: 2014 ident: BFmicronano201643_CR21 publication-title: Nano Letters doi: 10.1021/nl5029182 – volume: 500 start-page: 59 year: 2013 ident: BFmicronano201643_CR15 publication-title: Nature doi: 10.1038/nature12401 – volume: 7 start-page: 9213 year: 2013 ident: BFmicronano201643_CR26 publication-title: ACS Nano doi: 10.1021/nn403838y – volume: 5 start-page: 3002 year: 2014 ident: BFmicronano201643_CR33 publication-title: Nature Communications doi: 10.1038/ncomms4002 – volume: 7 start-page: 769 year: 2013 ident: BFmicronano201643_CR9 publication-title: Nature Photonics doi: 10.1038/nphoton.2013.251 – volume: 519 start-page: 4249 year: 2011 ident: BFmicronano201643_CR52 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.02.029 – volume: 11 start-page: 5105 year: 2015 ident: BFmicronano201643_CR109 publication-title: Small doi: 10.1002/smll.201500841 – volume: 327 start-page: 1603 year: 2010 ident: BFmicronano201643_CR12 publication-title: Science doi: 10.1126/science.1182383 – volume: 6 start-page: 11932 year: 2014 ident: BFmicronano201643_CR40 publication-title: Nanoscale doi: 10.1039/C4NR03295K – volume: 14 start-page: 17304 year: 2014 ident: BFmicronano201643_CR62 publication-title: Sensors doi: 10.3390/s140917304 – volume: 6 start-page: 788 year: 2011 ident: BFmicronano201643_CR29 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.184 – volume: 26 start-page: 1 year: 2010 ident: BFmicronano201643_CR117 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2009.2033627 – volume: 323 start-page: 1590 year: 2009 ident: BFmicronano201643_CR13 publication-title: Science doi: 10.1126/science.1168375 – volume: 33 start-page: 2224 year: 1992 ident: BFmicronano201643_CR130 publication-title: Investigative Ophthalmology & Visual Science – volume: 11 start-page: 1740 year: 2011 ident: BFmicronano201643_CR41 publication-title: Lab on a Chip doi: 10.1039/c0lc00620c – volume: 5 start-page: 85799 year: 2015 ident: BFmicronano201643_CR65 publication-title: RSC Advances doi: 10.1039/C5RA16724H – volume: 6 start-page: 222ra219 year: 2014 ident: BFmicronano201643_CR116 publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.3006820 – volume: 12 start-page: 5082 year: 2012 ident: BFmicronano201643_CR76 publication-title: Nano Letters doi: 10.1021/nl301714x – volume: 347 start-page: 159 year: 2015 ident: BFmicronano201643_CR49 publication-title: Science doi: 10.1126/science.1260318 – volume: 7 start-page: 11166 year: 2013 ident: BFmicronano201643_CR74 publication-title: ACS Nano doi: 10.1021/nn404889b – volume: 24 start-page: 492 year: 2014 ident: BFmicronano201643_CR61 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201302344 – volume: 14 start-page: 728 year: 2015 ident: BFmicronano201643_CR47 publication-title: Nature Materials doi: 10.1038/nmat4289 – volume: 6 start-page: 296 year: 2011 ident: BFmicronano201643_CR31 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2011.36 – volume: 6 start-page: 8356 year: 2015 ident: BFmicronano201643_CR127 publication-title: Nature Communications doi: 10.1038/ncomms9356 – volume: 4 start-page: 5642 year: 2014 ident: BFmicronano201643_CR111 publication-title: Scientific Reports doi: 10.1038/srep05642 – volume: 66 start-page: 367 year: 2011 ident: BFmicronano201643_CR126 publication-title: Clinics doi: 10.1590/S1807-59322011000300001 – volume: 9 start-page: 859 year: 2010 ident: BFmicronano201643_CR28 publication-title: Nature Materials doi: 10.1038/nmat2834 – volume: 87 start-page: 1310 year: 2006 ident: BFmicronano201643_CR119 publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1016/j.apmr.2006.07.259 – volume: 15 start-page: 11823 year: 2015 ident: BFmicronano201643_CR43 publication-title: Sensors doi: 10.3390/s150511823 – volume: 46 start-page: 528 year: 2011 ident: BFmicronano201643_CR87 publication-title: Journal of Materials Science doi: 10.1007/s10853-010-4999-x – volume: 18 start-page: 1097 year: 2008 ident: BFmicronano201643_CR104 publication-title: Advanced Functional Materials doi: 10.1002/adfm.200701216 – volume: 32 start-page: 831 year: 2011 ident: BFmicronano201643_CR23 publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.201100040 – volume: 64 start-page: 439 year: 2015 ident: BFmicronano201643_CR96 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2014.2343411 – volume: 3 start-page: 5436 year: 2015 ident: BFmicronano201643_CR128 publication-title: Journal of Materials Chemistry B doi: 10.1039/C5TB00653H – volume: 14 start-page: 20620 year: 2014 ident: BFmicronano201643_CR60 publication-title: Sensors doi: 10.3390/s141120620 – volume: 27 start-page: 34 year: 2015 ident: BFmicronano201643_CR88 publication-title: Advanced Materials doi: 10.1002/adma.201403093 – volume: 333 start-page: 838 year: 2011 ident: BFmicronano201643_CR44 publication-title: Science doi: 10.1126/science.1206157 – volume: 19 start-page: 661 year: 2013 ident: BFmicronano201643_CR118 publication-title: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research doi: 10.12659/MSM.889145 – volume: 9 start-page: 5929 year: 2015 ident: BFmicronano201643_CR70 publication-title: ACS Nano doi: 10.1021/acsnano.5b00599 – volume: 12 start-page: 1593 year: 2016 ident: BFmicronano201643_CR107 publication-title: Small doi: 10.1002/smll.201502911 – volume: 11 start-page: 963 year: 2015 ident: BFmicronano201643_CR108 publication-title: Small doi: 10.1002/smll.201401635 – volume: 5 start-page: 11505 year: 2015 ident: BFmicronano201643_CR101 publication-title: Scientific Reports doi: 10.1038/srep11505 – volume: 108 start-page: 20400 year: 2011 ident: BFmicronano201643_CR5 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1116564108 – volume: 148 start-page: 1 year: 2008 ident: BFmicronano201643_CR27 publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2008.08.001 – volume: 16 start-page: 1576 year: 2014 ident: BFmicronano201643_CR75 publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C3CP54317J – volume: 10 start-page: 066014 year: 2013 ident: BFmicronano201643_CR120 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/10/6/066014 – volume: 20 start-page: 1074 year: 2014 ident: BFmicronano201643_CR10 publication-title: Nature Medicine doi: 10.1038/nm.3621 – volume: 9 start-page: 821 year: 2010 ident: BFmicronano201643_CR36 publication-title: Nature Materials doi: 10.1038/nmat2835 – volume: 27 start-page: 1333 year: 2015 ident: BFmicronano201643_CR90 publication-title: Advanced Materials doi: 10.1002/adma.201403998 – volume: 35 start-page: 3919 year: 2014 ident: BFmicronano201643_CR121 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.038 – volume: 56 start-page: 398 year: 2014 ident: BFmicronano201643_CR55 publication-title: Materials & Design doi: 10.1016/j.matdes.2013.11.029 – volume: 25 start-page: 2287 year: 2015 ident: BFmicronano201643_CR114 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201404365 – volume: 41 start-page: 852 year: 2013 ident: BFmicronano201643_CR78 publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2012.08.024 – volume: 11 start-page: 795 year: 2012 ident: BFmicronano201643_CR32 publication-title: Nature Materials doi: 10.1038/nmat3380 – volume: 26 start-page: 3451 year: 2014 ident: BFmicronano201643_CR17 publication-title: Advanced Materials doi: 10.1002/adma.201305182 – volume: 7 start-page: 2926 year: 2015 ident: BFmicronano201643_CR37 publication-title: Nanoscale doi: 10.1039/C4NR06494A – volume: 111 start-page: 1703 year: 2014 ident: BFmicronano201643_CR69 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1317920111 – volume: 499 start-page: 458 year: 2013 ident: BFmicronano201643_CR11 publication-title: Nature doi: 10.1038/nature12314 – volume: 36 start-page: 769 year: 2004 ident: BFmicronano201643_CR51 publication-title: Polymer Journal doi: 10.1295/polymj.36.769 – volume: 6 start-page: 620 year: 2015 ident: BFmicronano201643_CR63 publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/jz502431r – volume: 6 start-page: 699 year: 2014 ident: BFmicronano201643_CR82 publication-title: Nanoscale doi: 10.1039/C3NR04521H – volume: 15 start-page: 3164 year: 2015 ident: BFmicronano201643_CR53 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2014.2375203 – volume: 27 start-page: 1561 year: 2015 ident: BFmicronano201643_CR71 publication-title: Advanced Materials doi: 10.1002/adma.201404850 – volume: 13 start-page: 3405 year: 2013 ident: BFmicronano201643_CR42 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2013.2263797 – volume: 77 start-page: 199 year: 2014 ident: BFmicronano201643_CR100 publication-title: Carbon doi: 10.1016/j.carbon.2014.05.022 – volume: 5 start-page: 5032 year: 2014 ident: BFmicronano201643_CR102 publication-title: Nature Communications doi: 10.1038/ncomms6032 – volume: 2 start-page: 751 year: 2007 ident: BFmicronano201643_CR123 publication-title: Nature Nanotechnology doi: 10.1038/nnano.2007.387 – volume: 10 start-page: 1365 year: 2010 ident: BFmicronano201643_CR20 publication-title: Lab on a Chip doi: 10.1039/c001195a – volume: 25 start-page: 3698 year: 2015 ident: BFmicronano201643_CR56 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201501086 – volume: 5 start-page: 3132 year: 2014 ident: BFmicronano201643_CR3 publication-title: Nature Communications doi: 10.1038/ncomms4132 – volume: 25 start-page: 6839 year: 2013 ident: BFmicronano201643_CR25 publication-title: Advanced Materials doi: 10.1002/adma.201301921 – volume: 14 start-page: 1107 year: 2014 ident: BFmicronano201643_CR105 publication-title: Lab on a Chip doi: 10.1039/c3lc50994j |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5176551 |
SecondaryResourceType | review_article |
Snippet | There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16043 |
SubjectTerms | 639/166/987 639/301/357 639/925/927/511 Engineering Review review-article |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4QwEJ74uOjB-BZfqYknDbowpcDJGKMxJnrSZG-kLSWarOwqa_z7zrCAuxq97IUBFmbofO1Mvw_g2FhK8lFBHnCIvtTO-KlOC1-HplBRkUsX8H7n-wd1-yTv-lG_WXCrmrbKdkysB-p8aHmN_DzgilASxxhdjN58Vo3i6mojoTEPi0xdxi1dcb9Lp5KiVbZs6fWaS4zMR8V6c4TcfVbYagudmJy_cgdcqUveEhioM4mzqeoX_vzdRvmjllqnqJtVWGmwpbicBMMazLlyHZanGAc3IOdFKNYlEgUzYZqBE7rMxSfFO--hEqPGbaLixnYyGw30mHFtJehXPHfdYvVpk737tf10IXwTnm6uH69u_UZowbcRqrFPqMMWluZSKnGsgW5o1DE003I6SV1MuQ17JilCnYc0PjjsaQydTLmkR2APXYBbsFAOS7cDIkoIsGiTS2VSSTNebY2lGR1qmystpfWg177TzDYs5CyGMcjqajgmWeeGjN2QSfTgpDtlNKHg-M94v3VU1nyNVfYdOx4cdYfpO-LiiC7d8KPKCCYRlu2pMPVge-LX7m7IYsgJ0sXjGY93BszRPXukfHmuuboJbsoYAw9O29iY-lt_PcTu_w-xB0tsyF0rodqHhfH7hzsgaDQ2h3X8fwGM_w-R priority: 102 providerName: ProQuest |
Title | Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications |
URI | https://link.springer.com/article/10.1038/micronano.2016.43 https://www.ncbi.nlm.nih.gov/pubmed/31057833 https://www.proquest.com/docview/1823087735 https://www.proquest.com/docview/2231930629 https://pubmed.ncbi.nlm.nih.gov/PMC6444731 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68bI9jO7bXRs02NOGt9gny_JjGpqVwMrYVsibkWSZFjI3LCn993en2F7SsMFeZINP_jp9_KS7-x3AO-toks9q0oBHjKXxNi5MUccmtbXK6kr6hOOdv1yqiys5nWWzPUi6WJjgtB8oLcMw3XmHffrJ7mmNaTheL1EfJe7DITO3c6Meq_GfbZUcmXKqs1-i3q25PQPtwMpd78gHJtIw80yO4EkLGcVo_ZJPYc83z-DxBpHgc6h4b4nTDYmaCS7t3AvTVOKemjGHRolFqw2xZH91ElvMzYrh6lJQKa57J7BQbR2SH-Q37dsv4Gpy_mN8Ebf5E2KXoVrFBCZc7WiJpLTn1OaWBhNLCyhvdOFzmrJwaHWdmiqlbu9xaDD1smBLHWE49Am-hIPmtvGvQWSacIixlVS2kLSQNc46WqihcZUyUroIht0_LV1LLs45LuZlMHKjLns1lKyGUmIE7_sqizWzxr-ETzpFlW0nW5YJGwl1nmMWwdv-MnUPtnmYxt_eLUtCPwRRhyotIni11mv_NOQcxxrp5vmWxnsBpt7evtLcXAcKbkKRMsckgg9d29h4rb99xPF_Sb-BR3zGvimpOoGD1a87f0oAaGUHsJ_Pcir15PMADkej6fcpHc_OL79-G4TuMAhbC78B-cQQpQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqDwbKGAkuIBCNxnndagQApYtfZxaqTdjO45aackuZKuKP8VvZCaJwy4VvfWSS-wkzszY33jG8wG8MpYW-aQiCTjEUGpnwkIXVahjU6VJVUoX8Xnng8N0ciy_niQna_Dbn4XhtEo_J7YTdTmzvEe-HXFEKM8yTN7Pf4TMGsXRVU-h0anFnvt1QS5bs7P7ieT7Oo7Hn48-TsKeVSC0CaaLkJZYW1lyHNLcMeG3IRMz5FY4nRcuo4kcRyavYl3GZAwORxpjJwuOXxGyQRchPfcG3JSIBVtUPv7i9VeSdUhfnb3d48mQ618xvx15CiEzevnAKubb3znjrtY1H0GM0ncSV5fGS3j3ctrmP7Hbdkkcb8DdHsuKD53y3YM1V9-HO0sVDh9AyZtezIMkKq68aaZO6LoUF_Qj-cyWmPdqIhpOpKdm86leMI5uBF3F6ZCd1nbragW07ZcD7w_h-FpE8AjW61ntNkEkOQEkbUqZmkKSh62tseRBorZlqqW0AYz8P1W2r3rO5BtT1UbfMVeDGBSLQUkM4M3QZd6V_Liq8ZYXlOqtv1F_dTWAl8NtslsOxujazc4bRbCMsPMojYsAHndyHd6GTL6cIz08W5H40IBrgq_eqc9O29rgBG9lhlEAb71uLH3W_wbx5OpBvIBbk6ODfbW_e7j3FG5zJ86YidMtWF_8PHfPCJYtzPPWFgR8u27j-wM6u0mT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IF6FQAEjwYUq7CbjOMkBIURZtRQqDlTam2s7joq0ZBeyVcVf49cxkxe7VO2tl73EziaZGc-MZ_x9AC-tIyeflCQBjxhK422Ym7wMTWxLlZSF9BGfd_5yqPaO5KdpMt2AP_1ZGG6r7NfEZqEu5o73yEcRV4SyNMVkVHZtEV93J-8WP0NmkOJKa0-n0arIgf99Rulb_XZ_l2T9Ko4nH7992As7hoHQJaiWIblbVzpKIlTmmfzbkrlZSjG8yXKf0qKOY5uVsSliMgyPY4OxlznXsijKQR8h3fcaXKeHitjG0ungyiVZiuyR2pv9nhQZC4u57ihrCJndqy-yYjb6wd13lan4OGKk3khcd5PnYt_zLZz_1XEb9zi5A7e7uFa8bxXxLmz46h7cWkE7vA8Fb4AxJ5IoGYXTzrwwVSHO6EPy-S2x6FRG1NxUT8MWM7PkmLoW9CtOhk61ZlqLG9CMXy3CP4CjKxHBFmxW88o_ApFkFCwZW0hlc0nZtnHWUTaJxhXKSOkCGPffVLsOAZ2JOGa6qcRjpgcxaBaDlhjA62HKooX_uGzwdi8o3a0Etf6ntwG8GC6TDXNhxlR-flprCtEojh6rOA_gYSvX4d-QiZgzpJunaxIfBjA--PqV6vtJgxNOoa5MMQpgp9eNlce66CUeX_4Sz-EGmZ3-vH948ARu8hxunonVNmwuf536pxShLe2zxhQEHF-17f0Fd3lNwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+flexible+and+wearable+physical+sensing+platforms+for+healthcare+and+biomedical+applications&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Kenry&rft.au=Yeo%2C+Joo+Chuan&rft.au=Lim%2C+Chwee+Teck&rft.date=2016-09-26&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1038%2Fmicronano.2016.43&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_micronano_2016_43 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |