Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications

There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of th...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 2; no. 1; p. 16043
Main Authors Kenry, Yeo, Joo Chuan, Lim, Chwee Teck
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.09.2016
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field. Nanosensors: Flexible future for medical technology Flexible and wearable sensors show promise for healthcare and biomedical applications. Chwee Teck Lim and his co-workers at the National University of Singapore review recent research into wearable sensors and their potential for medical science. Tiny sensors that monitor physiological details about the body at the microscopic scale could generate health data, and provide insights into the health status or even progression of disease. Despite the many inherent challenges in developing stable and robust sensors for flexible structures, the team are encouraged by recent advances in this field. Some examples include: ( 1 ) electronic skins that can sense environmental factors, such as temperature, for possible use as skin substitutes or for real-time monitoring of physiological signals, ( 2 ) devices for monitoring organs which could detect and map diseased tissues, and ( 3 ) neural implants that sense and interact with the central nervous system to restore the use of paralyzed limbs.
AbstractList There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field.There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field.
There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field.
There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms. Applications include wearable consumer electronics, soft robotics, medical prosthetics, electronic skin, and health monitoring. In this review, we provide a state-of-the-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications. We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials. We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors. We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications, in particular for artificial electronic skins, physiological health monitoring and assessment, and therapeutic and drug delivery. Finally, we conclude this review by offering some insight into the challenges and opportunities facing this field. Nanosensors: Flexible future for medical technology Flexible and wearable sensors show promise for healthcare and biomedical applications. Chwee Teck Lim and his co-workers at the National University of Singapore review recent research into wearable sensors and their potential for medical science. Tiny sensors that monitor physiological details about the body at the microscopic scale could generate health data, and provide insights into the health status or even progression of disease. Despite the many inherent challenges in developing stable and robust sensors for flexible structures, the team are encouraged by recent advances in this field. Some examples include: ( 1 ) electronic skins that can sense environmental factors, such as temperature, for possible use as skin substitutes or for real-time monitoring of physiological signals, ( 2 ) devices for monitoring organs which could detect and map diseased tissues, and ( 3 ) neural implants that sense and interact with the central nervous system to restore the use of paralyzed limbs.
ArticleNumber 16043
Author Lim, Chwee Teck
Yeo, Joo Chuan
Kenry
Author_xml – sequence: 1
  surname: Kenry
  fullname: Kenry
  organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Biomedical Engineering, National University of Singapore
– sequence: 2
  givenname: Joo Chuan
  surname: Yeo
  fullname: Yeo, Joo Chuan
  organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Department of Biomedical Engineering, National University of Singapore
– sequence: 3
  givenname: Chwee Teck
  surname: Lim
  fullname: Lim, Chwee Teck
  email: ctlim@nus.edu.sg
  organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Department of Biomedical Engineering, National University of Singapore, Mechanobiology Institute, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31057833$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha0KVCjlB3RTReqmmxlsX8dONpUqRB8SEhu6thzPzYyRY6d2ppR_X4cBNCCVjR_yd47O9XlHDkIMSMgHRpeMQnM2OJtiMCEuOWVyKeANOea0rhdKgDjYOx-R05xvKKVMgWpp_ZYcAaO1agCOyepiwLR2YV31Hv-6zmNlwqq6RZPMfBk3d9lZ46uMIc_Y6M3UxzTkqqzVBo2fNtaknaxzccDVPW_G0ZfD5GLI78lhb3zG04f9hPz6dnF9_mNxefX95_nXy4WtQU4LKcH2lksmG6xb2nSgZMeEQNO0qBgHoF3Tc7PiigICNcBRtErSMkwNyOCEfNn5jtuu5LAYpmS8HpMbTLrT0Tj9_CW4jV7HP1oKIRTMBp8fDFL8vcU86cFli96bgHGbNefAWqCStwX99AK9idsUyniaNRxooxTUhfq4n-gpymMBBVA7oJSZc8JeWzfd_1oJ6LxmVM9t66e29dy2FrOSvVA-mr-m4TtNLmxYY9oL_V_RP9bMwi0
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1016_j_sna_2020_112282
crossref_primary_10_1051_itmconf_20171103009
crossref_primary_10_1109_TNANO_2018_2810780
crossref_primary_10_20517_ss_2023_38
crossref_primary_10_1021_acsaelm_1c00130
crossref_primary_10_3390_s19204353
crossref_primary_10_3390_polym15081814
crossref_primary_10_1021_acsmaterialslett_3c00144
crossref_primary_10_1002_smll_202406564
crossref_primary_10_1016_j_cej_2024_155475
crossref_primary_10_1039_C9RA04005F
crossref_primary_10_1021_acsami_7b19823
crossref_primary_10_1002_btm2_10190
crossref_primary_10_1016_j_mssp_2017_11_025
crossref_primary_10_1002_admi_201901851
crossref_primary_10_34133_2022_9867378
crossref_primary_10_1002_app_55427
crossref_primary_10_3390_s19173771
crossref_primary_10_1109_JSEN_2023_3310342
crossref_primary_10_1016_j_mee_2019_03_001
crossref_primary_10_1002_adma_201705122
crossref_primary_10_1007_s12633_024_03061_1
crossref_primary_10_1002_admt_201800425
crossref_primary_10_1002_admt_202100798
crossref_primary_10_1038_s41528_019_0056_2
crossref_primary_10_5194_ms_12_143_2021
crossref_primary_10_1016_j_matpr_2017_12_362
crossref_primary_10_1109_JSEN_2020_3009629
crossref_primary_10_1002_mabi_202400287
crossref_primary_10_1063_5_0087672
crossref_primary_10_1038_s41598_018_34538_w
crossref_primary_10_1002_admt_201700016
crossref_primary_10_3390_app12062839
crossref_primary_10_1039_D2MA00818A
crossref_primary_10_1109_TBME_2021_3110432
crossref_primary_10_1109_JSEN_2020_2986051
crossref_primary_10_1021_acsaem_9b02528
crossref_primary_10_1039_D2SD00201A
crossref_primary_10_1088_2058_8585_aac8fc
crossref_primary_10_1364_OE_464556
crossref_primary_10_3390_safety5040072
crossref_primary_10_3390_polym16020295
crossref_primary_10_1149_1945_7111_ab7117
crossref_primary_10_1088_1742_6596_1038_1_012065
crossref_primary_10_1109_JSEN_2024_3485702
crossref_primary_10_1149_2162_8777_aba6a2
crossref_primary_10_1021_acsami_1c14687
crossref_primary_10_1063_5_0150084
crossref_primary_10_1002_jbm_b_34517
crossref_primary_10_1002_aelm_201700429
crossref_primary_10_1016_j_apsusc_2019_143839
crossref_primary_10_1109_JSEN_2024_3429515
crossref_primary_10_3390_s24144489
crossref_primary_10_1002_admi_202101312
crossref_primary_10_1126_sciadv_aba5575
crossref_primary_10_1142_S1793292021501587
crossref_primary_10_1002_cnma_201900146
crossref_primary_10_1149_1945_7111_ac0e4b
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1039_D3SD00304C
crossref_primary_10_1016_j_sna_2019_111630
crossref_primary_10_1039_C9RA08118F
crossref_primary_10_7736_JKSPE_022_007
crossref_primary_10_1016_j_apmt_2025_102665
crossref_primary_10_1063_1_5089900
crossref_primary_10_1088_1361_6463_ac5e8c
crossref_primary_10_1016_j_matt_2019_07_016
crossref_primary_10_1002_adbi_201800281
crossref_primary_10_1021_acsami_9b11071
crossref_primary_10_1016_j_smaim_2020_07_005
crossref_primary_10_1039_D4SD00032C
crossref_primary_10_1007_s11071_023_08674_6
crossref_primary_10_1039_D1CE00347J
crossref_primary_10_1002_adma_201806739
crossref_primary_10_1016_j_cej_2024_150204
crossref_primary_10_1002_inf2_12122
crossref_primary_10_1557_mrs_2018_320
crossref_primary_10_1007_s00339_018_2217_x
crossref_primary_10_1039_D2NR04015H
crossref_primary_10_1016_j_compositesa_2019_105614
crossref_primary_10_1002_aisy_202200183
crossref_primary_10_1039_C8TC02230E
crossref_primary_10_1002_admt_201700232
crossref_primary_10_1039_D1NR06893H
crossref_primary_10_1007_s10854_022_09204_7
crossref_primary_10_3390_s24144429
crossref_primary_10_1021_acsami_0c19427
crossref_primary_10_1021_acs_chemrev_7b00024
crossref_primary_10_1016_j_jcis_2017_08_036
crossref_primary_10_1007_s11706_025_0715_2
crossref_primary_10_3390_nano12030334
crossref_primary_10_1021_acsami_0c04739
crossref_primary_10_1007_s40820_023_01013_9
crossref_primary_10_1016_j_coelec_2018_05_014
crossref_primary_10_1089_soro_2022_0207
crossref_primary_10_1016_j_jelechem_2017_10_033
crossref_primary_10_3390_nano11071645
crossref_primary_10_1039_D2NR05444B
crossref_primary_10_1021_acsami_2c01353
crossref_primary_10_1039_C8TC00238J
crossref_primary_10_1016_j_nanoen_2021_106181
crossref_primary_10_1021_acsami_8b17765
crossref_primary_10_1016_j_ijleo_2018_10_187
crossref_primary_10_1088_1361_6463_ac3c73
crossref_primary_10_1016_j_carbon_2020_09_073
crossref_primary_10_1049_mnl_2017_0428
crossref_primary_10_1089_3dp_2017_0092
crossref_primary_10_1002_aelm_201700067
crossref_primary_10_1016_j_biotechadv_2022_108056
crossref_primary_10_1088_1674_1056_acac16
crossref_primary_10_1109_TCAD_2018_2801227
crossref_primary_10_1002_smtd_201700259
crossref_primary_10_1080_00914037_2022_2118275
crossref_primary_10_1002_adma_202415151
crossref_primary_10_1109_TAP_2023_3266055
crossref_primary_10_1007_s40684_022_00432_0
crossref_primary_10_1016_j_apmt_2024_102141
crossref_primary_10_3389_felec_2020_594003
crossref_primary_10_1007_s00542_017_3453_2
crossref_primary_10_1007_s10854_020_03531_3
crossref_primary_10_1007_s10854_021_06181_1
crossref_primary_10_1039_C9NA00502A
crossref_primary_10_1002_cssc_201801248
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_1002_adpr_202100311
crossref_primary_10_1016_j_nanoen_2018_02_046
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1016_j_compscitech_2019_02_001
crossref_primary_10_1021_acsami_8b20929
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1063_5_0016485
crossref_primary_10_1080_01691864_2018_1490666
crossref_primary_10_1088_1674_4926_39_1_011010
crossref_primary_10_1109_TDMR_2023_3340711
crossref_primary_10_1088_1361_6528_ab30b6
crossref_primary_10_1088_2053_1591_ab1eea
crossref_primary_10_1149_2754_2726_acb21e
crossref_primary_10_1016_j_eml_2018_05_003
crossref_primary_10_1038_s41598_019_45399_2
crossref_primary_10_3390_nano9060813
crossref_primary_10_1021_acsapm_1c01606
crossref_primary_10_1021_acs_chemmater_8b02040
crossref_primary_10_3390_bios12111057
crossref_primary_10_1016_j_bios_2021_113384
crossref_primary_10_1088_1361_6439_ac2a13
crossref_primary_10_1109_JSEN_2025_3532916
crossref_primary_10_1126_science_aam5830
crossref_primary_10_1002_ente_202101130
crossref_primary_10_54097_hset_v45i_7333
crossref_primary_10_1039_C7TA05759H
crossref_primary_10_1021_acsami_9b18069
crossref_primary_10_1021_acsaelm_1c01175
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_092
crossref_primary_10_1021_acsami_2c16929
crossref_primary_10_20517_ss_2023_23
crossref_primary_10_1002_adma_201704530
crossref_primary_10_1088_1361_6528_aaa709
crossref_primary_10_1021_acsaelm_1c01052
crossref_primary_10_1109_JSEN_2022_3142328
crossref_primary_10_1002_aisy_202000238
crossref_primary_10_3390_s19204448
crossref_primary_10_1108_IJCST_07_2019_0100
crossref_primary_10_1002_adma_201806133
crossref_primary_10_1002_admi_202100430
crossref_primary_10_1149_2162_8777_aba913
crossref_primary_10_1557_mrc_2019_38
crossref_primary_10_1038_s41598_018_29195_y
crossref_primary_10_1016_j_nanoen_2017_05_047
crossref_primary_10_1088_2058_8585_ac808a
crossref_primary_10_1109_JSEN_2020_3012413
crossref_primary_10_1016_j_sna_2020_112437
crossref_primary_10_1002_adhm_202100116
crossref_primary_10_1007_s10825_024_02135_y
crossref_primary_10_1002_mabi_202300283
crossref_primary_10_1007_s10544_018_0273_9
crossref_primary_10_1021_acs_chemrev_8b00311
crossref_primary_10_3390_polym15163391
crossref_primary_10_3390_s19143156
crossref_primary_10_1063_5_0138010
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1021_acsaelm_9b00428
crossref_primary_10_3389_fnins_2018_00299
crossref_primary_10_1002_aisy_201900138
crossref_primary_10_1002_chem_201806420
crossref_primary_10_3390_s22114228
crossref_primary_10_3390_nano9081182
crossref_primary_10_1021_acsami_0c16351
crossref_primary_10_1002_pssa_202300901
crossref_primary_10_1021_acs_biomac_8b00275
crossref_primary_10_1039_C7NR05218A
crossref_primary_10_3390_mi14010121
crossref_primary_10_1002_celc_201801121
crossref_primary_10_1016_j_orgel_2019_01_001
crossref_primary_10_1021_acsami_1c13746
crossref_primary_10_1109_JSEN_2020_2969667
crossref_primary_10_1038_micronano_2017_72
crossref_primary_10_1109_JSEN_2021_3124517
crossref_primary_10_3390_s21020543
crossref_primary_10_3390_cryst12091316
crossref_primary_10_3390_mi11050538
crossref_primary_10_1002_app_50380
crossref_primary_10_1002_cssc_202000462
crossref_primary_10_1049_mna2_12069
crossref_primary_10_1002_advs_202204622
crossref_primary_10_1002_admt_202100717
crossref_primary_10_1016_j_mee_2020_111360
crossref_primary_10_3389_fchem_2020_577327
crossref_primary_10_1016_j_carbpol_2021_117993
crossref_primary_10_1007_s12598_020_01397_2
crossref_primary_10_1016_j_trac_2020_115884
crossref_primary_10_1021_acs_analchem_1c02472
crossref_primary_10_1002_adma_202008452
crossref_primary_10_3389_femat_2022_1023415
crossref_primary_10_1002_admt_201900423
crossref_primary_10_1002_admt_202000652
crossref_primary_10_1016_j_ensm_2024_103312
crossref_primary_10_47836_ifrj_28_4_22
crossref_primary_10_1007_s11696_024_03804_9
crossref_primary_10_1039_C9TC05392A
crossref_primary_10_1126_sciadv_ade4075
crossref_primary_10_1016_j_trac_2023_117509
crossref_primary_10_1093_nsr_nwac090
crossref_primary_10_1039_C7RA13284K
crossref_primary_10_1088_1361_6528_ada2f4
crossref_primary_10_1016_j_talanta_2020_120906
crossref_primary_10_1021_acsaelm_3c00132
crossref_primary_10_1021_acsapm_0c00828
crossref_primary_10_1016_j_apmt_2018_08_010
crossref_primary_10_1088_2053_1583_ab68a7
crossref_primary_10_1021_acs_nanolett_8b04717
crossref_primary_10_1088_1674_1056_ad19d4
crossref_primary_10_1016_j_matdes_2023_112616
crossref_primary_10_1364_OL_44_005747
crossref_primary_10_1002_adma_201902343
crossref_primary_10_1016_j_susmat_2023_e00739
crossref_primary_10_1021_acsami_0c11475
crossref_primary_10_1021_acsomega_0c03309
crossref_primary_10_1016_j_snb_2019_01_120
crossref_primary_10_3390_s22134765
crossref_primary_10_1039_C7LC00735C
crossref_primary_10_1021_acsanm_3c02014
crossref_primary_10_1016_j_compositesa_2022_107144
crossref_primary_10_1088_1361_6579_ab3676
crossref_primary_10_1002_adfm_202201249
crossref_primary_10_1002_admt_202100617
crossref_primary_10_1021_acsami_9b10937
crossref_primary_10_3390_polym11060942
crossref_primary_10_1016_j_apmt_2019_100539
crossref_primary_10_1038_s41598_018_32169_9
crossref_primary_10_3390_mi11020200
crossref_primary_10_3390_s23041869
crossref_primary_10_1016_j_matpr_2018_06_620
crossref_primary_10_1016_j_nanoms_2021_11_002
crossref_primary_10_1002_admt_201900802
crossref_primary_10_1186_s40486_023_00178_7
crossref_primary_10_3762_bjnano_12_41
crossref_primary_10_1002_admt_202000631
crossref_primary_10_1038_s41598_021_02580_w
crossref_primary_10_1021_acsanm_4c05362
crossref_primary_10_1021_acs_nanolett_9b02282
crossref_primary_10_1007_s10853_022_07955_6
crossref_primary_10_1039_D3NR05728C
crossref_primary_10_1142_S1793048016010037
crossref_primary_10_1149_2_0162003JES
crossref_primary_10_1088_1361_665X_ac383a
crossref_primary_10_1002_adfm_202003601
crossref_primary_10_1088_2631_8695_acebb9
crossref_primary_10_1126_sciadv_aau9785
crossref_primary_10_3390_s23094300
crossref_primary_10_1021_acsami_0c12073
crossref_primary_10_1002_adma_202001591
crossref_primary_10_1038_s41598_019_49986_1
crossref_primary_10_1016_j_aej_2023_07_060
crossref_primary_10_2217_pme_2018_0044
crossref_primary_10_3390_s20010208
crossref_primary_10_1002_admt_202100352
crossref_primary_10_1039_D3QM00076A
crossref_primary_10_1021_acsapm_1c01461
crossref_primary_10_1063_5_0022767
crossref_primary_10_3390_polym14163409
crossref_primary_10_1021_acsami_1c24820
crossref_primary_10_3390_nano10061225
crossref_primary_10_3390_s19173739
crossref_primary_10_3390_s20226653
crossref_primary_10_1002_adfm_201801834
crossref_primary_10_1109_TED_2024_3485032
crossref_primary_10_1021_acs_chemrev_1c00303
crossref_primary_10_1007_s10825_023_02014_y
crossref_primary_10_1021_acsami_1c23176
crossref_primary_10_1016_j_sbsr_2021_100403
crossref_primary_10_1002_adhm_201700889
crossref_primary_10_1039_D0RA10929K
crossref_primary_10_1021_acssuschemeng_9b02173
crossref_primary_10_1038_s41378_018_0044_z
crossref_primary_10_1016_j_mne_2022_100113
crossref_primary_10_3390_s20226657
crossref_primary_10_1002_admt_202001023
crossref_primary_10_3390_s20164484
crossref_primary_10_1039_D3TC02970K
crossref_primary_10_1021_acsami_3c12730
crossref_primary_10_1002_adfm_201904532
crossref_primary_10_1002_admt_201800141
crossref_primary_10_1088_1361_6528_abfe8f
crossref_primary_10_1109_ACCESS_2020_2982965
crossref_primary_10_1002_aisy_202300482
crossref_primary_10_1002_aelm_202300767
crossref_primary_10_1016_j_sna_2022_113836
crossref_primary_10_1002_admt_201900475
crossref_primary_10_1016_j_mtelec_2023_100075
crossref_primary_10_1088_2058_8585_abe51b
crossref_primary_10_1016_j_sna_2021_113314
crossref_primary_10_1088_1361_6528_ac33d1
crossref_primary_10_1016_j_snb_2023_134420
crossref_primary_10_1109_JSEN_2022_3198847
crossref_primary_10_1021_acsomega_7b02055
crossref_primary_10_1016_j_smhl_2018_07_025
crossref_primary_10_1039_C9TC05072H
crossref_primary_10_1021_acssensors_9b01403
crossref_primary_10_1063_5_0010766
crossref_primary_10_1039_D3MA00365E
crossref_primary_10_3390_chemosensors8030085
crossref_primary_10_3390_polym15244657
crossref_primary_10_1002_hpm_3331
crossref_primary_10_1002_admt_202301895
crossref_primary_10_1016_j_apmt_2021_101361
crossref_primary_10_1038_s41467_019_11583_1
crossref_primary_10_1002_adom_202001693
crossref_primary_10_1016_j_bios_2020_112946
crossref_primary_10_1039_D0NR01456G
crossref_primary_10_1109_ACCESS_2022_3216316
crossref_primary_10_1016_j_nanoen_2021_106569
crossref_primary_10_1002_adsr_202300168
crossref_primary_10_1021_acsami_9b06920
crossref_primary_10_1109_JSEN_2020_2999261
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1038_s41699_018_0064_4
crossref_primary_10_1016_j_ica_2024_122305
crossref_primary_10_1016_j_cej_2024_154953
crossref_primary_10_1021_acssensors_2c00942
crossref_primary_10_1016_j_snb_2022_133159
crossref_primary_10_1021_acsami_0c08028
crossref_primary_10_1103_PhysRevLett_128_237801
crossref_primary_10_1016_j_orgel_2019_105401
crossref_primary_10_1021_acsami_0c03011
crossref_primary_10_1038_s41528_022_00201_8
crossref_primary_10_1108_IR_10_2020_0234
crossref_primary_10_1002_marc_202200221
crossref_primary_10_1016_j_mee_2023_112013
crossref_primary_10_3390_bios14010012
crossref_primary_10_1039_C7LC00390K
Cites_doi 10.1021/nn505953t
10.1039/c0sm01311k
10.1021/acsnano.5b03975
10.1109/TITB.2005.854512
10.1016/j.ijengsci.2007.09.002
10.1039/C5RA10295B
10.1126/science.1250169
10.1002/pen.760291606
10.1002/anie.201006464
10.1038/ncomms6747
10.1021/acsami.5b03680
10.1002/adhm.201300033
10.1038/nnano.2014.224
10.1039/C5AN00382B
10.1021/nl204052z
10.1038/ncomms7566
10.1038/ncomms5376
10.1021/nn503454h
10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D
10.1021/acsnano.5b02790
10.1021/nl802367t
10.1109/ICSensT.2013.6727727
10.1039/C1CS15270J
10.1039/C4LC00746H
10.1021/jp409851m
10.1021/ar2001233
10.1016/j.sna.2012.03.023
10.1016/j.carbon.2012.08.048
10.1002/adma.201400334
10.1002/adfm.201570139
10.1038/ncomms4266
10.1021/acsnano.5b01613
10.1021/am400757q
10.1021/nn506293y
10.1038/ncomms2832
10.1002/adfm.201504030
10.1109/TBME.1982.325033
10.1109/ROBOT.2010.5509301
10.1007/s10544-011-9598-3
10.1126/science.1222149
10.1002/adfm.201401527
10.1021/nn501204t
10.1021/la103213n
10.1126/science.1126216
10.1039/C4RA07458K
10.1002/adfm.201400279
10.1021/nl072090c
10.1126/science.1160309
10.1002/adma.201501408
10.1016/j.robot.2014.09.007
10.1002/smll.201402109
10.1002/adma.201002229
10.1016/j.jconrel.2014.08.015
10.1016/j.snb.2012.09.036
10.1016/j.bios.2014.10.048
10.1038/ncomms5779
10.1016/j.bios.2012.04.042
10.1021/la304240r
10.1021/nl5029182
10.1038/nature12401
10.1021/nn403838y
10.1038/ncomms4002
10.1038/nphoton.2013.251
10.1016/j.tsf.2011.02.029
10.1002/smll.201500841
10.1126/science.1182383
10.1039/C4NR03295K
10.3390/s140917304
10.1038/nnano.2011.184
10.1109/TRO.2009.2033627
10.1126/science.1168375
10.1039/c0lc00620c
10.1039/C5RA16724H
10.1126/scitranslmed.3006820
10.1021/nl301714x
10.1126/science.1260318
10.1021/nn404889b
10.1002/adfm.201302344
10.1038/nmat4289
10.1038/nnano.2011.36
10.1038/ncomms9356
10.1038/srep05642
10.1590/S1807-59322011000300001
10.1038/nmat2834
10.1016/j.apmr.2006.07.259
10.3390/s150511823
10.1007/s10853-010-4999-x
10.1002/adfm.200701216
10.1002/marc.201100040
10.1109/TIM.2014.2343411
10.1039/C5TB00653H
10.3390/s141120620
10.1002/adma.201403093
10.1126/science.1206157
10.12659/MSM.889145
10.1021/acsnano.5b00599
10.1002/smll.201502911
10.1002/smll.201401635
10.1038/srep11505
10.1073/pnas.1116564108
10.1016/j.sna.2008.08.001
10.1039/C3CP54317J
10.1088/1741-2560/10/6/066014
10.1038/nm.3621
10.1038/nmat2835
10.1002/adma.201403998
10.1016/j.biomaterials.2014.01.038
10.1016/j.matdes.2013.11.029
10.1002/adfm.201404365
10.1016/j.bios.2012.08.024
10.1038/nmat3380
10.1002/adma.201305182
10.1039/C4NR06494A
10.1073/pnas.1317920111
10.1038/nature12314
10.1295/polymj.36.769
10.1021/jz502431r
10.1039/C3NR04521H
10.1109/JSEN.2014.2375203
10.1002/adma.201404850
10.1109/JSEN.2013.2263797
10.1016/j.carbon.2014.05.022
10.1038/ncomms6032
10.1038/nnano.2007.387
10.1039/c001195a
10.1002/adfm.201501086
10.1038/ncomms4132
10.1002/adma.201301921
10.1039/c3lc50994j
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Sep 2016
Copyright © 2016 The Author(s) 2016 The Author(s)
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Sep 2016
– notice: Copyright © 2016 The Author(s) 2016 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/micronano.2016.43
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Flexible sensors for biomedical applications
EISSN 2055-7434
ExternalDocumentID PMC6444731
4194248521
31057833
10_1038_micronano_2016_43
Genre Journal Article
Review
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
ADMLS
ARCSS
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c536t-663cfc26168e5908b376b144ea89e712330b8f2ad2703e30a32e4976005753e13
IEDL.DBID C6C
ISSN 2055-7434
2096-1030
IngestDate Thu Aug 21 18:33:58 EDT 2025
Fri Jul 11 07:19:18 EDT 2025
Wed Aug 13 04:09:55 EDT 2025
Thu Apr 03 07:01:33 EDT 2025
Tue Jul 01 03:27:09 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:38:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Health monitoring
Electronic skins
Tactile sensing
Microfluidics
Flexible sensors
Liquid-state devices
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-663cfc26168e5908b376b144ea89e712330b8f2ad2703e30a32e4976005753e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/micronano.2016.43
PMID 31057833
PQID 1823087735
PQPubID 2041946
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6444731
proquest_miscellaneous_2231930629
proquest_journals_1823087735
pubmed_primary_31057833
crossref_citationtrail_10_1038_micronano_2016_43
crossref_primary_10_1038_micronano_2016_43
springer_journals_10_1038_micronano_2016_43
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-26
PublicationDateYYYYMMDD 2016-09-26
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2016
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Kim, Lee, Shim (CR8) 2014; 5
Kenry, Yu, Shang (CR107) 2016; 12
Seo, Ahn, Kim (CR111) 2014; 4
Lee, Kim, Lee (CR40) 2014; 6
Xu, Zhang, Jia (CR2) 2014; 344
Lipomi, Vosgueritchian, Tee (CR29) 2011; 6
Jang, Han, Xu (CR57) 2014; 5
Dahiya, Metta, Valle (CR117) 2010; 26
Choong, Shim, Lee (CR17) 2014; 26
Khan, Lorenzelli, Dahiya (CR53) 2015; 15
Jacobson, Knutti, Johnson (CR115) 1982; 29
Mannsfeld, Tee, Stoltenberg (CR28) 2010; 9
Jang, Chung, Xu (CR58) 2015; 6
Chen, Lu, Chen (CR101) 2015; 5
Melzer, Karnaushenko, Lin (CR90) 2015; 27
Yang, Zhang, Lin (CR26) 2013; 7
Raspopovic, Capogrosso, Petrini (CR116) 2014; 6
Gong, Schwalb, Wang (CR3) 2014; 5
Boland, Khan, Backes (CR99) 2014; 8
Drack, Graz, Sekitani (CR88) 2015; 27
Arapov, Rubingh, Abbel (CR64) 2015; 26
Zhang, Zang, Huang (CR127) 2015; 6
Sadasivuni, Kafy, Zhai (CR83) 2015; 11
Gudarzi, Sharif (CR113) 2011; 7
Tai, Yang (CR128) 2015; 3
Li, Zhong, Zhong (CR95) 2015; 7
Yu, Kim, Meng (CR60) 2014; 14
Lechat, Bunsell, Davies (CR87) 2011; 46
Dickey, Chiechi, Larsen (CR104) 2008; 18
Chang, Sun, Yuan (CR110) 2010; 22
Paradiso, Loriga, Taccini (CR16) 2005; 9
Maheshwari, Saraf (CR38) 2006; 312
Kwak, Choi, Kim (CR79) 2012; 37
Li, Nie, Digiglio (CR19) 2014; 24
Yamada, Hayamizu, Yamamoto (CR31) 2011; 6
Janczak, Słoma, Wróblewski (CR62) 2014; 14
Lee, Peters, Mooney (CR125) 2001; 13
Bae, Lee, Sharma (CR81) 2013; 51
Chossat, Yong-Lae, Wood (CR42) 2013; 13
Kenry, Loh, Lim (CR109) 2015; 11
Sekitani, Noguchi, Hata (CR14) 2008; 321
Jeong, Yeo, Akhtar (CR25) 2013; 25
Harada, Kanao, Yamamoto (CR46) 2014; 8
Labroo, Cui (CR78) 2013; 41
Jung, Yang (CR43) 2015; 15
Sardini, Serpelloni, Pasqui (CR96) 2015; 64
Gerratt, Michaud, Lacour (CR114) 2015; 25
Peer, Karp, Hong (CR123) 2007; 2
Büscher, Kõiva, Schürmann (CR94) 2015; 63
Muth, Vogt, Truby (CR89) 2014; 26
Schwartz, Tee, Mei (CR129) 2013; 4
James, Naveen, Kaivon (CR120) 2013; 10
Lee, Lim, Kenry (CR108) 2015; 11
Nie, Li, Brandt (CR106) 2014; 14
Mi, Li, Turng (CR55) 2014; 56
Sarkar, Srinives, Sarkar (CR68) 2014; 118
Tian, Shu, Cui (CR82) 2014; 6
Moshayedi, Ng, Kwok (CR121) 2014; 35
Pradel, Wu, Ding (CR21) 2014; 14
Secor, Hersam (CR63) 2015; 6
Segev-Bar, Landman, Nir-Shapira (CR39) 2013; 5
Amjadi, Pichitpajongkit, Lee (CR98) 2014; 8
Robinson, Minev, Graz (CR92) 2011; 27
Rogers, Someya, Huang (CR12) 2010; 327
Cabrera, de Souza, Job (CR18) 2014; 4
Kim, Lu, Ma (CR44) 2011; 333
Wang, Jiu, Nogi (CR37) 2015; 7
Yan, Chang, Yin (CR75) 2014; 16
Minev, Musienko, Hirsch (CR49) 2015; 347
Park, Kwon, Lee (CR76) 2012; 12
Ahn, Duoss, Motala (CR13) 2009; 323
Lee, Ma, Jang (CR56) 2015; 25
Nie, Li, Brandt (CR105) 2014; 14
Widdle, Bajaj, Davies (CR54) 2008; 46
Lu, Sun, Gu (CR124) 2014; 194
Waller, Lalande, Leterrier (CR52) 2011; 519
Kim, Park, Park (CR35) 2015; 27
Kostarelos, Novoselov (CR72) 2014; 9
Mandal, Yoon, Kim (CR23) 2011; 32
Kulkarni, Reddy, Zhong (CR77) 2014; 5
Takei, Takahashi, Ho (CR36) 2010; 9
Ha, de Vries, John (CR59) 2012; 14
Vosgueritchian, Tok, Bao (CR9) 2013; 7
Park, Lee, Hong (CR7) 2014; 8
Kong, Jang, Kim (CR100) 2014; 77
Wu, Liao, Tung (CR41) 2011; 11
Bauer, Farris (CR86) 1989; 29
Ponce Wong, Posner, Santos (CR1) 2012; 179
Pan, Chortos, Yu (CR33) 2014; 5
Klein, Klein, Linton (CR130) 1992; 33
Chaudhuri, Ebrahimi Warkiani, Jing (CR103) 2016; 141
Wang, Shim, Levinson (CR122) 2014; 24
Ryu, Lee, Chou (CR70) 2015; 9
Roh, Hwang, Kim (CR34) 2015; 9
Mayer, Mooney, Matheson (CR119) 2006; 87
Focke, Kosse, Muller (CR20) 2010; 10
Cohen, Mitra, Peterson (CR30) 2012; 12
Zhang, Kruss, Hilmer (CR66) 2014; 3
CR84
Wang, Liu (CR85) 2015; 5
Borini, White, Wei (CR74) 2013; 7
Shepherd, Ilievski, Choi (CR5) 2011; 108
Wang, Liu, Yang (CR65) 2015; 5
Araci, Su, Quake (CR10) 2014; 20
Yeom, Chen, Kiriya (CR71) 2015; 27
Matsuzaki, Keating, Todoroki (CR27) 2008; 148
Di, Yao, Ye (CR50) 2015; 9
CR97
Morin, Shepherd, Kwok (CR6) 2012; 337
Saetia, Schnorr, Mannarino (CR61) 2014; 24
Ota, Chen, Lin (CR102) 2014; 5
Kaltenbrunner, Sekitani, Reeder (CR11) 2013; 499
Choi, Park, Hyun (CR48) 2015; 9
Lim, Kim (CR51) 2004; 36
Lee, Shin, Lee (CR91) 2015; 25
Kim, Zhu, Yeom (CR15) 2013; 500
Liu, Dong, Chen (CR80) 2012; 41
Hu, Chen, Zhou (CR67) 2013; 176
Gómez-Navarro, Weitz, Bittner (CR112) 2007; 7
Dagdeviren, Shi, Joe (CR47) 2015; 14
Fan, Yeo, Su (CR93) 2014; 5
Petrofsky, Laymon, Lee (CR118) 2013; 19
Ilievski, Mazzeo, Shepherd (CR4) 2011; 50
Zhou, Gu, Fei (CR22) 2008; 8
Pang, Lee, Kim T-i (CR32) 2012; 11
Sokolov, Tee, Bettinger (CR45) 2012; 45
Takei, Yu, Zheng (CR69) 2014; 111
Ng, Kenry, Teck Lim (CR73) 2015; 65
Gao, Meguro, Okamoto (CR24) 2012; 28
Aliberti, MdSX, AdC (CR126) 2011; 66
L Yu (BFmicronano201643_CR60) 2014; 14
IE Araci (BFmicronano201643_CR10) 2014; 20
DJ Cohen (BFmicronano201643_CR30) 2012; 12
AN Sokolov (BFmicronano201643_CR45) 2012; 45
H Ota (BFmicronano201643_CR102) 2014; 5
D Peer (BFmicronano201643_CR123) 2007; 2
K Saetia (BFmicronano201643_CR61) 2014; 24
WC Lee (BFmicronano201643_CR108) 2015; 11
S Xu (BFmicronano201643_CR2) 2014; 344
S Li (BFmicronano201643_CR95) 2015; 7
GH Büscher (BFmicronano201643_CR94) 2015; 63
J-H Kong (BFmicronano201643_CR100) 2014; 77
T Yamada (BFmicronano201643_CR31) 2011; 6
J Park (BFmicronano201643_CR7) 2014; 8
SC Jacobson (BFmicronano201643_CR115) 1982; 29
K Arapov (BFmicronano201643_CR64) 2015; 26
MM Gudarzi (BFmicronano201643_CR113) 2011; 7
Y-L Tai (BFmicronano201643_CR128) 2015; 3
K Takei (BFmicronano201643_CR69) 2014; 111
S Borini (BFmicronano201643_CR74) 2013; 7
JB Chossat (BFmicronano201643_CR42) 2013; 13
BFmicronano201643_CR97
JM Mayer (BFmicronano201643_CR119) 2006; 87
F Ilievski (BFmicronano201643_CR4) 2011; 50
KY Lee (BFmicronano201643_CR125) 2001; 13
J Zhou (BFmicronano201643_CR22) 2008; 8
PK Chaudhuri (BFmicronano201643_CR103) 2016; 141
C Gómez-Navarro (BFmicronano201643_CR112) 2007; 7
H Tian (BFmicronano201643_CR82) 2014; 6
M Focke (BFmicronano201643_CR20) 2010; 10
Y Liu (BFmicronano201643_CR80) 2012; 41
B Nie (BFmicronano201643_CR106) 2014; 14
Y Chen (BFmicronano201643_CR101) 2015; 5
P Moshayedi (BFmicronano201643_CR121) 2014; 35
J-W Jeong (BFmicronano201643_CR25) 2013; 25
C Lechat (BFmicronano201643_CR87) 2011; 46
H Seo (BFmicronano201643_CR111) 2014; 4
FC Cabrera (BFmicronano201643_CR18) 2014; 4
RD Widdle Jr (BFmicronano201643_CR54) 2008; 46
Y Wang (BFmicronano201643_CR122) 2014; 24
K-I Jang (BFmicronano201643_CR57) 2014; 5
J Lee (BFmicronano201643_CR40) 2014; 6
JH Waller (BFmicronano201643_CR52) 2011; 519
CH Lee (BFmicronano201643_CR56) 2015; 25
M Vosgueritchian (BFmicronano201643_CR9) 2013; 7
MD Dickey (BFmicronano201643_CR104) 2008; 18
JA Fan (BFmicronano201643_CR93) 2014; 5
S Harada (BFmicronano201643_CR46) 2014; 8
GS Kulkarni (BFmicronano201643_CR77) 2014; 5
Y Yang (BFmicronano201643_CR26) 2013; 7
C-Y Wu (BFmicronano201643_CR41) 2011; 11
J Kim (BFmicronano201643_CR8) 2014; 5
M Segev-Bar (BFmicronano201643_CR39) 2013; 5
T Sarkar (BFmicronano201643_CR68) 2014; 118
E Roh (BFmicronano201643_CR34) 2015; 9
Kenry (BFmicronano201643_CR109) 2015; 11
K Kostarelos (BFmicronano201643_CR72) 2014; 9
S Wang (BFmicronano201643_CR65) 2015; 5
BY Ahn (BFmicronano201643_CR13) 2009; 323
SJ Park (BFmicronano201643_CR76) 2012; 12
K-I Jang (BFmicronano201643_CR58) 2015; 6
JY Lim (BFmicronano201643_CR51) 2004; 36
D Ha (BFmicronano201643_CR59) 2012; 14
T Jung (BFmicronano201643_CR43) 2015; 15
B Hu (BFmicronano201643_CR67) 2013; 176
T Sekitani (BFmicronano201643_CR14) 2008; 321
JT Muth (BFmicronano201643_CR89) 2014; 26
KC Pradel (BFmicronano201643_CR21) 2014; 14
S Khan (BFmicronano201643_CR53) 2015; 15
H Chang (BFmicronano201643_CR110) 2010; 22
Y Lu (BFmicronano201643_CR124) 2014; 194
IR Minev (BFmicronano201643_CR49) 2015; 347
S Choi (BFmicronano201643_CR48) 2015; 9
B Nie (BFmicronano201643_CR105) 2014; 14
G Schwartz (BFmicronano201643_CR129) 2013; 4
J Di (BFmicronano201643_CR50) 2015; 9
CL Bauer (BFmicronano201643_CR86) 1989; 29
V Maheshwari (BFmicronano201643_CR38) 2006; 312
S Raspopovic (BFmicronano201643_CR116) 2014; 6
C Yeom (BFmicronano201643_CR71) 2015; 27
P Labroo (BFmicronano201643_CR78) 2013; 41
CB James (BFmicronano201643_CR120) 2013; 10
EB Secor (BFmicronano201643_CR63) 2015; 6
Q Gao (BFmicronano201643_CR24) 2012; 28
S-H Bae (BFmicronano201643_CR81) 2013; 51
M Drack (BFmicronano201643_CR88) 2015; 27
M Kaltenbrunner (BFmicronano201643_CR11) 2013; 499
E Sardini (BFmicronano201643_CR96) 2015; 64
SCB Mannsfeld (BFmicronano201643_CR28) 2010; 9
SY Kim (BFmicronano201643_CR35) 2015; 27
RF Shepherd (BFmicronano201643_CR5) 2011; 108
BFmicronano201643_CR84
YeoJC Kenry (BFmicronano201643_CR107) 2016; 12
BE Klein (BFmicronano201643_CR130) 1992; 33
YH Kwak (BFmicronano201643_CR79) 2012; 37
R Matsuzaki (BFmicronano201643_CR27) 2008; 148
AMH Ng (BFmicronano201643_CR73) 2015; 65
KK Sadasivuni (BFmicronano201643_CR83) 2015; 11
Y Kim (BFmicronano201643_CR15) 2013; 500
L Pan (BFmicronano201643_CR33) 2014; 5
D Mandal (BFmicronano201643_CR23) 2011; 32
S Ryu (BFmicronano201643_CR70) 2015; 9
R Li (BFmicronano201643_CR19) 2014; 24
C Dagdeviren (BFmicronano201643_CR47) 2015; 14
H-Y Mi (BFmicronano201643_CR55) 2014; 56
S Aliberti (BFmicronano201643_CR126) 2011; 66
D Janczak (BFmicronano201643_CR62) 2014; 14
SA Morin (BFmicronano201643_CR6) 2012; 337
K Takei (BFmicronano201643_CR36) 2010; 9
L Yan (BFmicronano201643_CR75) 2014; 16
JS Petrofsky (BFmicronano201643_CR118) 2013; 19
M Melzer (BFmicronano201643_CR90) 2015; 27
RS Dahiya (BFmicronano201643_CR117) 2010; 26
R Paradiso (BFmicronano201643_CR16) 2005; 9
C-L Choong (BFmicronano201643_CR17) 2014; 26
S Lee (BFmicronano201643_CR91) 2015; 25
AP Robinson (BFmicronano201643_CR92) 2011; 27
RD Ponce Wong (BFmicronano201643_CR1) 2012; 179
F Zhang (BFmicronano201643_CR127) 2015; 6
J Wang (BFmicronano201643_CR37) 2015; 7
JA Rogers (BFmicronano201643_CR12) 2010; 327
M Amjadi (BFmicronano201643_CR98) 2014; 8
C Pang (BFmicronano201643_CR32) 2012; 11
J Zhang (BFmicronano201643_CR66) 2014; 3
CS Boland (BFmicronano201643_CR99) 2014; 8
S Gong (BFmicronano201643_CR3) 2014; 5
D-H Kim (BFmicronano201643_CR44) 2011; 333
L Wang (BFmicronano201643_CR85) 2015; 5
DJ Lipomi (BFmicronano201643_CR29) 2011; 6
AP Gerratt (BFmicronano201643_CR114) 2015; 25
References_xml – volume: 6
  start-page: 788
  year: 2011
  end-page: 792
  ident: CR29
  article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
  publication-title: Nature Nanotechnology
– volume: 5
  start-page: 5747
  year: 2014
  ident: CR8
  article-title: Stretchable silicon nanoribbon electronics for skin prosthesis
  publication-title: Nature Communications
– volume: 111
  start-page: 1703
  year: 2014
  end-page: 1707
  ident: CR69
  article-title: Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 859
  year: 2010
  end-page: 864
  ident: CR28
  article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
  publication-title: Nature Materials
– ident: CR97
– volume: 27
  start-page: 4279
  year: 2011
  end-page: 4284
  ident: CR92
  article-title: Microstructured silicone substrate for printable and stretchable metallic films
  publication-title: Langmuir
– volume: 12
  start-page: 5082
  year: 2012
  end-page: 5090
  ident: CR76
  article-title: Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose
  publication-title: Nano Letters
– volume: 25
  start-page: 2287
  year: 2015
  end-page: 2295
  ident: CR114
  article-title: Elastomeric electronic skin for prosthetic tactile sensation
  publication-title: Advanced Functional Materials
– volume: 12
  start-page: 1821
  year: 2012
  end-page: 1825
  ident: CR30
  article-title: A highly elastic, capacitive strain gauge based on percolating nanotube networks
  publication-title: Nano Letters
– volume: 25
  start-page: 3698
  year: 2015
  end-page: 3704
  ident: CR56
  article-title: Soft core/shell packages for stretchable electronics
  publication-title: Advanced Functional Materials
– volume: 27
  start-page: 1333
  year: 2015
  end-page: 1338
  ident: CR90
  article-title: Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics
  publication-title: Advanced Materials
– volume: 9
  start-page: 6252
  year: 2015
  end-page: 6261
  ident: CR34
  article-title: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
  publication-title: ACS Nano
– volume: 14
  start-page: 20620
  year: 2014
  ident: CR60
  article-title: Chronically implanted pressure sensors: Challenges and state of the field
  publication-title: Sensors
– volume: 24
  start-page: 492
  year: 2014
  end-page: 502
  ident: CR61
  article-title: Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications
  publication-title: Advanced Functional Materials
– volume: 11
  start-page: 1740
  year: 2011
  end-page: 1746
  ident: CR41
  article-title: Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems
  publication-title: Lab on a Chip
– volume: 25
  start-page: 6839
  year: 2013
  end-page: 6846
  ident: CR25
  article-title: Materials and optimized designs for human-machine interfaces via epidermal electronics
  publication-title: Advanced Materials
– volume: 9
  start-page: 6626
  year: 2015
  end-page: 6633
  ident: CR48
  article-title: Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy
  publication-title: ACS Nano
– volume: 6
  start-page: 620
  year: 2015
  end-page: 626
  ident: CR63
  article-title: Emerging carbon and post-carbon nanomaterial inks for printed electronics
  publication-title: The Journal of Physical Chemistry Letters
– volume: 11
  start-page: 795
  year: 2012
  end-page: 801
  ident: CR32
  article-title: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
  publication-title: Nature Materials
– volume: 4
  start-page: 35467
  year: 2014
  end-page: 35475
  ident: CR18
  article-title: Natural-rubber-based flexible microfluidic device
  publication-title: RSC Advances
– volume: 8
  start-page: 12851
  year: 2014
  end-page: 12857
  ident: CR46
  article-title: Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin
  publication-title: ACS Nano
– volume: 176
  start-page: 522
  year: 2013
  end-page: 533
  ident: CR67
  article-title: High performance flexible sensor based on inorganic nanomaterials
  publication-title: Sensors and Actuators B: Chemical
– volume: 16
  start-page: 1576
  year: 2014
  end-page: 1582
  ident: CR75
  article-title: Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing
  publication-title: Physical Chemistry Chemical Physics
– volume: 13
  start-page: 3405
  year: 2013
  end-page: 3414
  ident: CR42
  article-title: A soft strain sensor based on ionic and metal liquids
  publication-title: IEEE Sensors Journal
– volume: 26
  start-page: 6307
  year: 2014
  end-page: 6312
  ident: CR89
  article-title: Embedded 3D printing of strain sensors within highly stretchable elastomers
  publication-title: Advanced Materials
– volume: 9
  start-page: 9407
  year: 2015
  end-page: 9415
  ident: CR50
  article-title: Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots
  publication-title: ACS Nano
– volume: 327
  start-page: 1603
  year: 2010
  end-page: 1607
  ident: CR12
  article-title: Materials and mechanics for stretchable electronics
  publication-title: Science
– volume: 11
  start-page: 5105
  year: 2015
  end-page: 5117
  ident: CR109
  article-title: Molecular hemocompatibility of graphene oxide and its implication for antithrombotic applications
  publication-title: Small
– volume: 7
  start-page: 769
  year: 2013
  end-page: 771
  ident: CR9
  article-title: Stretchable LEDs: Light-emitting electronic skin
  publication-title: Nature Photonics
– volume: 26
  start-page: 3451
  year: 2014
  end-page: 3458
  ident: CR17
  article-title: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array
  publication-title: Advanced Materials
– volume: 11
  start-page: 994
  year: 2015
  end-page: 1002
  ident: CR83
  article-title: Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing
  publication-title: Small
– volume: 5
  start-page: 5032
  year: 2014
  ident: CR102
  article-title: Highly deformable liquid-state heterojunction sensors
  publication-title: Nature Communications
– volume: 22
  start-page: 4872
  year: 2010
  end-page: 4876
  ident: CR110
  article-title: Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films
  publication-title: Advanced Materials
– volume: 19
  start-page: 661
  year: 2013
  end-page: 667
  ident: CR118
  article-title: Effect of heat and cold on tendon flexibility and force to flex the human knee
  publication-title: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
– volume: 5
  start-page: 11505
  year: 2015
  ident: CR101
  article-title: Breathable and stretchable temperature sensors inspired by skin
  publication-title: Scientific Reports
– volume: 35
  start-page: 3919
  year: 2014
  end-page: 3925
  ident: CR121
  article-title: The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system
  publication-title: Biomaterials
– volume: 27
  start-page: 4178
  year: 2015
  end-page: 4185
  ident: CR35
  article-title: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli
  publication-title: Advanced Materials
– volume: 20
  start-page: 1074
  year: 2014
  end-page: 1078
  ident: CR10
  article-title: An implantable microfluidic device for self-monitoring of intraocular pressure
  publication-title: Nature Medicine
– volume: 11
  start-page: 963
  year: 2015
  end-page: 969
  ident: CR108
  article-title: Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation
  publication-title: Small
– volume: 344
  start-page: 70
  year: 2014
  end-page: 74
  ident: CR2
  article-title: Soft microfluidic assemblies of sensors, circuits, and radios for the skin
  publication-title: Science
– volume: 5
  start-page: 85799
  year: 2015
  end-page: 85805
  ident: CR65
  article-title: Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors
  publication-title: RSC Advances
– volume: 77
  start-page: 199
  year: 2014
  end-page: 207
  ident: CR100
  article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors
  publication-title: Carbon
– volume: 499
  start-page: 458
  year: 2013
  end-page: 463
  ident: CR11
  article-title: An ultra-lightweight design for imperceptible plastic electronics
  publication-title: Nature
– volume: 64
  start-page: 439
  year: 2015
  end-page: 448
  ident: CR96
  article-title: Wireless wearable T-shirt for posture monitoring during rehabilitation exercises
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 14
  start-page: 207
  year: 2012
  end-page: 215
  ident: CR59
  article-title: Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye
  publication-title: Biomed Microdevices
– volume: 46
  start-page: 528
  year: 2011
  end-page: 533
  ident: CR87
  article-title: Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres
  publication-title: Journal of Materials Science
– volume: 50
  start-page: 1890
  year: 2011
  end-page: 1895
  ident: CR4
  article-title: Soft robotics for chemists
  publication-title: Angewandte Chemie International Edition
– volume: 7
  start-page: 3499
  year: 2007
  end-page: 3503
  ident: CR112
  article-title: Electronic transport properties of individual chemically reduced graphene oxide sheets
  publication-title: Nano Letters
– volume: 8
  start-page: 12020
  year: 2014
  end-page: 12029
  ident: CR7
  article-title: Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures
  publication-title: ACS Nano
– volume: 10
  start-page: 066014
  year: 2013
  ident: CR120
  article-title: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates
  publication-title: Journal of Neural Engineering
– volume: 5
  start-page: 3002
  year: 2014
  ident: CR33
  article-title: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film
  publication-title: Nature Communications
– volume: 27
  start-page: 34
  year: 2015
  end-page: 40
  ident: CR88
  article-title: An imperceptible plastic electronic wrap
  publication-title: Advanced Materials
– volume: 500
  start-page: 59
  year: 2013
  end-page: 63
  ident: CR15
  article-title: Stretchable nanoparticle conductors with self-organized conductive pathways
  publication-title: Nature
– volume: 5
  start-page: 3132
  year: 2014
  ident: CR3
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nature Communications
– volume: 8
  start-page: 8819
  year: 2014
  end-page: 8830
  ident: CR99
  article-title: Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites
  publication-title: ACS Nano
– volume: 29
  start-page: 249
  year: 1982
  end-page: 269
  ident: CR115
  article-title: Development of the Utah Artificial Arm
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 37
  start-page: 82
  year: 2012
  end-page: 87
  ident: CR79
  article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor
  publication-title: Biosensors and Bioelectronics
– volume: 7
  start-page: 3432
  year: 2011
  end-page: 3440
  ident: CR113
  article-title: Self assembly of graphene oxide at the liquid-liquid interface: A new route to the fabrication of graphene based composites
  publication-title: Soft Matter
– volume: 3
  start-page: 5436
  year: 2015
  end-page: 5441
  ident: CR128
  article-title: Flexible pressure sensing film based on ultra-sensitive SWCNT/PDMS spheres for monitoring human pulse signals
  publication-title: Journal of Materials Chemistry B
– volume: 24
  start-page: 6195
  year: 2014
  end-page: 6203
  ident: CR19
  article-title: Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film
  publication-title: Advanced Functional Materials
– volume: 194
  start-page: 1
  year: 2014
  end-page: 19
  ident: CR124
  article-title: Stimuli-responsive nanomaterials for therapeutic protein delivery
  publication-title: Journal of Controlled Release
– volume: 5
  start-page: 4779
  year: 2014
  ident: CR57
  article-title: Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring
  publication-title: Nature Communications
– volume: 27
  start-page: 1561
  year: 2015
  end-page: 1566
  ident: CR71
  article-title: Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes
  publication-title: Advanced Materials
– volume: 9
  start-page: 5929
  year: 2015
  end-page: 5936
  ident: CR70
  article-title: Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion
  publication-title: ACS Nano
– volume: 8
  start-page: 3035
  year: 2008
  end-page: 3040
  ident: CR22
  article-title: Flexible piezotronic strain sensor
  publication-title: Nano Letters
– volume: 118
  start-page: 1602
  year: 2014
  end-page: 1610
  ident: CR68
  article-title: Single-walled carbon nanotube–poly(porphyrin) hybrid for volatile organic compounds detection
  publication-title: The Journal of Physical Chemistry C
– volume: 337
  start-page: 828
  year: 2012
  end-page: 832
  ident: CR6
  article-title: Camouflage and display for soft machines
  publication-title: Science
– volume: 323
  start-page: 1590
  year: 2009
  end-page: 1593
  ident: CR13
  article-title: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes
  publication-title: Science
– volume: 6
  start-page: 6566
  year: 2015
  ident: CR58
  article-title: Soft network composite materials with deterministic and bio-inspired designs
  publication-title: Nature Communications
– volume: 51
  start-page: 236
  year: 2013
  end-page: 242
  ident: CR81
  article-title: Graphene-based transparent strain sensor
  publication-title: Carbon
– volume: 2
  start-page: 751
  year: 2007
  end-page: 760
  ident: CR123
  article-title: Nanocarriers as an emerging platform for cancer therapy
  publication-title: Nature Nanotechnology
– volume: 5
  start-page: 3266
  year: 2014
  ident: CR93
  article-title: Fractal design concepts for stretchable electronics
  publication-title: Nature Communications
– volume: 14
  start-page: 6897
  year: 2014
  end-page: 6905
  ident: CR21
  article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
  publication-title: Nano Letters
– volume: 8
  start-page: 5154
  year: 2014
  end-page: 5163
  ident: CR98
  article-title: Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite
  publication-title: ACS Nano
– volume: 66
  start-page: 367
  year: 2011
  end-page: 372
  ident: CR126
  article-title: Influence of patellofemoral pain syndrome on plantar pressure in the foot rollover process during gait
  publication-title: Clinics
– volume: 179
  start-page: 62
  year: 2012
  end-page: 69
  ident: CR1
  article-title: Flexible microfluidic normal force sensor skin for tactile feedback
  publication-title: Sensors and Actuators A: Physical
– volume: 6
  start-page: 296
  year: 2011
  end-page: 301
  ident: CR31
  article-title: A stretchable carbon nanotube strain sensor for human-motion detection
  publication-title: Nature Nanotechnology
– volume: 7
  start-page: 14912
  year: 2015
  end-page: 14916
  ident: CR95
  article-title: Cloth-based power shirt for wearable energy harvesting and clothes ornamentation
  publication-title: ACS Applied Materials & Interfaces
– volume: 14
  start-page: 17304
  year: 2014
  ident: CR62
  article-title: Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes
  publication-title: Sensors
– volume: 25
  start-page: 3105
  year: 2015
  end-page: 3105
  ident: CR91
  article-title: Stretchable electronics: Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics
  publication-title: Advanced Functional Materials
– volume: 63
  start-page: 244
  issue: Part 3
  year: 2015
  end-page: 252
  ident: CR94
  article-title: Flexible and stretchable fabric-based tactile sensor
  publication-title: Robotics and Autonomous Systems
– volume: 87
  start-page: 1310
  year: 2006
  end-page: 1317
  ident: CR119
  article-title: Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: A randomized controlled trial
  publication-title: Archives of Physical Medicine and Rehabilitation
– ident: CR84
– volume: 36
  start-page: 769
  year: 2004
  end-page: 773
  ident: CR51
  article-title: Yield strain behavior of poly(ethylene terephthalate): Correlation with yield stress behavior in strain rate, temperature, and structure dependence
  publication-title: Polymer Journal
– volume: 5
  start-page: 4376
  year: 2014
  ident: CR77
  article-title: Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection
  publication-title: Nature Communications
– volume: 6
  start-page: 699
  year: 2014
  end-page: 705
  ident: CR82
  article-title: Scalable fabrication of high-performance and flexible graphene strain sensors
  publication-title: Nanoscale
– volume: 18
  start-page: 1097
  year: 2008
  end-page: 1104
  ident: CR104
  article-title: Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
  publication-title: Advanced Functional Materials
– volume: 45
  start-page: 361
  year: 2012
  end-page: 371
  ident: CR45
  article-title: Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications
  publication-title: Accounts of Chemical Research
– volume: 29
  start-page: 1107
  year: 1989
  end-page: 1110
  ident: CR86
  article-title: Determination of poisson's ratio for polyimide films
  publication-title: Polymer Engineering & Science
– volume: 3
  start-page: 412
  year: 2014
  end-page: 423
  ident: CR66
  article-title: A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors
  publication-title: Advanced Healthcare Materials
– volume: 32
  start-page: 831
  year: 2011
  end-page: 837
  ident: CR23
  article-title: Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor
  publication-title: Macromolecular Rapid Communications
– volume: 56
  start-page: 398
  year: 2014
  end-page: 404
  ident: CR55
  article-title: Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: Thermal, mechanical, and dielectric properties
  publication-title: Materials & Design
– volume: 347
  start-page: 159
  year: 2015
  end-page: 163
  ident: CR49
  article-title: Electronic dura mater for long-term multimodal neural interfaces
  publication-title: Science
– volume: 41
  start-page: 852
  year: 2013
  end-page: 856
  ident: CR78
  article-title: Flexible graphene bio-nanosensor for lactate
  publication-title: Biosensors and Bioelectronics
– volume: 6
  start-page: 222ra219
  year: 2014
  end-page: 222ra219
  ident: CR116
  article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses
  publication-title: Science Translational Medicine
– volume: 321
  start-page: 1468
  year: 2008
  end-page: 1472
  ident: CR14
  article-title: A rubberlike stretchable active matrix using elastic conductors
  publication-title: Science
– volume: 4
  start-page: 5642
  year: 2014
  ident: CR111
  article-title: Multi-resistive reduced graphene oxide diode with reversible surface electrochemical reaction induced carrier control
  publication-title: Scientific Reports
– volume: 6
  start-page: 8356
  year: 2015
  ident: CR127
  article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials
  publication-title: Nature Communications
– volume: 9
  start-page: 337
  year: 2005
  end-page: 344
  ident: CR16
  article-title: A wearable health care system based on knitted integrated sensors
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 41
  start-page: 2283
  year: 2012
  end-page: 2307
  ident: CR80
  article-title: Biological and chemical sensors based on graphene materials
  publication-title: Chemical Society Reviews
– volume: 7
  start-page: 11166
  year: 2013
  end-page: 11173
  ident: CR74
  article-title: Ultrafast graphene oxide humidity sensors
  publication-title: ACS Nano
– volume: 9
  start-page: 744
  year: 2014
  end-page: 745
  ident: CR72
  article-title: Graphene devices for life
  publication-title: Nature Nanotechnology
– volume: 5
  start-page: 5531
  year: 2013
  end-page: 5541
  ident: CR39
  article-title: Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin
  publication-title: ACS Applied Materials & Interfaces
– volume: 5
  start-page: 57686
  year: 2015
  end-page: 57691
  ident: CR85
  article-title: Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns
  publication-title: RSC Advances
– volume: 9
  start-page: 821
  year: 2010
  end-page: 826
  ident: CR36
  article-title: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin
  publication-title: Nature Materials
– volume: 141
  start-page: 504
  year: 2016
  end-page: 524
  ident: CR103
  article-title: Microfluidics for research and applications in oncology
  publication-title: Analyst
– volume: 24
  start-page: 4206
  year: 2014
  end-page: 4220
  ident: CR122
  article-title: Stimuli-responsive materials for controlled release of theranostic agents
  publication-title: Advanced Functional Materials
– volume: 519
  start-page: 4249
  year: 2011
  end-page: 4255
  ident: CR52
  article-title: Modelling the effect of temperature on crack onset strain of brittle coatings on polymer substrates
  publication-title: Thin Solid Films
– volume: 6
  start-page: 11932
  year: 2014
  end-page: 11939
  ident: CR40
  article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
  publication-title: Nanoscale
– volume: 14
  start-page: 4344
  year: 2014
  end-page: 4353
  ident: CR106
  article-title: Microfluidic tactile sensors for three-dimensional contact force measurements
  publication-title: Lab on a Chip
– volume: 312
  start-page: 1501
  year: 2006
  end-page: 1504
  ident: CR38
  article-title: High-resolution thin-film device to sense texture by touch
  publication-title: Science
– volume: 65
  start-page: 265
  year: 2015
  end-page: 273
  ident: CR73
  article-title: Highly sensitive reduced graphene oxide microelectrode array sensor
  publication-title: Biosensors and Bioelectronics
– volume: 15
  start-page: 11823
  year: 2015
  ident: CR43
  article-title: Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel
  publication-title: Sensors
– volume: 14
  start-page: 1107
  year: 2014
  end-page: 1116
  ident: CR105
  article-title: Iontronic microdroplet array for flexible ultrasensitive tactile sensing
  publication-title: Lab on a Chip
– volume: 12
  start-page: 1593
  year: 2016
  end-page: 1604
  ident: CR107
  article-title: Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor
  publication-title: Small
– volume: 4
  start-page: 1859
  year: 2013
  ident: CR129
  article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
  publication-title: Nature Communications
– volume: 7
  start-page: 9213
  year: 2013
  end-page: 9222
  ident: CR26
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
– volume: 46
  start-page: 31
  year: 2008
  end-page: 49
  ident: CR54
  article-title: Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model
  publication-title: International Journal of Engineering Science
– volume: 33
  start-page: 2224
  year: 1992
  end-page: 2228
  ident: CR130
  article-title: Intraocular pressure in an American community. The Beaver Dam Eye Study
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 14
  start-page: 728
  year: 2015
  end-page: 736
  ident: CR47
  article-title: Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics
  publication-title: Nature Materials
– volume: 333
  start-page: 838
  year: 2011
  end-page: 843
  ident: CR44
  article-title: Epidermal electronics
  publication-title: Science
– volume: 7
  start-page: 2926
  year: 2015
  end-page: 2932
  ident: CR37
  article-title: A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires
  publication-title: Nanoscale
– volume: 26
  start-page: 586
  year: 2015
  end-page: 593
  ident: CR64
  article-title: Conductive screen printing inks by gelation of graphene dispersions
  publication-title: Advanced Functional Materials
– volume: 26
  start-page: 1
  year: 2010
  end-page: 20
  ident: CR117
  article-title: Tactile sensing - from humans to humanoids
  publication-title: IEEE Transactions on Robotics
– volume: 13
  start-page: 837
  year: 2001
  end-page: 839
  ident: CR125
  article-title: Controlled drug delivery from polymers by mechanical signals
  publication-title: Advanced Materials
– volume: 28
  start-page: 17593
  year: 2012
  end-page: 17596
  ident: CR24
  article-title: Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies
  publication-title: Langmuir
– volume: 148
  start-page: 1
  year: 2008
  end-page: 9
  ident: CR27
  article-title: Rubber-based strain sensor fabricated using photolithography for intelligent tires
  publication-title: Sensors and Actuators A: Physical
– volume: 10
  start-page: 1365
  year: 2010
  end-page: 1386
  ident: CR20
  article-title: Lab-on-a-Foil: Microfluidics on thin and flexible films
  publication-title: Lab on a Chip
– volume: 15
  start-page: 3164
  year: 2015
  end-page: 3185
  ident: CR53
  article-title: Technologies for printing sensors and electronics over large flexible substrates: a review
  publication-title: IEEE Sensors Journal
– volume: 108
  start-page: 20400
  year: 2011
  end-page: 20403
  ident: CR5
  article-title: Multigait soft robot
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 12020
  year: 2014
  ident: BFmicronano201643_CR7
  publication-title: ACS Nano
  doi: 10.1021/nn505953t
– volume: 7
  start-page: 3432
  year: 2011
  ident: BFmicronano201643_CR113
  publication-title: Soft Matter
  doi: 10.1039/c0sm01311k
– volume: 9
  start-page: 9407
  year: 2015
  ident: BFmicronano201643_CR50
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03975
– volume: 9
  start-page: 337
  year: 2005
  ident: BFmicronano201643_CR16
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2005.854512
– volume: 46
  start-page: 31
  year: 2008
  ident: BFmicronano201643_CR54
  publication-title: International Journal of Engineering Science
  doi: 10.1016/j.ijengsci.2007.09.002
– volume: 5
  start-page: 57686
  year: 2015
  ident: BFmicronano201643_CR85
  publication-title: RSC Advances
  doi: 10.1039/C5RA10295B
– volume: 344
  start-page: 70
  year: 2014
  ident: BFmicronano201643_CR2
  publication-title: Science
  doi: 10.1126/science.1250169
– volume: 29
  start-page: 1107
  year: 1989
  ident: BFmicronano201643_CR86
  publication-title: Polymer Engineering & Science
  doi: 10.1002/pen.760291606
– volume: 50
  start-page: 1890
  year: 2011
  ident: BFmicronano201643_CR4
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201006464
– volume: 5
  start-page: 5747
  year: 2014
  ident: BFmicronano201643_CR8
  publication-title: Nature Communications
  doi: 10.1038/ncomms6747
– volume: 7
  start-page: 14912
  year: 2015
  ident: BFmicronano201643_CR95
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.5b03680
– volume: 3
  start-page: 412
  year: 2014
  ident: BFmicronano201643_CR66
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201300033
– volume: 9
  start-page: 744
  year: 2014
  ident: BFmicronano201643_CR72
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2014.224
– volume: 141
  start-page: 504
  year: 2016
  ident: BFmicronano201643_CR103
  publication-title: Analyst
  doi: 10.1039/C5AN00382B
– volume: 12
  start-page: 1821
  year: 2012
  ident: BFmicronano201643_CR30
  publication-title: Nano Letters
  doi: 10.1021/nl204052z
– volume: 6
  start-page: 6566
  year: 2015
  ident: BFmicronano201643_CR58
  publication-title: Nature Communications
  doi: 10.1038/ncomms7566
– volume: 5
  start-page: 4376
  year: 2014
  ident: BFmicronano201643_CR77
  publication-title: Nature Communications
  doi: 10.1038/ncomms5376
– volume: 8
  start-page: 8819
  year: 2014
  ident: BFmicronano201643_CR99
  publication-title: ACS Nano
  doi: 10.1021/nn503454h
– volume: 13
  start-page: 837
  year: 2001
  ident: BFmicronano201643_CR125
  publication-title: Advanced Materials
  doi: 10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-D
– volume: 9
  start-page: 6626
  year: 2015
  ident: BFmicronano201643_CR48
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02790
– volume: 8
  start-page: 3035
  year: 2008
  ident: BFmicronano201643_CR22
  publication-title: Nano Letters
  doi: 10.1021/nl802367t
– ident: BFmicronano201643_CR97
  doi: 10.1109/ICSensT.2013.6727727
– volume: 41
  start-page: 2283
  year: 2012
  ident: BFmicronano201643_CR80
  publication-title: Chemical Society Reviews
  doi: 10.1039/C1CS15270J
– volume: 14
  start-page: 4344
  year: 2014
  ident: BFmicronano201643_CR106
  publication-title: Lab on a Chip
  doi: 10.1039/C4LC00746H
– volume: 118
  start-page: 1602
  year: 2014
  ident: BFmicronano201643_CR68
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp409851m
– volume: 45
  start-page: 361
  year: 2012
  ident: BFmicronano201643_CR45
  publication-title: Accounts of Chemical Research
  doi: 10.1021/ar2001233
– volume: 179
  start-page: 62
  year: 2012
  ident: BFmicronano201643_CR1
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2012.03.023
– volume: 51
  start-page: 236
  year: 2013
  ident: BFmicronano201643_CR81
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.08.048
– volume: 26
  start-page: 6307
  year: 2014
  ident: BFmicronano201643_CR89
  publication-title: Advanced Materials
  doi: 10.1002/adma.201400334
– volume: 25
  start-page: 3105
  year: 2015
  ident: BFmicronano201643_CR91
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201570139
– volume: 5
  start-page: 3266
  year: 2014
  ident: BFmicronano201643_CR93
  publication-title: Nature Communications
  doi: 10.1038/ncomms4266
– volume: 9
  start-page: 6252
  year: 2015
  ident: BFmicronano201643_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01613
– volume: 5
  start-page: 5531
  year: 2013
  ident: BFmicronano201643_CR39
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am400757q
– volume: 8
  start-page: 12851
  year: 2014
  ident: BFmicronano201643_CR46
  publication-title: ACS Nano
  doi: 10.1021/nn506293y
– volume: 4
  start-page: 1859
  year: 2013
  ident: BFmicronano201643_CR129
  publication-title: Nature Communications
  doi: 10.1038/ncomms2832
– volume: 26
  start-page: 586
  year: 2015
  ident: BFmicronano201643_CR64
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201504030
– volume: 29
  start-page: 249
  year: 1982
  ident: BFmicronano201643_CR115
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.1982.325033
– ident: BFmicronano201643_CR84
  doi: 10.1109/ROBOT.2010.5509301
– volume: 14
  start-page: 207
  year: 2012
  ident: BFmicronano201643_CR59
  publication-title: Biomed Microdevices
  doi: 10.1007/s10544-011-9598-3
– volume: 337
  start-page: 828
  year: 2012
  ident: BFmicronano201643_CR6
  publication-title: Science
  doi: 10.1126/science.1222149
– volume: 24
  start-page: 6195
  year: 2014
  ident: BFmicronano201643_CR19
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201401527
– volume: 8
  start-page: 5154
  year: 2014
  ident: BFmicronano201643_CR98
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 27
  start-page: 4279
  year: 2011
  ident: BFmicronano201643_CR92
  publication-title: Langmuir
  doi: 10.1021/la103213n
– volume: 312
  start-page: 1501
  year: 2006
  ident: BFmicronano201643_CR38
  publication-title: Science
  doi: 10.1126/science.1126216
– volume: 4
  start-page: 35467
  year: 2014
  ident: BFmicronano201643_CR18
  publication-title: RSC Advances
  doi: 10.1039/C4RA07458K
– volume: 24
  start-page: 4206
  year: 2014
  ident: BFmicronano201643_CR122
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201400279
– volume: 7
  start-page: 3499
  year: 2007
  ident: BFmicronano201643_CR112
  publication-title: Nano Letters
  doi: 10.1021/nl072090c
– volume: 321
  start-page: 1468
  year: 2008
  ident: BFmicronano201643_CR14
  publication-title: Science
  doi: 10.1126/science.1160309
– volume: 27
  start-page: 4178
  year: 2015
  ident: BFmicronano201643_CR35
  publication-title: Advanced Materials
  doi: 10.1002/adma.201501408
– volume: 63
  start-page: 244
  issue: Part 3
  year: 2015
  ident: BFmicronano201643_CR94
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2014.09.007
– volume: 11
  start-page: 994
  year: 2015
  ident: BFmicronano201643_CR83
  publication-title: Small
  doi: 10.1002/smll.201402109
– volume: 22
  start-page: 4872
  year: 2010
  ident: BFmicronano201643_CR110
  publication-title: Advanced Materials
  doi: 10.1002/adma.201002229
– volume: 194
  start-page: 1
  year: 2014
  ident: BFmicronano201643_CR124
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2014.08.015
– volume: 176
  start-page: 522
  year: 2013
  ident: BFmicronano201643_CR67
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2012.09.036
– volume: 65
  start-page: 265
  year: 2015
  ident: BFmicronano201643_CR73
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2014.10.048
– volume: 5
  start-page: 4779
  year: 2014
  ident: BFmicronano201643_CR57
  publication-title: Nature Communications
  doi: 10.1038/ncomms5779
– volume: 37
  start-page: 82
  year: 2012
  ident: BFmicronano201643_CR79
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2012.04.042
– volume: 28
  start-page: 17593
  year: 2012
  ident: BFmicronano201643_CR24
  publication-title: Langmuir
  doi: 10.1021/la304240r
– volume: 14
  start-page: 6897
  year: 2014
  ident: BFmicronano201643_CR21
  publication-title: Nano Letters
  doi: 10.1021/nl5029182
– volume: 500
  start-page: 59
  year: 2013
  ident: BFmicronano201643_CR15
  publication-title: Nature
  doi: 10.1038/nature12401
– volume: 7
  start-page: 9213
  year: 2013
  ident: BFmicronano201643_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 5
  start-page: 3002
  year: 2014
  ident: BFmicronano201643_CR33
  publication-title: Nature Communications
  doi: 10.1038/ncomms4002
– volume: 7
  start-page: 769
  year: 2013
  ident: BFmicronano201643_CR9
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2013.251
– volume: 519
  start-page: 4249
  year: 2011
  ident: BFmicronano201643_CR52
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.02.029
– volume: 11
  start-page: 5105
  year: 2015
  ident: BFmicronano201643_CR109
  publication-title: Small
  doi: 10.1002/smll.201500841
– volume: 327
  start-page: 1603
  year: 2010
  ident: BFmicronano201643_CR12
  publication-title: Science
  doi: 10.1126/science.1182383
– volume: 6
  start-page: 11932
  year: 2014
  ident: BFmicronano201643_CR40
  publication-title: Nanoscale
  doi: 10.1039/C4NR03295K
– volume: 14
  start-page: 17304
  year: 2014
  ident: BFmicronano201643_CR62
  publication-title: Sensors
  doi: 10.3390/s140917304
– volume: 6
  start-page: 788
  year: 2011
  ident: BFmicronano201643_CR29
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.184
– volume: 26
  start-page: 1
  year: 2010
  ident: BFmicronano201643_CR117
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2009.2033627
– volume: 323
  start-page: 1590
  year: 2009
  ident: BFmicronano201643_CR13
  publication-title: Science
  doi: 10.1126/science.1168375
– volume: 33
  start-page: 2224
  year: 1992
  ident: BFmicronano201643_CR130
  publication-title: Investigative Ophthalmology & Visual Science
– volume: 11
  start-page: 1740
  year: 2011
  ident: BFmicronano201643_CR41
  publication-title: Lab on a Chip
  doi: 10.1039/c0lc00620c
– volume: 5
  start-page: 85799
  year: 2015
  ident: BFmicronano201643_CR65
  publication-title: RSC Advances
  doi: 10.1039/C5RA16724H
– volume: 6
  start-page: 222ra219
  year: 2014
  ident: BFmicronano201643_CR116
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.3006820
– volume: 12
  start-page: 5082
  year: 2012
  ident: BFmicronano201643_CR76
  publication-title: Nano Letters
  doi: 10.1021/nl301714x
– volume: 347
  start-page: 159
  year: 2015
  ident: BFmicronano201643_CR49
  publication-title: Science
  doi: 10.1126/science.1260318
– volume: 7
  start-page: 11166
  year: 2013
  ident: BFmicronano201643_CR74
  publication-title: ACS Nano
  doi: 10.1021/nn404889b
– volume: 24
  start-page: 492
  year: 2014
  ident: BFmicronano201643_CR61
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201302344
– volume: 14
  start-page: 728
  year: 2015
  ident: BFmicronano201643_CR47
  publication-title: Nature Materials
  doi: 10.1038/nmat4289
– volume: 6
  start-page: 296
  year: 2011
  ident: BFmicronano201643_CR31
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2011.36
– volume: 6
  start-page: 8356
  year: 2015
  ident: BFmicronano201643_CR127
  publication-title: Nature Communications
  doi: 10.1038/ncomms9356
– volume: 4
  start-page: 5642
  year: 2014
  ident: BFmicronano201643_CR111
  publication-title: Scientific Reports
  doi: 10.1038/srep05642
– volume: 66
  start-page: 367
  year: 2011
  ident: BFmicronano201643_CR126
  publication-title: Clinics
  doi: 10.1590/S1807-59322011000300001
– volume: 9
  start-page: 859
  year: 2010
  ident: BFmicronano201643_CR28
  publication-title: Nature Materials
  doi: 10.1038/nmat2834
– volume: 87
  start-page: 1310
  year: 2006
  ident: BFmicronano201643_CR119
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1016/j.apmr.2006.07.259
– volume: 15
  start-page: 11823
  year: 2015
  ident: BFmicronano201643_CR43
  publication-title: Sensors
  doi: 10.3390/s150511823
– volume: 46
  start-page: 528
  year: 2011
  ident: BFmicronano201643_CR87
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-010-4999-x
– volume: 18
  start-page: 1097
  year: 2008
  ident: BFmicronano201643_CR104
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.200701216
– volume: 32
  start-page: 831
  year: 2011
  ident: BFmicronano201643_CR23
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.201100040
– volume: 64
  start-page: 439
  year: 2015
  ident: BFmicronano201643_CR96
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2014.2343411
– volume: 3
  start-page: 5436
  year: 2015
  ident: BFmicronano201643_CR128
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C5TB00653H
– volume: 14
  start-page: 20620
  year: 2014
  ident: BFmicronano201643_CR60
  publication-title: Sensors
  doi: 10.3390/s141120620
– volume: 27
  start-page: 34
  year: 2015
  ident: BFmicronano201643_CR88
  publication-title: Advanced Materials
  doi: 10.1002/adma.201403093
– volume: 333
  start-page: 838
  year: 2011
  ident: BFmicronano201643_CR44
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 19
  start-page: 661
  year: 2013
  ident: BFmicronano201643_CR118
  publication-title: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
  doi: 10.12659/MSM.889145
– volume: 9
  start-page: 5929
  year: 2015
  ident: BFmicronano201643_CR70
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00599
– volume: 12
  start-page: 1593
  year: 2016
  ident: BFmicronano201643_CR107
  publication-title: Small
  doi: 10.1002/smll.201502911
– volume: 11
  start-page: 963
  year: 2015
  ident: BFmicronano201643_CR108
  publication-title: Small
  doi: 10.1002/smll.201401635
– volume: 5
  start-page: 11505
  year: 2015
  ident: BFmicronano201643_CR101
  publication-title: Scientific Reports
  doi: 10.1038/srep11505
– volume: 108
  start-page: 20400
  year: 2011
  ident: BFmicronano201643_CR5
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1116564108
– volume: 148
  start-page: 1
  year: 2008
  ident: BFmicronano201643_CR27
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2008.08.001
– volume: 16
  start-page: 1576
  year: 2014
  ident: BFmicronano201643_CR75
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C3CP54317J
– volume: 10
  start-page: 066014
  year: 2013
  ident: BFmicronano201643_CR120
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/10/6/066014
– volume: 20
  start-page: 1074
  year: 2014
  ident: BFmicronano201643_CR10
  publication-title: Nature Medicine
  doi: 10.1038/nm.3621
– volume: 9
  start-page: 821
  year: 2010
  ident: BFmicronano201643_CR36
  publication-title: Nature Materials
  doi: 10.1038/nmat2835
– volume: 27
  start-page: 1333
  year: 2015
  ident: BFmicronano201643_CR90
  publication-title: Advanced Materials
  doi: 10.1002/adma.201403998
– volume: 35
  start-page: 3919
  year: 2014
  ident: BFmicronano201643_CR121
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.038
– volume: 56
  start-page: 398
  year: 2014
  ident: BFmicronano201643_CR55
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2013.11.029
– volume: 25
  start-page: 2287
  year: 2015
  ident: BFmicronano201643_CR114
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201404365
– volume: 41
  start-page: 852
  year: 2013
  ident: BFmicronano201643_CR78
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2012.08.024
– volume: 11
  start-page: 795
  year: 2012
  ident: BFmicronano201643_CR32
  publication-title: Nature Materials
  doi: 10.1038/nmat3380
– volume: 26
  start-page: 3451
  year: 2014
  ident: BFmicronano201643_CR17
  publication-title: Advanced Materials
  doi: 10.1002/adma.201305182
– volume: 7
  start-page: 2926
  year: 2015
  ident: BFmicronano201643_CR37
  publication-title: Nanoscale
  doi: 10.1039/C4NR06494A
– volume: 111
  start-page: 1703
  year: 2014
  ident: BFmicronano201643_CR69
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1317920111
– volume: 499
  start-page: 458
  year: 2013
  ident: BFmicronano201643_CR11
  publication-title: Nature
  doi: 10.1038/nature12314
– volume: 36
  start-page: 769
  year: 2004
  ident: BFmicronano201643_CR51
  publication-title: Polymer Journal
  doi: 10.1295/polymj.36.769
– volume: 6
  start-page: 620
  year: 2015
  ident: BFmicronano201643_CR63
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/jz502431r
– volume: 6
  start-page: 699
  year: 2014
  ident: BFmicronano201643_CR82
  publication-title: Nanoscale
  doi: 10.1039/C3NR04521H
– volume: 15
  start-page: 3164
  year: 2015
  ident: BFmicronano201643_CR53
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2014.2375203
– volume: 27
  start-page: 1561
  year: 2015
  ident: BFmicronano201643_CR71
  publication-title: Advanced Materials
  doi: 10.1002/adma.201404850
– volume: 13
  start-page: 3405
  year: 2013
  ident: BFmicronano201643_CR42
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2013.2263797
– volume: 77
  start-page: 199
  year: 2014
  ident: BFmicronano201643_CR100
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.022
– volume: 5
  start-page: 5032
  year: 2014
  ident: BFmicronano201643_CR102
  publication-title: Nature Communications
  doi: 10.1038/ncomms6032
– volume: 2
  start-page: 751
  year: 2007
  ident: BFmicronano201643_CR123
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2007.387
– volume: 10
  start-page: 1365
  year: 2010
  ident: BFmicronano201643_CR20
  publication-title: Lab on a Chip
  doi: 10.1039/c001195a
– volume: 25
  start-page: 3698
  year: 2015
  ident: BFmicronano201643_CR56
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201501086
– volume: 5
  start-page: 3132
  year: 2014
  ident: BFmicronano201643_CR3
  publication-title: Nature Communications
  doi: 10.1038/ncomms4132
– volume: 25
  start-page: 6839
  year: 2013
  ident: BFmicronano201643_CR25
  publication-title: Advanced Materials
  doi: 10.1002/adma.201301921
– volume: 14
  start-page: 1107
  year: 2014
  ident: BFmicronano201643_CR105
  publication-title: Lab on a Chip
  doi: 10.1039/c3lc50994j
SSID ssj0001737905
ssib048324881
Score 2.5176551
SecondaryResourceType review_article
Snippet There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements. Rapid advances...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16043
SubjectTerms 639/166/987
639/301/357
639/925/927/511
Engineering
Review
review-article
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4QwEJ74uOjB-BZfqYknDbowpcDJGKMxJnrSZG-kLSWarOwqa_z7zrCAuxq97IUBFmbofO1Mvw_g2FhK8lFBHnCIvtTO-KlOC1-HplBRkUsX8H7n-wd1-yTv-lG_WXCrmrbKdkysB-p8aHmN_DzgilASxxhdjN58Vo3i6mojoTEPi0xdxi1dcb9Lp5KiVbZs6fWaS4zMR8V6c4TcfVbYagudmJy_cgdcqUveEhioM4mzqeoX_vzdRvmjllqnqJtVWGmwpbicBMMazLlyHZanGAc3IOdFKNYlEgUzYZqBE7rMxSfFO--hEqPGbaLixnYyGw30mHFtJehXPHfdYvVpk737tf10IXwTnm6uH69u_UZowbcRqrFPqMMWluZSKnGsgW5o1DE003I6SV1MuQ17JilCnYc0PjjsaQydTLmkR2APXYBbsFAOS7cDIkoIsGiTS2VSSTNebY2lGR1qmystpfWg177TzDYs5CyGMcjqajgmWeeGjN2QSfTgpDtlNKHg-M94v3VU1nyNVfYdOx4cdYfpO-LiiC7d8KPKCCYRlu2pMPVge-LX7m7IYsgJ0sXjGY93BszRPXukfHmuuboJbsoYAw9O29iY-lt_PcTu_w-xB0tsyF0rodqHhfH7hzsgaDQ2h3X8fwGM_w-R
  priority: 102
  providerName: ProQuest
Title Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications
URI https://link.springer.com/article/10.1038/micronano.2016.43
https://www.ncbi.nlm.nih.gov/pubmed/31057833
https://www.proquest.com/docview/1823087735
https://www.proquest.com/docview/2231930629
https://pubmed.ncbi.nlm.nih.gov/PMC6444731
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_68bI9jO7bXRs02NOGt9gny_JjGpqVwMrYVsibkWSZFjI3LCn993en2F7SsMFeZINP_jp9_KS7-x3AO-toks9q0oBHjKXxNi5MUccmtbXK6kr6hOOdv1yqiys5nWWzPUi6WJjgtB8oLcMw3XmHffrJ7mmNaTheL1EfJe7DITO3c6Meq_GfbZUcmXKqs1-i3q25PQPtwMpd78gHJtIw80yO4EkLGcVo_ZJPYc83z-DxBpHgc6h4b4nTDYmaCS7t3AvTVOKemjGHRolFqw2xZH91ElvMzYrh6lJQKa57J7BQbR2SH-Q37dsv4Gpy_mN8Ebf5E2KXoVrFBCZc7WiJpLTn1OaWBhNLCyhvdOFzmrJwaHWdmiqlbu9xaDD1smBLHWE49Am-hIPmtvGvQWSacIixlVS2kLSQNc46WqihcZUyUroIht0_LV1LLs45LuZlMHKjLns1lKyGUmIE7_sqizWzxr-ETzpFlW0nW5YJGwl1nmMWwdv-MnUPtnmYxt_eLUtCPwRRhyotIni11mv_NOQcxxrp5vmWxnsBpt7evtLcXAcKbkKRMsckgg9d29h4rb99xPF_Sb-BR3zGvimpOoGD1a87f0oAaGUHsJ_Pcir15PMADkej6fcpHc_OL79-G4TuMAhbC78B-cQQpQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqDwbKGAkuIBCNxnndagQApYtfZxaqTdjO45aackuZKuKP8VvZCaJwy4VvfWSS-wkzszY33jG8wG8MpYW-aQiCTjEUGpnwkIXVahjU6VJVUoX8Xnng8N0ciy_niQna_Dbn4XhtEo_J7YTdTmzvEe-HXFEKM8yTN7Pf4TMGsXRVU-h0anFnvt1QS5bs7P7ieT7Oo7Hn48-TsKeVSC0CaaLkJZYW1lyHNLcMeG3IRMz5FY4nRcuo4kcRyavYl3GZAwORxpjJwuOXxGyQRchPfcG3JSIBVtUPv7i9VeSdUhfnb3d48mQ618xvx15CiEzevnAKubb3znjrtY1H0GM0ncSV5fGS3j3ctrmP7Hbdkkcb8DdHsuKD53y3YM1V9-HO0sVDh9AyZtezIMkKq68aaZO6LoUF_Qj-cyWmPdqIhpOpKdm86leMI5uBF3F6ZCd1nbragW07ZcD7w_h-FpE8AjW61ntNkEkOQEkbUqZmkKSh62tseRBorZlqqW0AYz8P1W2r3rO5BtT1UbfMVeDGBSLQUkM4M3QZd6V_Liq8ZYXlOqtv1F_dTWAl8NtslsOxujazc4bRbCMsPMojYsAHndyHd6GTL6cIz08W5H40IBrgq_eqc9O29rgBG9lhlEAb71uLH3W_wbx5OpBvIBbk6ODfbW_e7j3FG5zJ86YidMtWF_8PHfPCJYtzPPWFgR8u27j-wM6u0mT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IF6FQAEjwYUq7CbjOMkBIURZtRQqDlTam2s7joq0ZBeyVcVf49cxkxe7VO2tl73EziaZGc-MZ_x9AC-tIyeflCQBjxhK422Ym7wMTWxLlZSF9BGfd_5yqPaO5KdpMt2AP_1ZGG6r7NfEZqEu5o73yEcRV4SyNMVkVHZtEV93J-8WP0NmkOJKa0-n0arIgf99Rulb_XZ_l2T9Ko4nH7992As7hoHQJaiWIblbVzpKIlTmmfzbkrlZSjG8yXKf0qKOY5uVsSliMgyPY4OxlznXsijKQR8h3fcaXKeHitjG0ungyiVZiuyR2pv9nhQZC4u57ihrCJndqy-yYjb6wd13lan4OGKk3khcd5PnYt_zLZz_1XEb9zi5A7e7uFa8bxXxLmz46h7cWkE7vA8Fb4AxJ5IoGYXTzrwwVSHO6EPy-S2x6FRG1NxUT8MWM7PkmLoW9CtOhk61ZlqLG9CMXy3CP4CjKxHBFmxW88o_ApFkFCwZW0hlc0nZtnHWUTaJxhXKSOkCGPffVLsOAZ2JOGa6qcRjpgcxaBaDlhjA62HKooX_uGzwdi8o3a0Etf6ntwG8GC6TDXNhxlR-flprCtEojh6rOA_gYSvX4d-QiZgzpJunaxIfBjA--PqV6vtJgxNOoa5MMQpgp9eNlce66CUeX_4Sz-EGmZ3-vH948ARu8hxunonVNmwuf536pxShLe2zxhQEHF-17f0Fd3lNwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+flexible+and+wearable+physical+sensing+platforms+for+healthcare+and+biomedical+applications&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Kenry&rft.au=Yeo%2C+Joo+Chuan&rft.au=Lim%2C+Chwee+Teck&rft.date=2016-09-26&rft.issn=2055-7434&rft.eissn=2055-7434&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1038%2Fmicronano.2016.43&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_micronano_2016_43
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon