Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets
The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription–PCR (RT–qPCR) assays are being used by cl...
Saved in:
Published in | Nature microbiology Vol. 5; no. 10; pp. 1299 - 1305 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription–PCR (RT–qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer–probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT–qPCR analytical efficiency and sensitivity, we show that all primer–probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer–probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.
This is a comparative analysis of the performance of the primer–probe sets from four open-source molecular diagnostic assays for SARS-CoV-2 recommended by the World Health Organization. |
---|---|
AbstractList | The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription–PCR (RT–qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer–probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT–qPCR analytical efficiency and sensitivity, we show that all primer–probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer–probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.
This is a comparative analysis of the performance of the primer–probe sets from four open-source molecular diagnostic assays for SARS-CoV-2 recommended by the World Health Organization. The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes. The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription-PCR (RT-qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes. The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse transcription–PCR (RT–qPCR) assays are being used by clinical, research and public health laboratories. However, it is currently unclear whether results from different tests are comparable. Our goal was to make independent evaluations of primer–probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT–qPCR analytical efficiency and sensitivity, we show that all primer–probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer–probe set which has low sensitivity, probably due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used, to ease comparability between outcomes.This is a comparative analysis of the performance of the primer–probe sets from four open-source molecular diagnostic assays for SARS-CoV-2 recommended by the World Health Organization. The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assays are being used by clinical, research, and public health laboratories. However, it is currently unclear if results from different tests are comparable. Our goal was to make independent evaluations of primer-probe sets used in four common SARS-CoV-2 diagnostic assays. From our comparisons of RT-qPCR analytical efficiency and sensitivity, we show that all primer-probe sets can be used to detect SARS-CoV-2 at 500 viral RNA copies per reaction. The exception for this is the RdRp-SARSr (Charité) confirmatory primer-probe set which has low sensitivity, likely due to a mismatch to circulating SARS-CoV-2 in the reverse primer. We did not find evidence for background amplification with pre-COVID-19 samples or recent SARS-CoV-2 evolution decreasing sensitivity. Our recommendation for SARS-CoV-2 diagnostic testing is to select an assay with high sensitivity and that is regionally used to ease comparability between outcomes. |
Author | Ott, Isabel M. Kalinich, Chaney C. Grubaugh, Nathan D. Oh, Ji Eun Taura, Manabu Wong, Patrick Song, Eric Moore, Adam J. Vogels, Chantal B. F. Weizman, Orr-El Casanovas-Massana, Arnau Moriyama, Miyu Park, Annsea Lapidus, Sarah Farhadian, Shelli Klein, Jonathan Kim, Daniel J. White, Elizabeth B. Odio, Camila Wyllie, Anne L. Cheemarla, Nagarjuna R. Lu, Peiwen Earnest, Rebecca Geng, Bertie Brito, Anderson F. Bermejo, Santos Lu-Culligan, Alice Mao, Tianyang Venkataraman, Arvind Iwasaki, Akiko Ko, Albert I. Jiang, Xiaodong Yang, Yexin Takahashi, Takehiro Silva, Julio Kudo, Eriko Landry, Marie L. Dela Cruz, Charles S. Catherine Muenker, M. Tokuyama, Maria Petrone, Mary E. Vijayakumar, Pavithra Fournier, John Foxman, Ellen F. Fauver, Joseph R. |
AuthorAffiliation | 2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA 5 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA 6 Department of Medicine, Northeast Medical Group, Yale-New Haven Health, New Haven, CT 06510, USA 3 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA 10 Clinical Virology Laboratory, Yale-New Haven Hospital, New Haven, CT, 06510, USA 8 Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA 7 Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA 1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA 4 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA 9 Howard Hughes Medical Institut |
AuthorAffiliation_xml | – name: 2 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA – name: 8 Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA – name: 1 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA – name: 6 Department of Medicine, Northeast Medical Group, Yale-New Haven Health, New Haven, CT 06510, USA – name: 7 Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA – name: 5 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA – name: 9 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA – name: 10 Clinical Virology Laboratory, Yale-New Haven Hospital, New Haven, CT, 06510, USA – name: 3 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA – name: 4 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA |
Author_xml | – sequence: 1 givenname: Chantal B. F. orcidid: 0000-0003-0027-6480 surname: Vogels fullname: Vogels, Chantal B. F. email: chantal.vogels@yale.edu organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 2 givenname: Anderson F. orcidid: 0000-0001-5785-7222 surname: Brito fullname: Brito, Anderson F. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 3 givenname: Anne L. surname: Wyllie fullname: Wyllie, Anne L. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 4 givenname: Joseph R. orcidid: 0000-0001-8099-2991 surname: Fauver fullname: Fauver, Joseph R. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 5 givenname: Isabel M. surname: Ott fullname: Ott, Isabel M. organization: Department of Ecology and Evolutionary Biology, Yale University – sequence: 6 givenname: Chaney C. orcidid: 0000-0001-9675-0065 surname: Kalinich fullname: Kalinich, Chaney C. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 7 givenname: Mary E. surname: Petrone fullname: Petrone, Mary E. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 8 givenname: Arnau orcidid: 0000-0002-3301-6143 surname: Casanovas-Massana fullname: Casanovas-Massana, Arnau organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 9 givenname: M. surname: Catherine Muenker fullname: Catherine Muenker, M. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 10 givenname: Adam J. surname: Moore fullname: Moore, Adam J. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 11 givenname: Jonathan surname: Klein fullname: Klein, Jonathan organization: Department of Immunobiology, Yale University School of Medicine – sequence: 12 givenname: Peiwen orcidid: 0000-0001-6118-872X surname: Lu fullname: Lu, Peiwen organization: Department of Immunobiology, Yale University School of Medicine – sequence: 13 givenname: Alice orcidid: 0000-0003-0097-0923 surname: Lu-Culligan fullname: Lu-Culligan, Alice organization: Department of Immunobiology, Yale University School of Medicine – sequence: 14 givenname: Xiaodong surname: Jiang fullname: Jiang, Xiaodong organization: Department of Immunobiology, Yale University School of Medicine – sequence: 15 givenname: Daniel J. surname: Kim fullname: Kim, Daniel J. organization: Department of Immunobiology, Yale University School of Medicine – sequence: 16 givenname: Eriko surname: Kudo fullname: Kudo, Eriko organization: Department of Immunobiology, Yale University School of Medicine – sequence: 17 givenname: Tianyang orcidid: 0000-0001-9251-8592 surname: Mao fullname: Mao, Tianyang organization: Department of Immunobiology, Yale University School of Medicine – sequence: 18 givenname: Miyu surname: Moriyama fullname: Moriyama, Miyu organization: Department of Immunobiology, Yale University School of Medicine – sequence: 19 givenname: Ji Eun surname: Oh fullname: Oh, Ji Eun organization: Department of Immunobiology, Yale University School of Medicine – sequence: 20 givenname: Annsea surname: Park fullname: Park, Annsea organization: Department of Immunobiology, Yale University School of Medicine – sequence: 21 givenname: Julio surname: Silva fullname: Silva, Julio organization: Department of Immunobiology, Yale University School of Medicine – sequence: 22 givenname: Eric orcidid: 0000-0001-5448-5865 surname: Song fullname: Song, Eric organization: Department of Immunobiology, Yale University School of Medicine – sequence: 23 givenname: Takehiro surname: Takahashi fullname: Takahashi, Takehiro organization: Department of Immunobiology, Yale University School of Medicine – sequence: 24 givenname: Manabu surname: Taura fullname: Taura, Manabu organization: Department of Immunobiology, Yale University School of Medicine – sequence: 25 givenname: Maria surname: Tokuyama fullname: Tokuyama, Maria organization: Department of Immunobiology, Yale University School of Medicine – sequence: 26 givenname: Arvind surname: Venkataraman fullname: Venkataraman, Arvind organization: Department of Immunobiology, Yale University School of Medicine – sequence: 27 givenname: Orr-El surname: Weizman fullname: Weizman, Orr-El organization: Department of Immunobiology, Yale University School of Medicine – sequence: 28 givenname: Patrick surname: Wong fullname: Wong, Patrick organization: Department of Immunobiology, Yale University School of Medicine – sequence: 29 givenname: Yexin surname: Yang fullname: Yang, Yexin organization: Department of Immunobiology, Yale University School of Medicine – sequence: 30 givenname: Nagarjuna R. orcidid: 0000-0002-8860-2457 surname: Cheemarla fullname: Cheemarla, Nagarjuna R. organization: Department of Laboratory Medicine, Yale University School of Medicine – sequence: 31 givenname: Elizabeth B. orcidid: 0000-0002-9242-3507 surname: White fullname: White, Elizabeth B. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 32 givenname: Sarah surname: Lapidus fullname: Lapidus, Sarah organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 33 givenname: Rebecca surname: Earnest fullname: Earnest, Rebecca organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 34 givenname: Bertie orcidid: 0000-0001-9764-7043 surname: Geng fullname: Geng, Bertie organization: Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine – sequence: 35 givenname: Pavithra surname: Vijayakumar fullname: Vijayakumar, Pavithra organization: Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine – sequence: 36 givenname: Camila surname: Odio fullname: Odio, Camila organization: Department of Medicine, Northeast Medical Group, Yale-New Haven Health – sequence: 37 givenname: John surname: Fournier fullname: Fournier, John organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 38 givenname: Santos surname: Bermejo fullname: Bermejo, Santos organization: Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine – sequence: 39 givenname: Shelli surname: Farhadian fullname: Farhadian, Shelli organization: Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine – sequence: 40 givenname: Charles S. surname: Dela Cruz fullname: Dela Cruz, Charles S. organization: Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine – sequence: 41 givenname: Akiko orcidid: 0000-0002-7824-9856 surname: Iwasaki fullname: Iwasaki, Akiko organization: Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute – sequence: 42 givenname: Albert I. surname: Ko fullname: Ko, Albert I. organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health – sequence: 43 givenname: Marie L. surname: Landry fullname: Landry, Marie L. organization: Department of Laboratory Medicine, Yale University School of Medicine, Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, Clinical Virology Laboratory, Yale-New Haven Hospital – sequence: 44 givenname: Ellen F. orcidid: 0000-0001-9767-9942 surname: Foxman fullname: Foxman, Ellen F. organization: Department of Immunobiology, Yale University School of Medicine, Department of Laboratory Medicine, Yale University School of Medicine – sequence: 45 givenname: Nathan D. orcidid: 0000-0003-2031-1933 surname: Grubaugh fullname: Grubaugh, Nathan D. email: nathan.grubaugh@yale.edu organization: Department of Epidemiology of Microbial Diseases, Yale School of Public Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32651556$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1qFDEcxYNUbK19AG9kwBtvUvOd2RthWfwoFCzb6p2ETOafmjKbbJNsYe98B9_QJ3GGrW0tKASSkN85Ocl5jvZiioDQS0qOKeHt2yKoVAITRjDRimL1BB0wIlssmVZ7D9b76KiUK0IIVUypVj1D-5wpSaVUB-jbPNphW4OzQ1MgllDDTajbxsa-Ae-DCxDdtnFptbY5lBRLk3xzPl-e40X6ilmzvPj14-f12WLZrHNYQR5365w6GN1qeYGeejsUOLqdD9GXD-8vFp_w6eePJ4v5KXaSq4pl3_meuLYjchxE-k5qKgjlQjMPwJiecXBt74nmcgYz0QlBdeu9BO2kFPwQvdv5rjfdCnoHsWY7mCmRzVuTbDB_n8Tw3VymGzNjgnI1Gby5NcjpegOlmlUoDobBRkibYphgnKhWCDWirx-hV2mTx1-cKC0JbbliI_XqYaK7KH9-fgToDnA5lZLB3yGUmKlgsyvYjAWbqWAzafQjjQvV1pCmR4Xhv0q2U5bxlngJ-T70v0W_AYQqupQ |
CitedBy_id | crossref_primary_10_1021_acs_estlett_2c00280 crossref_primary_10_1016_j_scitotenv_2021_151434 crossref_primary_10_1128_JCM_01019_21 crossref_primary_10_3389_fpubh_2021_728969 crossref_primary_10_1016_j_ijid_2021_08_043 crossref_primary_10_1109_TSP_2022_3198179 crossref_primary_10_1155_2021_8160860 crossref_primary_10_3390_vaccines10121997 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1002_anie_202109985 crossref_primary_10_1038_s41586_020_2700_3 crossref_primary_10_36306_konjes_877805 crossref_primary_10_1016_j_talanta_2024_125663 crossref_primary_10_1016_j_snb_2022_132579 crossref_primary_10_1016_j_watres_2025_123154 crossref_primary_10_1371_journal_pone_0260884 crossref_primary_10_1007_s00580_022_03356_y crossref_primary_10_1084_jem_20210583 crossref_primary_10_1021_acsnano_3c01677 crossref_primary_10_1093_jaoacint_qsac039 crossref_primary_10_1016_j_prp_2021_153565 crossref_primary_10_1080_01652176_2023_2263864 crossref_primary_10_3389_fmicb_2023_1238542 crossref_primary_10_3390_environments9030039 crossref_primary_10_1016_j_jcvp_2021_100027 crossref_primary_10_1021_acs_analchem_3c01041 crossref_primary_10_1155_2024_4894004 crossref_primary_10_2144_btn_2021_0040 crossref_primary_10_1002_admt_202101550 crossref_primary_10_1016_j_bios_2024_116945 crossref_primary_10_1016_j_jcvp_2021_100012 crossref_primary_10_1021_acsomega_1c00166 crossref_primary_10_1016_j_watres_2021_117977 crossref_primary_10_1016_j_mcp_2021_101748 crossref_primary_10_1016_j_sbsr_2022_100482 crossref_primary_10_3390_diagnostics14020221 crossref_primary_10_1016_j_aca_2022_339541 crossref_primary_10_3390_children10050841 crossref_primary_10_1016_j_cell_2020_12_001 crossref_primary_10_1016_j_pathol_2022_04_001 crossref_primary_10_1111_1751_7915_14031 crossref_primary_10_1016_j_ebiom_2021_103736 crossref_primary_10_2105_AJPH_2022_307108 crossref_primary_10_1016_j_bspc_2023_104642 crossref_primary_10_1016_j_scitotenv_2024_174140 crossref_primary_10_12677_acm_2024_1472112 crossref_primary_10_1002_mef2_90 crossref_primary_10_32074_1591_951X_933 crossref_primary_10_1016_j_envint_2021_106938 crossref_primary_10_3390_ijms22116150 crossref_primary_10_1002_jmv_29061 crossref_primary_10_3390_bios14120585 crossref_primary_10_1021_acscentsci_4c00312 crossref_primary_10_1089_crispr_2020_0138 crossref_primary_10_1016_j_bios_2023_115358 crossref_primary_10_1021_acs_est_2c00974 crossref_primary_10_3389_fcimb_2021_632646 crossref_primary_10_1016_j_matdes_2023_112625 crossref_primary_10_7717_peerj_cs_670 crossref_primary_10_1016_j_scitotenv_2024_175285 crossref_primary_10_3390_molecules26216617 crossref_primary_10_61186_ibj_3964 crossref_primary_10_3390_ijms26031281 crossref_primary_10_3389_fpubh_2023_1190308 crossref_primary_10_1038_s41598_021_02742_w crossref_primary_10_1038_s41598_023_47645_0 crossref_primary_10_1128_Spectrum_01003_21 crossref_primary_10_1093_annweh_wxab026 crossref_primary_10_1038_s41598_022_22106_2 crossref_primary_10_1093_clinchem_hvad063 crossref_primary_10_1002_admi_202201261 crossref_primary_10_1016_j_scitotenv_2022_159401 crossref_primary_10_1016_j_jinf_2021_04_013 crossref_primary_10_3349_ymj_2022_63_5_480 crossref_primary_10_12688_wellcomeopenres_16639_1 crossref_primary_10_1016_j_aca_2023_341622 crossref_primary_10_1021_acs_analchem_0c02971 crossref_primary_10_1038_s41598_022_06977_z crossref_primary_10_1016_j_eng_2022_03_012 crossref_primary_10_1016_j_electacta_2024_144525 crossref_primary_10_1021_acsinfecdis_0c00464 crossref_primary_10_1021_acsnano_0c08430 crossref_primary_10_1016_j_mattod_2022_11_001 crossref_primary_10_1038_s41598_021_98114_5 crossref_primary_10_1038_s41598_023_34220_w crossref_primary_10_1371_journal_pcbi_1012469 crossref_primary_10_1016_j_envres_2021_111653 crossref_primary_10_1021_acs_biomac_0c01727 crossref_primary_10_1016_j_snb_2023_134722 crossref_primary_10_3390_ijms22052459 crossref_primary_10_1016_j_scitotenv_2021_148000 crossref_primary_10_1007_s00253_022_11822_4 crossref_primary_10_1007_s13206_022_00078_9 crossref_primary_10_1038_s41598_020_79233_x crossref_primary_10_1002_jmv_29090 crossref_primary_10_1016_j_jmoldx_2021_04_014 crossref_primary_10_3390_s22207886 crossref_primary_10_1016_j_cej_2023_142614 crossref_primary_10_1016_j_eimce_2022_05_005 crossref_primary_10_1007_s15010_022_01947_z crossref_primary_10_1016_j_mcp_2021_101707 crossref_primary_10_1016_j_cmi_2021_03_029 crossref_primary_10_1155_2020_7610678 crossref_primary_10_3390_diagnostics12081998 crossref_primary_10_1186_s12866_021_02297_w crossref_primary_10_1016_j_microc_2023_109533 crossref_primary_10_1016_j_snb_2023_134813 crossref_primary_10_1016_j_snb_2023_134932 crossref_primary_10_3390_v13101923 crossref_primary_10_1016_j_scitotenv_2021_148494 crossref_primary_10_1016_j_aca_2022_339585 crossref_primary_10_1016_j_virusres_2021_198340 crossref_primary_10_1007_s00216_020_02958_1 crossref_primary_10_1016_j_hazadv_2022_100221 crossref_primary_10_1016_j_bbrc_2024_151070 crossref_primary_10_1038_s41596_024_01022_x crossref_primary_10_1016_j_scitotenv_2021_150572 crossref_primary_10_1371_journal_pgph_0000207 crossref_primary_10_1371_journal_pone_0268241 crossref_primary_10_1002_jmv_26823 crossref_primary_10_1128_spectrum_04159_22 crossref_primary_10_1093_infdis_jiab215 crossref_primary_10_1016_j_bios_2024_116617 crossref_primary_10_1021_acs_analchem_3c05787 crossref_primary_10_1177_00099228211053916 crossref_primary_10_3389_fmed_2021_615099 crossref_primary_10_1038_s41598_022_16549_w crossref_primary_10_3389_fcimb_2022_1059880 crossref_primary_10_1016_j_jmoldx_2024_04_004 crossref_primary_10_1093_bib_bbab213 crossref_primary_10_1002_ange_202109985 crossref_primary_10_1021_acssensors_1c01088 crossref_primary_10_1128_spectrum_00591_21 crossref_primary_10_1128_spectrum_01695_22 crossref_primary_10_1186_s43088_023_00342_3 crossref_primary_10_1038_s41467_022_30664_2 crossref_primary_10_1186_s12985_021_01574_4 crossref_primary_10_3390_agronomy12051192 crossref_primary_10_3389_fcimb_2022_823306 crossref_primary_10_1128_spectrum_00761_23 crossref_primary_10_23749_mdl_v112i3_11472 crossref_primary_10_1016_j_bios_2022_114221 crossref_primary_10_1021_acsami_3c03434 crossref_primary_10_1039_D2CS00594H crossref_primary_10_1016_j_saa_2023_123445 crossref_primary_10_1007_s00216_021_03614_y crossref_primary_10_1016_j_scitotenv_2021_149877 crossref_primary_10_3390_diagnostics12112568 crossref_primary_10_1016_j_cca_2021_12_004 crossref_primary_10_1186_s43141_022_00431_3 crossref_primary_10_1039_D2EW00737A crossref_primary_10_1002_jmv_28227 crossref_primary_10_1021_acsabm_0c01674 crossref_primary_10_1039_D2SC06665C crossref_primary_10_52831_kjhs_1340717 crossref_primary_10_3390_v14071549 crossref_primary_10_1016_j_talanta_2022_123502 crossref_primary_10_1371_journal_ppat_1009500 crossref_primary_10_1038_s41598_023_29023_y crossref_primary_10_1038_s41746_021_00553_x crossref_primary_10_1056_NEJMc2032165 crossref_primary_10_5858_arpa_2021_0630_SA crossref_primary_10_3390_v13010040 crossref_primary_10_4103_jfmpc_jfmpc_1862_23 crossref_primary_10_1016_j_isci_2023_107019 crossref_primary_10_1186_s12865_023_00567_y crossref_primary_10_1038_s41420_020_00375_y crossref_primary_10_1016_j_omtn_2023_02_010 crossref_primary_10_1016_j_envpol_2021_118003 crossref_primary_10_1016_j_jviromet_2022_114589 crossref_primary_10_3390_ijms25168968 crossref_primary_10_1109_JTEHM_2022_3230716 crossref_primary_10_1177_10406387221115702 crossref_primary_10_1038_s41586_021_03631_y crossref_primary_10_1038_s41589_021_00842_2 crossref_primary_10_3390_v12080863 crossref_primary_10_1007_s00203_023_03417_y crossref_primary_10_1007_s00393_021_00959_8 crossref_primary_10_3389_fepid_2023_1227071 crossref_primary_10_1002_ange_202014506 crossref_primary_10_3390_diagnostics11081509 crossref_primary_10_1016_S2666_5247_21_00059_8 crossref_primary_10_1038_s41598_022_21953_3 crossref_primary_10_3390_chemosensors10060221 crossref_primary_10_1038_s41598_024_53117_w crossref_primary_10_1186_s40168_020_00960_4 crossref_primary_10_1371_journal_pntd_0010964 crossref_primary_10_3390_metabo13080889 crossref_primary_10_1111_mpp_70074 crossref_primary_10_1016_j_jviromet_2021_114396 crossref_primary_10_1016_j_jviromet_2021_114397 crossref_primary_10_1111_bcp_14718 crossref_primary_10_1080_10408363_2022_2072467 crossref_primary_10_1021_acscentsci_4c00940 crossref_primary_10_1371_journal_ppat_1009723 crossref_primary_10_1093_ve_veab098 crossref_primary_10_3390_v15010206 crossref_primary_10_1016_j_snr_2024_100244 crossref_primary_10_1016_j_jviromet_2024_114911 crossref_primary_10_1186_s12864_022_08403_0 crossref_primary_10_1016_j_jviromet_2021_114381 crossref_primary_10_1016_j_heliyon_2022_e11130 crossref_primary_10_1371_journal_pone_0279681 crossref_primary_10_3390_mi12040384 crossref_primary_10_1016_j_celrep_2024_114921 crossref_primary_10_1016_j_ijid_2021_05_032 crossref_primary_10_24171_j_phrp_2022_0135 crossref_primary_10_1007_s11845_023_03554_9 crossref_primary_10_1038_s41598_022_15616_6 crossref_primary_10_1016_j_bios_2023_115516 crossref_primary_10_1016_j_jviromet_2022_114529 crossref_primary_10_1016_j_jviromet_2022_114648 crossref_primary_10_1038_s41576_021_00360_w crossref_primary_10_1038_s42003_022_03433_6 crossref_primary_10_1016_j_scitotenv_2023_166215 crossref_primary_10_1134_S1068162021030055 crossref_primary_10_1038_s41598_025_86739_9 crossref_primary_10_1093_occmed_kqad044 crossref_primary_10_1016_j_cmi_2021_04_008 crossref_primary_10_1021_acsestwater_1c00476 crossref_primary_10_3389_fmicb_2022_915202 crossref_primary_10_3390_mca26010016 crossref_primary_10_1186_s12948_022_00180_1 crossref_primary_10_1371_journal_pone_0264260 crossref_primary_10_1016_j_antiviral_2023_105700 crossref_primary_10_1016_j_matchemphys_2024_130071 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_3390_w14050833 crossref_primary_10_1099_jmm_0_001295 crossref_primary_10_5501_wjv_v13_i2_90668 crossref_primary_10_1021_acsnano_3c01629 crossref_primary_10_1039_D1LC00293G crossref_primary_10_1186_s12929_022_00823_0 crossref_primary_10_1038_s41392_021_00731_z crossref_primary_10_3390_ijms22168702 crossref_primary_10_1093_humrep_deab238 crossref_primary_10_1007_s00292_021_00920_1 crossref_primary_10_1016_j_bios_2022_114008 crossref_primary_10_1016_j_nantod_2023_101968 crossref_primary_10_1002_adhm_202303897 crossref_primary_10_1016_j_jviromet_2020_114035 crossref_primary_10_1016_j_jviromet_2021_114115 crossref_primary_10_1136_bmj_2021_066871 crossref_primary_10_1371_journal_ppat_1009929 crossref_primary_10_1016_j_celrep_2020_108628 crossref_primary_10_2174_0126667975284845231205102151 crossref_primary_10_1016_j_jviromet_2021_114352 crossref_primary_10_1080_22221751_2022_2154617 crossref_primary_10_1007_s11033_022_07455_5 crossref_primary_10_3390_pathogens10030371 crossref_primary_10_1016_j_medj_2020_12_010 crossref_primary_10_1038_s41598_021_93828_y crossref_primary_10_1016_j_trac_2024_117676 crossref_primary_10_1038_s41587_022_01213_5 crossref_primary_10_1016_j_jaerosci_2020_105693 crossref_primary_10_1016_j_scitotenv_2021_148890 crossref_primary_10_1016_j_talanta_2023_124711 crossref_primary_10_1016_j_talanta_2022_123687 crossref_primary_10_1016_j_watres_2022_118132 crossref_primary_10_3389_fonc_2021_715794 crossref_primary_10_3390_diagnostics13020329 crossref_primary_10_1038_s41598_021_95479_5 crossref_primary_10_3390_covid2010002 crossref_primary_10_1039_D1RA07756B crossref_primary_10_1021_acssynbio_1c00181 crossref_primary_10_24293_ijcpml_v28i3_1895 crossref_primary_10_3389_fcimb_2024_1446514 crossref_primary_10_1016_j_envres_2021_110748 crossref_primary_10_3390_pathogens10080934 crossref_primary_10_1001_jamanetworkopen_2021_16543 crossref_primary_10_1016_j_bej_2024_109480 crossref_primary_10_1016_j_epidem_2021_100527 crossref_primary_10_1016_j_jwpe_2021_102370 crossref_primary_10_2166_wh_2022_013 crossref_primary_10_1021_acs_analchem_0c05355 crossref_primary_10_1515_cclm_2020_1412 crossref_primary_10_23749_mdl_v112i5_12097 crossref_primary_10_1002_anbr_202100101 crossref_primary_10_1016_j_measurement_2020_108335 crossref_primary_10_1007_s13206_024_00174_y crossref_primary_10_1021_acsnano_1c01932 crossref_primary_10_1021_acs_analchem_1c01650 crossref_primary_10_1021_acsami_3c05900 crossref_primary_10_1021_acs_analchem_1c01657 crossref_primary_10_1093_clinchem_hvaa267 crossref_primary_10_1038_s41598_021_98972_z crossref_primary_10_3390_medsci9020036 crossref_primary_10_1007_s12274_022_5005_z crossref_primary_10_1021_acs_est_2c04727 crossref_primary_10_1038_s41591_021_01355_0 crossref_primary_10_3389_fmicb_2021_749783 crossref_primary_10_1016_j_biologicals_2023_101680 crossref_primary_10_1016_j_aca_2023_341263 crossref_primary_10_3389_fpubh_2022_878208 crossref_primary_10_3389_fmicb_2024_1338100 crossref_primary_10_1177_10406387211029913 crossref_primary_10_3390_pathogens10030256 crossref_primary_10_3390_diagnostics11010068 crossref_primary_10_1038_s41551_022_00861_x crossref_primary_10_3390_diagnostics11081357 crossref_primary_10_1126_scitranslmed_abc7075 crossref_primary_10_3390_jcm11123312 crossref_primary_10_1007_s12560_022_09512_5 crossref_primary_10_1371_journal_pone_0251153 crossref_primary_10_1186_s12889_021_10609_y crossref_primary_10_1002_smll_202208167 crossref_primary_10_1093_femsmc_xtab022 crossref_primary_10_1177_11786302231217805 crossref_primary_10_3390_ijms22031298 crossref_primary_10_1002_anie_202304298 crossref_primary_10_1016_j_eimc_2020_12_014 crossref_primary_10_1093_femsmc_xtac015 crossref_primary_10_1371_journal_pone_0262178 crossref_primary_10_1016_j_medj_2021_04_016 crossref_primary_10_1021_acs_analchem_2c04306 crossref_primary_10_1371_journal_pone_0257817 crossref_primary_10_1038_s41467_021_25576_6 crossref_primary_10_1038_s41596_021_00546_w crossref_primary_10_1080_20477724_2021_1881370 crossref_primary_10_1186_s12985_023_02032_z crossref_primary_10_1016_j_bioorg_2024_108039 crossref_primary_10_7759_cureus_47683 crossref_primary_10_1016_j_compbiomed_2022_105284 crossref_primary_10_1111_jmp_12604 crossref_primary_10_1002_jmv_26460 crossref_primary_10_1038_s41589_023_01534_9 crossref_primary_10_1097_JCMA_0000000000000456 crossref_primary_10_1063_5_0031406 crossref_primary_10_1007_s41664_022_00232_0 crossref_primary_10_1186_s13054_021_03662_x crossref_primary_10_3390_electronics11010119 crossref_primary_10_3390_diagnostics12112617 crossref_primary_10_1038_s41467_021_23494_1 crossref_primary_10_1039_D3AN00058C crossref_primary_10_3390_tropicalmed7090240 crossref_primary_10_1007_s00216_020_02889_x crossref_primary_10_1021_acs_analchem_2c00067 crossref_primary_10_3390_w15112132 crossref_primary_10_1016_j_bios_2021_113330 crossref_primary_10_1093_femsmc_xtac010 crossref_primary_10_1016_j_synbio_2021_09_007 crossref_primary_10_1002_jmv_26591 crossref_primary_10_3390_mi14091744 crossref_primary_10_1016_j_cct_2020_106189 crossref_primary_10_1007_s00216_021_03846_y crossref_primary_10_3390_biomedinformatics3040069 crossref_primary_10_3390_bioengineering8070098 crossref_primary_10_1002_wrna_1804 crossref_primary_10_1073_pnas_2308655120 crossref_primary_10_1126_sciimmunol_adn0178 crossref_primary_10_1002_jmv_27337 crossref_primary_10_2302_kjm_2021_0003_OA crossref_primary_10_2196_43891 crossref_primary_10_1021_acssynbio_1c00499 crossref_primary_10_1080_14737159_2022_2037425 crossref_primary_10_1021_jacs_1c02929 crossref_primary_10_1016_j_trac_2020_116125 crossref_primary_10_1136_oemed_2022_108713 crossref_primary_10_1590_s1678_9946202163052 crossref_primary_10_7717_peerj_13522 crossref_primary_10_3389_fpubh_2021_583377 crossref_primary_10_1128_Spectrum_00313_21 crossref_primary_10_1111_ina_13002 crossref_primary_10_1007_s00216_022_04422_8 crossref_primary_10_1016_j_diagmicrobio_2023_116021 crossref_primary_10_3389_fpubh_2021_766871 crossref_primary_10_1016_j_diagmicrobio_2021_115458 crossref_primary_10_1142_S1793984420300022 crossref_primary_10_1016_j_jcv_2021_104906 crossref_primary_10_3390_diagnostics12112883 crossref_primary_10_1016_j_cca_2021_01_011 crossref_primary_10_1038_s41598_021_97502_1 crossref_primary_10_1016_j_trac_2023_117328 crossref_primary_10_1007_s15010_021_01674_x crossref_primary_10_2166_wh_2023_034 crossref_primary_10_1007_s00216_021_03680_2 crossref_primary_10_1002_open_202300120 crossref_primary_10_1016_j_talanta_2024_127457 crossref_primary_10_1155_2022_2965666 crossref_primary_10_1038_s41598_025_89902_4 crossref_primary_10_1021_acssensors_4c01069 crossref_primary_10_1038_s41551_020_00603_x crossref_primary_10_1016_j_diagmicrobio_2021_115366 crossref_primary_10_3390_s21206785 crossref_primary_10_1136_bmjopen_2021_050473 crossref_primary_10_3390_bios14030135 crossref_primary_10_1016_j_jiph_2023_05_030 crossref_primary_10_1038_s42003_021_02001_8 crossref_primary_10_1080_20002297_2021_1920226 crossref_primary_10_2217_fvl_2021_0056 crossref_primary_10_1128_msphere_00558_22 crossref_primary_10_1371_journal_pone_0256813 crossref_primary_10_1038_s41587_020_0684_z crossref_primary_10_1111_1751_7915_13828 crossref_primary_10_3390_ijms25158157 crossref_primary_10_1038_s41467_025_56653_9 crossref_primary_10_1038_s41565_023_01415_1 crossref_primary_10_1186_s12879_021_07003_9 crossref_primary_10_1016_S1473_3099_20_30939_7 crossref_primary_10_1093_cid_ciaa1706 crossref_primary_10_1002_btm2_10356 crossref_primary_10_1080_14737159_2020_1830760 crossref_primary_10_1038_s41598_022_12747_8 crossref_primary_10_1371_journal_pone_0277925 crossref_primary_10_5858_arpa_2021_0423_SA crossref_primary_10_3389_fcimb_2022_799678 crossref_primary_10_1021_acsnano_4c05734 crossref_primary_10_3389_fimmu_2022_794006 crossref_primary_10_1093_cid_ciab517 crossref_primary_10_1016_j_jcv_2020_104650 crossref_primary_10_1016_j_compbiomed_2022_106070 crossref_primary_10_3389_fmolb_2023_1144001 crossref_primary_10_1002_bmb_21771 crossref_primary_10_3390_diseases9040084 crossref_primary_10_1038_s41598_022_07447_2 crossref_primary_10_1002_jmv_27932 crossref_primary_10_1016_j_aca_2024_342693 crossref_primary_10_1002_dta_3219 crossref_primary_10_1016_j_watres_2021_117681 crossref_primary_10_3390_pathogens10070798 crossref_primary_10_1038_s41467_025_56516_3 crossref_primary_10_1371_journal_pone_0288808 crossref_primary_10_1016_j_microc_2023_108970 crossref_primary_10_1016_j_imu_2023_101256 crossref_primary_10_1016_j_jpha_2021_03_006 crossref_primary_10_1016_j_talanta_2025_127852 crossref_primary_10_1007_s40472_020_00307_w crossref_primary_10_1099_jmm_0_001301 crossref_primary_10_1038_s41598_022_10413_7 crossref_primary_10_1371_journal_pbio_3000867 crossref_primary_10_3389_fitd_2022_1013130 crossref_primary_10_1126_sciadv_abe5940 crossref_primary_10_1109_TCBB_2024_3362308 crossref_primary_10_3389_fpubh_2022_874455 crossref_primary_10_1016_j_jobb_2021_10_001 crossref_primary_10_1016_j_bios_2021_113865 crossref_primary_10_3390_diseases12090198 crossref_primary_10_3390_electronics10172065 crossref_primary_10_3390_v13071359 crossref_primary_10_1128_spectrum_02003_24 crossref_primary_10_3389_fmicb_2022_932698 crossref_primary_10_1186_s12864_022_08563_z crossref_primary_10_1007_s00292_021_00919_8 crossref_primary_10_1016_j_xcrm_2023_100943 crossref_primary_10_3390_diagnostics11071270 crossref_primary_10_1021_acs_analchem_1c01950 crossref_primary_10_1039_D2LC00434H crossref_primary_10_1128_spectrum_03908_23 crossref_primary_10_1002_anie_202014506 crossref_primary_10_1016_j_scitotenv_2021_152033 crossref_primary_10_5812_archcid_128040 crossref_primary_10_1080_23744235_2023_2245046 crossref_primary_10_1002_phar_2439 crossref_primary_10_3390_mps5050073 crossref_primary_10_1016_j_jhep_2020_09_031 crossref_primary_10_1016_j_heliyon_2022_e09735 crossref_primary_10_1021_acsami_4c05388 crossref_primary_10_3389_fmed_2022_995960 crossref_primary_10_3390_v13030457 crossref_primary_10_1007_s11908_022_00788_z crossref_primary_10_1038_s41598_021_84192_y crossref_primary_10_1515_cclm_2020_1294 crossref_primary_10_2166_wst_2025_014 crossref_primary_10_1002_14651858_CD013705_pub2 crossref_primary_10_1126_scitranslmed_abj2266 crossref_primary_10_1002_14651858_CD013705_pub3 crossref_primary_10_1590_0074_02760210237 crossref_primary_10_3389_fpubh_2023_1271594 crossref_primary_10_1002_jso_26561 crossref_primary_10_2139_ssrn_3951700 crossref_primary_10_3389_fmicb_2023_1181097 crossref_primary_10_1016_j_lanmic_2024_101029 crossref_primary_10_1016_j_scitotenv_2020_143329 crossref_primary_10_1038_s41467_021_23185_x crossref_primary_10_1016_j_scitotenv_2020_143578 crossref_primary_10_2139_ssrn_3936317 crossref_primary_10_3389_fmicb_2021_792514 crossref_primary_10_1128_JCM_02438_20 crossref_primary_10_1016_j_xcrm_2021_100288 crossref_primary_10_1002_ange_202304298 crossref_primary_10_1007_s11356_021_16024_5 crossref_primary_10_1021_acssensors_1c02664 crossref_primary_10_1021_acssensors_2c01023 crossref_primary_10_1021_jacs_2c07625 crossref_primary_10_1016_j_jhazmat_2021_125580 crossref_primary_10_1128_cmr_00168_21 crossref_primary_10_1016_j_talanta_2024_126413 crossref_primary_10_1038_s41587_021_00950_3 crossref_primary_10_1186_s40348_021_00115_x crossref_primary_10_3389_fcimb_2021_653616 crossref_primary_10_1021_acsomega_4c03372 crossref_primary_10_1371_journal_pone_0285861 crossref_primary_10_1515_labmed_2020_0135 crossref_primary_10_1021_acs_analchem_4c02087 crossref_primary_10_1128_JCM_02403_20 crossref_primary_10_1016_j_eclinm_2021_101101 crossref_primary_10_1021_acs_analchem_2c00835 crossref_primary_10_26508_lsa_202101213 crossref_primary_10_1016_j_heliyon_2025_e43063 crossref_primary_10_1016_j_jcv_2020_104686 crossref_primary_10_3390_pathogens10081008 crossref_primary_10_1016_j_aca_2023_340938 crossref_primary_10_1371_journal_pone_0258263 crossref_primary_10_1021_acs_analchem_0c05059 crossref_primary_10_1007_s11033_022_07360_x crossref_primary_10_1111_ijcp_14524 crossref_primary_10_3389_fmed_2021_677001 crossref_primary_10_3390_diagnostics10100739 crossref_primary_10_1016_j_bj_2021_04_008 crossref_primary_10_1002_jmv_27510 crossref_primary_10_1021_acsnano_4c02130 crossref_primary_10_3389_fcimb_2023_1283328 crossref_primary_10_1038_s44328_025_00029_y crossref_primary_10_1016_j_medj_2021_03_015 crossref_primary_10_1016_j_xcrm_2022_100583 crossref_primary_10_1002_anse_202200012 crossref_primary_10_2196_37004 crossref_primary_10_1016_j_aca_2022_339749 crossref_primary_10_1016_j_bios_2021_113418 crossref_primary_10_1038_s41598_021_99661_7 crossref_primary_10_1080_14737159_2022_2085508 crossref_primary_10_1590_1678_4324_2023220591 crossref_primary_10_1002_advs_202302072 crossref_primary_10_3390_microorganisms10081559 crossref_primary_10_1002_jcla_24242 crossref_primary_10_1097_CCM_0000000000004594 crossref_primary_10_1136_bmjopen_2022_060832 crossref_primary_10_1038_s41586_020_2588_y crossref_primary_10_1038_s43856_022_00113_8 crossref_primary_10_3390_mi12020197 |
Cites_doi | 10.1038/s41586-020-2008-3 10.1093/clinchem/hvaa029 10.1016/j.tifs.2014.03.008 10.1101/2020.01.09.900589 10.1128/AEM.02403-07 10.1128/JCM.00557-20 10.1101/2020.02.07.937862 10.17504/protocols.io.bdv6i69e 10.1016/j.bdq.2015.01.005 10.2807/1560-7917.ES.2020.25.3.2000045 10.3201/eid2606.200516 10.1038/s41586-020-2012-7 10.1016/S0301-472X(02)00806-8 10.17504/protocols.io.bh6mj9c6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41564-020-0761-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Public Health |
EISSN | 2058-5276 |
EndPage | 1305 |
ExternalDocumentID | PMC9241364 32651556 10_1038_s41564_020_0761_6 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GrantInformation_xml | – fundername: NWO Rubicon 019.181EN.004 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c536t-5dbfd0c8b05b0505fb5714013472fee22793ec8df07359e94b44178ff5e7c5543 |
IEDL.DBID | BENPR |
ISSN | 2058-5276 |
IngestDate | Thu Aug 21 14:05:52 EDT 2025 Tue Aug 05 11:13:50 EDT 2025 Sat Aug 23 12:26:06 EDT 2025 Thu Apr 03 06:59:19 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Tue Jul 01 00:55:55 EDT 2025 Fri Feb 21 02:38:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-5dbfd0c8b05b0505fb5714013472fee22793ec8df07359e94b44178ff5e7c5543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 CBFV, AFB, JRF, and NDG designed the study, NRC and EFF collected pre-COVID-19 nasopharyngeal swabs, CBFV, ALW, IMO, CCK, MEP, AC-M, MCM, AJM, JK, PL, AL-C, XJ, DJK, EEK, TM, MM, JEO, AP, JS, ES, TT, MT, MT, AV, O-EW, PW, YY, EBW, SL, RE, BG, PV, CO, JF, SB, SF, CSDC, AI, AIK, MLL, and NDG contributed to collection of clinical data, CBFV performed experiments, CBFV, AFB, and NDG analyzed the data and wrote the first draft. All authors read and approved the manuscript. Contributions |
ORCID | 0000-0003-0027-6480 0000-0001-5785-7222 0000-0001-8099-2991 0000-0001-5448-5865 0000-0001-9764-7043 0000-0002-3301-6143 0000-0003-0097-0923 0000-0001-9251-8592 0000-0002-7824-9856 0000-0002-9242-3507 0000-0001-9767-9942 0000-0001-6118-872X 0000-0003-2031-1933 0000-0002-8860-2457 0000-0001-9675-0065 |
OpenAccessLink | https://www.nature.com/articles/s41564-020-0761-6.pdf |
PMID | 32651556 |
PQID | 2475018362 |
PQPubID | 2069616 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9241364 proquest_miscellaneous_2423068446 proquest_journals_2475018362 pubmed_primary_32651556 crossref_primary_10_1038_s41564_020_0761_6 crossref_citationtrail_10_1038_s41564_020_0761_6 springer_journals_10_1038_s41564_020_0761_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | National Institute for Viral Disease Control and Prevention. Specific primers and probes for detection of 2019 novel coronavirus (2020); http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html NallaAKComparative performance of SARS-CoV-2 detection assays using seven different primer/probe sets and one assay kitJ. Clin. Microbiol.202058e00557-2010.1128/JCM.00557-20322691007269385 WuFA new coronavirus associated with human respiratory disease in ChinaNature20205792652691:CAS:528:DC%2BB3cXksFKlsLc%3D10.1038/s41586-020-2008-3320155087094943 Ott, I. M., Vogels, C. B. F., Grubaugh, N. D., & Wyllie, A. L. Saliva collection and RNA extraction for SARS-CoV-2 detection. protocols.iohttps://doi.org/10.17504/protocols.io.bh6mj9c6 (2020). Vogels, C. B. F., Fauver, J. R., Ott, I. & Grubaugh, N. D. Generation of SARS-COV-2 RNA transcript standards for qRT–PCR detection assay. protocols.iohttps://doi.org/10.17504/protocols.io.bdv6i69e (2020). Genomeweb. CDC revises SARS-CoV-2 assay protocol; surveillance testing on track to start next week. 360Dxhttps://www.360dx.com/pcr/cdc-revises-sars-cov-2-assay-protocol-surveillance-testing-track-start-next-week (2020). Harcourt, J. et al. Severe acute respiratory syndrome coronavirus 2 from patient with 2019 novel coronavirus disease, United States. Emerg. Infect. Dis. 26, 1266–1273 (2020). BruDMartin-LaurentFPhilippotLQuantification of the detrimental effect of a single primer–template mismatch by real-time PCR using the 16S rRNA gene as an exampleAppl. Environ. Microbiol.200874166016631:CAS:528:DC%2BD1cXjt1aku70%3D10.1128/AEM.02403-07181924132258636 The Nextstrain team. Genomic epidemiology of novel coronavirus—global subsampling (2020); https://nextstrain.org/ncov?c=gt-ORF14_50 SvecDTichopadANovosadovaVPfafflMWKubistaMHow good is a PCR efficiency estimate? Recommendations for precise and robust qPCR efficiency assessmentsBiomol. Detect. Quantif.201539161:CAS:528:DC%2BC28Xht1Shu73E10.1016/j.bdq.2015.01.005270770294822216 BroedersSGuidelines for validation of qualitative real-time PCR methodsTrends Food Sci. Technol.2014371151261:CAS:528:DC%2BC2cXmtFaksLc%3D10.1016/j.tifs.2014.03.008 Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020). Zulkower, V. & Rosser, S. DNA Features Viewer, a sequence annotations formatting and plotting library for Python. Preprint at https://doi.org/10.1101/2020.01.09.900589 (2020). Gorbalenya, A. E. et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. Preprint at https://doi.org/10.1101/2020.02.07.937862 (2020). ZhouPA pneumonia outbreak associated with a new coronavirus of probable bat originNature20205792702731:CAS:528:DC%2BB3cXksFKlsLg%3D320155077095418 Centers for Disease Control and Prevention. Research use only 2019—novel coronavirus (2019-nCoV) real-time RT–PCR primers and probes (2020); https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html GinzingerDGGene quantification using real-time quantitative PCR: an emerging technology hits the mainstreamExp. Hematol.2002305035121:CAS:528:DC%2BD38XksFOksb8%3D10.1016/S0301-472X(02)00806-812063017 Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT–PCR. Euro Surveill. 25, 2000045 (2020). 761_CR7 761_CR6 761_CR5 AK Nalla (761_CR14) 2020; 58 761_CR4 S Broeders (761_CR16) 2014; 37 761_CR8 D Bru (761_CR13) 2008; 74 761_CR15 F Wu (761_CR2) 2020; 579 761_CR18 D Svec (761_CR9) 2015; 3 761_CR1 P Zhou (761_CR3) 2020; 579 761_CR10 761_CR12 761_CR11 DG Ginzinger (761_CR17) 2002; 30 |
References_xml | – reference: SvecDTichopadANovosadovaVPfafflMWKubistaMHow good is a PCR efficiency estimate? Recommendations for precise and robust qPCR efficiency assessmentsBiomol. Detect. Quantif.201539161:CAS:528:DC%2BC28Xht1Shu73E10.1016/j.bdq.2015.01.005270770294822216 – reference: Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT–PCR. Euro Surveill. 25, 2000045 (2020). – reference: Vogels, C. B. F., Fauver, J. R., Ott, I. & Grubaugh, N. D. Generation of SARS-COV-2 RNA transcript standards for qRT–PCR detection assay. protocols.iohttps://doi.org/10.17504/protocols.io.bdv6i69e (2020). – reference: GinzingerDGGene quantification using real-time quantitative PCR: an emerging technology hits the mainstreamExp. Hematol.2002305035121:CAS:528:DC%2BD38XksFOksb8%3D10.1016/S0301-472X(02)00806-812063017 – reference: The Nextstrain team. Genomic epidemiology of novel coronavirus—global subsampling (2020); https://nextstrain.org/ncov?c=gt-ORF14_50 – reference: BruDMartin-LaurentFPhilippotLQuantification of the detrimental effect of a single primer–template mismatch by real-time PCR using the 16S rRNA gene as an exampleAppl. Environ. Microbiol.200874166016631:CAS:528:DC%2BD1cXjt1aku70%3D10.1128/AEM.02403-07181924132258636 – reference: Gorbalenya, A. E. et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. Preprint at https://doi.org/10.1101/2020.02.07.937862 (2020). – reference: ZhouPA pneumonia outbreak associated with a new coronavirus of probable bat originNature20205792702731:CAS:528:DC%2BB3cXksFKlsLg%3D320155077095418 – reference: Zulkower, V. & Rosser, S. DNA Features Viewer, a sequence annotations formatting and plotting library for Python. Preprint at https://doi.org/10.1101/2020.01.09.900589 (2020). – reference: BroedersSGuidelines for validation of qualitative real-time PCR methodsTrends Food Sci. Technol.2014371151261:CAS:528:DC%2BC2cXmtFaksLc%3D10.1016/j.tifs.2014.03.008 – reference: Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020). – reference: Centers for Disease Control and Prevention. Research use only 2019—novel coronavirus (2019-nCoV) real-time RT–PCR primers and probes (2020); https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html – reference: Harcourt, J. et al. Severe acute respiratory syndrome coronavirus 2 from patient with 2019 novel coronavirus disease, United States. Emerg. Infect. Dis. 26, 1266–1273 (2020). – reference: WuFA new coronavirus associated with human respiratory disease in ChinaNature20205792652691:CAS:528:DC%2BB3cXksFKlsLc%3D10.1038/s41586-020-2008-3320155087094943 – reference: Ott, I. M., Vogels, C. B. F., Grubaugh, N. D., & Wyllie, A. L. Saliva collection and RNA extraction for SARS-CoV-2 detection. protocols.iohttps://doi.org/10.17504/protocols.io.bh6mj9c6 (2020). – reference: Genomeweb. CDC revises SARS-CoV-2 assay protocol; surveillance testing on track to start next week. 360Dxhttps://www.360dx.com/pcr/cdc-revises-sars-cov-2-assay-protocol-surveillance-testing-track-start-next-week (2020). – reference: NallaAKComparative performance of SARS-CoV-2 detection assays using seven different primer/probe sets and one assay kitJ. Clin. Microbiol.202058e00557-2010.1128/JCM.00557-20322691007269385 – reference: National Institute for Viral Disease Control and Prevention. Specific primers and probes for detection of 2019 novel coronavirus (2020); http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html – volume: 579 start-page: 265 year: 2020 ident: 761_CR2 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – ident: 761_CR4 doi: 10.1093/clinchem/hvaa029 – volume: 37 start-page: 115 year: 2014 ident: 761_CR16 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2014.03.008 – ident: 761_CR15 doi: 10.1101/2020.01.09.900589 – volume: 74 start-page: 1660 year: 2008 ident: 761_CR13 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02403-07 – volume: 58 start-page: e00557-20 year: 2020 ident: 761_CR14 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00557-20 – ident: 761_CR1 doi: 10.1101/2020.02.07.937862 – ident: 761_CR6 – ident: 761_CR7 – ident: 761_CR10 doi: 10.17504/protocols.io.bdv6i69e – volume: 3 start-page: 9 year: 2015 ident: 761_CR9 publication-title: Biomol. Detect. Quantif. doi: 10.1016/j.bdq.2015.01.005 – ident: 761_CR5 doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – ident: 761_CR8 doi: 10.3201/eid2606.200516 – volume: 579 start-page: 270 year: 2020 ident: 761_CR3 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – ident: 761_CR11 – volume: 30 start-page: 503 year: 2002 ident: 761_CR17 publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(02)00806-8 – ident: 761_CR12 – ident: 761_CR18 doi: 10.17504/protocols.io.bh6mj9c6 |
SSID | ssj0001626686 |
Score | 2.6270926 |
Snippet | The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to... The recent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exemplifies the critical need for accurate and rapid diagnostic assays to... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1299 |
SubjectTerms | 45/77 631/326/596/4130 631/337 Analysis Betacoronavirus - genetics Betacoronavirus - isolation & purification Biomedical and Life Sciences Clinical Laboratory Techniques - methods Clinical Laboratory Techniques - statistics & numerical data Comparative analysis Coronavirus Infections - diagnosis Coronavirus Infections - epidemiology Coronavirus Infections - virology Coronaviruses COVID-19 COVID-19 Testing Genetic Variation Genome, Viral Humans Infectious Diseases Life Sciences Medical Microbiology Microbiology Molecular Probe Techniques - statistics & numerical data Pandemics Parasitology Pneumonia, Viral - diagnosis Pneumonia, Viral - epidemiology Pneumonia, Viral - virology Public health Reverse Transcriptase Polymerase Chain Reaction - methods Reverse Transcriptase Polymerase Chain Reaction - statistics & numerical data Reverse transcription Ribonucleic acid RNA RNA - genetics RNA Probes - genetics RNA, Viral - analysis RNA, Viral - genetics SARS-CoV-2 Sensitivity and Specificity Severe acute respiratory syndrome coronavirus 2 Virology |
Title | Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets |
URI | https://link.springer.com/article/10.1038/s41564-020-0761-6 https://www.ncbi.nlm.nih.gov/pubmed/32651556 https://www.proquest.com/docview/2475018362 https://www.proquest.com/docview/2423068446 https://pubmed.ncbi.nlm.nih.gov/PMC9241364 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7oLoIgovUWrWUEn5ShMclMJk-yu3QpgkvZttIXCTs3FCTZNtsH3_wP_kN_iedMLsta7GOYyWVyZs6c23wfwNuV907FGn0TVJCcDF6-ilXBfWGETTSuKEsHhT8v5PF59ulCXHQBt6Yrq-x1YlDUtjYUIz9Mspyw51DfflxfcmKNouxqR6FxF8aogpUawXh6tDhZbqMsaK9LJft0ZqoOG_JYMk5eE7nwXO5uSDeszJvFkv9kTMNGNH8EDzsLkk1akT-GO67ag3stp-TPPXjQBuJYe77oCXwNsCMhYs0aqlZv6SLYqrLMBfwIOnzJzMBH2LDas9PJ8pTP6i88YcuzP79-X57MlmxNVABXeEUsNA6ftmmewvn86Gx2zDtOBW5EKjdcWO1tbJSOhSYSO69FHnysLE-8c4QnmDqjrMelLwpXZJo4ypT3wuUGTY_0GYyqunIvgHnc7QkMHi2sJNNSaGkSneU2_WBtLpyKIO5_bGk6wHHivfhRhsR3qspWFiXKoiRZlDKCd8Mt6xZt47bO-720ym7hNeV2mkTwZmjGJUN5kFXl6mvqQ36XQkc4guetcIe3oTVLpDfYku-IfehAcNy7LdX3bwGWu6AUpcwieN9PkO1n_XcQL28fxCu4n9BUDdWD-zDaXF2712gFbfQBjCfz6XRx0E35v-C1B6s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRCVEIICJVDASHABWQ1O4jgHhMrSakvbVbXdVr2gsI5tgYSSbbMV6o134D14KJ6EmfytloreeozsOLFnbM-P_X0ALyfOWeVr9E1wgeRk8PKJrxLukiwyQuOMMnRReH8oB0fhp5PoZAl-t3dh6FhluyZWC7UpMoqRb4gwJuw5XG_fT085sUZRdrWl0KjVYtde_ECXrXy38xHl-0qI7a1xf8AbVgGeRYGc8choZ_xMaT_SROPmdBRXXkYYC2ctIeoFNlPGofJHiU1CTSxdyrnIxhluvgG2ewOWw0D6ogfLH7aGB6N5VAf9A6lkmz4N1EZJHlLIyUujkAGXixvgJav28uHMfzK01ca3fRfuNBYr26xV7B4s2XwVbtYclhercLsO_LH6PtN9-FzBnFQRclbS6fianoJNcsNshVdBlz1Z1vEflqxw7HBzdMj7xTEXbDT-8_PX6UF_xKZEPXCGT8R6Y7G1WfkAjq5ltB9CLy9y-wiYQ-uCwOfRohOhlpGWmdBhbIK3xsSRVR747cCmWQNwTjwb39Mq0R6otJZFirJISRap9OB198q0Rve4qvJ6K620mehlOldLD150xThFKe8yyW1xTnXIz1PoeHuwVgu3-xpaz0SygyXxgti7CgT_vViSf_tawYAnlBKVoQdvWgWZ_9Z_O_H46k48h1uD8f5eurcz3H0CK4LUtjq5uA692dm5fYoW2Ew_a9SewZfrnml_AYRuQiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+sensitivity+and+efficiency+comparisons+of+SARS-CoV-2+RT%E2%80%93qPCR+primer%E2%80%93probe+sets&rft.jtitle=Nature+microbiology&rft.au=Vogels%2C+Chantal+B.+F.&rft.au=Brito%2C+Anderson+F.&rft.au=Wyllie%2C+Anne+L.&rft.au=Fauver%2C+Joseph+R.&rft.date=2020-10-01&rft.issn=2058-5276&rft.eissn=2058-5276&rft.volume=5&rft.issue=10&rft.spage=1299&rft.epage=1305&rft_id=info:doi/10.1038%2Fs41564-020-0761-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41564_020_0761_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |