Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120

A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 30; pp. E2083 - E2090
Main Authors West, Anthony P, Diskin, Ron, Nussenzweig, Michel C, Bjorkman, Pamela J
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.07.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V H gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.
AbstractList A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V H gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.
A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V H gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies. Author Summary The signature residues we have identified for PVL antibodies suggest a common pathway for the development of potent CD4bs antibodies beginning with heavy chains derived from the VH1-2 germ-line gene segment. This pathway may represent the most likely way that PVL antibodies can develop in humans, as evidenced by their independent isolation from five different individuals. The near requirement for these antibodies to be derived from the VH1-2 gene segment has implications for testing antigens designed to elicit PVL-like antibodies in animals: Namely, animals that lack a suitable germ-line gene will likely fail to generate this class of antibody. Thus, alternative testing platforms would be preferable for raising PVL antibodies, such as transgenic mice incorporating the human Ig locus. Moreover, the identification of signature residues critical for PVL potency allows classification of CD4bs antibodies by sequence and is relevant for structure-based design efforts to improve the potency and breadth of anti-CD4bs antibodies as more efficacious anti-AIDS therapeutics. To determine whether changes in these signature PVL residues affected germ-line antibody binding to gp120, we conducted binding studies using mutated germ-line heavy chains paired with a mature light chain. We found that mutation of the signature heavy-chain residues reduced or abolished binding to the HIV-1 envelope protein, consistent with the PVL characteristic residues playing a key role in binding to the HIV-1 envelope and in triggering an initial immune response. Only 4 of ∼69 possible human germ-line V H gene segments include all of the PVL signature residues (VH1-2, VH1-45, VH1-58, and VH1-68). Studies of V gene use show that VH1-2 is >10-fold more common than the next most frequent germ-line segment containing all PVL signature residues (VH1-58), thus rationalizing the common germ-line V H gene segment origin of known PVLs. Of relevance to efforts to raise PVL antibodies in animals commonly used in research, we note that mouse, rabbit, and rat genomes do not include V H gene segments with the combination of Trp50 HC , Arg71 HC , and Asn58 HC . Crystal structures reveal that the new CD4bs antibodies bind to gp120 by mimicking CD4 ( 2 , 4 , 5 ). Available structural information, taken together with the large amount of sequence data for CD4bs antibodies ( 2 , 3 ), allows analyses to determine which of the antibodies bind gp120 in essentially the same manner and the critical sequence features that permit this binding. On the basis of inspections of alignments of antibody variable domain sequences, we found the following sequence characteristics of the most potent CD4bs antibodies: within the heavy chain, complete conservation of the amino acid residues Arg71 HC , Trp50 HC , Asn58 HC , and Trp100B HC , and within the light chain, conservation of Glu96 LC and a complementarity-determining region 3 length of exactly 5 aa residues. The heavy-chain sequence characteristics are found in CD4bs antibodies that descended from the VH1-2 germ line, but not from the VH1-46 germ line ( 3 ). The structural roles that Arg71 HC , Trp50 HC , Asn58 HC , and Trp100B HC play in the V H domain structure and in binding to the CD4bs on gp120 are shown schematically in Fig. P1 . We propose a nomenclature to describe antibodies that include this set of sequence characteristics: PVL antibodies, reflecting the first of this class to be isolated ( 1 ). A series of antibodies that recognize the CD4bs of HIV-1 gp120 were recently isolated ( 1 – 3 ). Binding of the HIV-1 envelope glycoprotein gp120 to the human cell surface receptor CD4 is the first step in infecting a cell, and thus this critical binding site is a potential vulnerability of the virus. Some of the new CD4bs antibodies, e.g., VRC01, NIH45-46, 3BNC117, VRC-PG04, and VRC-CH31, are remarkable for their broad neutralizing activity (neutralizing ∼90% of strains) and potency. For an antigen to elicit a strong antibody response, it has to be recognized initially by membrane-bound antibodies on naive B cells. During a sustained immune response, B-cell clones expressing these germ-line antibodies hypermutate so that a subset of B cells expresses antibodies with higher affinities for the original antigen. This process is called somatic hypermutation or affinity maturation, and it results in mutations in both the heavy and light chains of the antibody. Interestingly, despite being isolated from different donors, the new CD4bs antibodies arose from two closely related germ-line IgV H genes (VH1-2 and VH1-46) ( 3 ). A large number of antibodies targeting the CD4-binding site (CD4bs) on the HIV-1 envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V H gene segment and why certain gp120 sequences are associated with resistance to PVL antibodies. The lack of genes encoding these features in commonly used laboratory animals suggests that attempts to test vaccines designed to induce these antibodies need to be performed in mice genetically engineered to express human antibody genes. These results bear on both vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.
A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V H gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.
A large number of anti-HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human VH gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies. [PUBLICATION ABSTRACT]
Author Diskin, Ron
West, Anthony P
Bjorkman, Pamela J
Nussenzweig, Michel C
Author_xml – sequence: 1
  fullname: West, Anthony P
– sequence: 2
  fullname: Diskin, Ron
– sequence: 3
  fullname: Nussenzweig, Michel C
– sequence: 4
  fullname: Bjorkman, Pamela J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22745174$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1P3DAUtCqqskDPvbWWeg48fyXxpVK10IKE1APQq-U4TjDatVPbAfXf12G30F7e88fMePzmCB344C1CHwicEmjY2eR1OiUUWtlyAvINWpVKqppLOEArANpULaf8EB2l9AAAUrTwDh1S2nBBGr5CTzc5zibPUW9wp5NLeAgRjzZuq43ztqxKmZMeLQ4D1ngK2fqMzUan9Hzis-tC72zCWcfRZudHnO8tXp_zqnO-X_bJ5Wf65dXPiuBxKoZP0NtBb5J9v-_H6O7bxe36srr-8f1q_fW6MoLVuRJSDKJnQ90bZgBEZzk1veWCMykEE9D3pjWEko5LVg9dS4GUNkiobU2gZcfoy053mrut7U0xX76qpui2Ov5WQTv1_41392oMj4pxkI2kReDzXiCGX7NNWT2EOfriWZEyXgllvAvqbIcyMaQU7fDyAgG1JKWWpNRrUoXx8V9jL_i_0RQA3gMW5qucVAzURRFiBfJpBxl0UHqMLqm7m2UCAIRK0kr2B_iFpGA
CitedBy_id crossref_primary_10_1016_j_addr_2016_01_013
crossref_primary_10_1016_j_celrep_2022_110485
crossref_primary_10_1016_j_virol_2012_10_004
crossref_primary_10_1126_science_aac5894
crossref_primary_10_1038_s41435_021_00145_5
crossref_primary_10_1016_j_celrep_2019_10_071
crossref_primary_10_1128_JVI_00837_13
crossref_primary_10_4049_jimmunol_1500118
crossref_primary_10_1038_ncomms7565
crossref_primary_10_1038_s41541_021_00376_7
crossref_primary_10_1084_jem_20210236
crossref_primary_10_1016_j_chom_2012_09_008
crossref_primary_10_1074_jbc_M117_788919
crossref_primary_10_1097_COH_0b013e328363a90e
crossref_primary_10_1073_pnas_2216612120
crossref_primary_10_1126_scitranslmed_adk1867
crossref_primary_10_1016_j_celrep_2023_113194
crossref_primary_10_1126_scitranslmed_adn0223
crossref_primary_10_1371_journal_pmed_1002435
crossref_primary_10_3390_vaccines9121376
crossref_primary_10_1038_ni_2480
crossref_primary_10_1128_JVI_01089_16
crossref_primary_10_1016_j_cell_2015_03_004
crossref_primary_10_1016_j_celrep_2021_109084
crossref_primary_10_1016_j_cell_2020_01_010
crossref_primary_10_1128_JVI_02213_14
crossref_primary_10_1016_j_bbapap_2014_05_010
crossref_primary_10_2139_ssrn_3805158
crossref_primary_10_1016_j_cell_2023_12_002
crossref_primary_10_3389_fimmu_2019_02365
crossref_primary_10_1038_s41467_022_32208_0
crossref_primary_10_1016_j_celrep_2021_109922
crossref_primary_10_1016_j_cell_2016_08_005
crossref_primary_10_1016_j_chom_2020_05_010
crossref_primary_10_1371_journal_ppat_1005815
crossref_primary_10_1371_journal_ppat_1004337
crossref_primary_10_7554_eLife_13783
crossref_primary_10_1371_journal_pcbi_1003046
crossref_primary_10_1038_nri3516
crossref_primary_10_1097_COH_0000000000000049
crossref_primary_10_1002_jmv_24271
crossref_primary_10_1016_j_virol_2015_08_011
crossref_primary_10_1016_j_immuni_2018_07_005
crossref_primary_10_1126_science_adf3722
crossref_primary_10_1177_2040206614566580
crossref_primary_10_1016_j_coviro_2013_05_010
crossref_primary_10_1016_j_virol_2016_10_026
crossref_primary_10_1038_ncomms10618
crossref_primary_10_4049_jimmunol_1901051
crossref_primary_10_1126_science_add6502
crossref_primary_10_1016_j_str_2016_06_012
crossref_primary_10_1128_JVI_01680_20
crossref_primary_10_3390_v13061181
crossref_primary_10_1038_s41467_018_03632_y
crossref_primary_10_1016_j_biotechadv_2023_108143
crossref_primary_10_1074_jbc_M112_399402
crossref_primary_10_1016_j_immuni_2012_08_012
crossref_primary_10_1016_j_cell_2015_05_007
crossref_primary_10_3389_fimmu_2021_662909
crossref_primary_10_1016_j_coviro_2015_04_002
crossref_primary_10_1016_j_immuni_2020_12_014
crossref_primary_10_1016_j_smim_2021_101470
crossref_primary_10_1084_jem_20161765
crossref_primary_10_1016_j_jim_2015_01_011
crossref_primary_10_1002_pro_2682
crossref_primary_10_1016_j_immuni_2014_11_014
crossref_primary_10_1038_cti_2016_42
crossref_primary_10_1038_s41467_021_23074_3
crossref_primary_10_1126_sciimmunol_ade6364
crossref_primary_10_1038_nsmb_3291
crossref_primary_10_1128_JVI_01893_12
crossref_primary_10_1084_jem_20121827
crossref_primary_10_1371_journal_ppat_1003738
crossref_primary_10_1016_j_coi_2018_04_025
crossref_primary_10_1084_jem_20201254
crossref_primary_10_1159_000438484
crossref_primary_10_1038_s41467_024_49676_1
crossref_primary_10_1038_s41586_023_06639_8
crossref_primary_10_1128_JVI_02853_13
crossref_primary_10_1186_s12977_018_0457_7
crossref_primary_10_1016_j_chom_2020_01_007
crossref_primary_10_1097_COH_0000000000000821
crossref_primary_10_1126_science_adc9498
crossref_primary_10_1371_journal_ppat_1004552
crossref_primary_10_1097_COH_0000000000000548
crossref_primary_10_1371_journal_pone_0205756
crossref_primary_10_1016_j_coi_2016_05_013
crossref_primary_10_1097_COH_0000000000000148
crossref_primary_10_1126_scitranslmed_aal2144
crossref_primary_10_3389_fimmu_2021_708882
crossref_primary_10_1128_jvi_01720_23
crossref_primary_10_1371_journal_pcbi_1005789
crossref_primary_10_1084_jem_20131244
crossref_primary_10_1038_nsmb_3144
crossref_primary_10_1016_j_cell_2017_04_024
crossref_primary_10_1038_s41541_024_00811_5
crossref_primary_10_1371_journal_ppat_1005238
crossref_primary_10_1016_j_immuni_2020_09_007
crossref_primary_10_1126_science_1241144
crossref_primary_10_4049_jimmunol_1601134
crossref_primary_10_1371_journal_pone_0109196
crossref_primary_10_1016_j_immuni_2013_04_012
crossref_primary_10_1146_annurev_med_061016_041032
crossref_primary_10_1007_s11904_017_0352_1
crossref_primary_10_1073_pnas_1309215110
crossref_primary_10_1371_journal_pmed_1002493
crossref_primary_10_1093_protein_gzt027
crossref_primary_10_1371_journal_ppat_1007120
crossref_primary_10_1126_sciadv_abm3948
crossref_primary_10_1111_tan_13759
crossref_primary_10_1126_science_1233989
crossref_primary_10_1097_COH_0000000000000360
crossref_primary_10_1128_JVI_01812_14
crossref_primary_10_1126_scitranslmed_aad5752
crossref_primary_10_1126_science_aay5051
crossref_primary_10_1126_science_aad9195
crossref_primary_10_1038_s41467_023_39690_0
crossref_primary_10_1084_jem_20190446
crossref_primary_10_3389_fimmu_2018_00329
crossref_primary_10_1016_j_cell_2018_03_061
crossref_primary_10_1371_journal_ppat_1005989
crossref_primary_10_1146_annurev_biodatasci_020722_041304
crossref_primary_10_1586_14760584_2014_894469
crossref_primary_10_1126_science_1234150
crossref_primary_10_1126_scitranslmed_aat0381
crossref_primary_10_1080_19420862_2020_1836719
crossref_primary_10_1126_science_aah3945
crossref_primary_10_1016_j_molimm_2022_12_011
crossref_primary_10_1371_journal_ppat_1004772
crossref_primary_10_1016_j_immuni_2015_10_014
crossref_primary_10_1089_aid_2022_0104
crossref_primary_10_1111_cei_12692
crossref_primary_10_1073_pnas_1921996117
crossref_primary_10_1097_COH_0000000000000054
crossref_primary_10_1371_journal_ppat_1008165
crossref_primary_10_1080_19420862_2016_1270491
crossref_primary_10_1016_j_smim_2020_101428
crossref_primary_10_1073_pnas_2217883120
crossref_primary_10_1016_j_cell_2015_06_003
crossref_primary_10_3389_fimmu_2014_00398
crossref_primary_10_1016_j_celrep_2016_10_017
crossref_primary_10_1016_j_coisb_2020_10_011
crossref_primary_10_1084_jem_20122824
crossref_primary_10_1016_j_immuni_2017_11_023
crossref_primary_10_1016_j_jaut_2024_103241
crossref_primary_10_1016_j_molmed_2019_01_007
crossref_primary_10_1084_jem_20161160
crossref_primary_10_1111_imr_12005
crossref_primary_10_1038_ncomms13376
crossref_primary_10_1111_imr_12483
crossref_primary_10_1111_imr_12484
crossref_primary_10_1016_j_isci_2022_105473
crossref_primary_10_1038_s41467_022_28424_3
crossref_primary_10_1016_j_immuni_2018_10_015
crossref_primary_10_1126_sciadv_abp8155
crossref_primary_10_1016_j_immuni_2018_04_029
crossref_primary_10_3390_vaccines8010013
crossref_primary_10_1084_jem_20130221
crossref_primary_10_1128_JVI_03608_14
crossref_primary_10_1074_jbc_M112_425959
crossref_primary_10_1074_jbc_RA118_005006
crossref_primary_10_1126_sciimmunol_adn0622
crossref_primary_10_1007_s11427_013_4593_y
crossref_primary_10_1111_imr_12075
crossref_primary_10_3390_v13102106
crossref_primary_10_1172_JCI73441
crossref_primary_10_1371_journal_pcbi_1008030
crossref_primary_10_1016_j_cell_2014_01_052
crossref_primary_10_1128_JVI_02455_20
crossref_primary_10_1016_j_vaccine_2017_04_054
crossref_primary_10_1016_j_xcrm_2020_100015
crossref_primary_10_1038_s41467_018_04272_y
Cites_doi 10.1089/aid.1994.10.359
10.1093/nar/30.2.e9
10.1126/science.7973652
10.1016/j.jim.2008.11.012
10.1371/journal.pone.0008805
10.1128/JVI.00198-11
10.1093/nar/gkn838
10.1038/nature01470
10.1038/nature10373
10.1128/JVI.79.16.10108-10125.2005
10.1128/jvi.70.3.1863-1872.1996
10.1128/jvi.71.12.9722-9731.1997
10.1093/nar/gkn316
10.1038/nbt1135
10.1126/science.1187659
10.4161/mabs.2.5.12545
10.1098/rstb.2011.0096
10.1371/journal.pone.0022365
10.1126/science.1178746
10.1016/j.str.2010.06.010
10.1126/science.1207227
10.1371/journal.ppat.1001251
10.1128/jvi.70.2.1100-1108.1996
10.1146/annurev-immunol-030409-101256
10.1038/31405
10.1038/nature09385
10.1038/nature01188
10.1126/science.1207532
10.1128/JVI.07139-11
10.1126/science.1213782
10.1128/jvi.67.11.6642-6647.1993
10.1128/JVI.77.19.10557-10565.2003
10.1371/journal.ppat.1000908
10.1126/science.1192819
10.1016/0092-8674(86)90778-6
10.1038/nature07930
10.1074/jbc.M111.317776
10.1016/j.bbrc.2009.09.029
10.1093/glycob/cwq020
10.1371/journal.pone.0016074
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 24, 2012
Copyright_xml – notice: Copyright National Academy of Sciences Jul 24, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1208984109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
MEDLINE

CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Anti–CD4-binding site antibodies
EISSN 1091-6490
EndPage E2090
ExternalDocumentID 2721186001
10_1073_pnas_1208984109
22745174
109_30_E2083
US201600129189
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIH HHS
  grantid: DP1OD006961
– fundername: Howard Hughes Medical Institute
– fundername: NIH HHS
  grantid: DP1 OD006961
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADACV
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DWIUU
DZ
H13
KM
PQEST
X
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c536t-595f5d3f6dc3c005be42cde4543955350ddc8c121b4936fb82016fbf906e61083
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:56 EDT 2024
Thu Oct 10 15:18:19 EDT 2024
Fri Aug 23 01:10:36 EDT 2024
Sat Sep 28 07:56:35 EDT 2024
Wed Nov 11 00:30:05 EST 2020
Thu Jul 18 04:56:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-595f5d3f6dc3c005be42cde4543955350ddc8c121b4936fb82016fbf906e61083
Notes http://dx.doi.org/10.1073/pnas.1208984109
Contributed by Pamela J. Bjorkman, May 30, 2012 (sent for review May 2, 2012)
Author contributions: A.P.W. designed and performed research; A.P.W., R.D., and P.J.B. analyzed data; and A.P.W., M.C.N., and P.J.B. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/30/E2083.full.pdf
PMID 22745174
PQID 1027904242
PQPubID 42026
ParticipantIDs proquest_journals_1027904242
pubmed_primary_22745174
crossref_primary_10_1073_pnas_1208984109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3409792
fao_agris_US201600129189
pnas_primary_109_30_E2083
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-07-24
PublicationDateYYYYMMDD 2012-07-24
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 21835983 - Science. 2011 Sep 16;333(6049):1593-602
9641677 - Nature. 1998 Jun 18;393(6686):648-59
20523901 - PLoS Pathog. 2010 May;6(5):e1000908
20882016 - Nature. 2010 Sep 30;467(7315):591-5
21389135 - J Virol. 2011 May;85(10):4828-40
12646921 - Nature. 2003 Mar 20;422(6929):307-12
19729618 - Science. 2009 Oct 9;326(5950):285-9
12970440 - J Virol. 2003 Oct;77(19):10557-65
7520721 - AIDS Res Hum Retroviruses. 1994 Apr;10(4):359-69
22033520 - Science. 2011 Dec 2;334(6060):1289-93
12478295 - Nature. 2002 Dec 12;420(6916):678-82
21249232 - PLoS Pathog. 2011;7(1):e1001251
2423250 - Cell. 1986 Jun 6;45(5):637-48
20192810 - Annu Rev Immunol. 2010;28:413-44
20616233 - Science. 2010 Aug 13;329(5993):856-61
16051804 - J Virol. 2005 Aug;79(16):10108-25
16151405 - Nat Biotechnol. 2005 Sep;23(9):1117-25
7692082 - J Virol. 1993 Nov;67(11):6642-7
19100741 - J Immunol Methods. 2009 Apr 15;343(2):65-7
8627711 - J Virol. 1996 Mar;70(3):1863-72
19748484 - Biochem Biophys Res Commun. 2009 Dec 18;390(3):404-9
21297864 - PLoS One. 2011;6(1):e16074
9371638 - J Virol. 1997 Dec;71(12):9722-31
20098712 - PLoS One. 2010;5(1):e8805
21764753 - Science. 2011 Sep 16;333(6049):1633-7
22167180 - J Biol Chem. 2012 Feb 17;287(8):5673-86
21893538 - Philos Trans R Soc Lond B Biol Sci. 2011 Oct 12;366(1579):2759-65
21849977 - Nature. 2011 Sep 22;477(7365):466-70
18978023 - Nucleic Acids Res. 2009 Jan;37(Database issue):D1006-12
22419808 - J Virol. 2012 May;86(10):5844-56
20562531 - MAbs. 2010 Sep-Oct;2(5):528-38
21829618 - PLoS One. 2011;6(8):e22365
18432938 - Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11
20826338 - Structure. 2010 Sep 8;18(9):1116-26
19287373 - Nature. 2009 Apr 2;458(7238):636-40
18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8
7973652 - Science. 1994 Nov 11;266(5187):1024-7
20616231 - Science. 2010 Aug 13;329(5993):811-7
8551569 - J Virol. 1996 Feb;70(2):1100-8
20181792 - Glycobiology. 2010 Jul;20(7):812-23
11788735 - Nucleic Acids Res. 2002 Jan 15;30(2):E9
Montefiori DC (e_1_3_3_42_2) 2005
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_1_2_18_9_2_2
e_1_1_2_18_9_3_2
e_1_3_3_40_2
e_1_1_2_18_9_1_2
e_1_1_2_18_9_4_2
e_1_1_2_18_9_5_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Lefranc MP (e_1_3_3_26_2) 2001
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_13_2
  doi: 10.1089/aid.1994.10.359
– ident: e_1_3_3_40_2
  doi: 10.1093/nar/30.2.e9
– ident: e_1_3_3_15_2
  doi: 10.1126/science.7973652
– ident: e_1_3_3_17_2
  doi: 10.1016/j.jim.2008.11.012
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pone.0008805
– ident: e_1_3_3_10_2
  doi: 10.1128/JVI.00198-11
– ident: e_1_3_3_29_2
  doi: 10.1093/nar/gkn838
– ident: e_1_3_3_1_2
  doi: 10.1038/nature01470
– ident: e_1_3_3_19_2
  doi: 10.1038/nature10373
– ident: e_1_3_3_41_2
  doi: 10.1128/JVI.79.16.10108-10125.2005
– ident: e_1_3_3_6_2
  doi: 10.1128/jvi.70.3.1863-1872.1996
– ident: e_1_3_3_5_2
  doi: 10.1128/jvi.71.12.9722-9731.1997
– ident: e_1_3_3_32_2
  doi: 10.1093/nar/gkn316
– ident: e_1_3_3_39_2
  doi: 10.1038/nbt1135
– ident: e_1_1_2_18_9_1_2
  doi: 10.1126/science.1187659
– volume-title: The Immunoglobulin FactsBook
  year: 2001
  ident: e_1_3_3_26_2
  contributor:
    fullname: Lefranc MP
– ident: e_1_3_3_31_2
  doi: 10.4161/mabs.2.5.12545
– ident: e_1_3_3_38_2
  doi: 10.1098/rstb.2011.0096
– ident: e_1_3_3_30_2
  doi: 10.1371/journal.pone.0022365
– ident: e_1_3_3_18_2
  doi: 10.1126/science.1178746
– ident: e_1_3_3_35_2
  doi: 10.1016/j.str.2010.06.010
– ident: e_1_3_3_23_2
  doi: 10.1126/science.1207227
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.ppat.1001251
– ident: e_1_3_3_14_2
  doi: 10.1128/jvi.70.2.1100-1108.1996
– ident: e_1_3_3_33_2
  doi: 10.1146/annurev-immunol-030409-101256
– ident: e_1_3_3_4_2
  doi: 10.1038/31405
– ident: e_1_3_3_9_2
  doi: 10.1038/nature09385
– ident: e_1_1_2_18_9_3_2
  doi: 10.1126/science.1207227
– ident: e_1_3_3_2_2
  doi: 10.1038/nature01188
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1207532
– ident: e_1_3_3_27_2
  doi: 10.1128/JVI.07139-11
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1213782
– ident: e_1_3_3_12_2
  doi: 10.1128/jvi.67.11.6642-6647.1993
– volume-title: Current Protocols in Immunology
  year: 2005
  ident: e_1_3_3_42_2
  contributor:
    fullname: Montefiori DC
– ident: e_1_1_2_18_9_2_2
  doi: 10.1126/science.1207532
– ident: e_1_3_3_3_2
  doi: 10.1128/JVI.77.19.10557-10565.2003
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.ppat.1000908
– ident: e_1_1_2_18_9_5_2
  doi: 10.1126/science.1192819
– ident: e_1_3_3_7_2
  doi: 10.1016/0092-8674(86)90778-6
– ident: e_1_3_3_16_2
  doi: 10.1038/nature07930
– ident: e_1_3_3_37_2
  doi: 10.1074/jbc.M111.317776
– ident: e_1_3_3_28_2
  doi: 10.1016/j.bbrc.2009.09.029
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1187659
– ident: e_1_3_3_34_2
  doi: 10.1093/glycob/cwq020
– ident: e_1_1_2_18_9_4_2
  doi: 10.1126/science.1213782
– ident: e_1_3_3_25_2
  doi: 10.1126/science.1192819
– ident: e_1_3_3_36_2
  doi: 10.1371/journal.pone.0016074
SSID ssj0009580
Score 2.5381572
Snippet A large number of anti–HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These...
A large number of anti-HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E2083
SubjectTerms Amino Acid Sequence
antibodies
Base Sequence
Binding sites
Biological Sciences
CD4 Antigens - genetics
CD4 Antigens - metabolism
Conserved Sequence - genetics
crystal structure
Genes
Germ Cells - immunology
Glycoproteins
HIV
HIV Antibodies - genetics
HIV Antibodies - immunology
HIV Antibodies - metabolism
HIV Envelope Protein gp120 - genetics
HIV Envelope Protein gp120 - immunology
HIV-1
Human immunodeficiency virus
Human immunodeficiency virus 1
humans
Molecular Sequence Data
Mutagenesis
Mutation Rate
Neutralization Tests
PNAS Plus
Sequence Alignment
Sequence Analysis, DNA
Surface Plasmon Resonance
vaccine development
Title Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120
URI http://www.pnas.org/content/109/30/E2083.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22745174
https://www.proquest.com/docview/1027904242
https://pubmed.ncbi.nlm.nih.gov/PMC3409792
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6PXFBlFcDpfKhh3LIbuJHEh_R0mpLVYRUFvVm2Y69rESTSLuIv8-Mk2xZ1FMvSRQ_EnvGnm_i8RdCzkzhvHXCw_jmIhUAcGEeVCJVxgjLuS-DR0fx5muxWIovd_LugMhxL0wM2nd2PW1-3U-b9c8YW9ndu9kYJzb7djPnSNKk2GxCJiXno4u-Y9qt-n0nDKZfwcTI51PyWdeYzTRnWaUqkWdIGMrAKUOu5j2rNAmmRa5TyP0Y7vw_fPIfe3T5gjwfgCT91L_wETnwzUtyNAzVDT0f-KQ_viJ_biNHLPJrUDBa6w0FoEpXMCWniDHhCg6_McCMtoEa2rWAo7fUIa6Od5rt2rYYbUj7uHGwdhRwI51_FuhYo_WjuAiNmRdXP9Kcrjpo_2uyvLz4Pl-kw_8WUid5sU2lkkHWPBS14w5Gp_WCudoLCaBFSi6zunaVy1luheJFsAge4BRUVnhAYRV_Qw6btvHHhFqXBwAz4ExZJoLxVuZBWuOzytVV7bOEnI_9rbueVkPH5fCSa-x3_SClhByDPLRZwaSnl7f4zPj1LK8gKYmZH2pQmmf6AsryhJyMktPDsIRaQSkULvayhLzthbgrPKpCQso98e4yIBH3fgroZyTkHvTx3ZNLvifPoF0xDJiJE3IIauE_ANjZ2lOA-VfXp1HF_wLLEPsP
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGH61jQNcGONjCwzwgcM4JE38kSZHVDZ1sE5IW6fdrNixSwVLIjUT0n49r52koxMXuLRVbady36_nrZ88BfhQpNoozQ3GN-MhR4CLeTDnYV4UXDFmxta4RnF2nk7n_Mu1uN4CMdwL40n7Wi2j6udNVC2_e25lc6NHA09s9G02YU6kKaejbXiE8UrF0KSvtXaz7s4TigmYUz4o-ozZqKmKVZTQOMsznsROMpRiW-bUmjfq0rYtaqd2irP_hjwfEij_qEgnu3A17KUjovyIblsV6bsHMo__vNln8LTHqORTN7wHW6Z6Dnt9FliRo16q-uML-HXh5WeddAfBerhcEcTAZIHZPnTwFV_hw63jrpHakoI0NUL0lmgH2f07VbtUtSMyko6SjoWUICQlk8_c9eyusBJ3vu0mT0-vwoQsGvxiX8L85PhyMg37v3IItWBpG4pcWFEym5aaaQx8ZTjVpeEC8ZAQTMRlqTOd0ETxnKVWOVyCTzaPU4MAL2OvYKeqK3MAROnEIk7CPk1RbgujRGKFKkyc6TIrTRzA0WBI2XSKHdKftI-ZdAaV9-YP4AANLYsF5lM5v3Cf6X-YSzIcCvzk-yvkksXyGNeyAA4Hl5B9xONV0dtyd45MA9jvvGO9ePCxAMYbfrOe4DS-N0fQG7zWd2_91_-98j08nl7OzuTZ6fnXN_AE9-jZxpQfwg66iHmLmKpV73wE_Qb8Bxwd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXSnm0KQV84FAOefmRxxFtu9oCrSqVRRUXy3bsZQVNIm0qJH49YyfZditOveyukrEjrz_PfBNPviD0QWbaKM0MrG_KQgYEF_xgycJSSqYoNbk1LlE8O89mc_b5il_dedWXL9rXahnVv6-jevnT11a21zoe68Tii7MJdSJNJYnbysZb6DGsWZKPifpab7fonz4h4IQZYaOqT07jtparKCVJURYsTZxsKIHUzCk2b8SmLSsbp3gK1v9jn_eLKO9EpekO-jGOpy9G-RXddCrSf-9JPT5owM_Rs4Gr4k-9yS56ZOoXaHfwBit8NEhWf3yJ_lx6GVon4YEhLi5XGLgwXoDXDx2NhV_wceNq2HBjscRtA1S9w9pRd3-k7paqcQWNuC9Nh4CKgZriyTFzubsLsNjtczvj2en3MMWLFv7cV2g-Pfk2mYXDKx1CzWnWhbzkllfUZpWmGhyAMozoyjAOvIhzypOq0oVOSapYSTOrHD-BL1smmQGiV9DXaLtuarOPsNKpBb4E-ZoizEqjeGq5kiYpdFVUJgnQ0TiZou2VO4Tfcc-pcJMqbiEQoH2YbCEX4FfF_NJd09-gSws4FXjj2x5KQRNxAm1pgA5HWIhh5UOvgLjS7SeTAO31CFk3HnEWoHwDO2sDp_W9eQYQ4TW_BwQcPLjle_Tk4ngqvp6ef3mDnsIQfdExYYdoGxBi3gK16tQ7v4j-AQIIHp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+germ-line+gene+usage+of+a+potent+class+of+antibodies+targeting+the+CD4-binding+site+of+HIV-1+gp120&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=West%2C+Jr%2C+Anthony+P&rft.au=Diskin%2C+Ron&rft.au=Nussenzweig%2C+Michel+C&rft.au=Bjorkman%2C+Pamela+J&rft.date=2012-07-24&rft.eissn=1091-6490&rft.volume=109&rft.issue=30&rft.spage=E2083&rft_id=info:doi/10.1073%2Fpnas.1208984109&rft_id=info%3Apmid%2F22745174&rft.externalDocID=22745174
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F30.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F30.cover.gif