Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review

While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. He...

Full description

Saved in:
Bibliographic Details
Published inPLOS digital health Vol. 1; no. 3; p. e0000022
Main Authors Celi, Leo Anthony, Cellini, Jacqueline, Charpignon, Marie-Laure, Dee, Edward Christopher, Dernoncourt, Franck, Eber, Rene, Mitchell, William Greig, Moukheiber, Lama, Schirmer, Julian, Situ, Julia, Paguio, Joseph, Park, Joel, Wawira, Judy Gichoya, Yao, Seth
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2022
PLOS
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN2767-3170
2767-3170
DOI10.1371/journal.pdig.0000022

Cover

Loading…
Abstract While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities. We performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API. Our search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%). U.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.
AbstractList BackgroundWhile artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities.MethodsWe performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API.ResultsOur search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%).InterpretationU.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.
Artificial Intelligence (AI) creates opportunities for accurate, objective and immediate decision support in healthcare with little expert input–especially valuable in resource-poor settings where there is shortage of specialist care. Given that AI poorly generalises to cohorts outside those whose data was used to train and validate the algorithms, populations in data-rich regions stand to benefit substantially more vs data-poor regions, entrenching existing healthcare disparities. Here, we show that more than half of the datasets used for clinical AI originate from either the US or China. In addition, the U.S. and China contribute over 40% of the authors of the publications. While the models may perform on-par/better than clinician decision-making in the well-represented regions, benefits elsewhere are not guaranteed. Further, we show discrepancies in gender and specialty representation–notably that almost three-quarters of the coveted first/senior authorship positions were held by men, and radiology accounted for 40% of all clinical AI manuscripts. We emphasize that building equitable sociodemographic representation in data repositories, in author nationality, gender and expertise, and in clinical specialties is crucial in ameliorating health inequities.
While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities. We performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API. Our search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%). U.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.
Background While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities. Methods We performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API. Results Our search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%). Interpretation U.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.
While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities.BACKGROUNDWhile artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively homogeneous datasets, and populations poorly-representative of underlying diversity, limits generalisability and risks biased AI-based decisions. Here, we describe the landscape of AI in clinical medicine to delineate population and data-source disparities.We performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API.METHODSWe performed a scoping review of clinical papers published in PubMed in 2019 using AI techniques. We assessed differences in dataset country source, clinical specialty, and author nationality, sex, and expertise. A manually tagged subsample of PubMed articles was used to train a model, leveraging transfer-learning techniques (building upon an existing BioBERT model) to predict eligibility for inclusion (original, human, clinical AI literature). Of all eligible articles, database country source and clinical specialty were manually labelled. A BioBERT-based model predicted first/last author expertise. Author nationality was determined using corresponding affiliated institution information using Entrez Direct. And first/last author sex was evaluated using the Gendarize.io API.Our search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%).RESULTSOur search yielded 30,576 articles, of which 7,314 (23.9%) were eligible for further analysis. Most databases came from the US (40.8%) and China (13.7%). Radiology was the most represented clinical specialty (40.4%), followed by pathology (9.1%). Authors were primarily from either China (24.0%) or the US (18.4%). First and last authors were predominately data experts (i.e., statisticians) (59.6% and 53.9% respectively) rather than clinicians. And the majority of first/last authors were male (74.1%).U.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.INTERPRETATIONU.S. and Chinese datasets and authors were disproportionately overrepresented in clinical AI, and almost all of the top 10 databases and author nationalities were from high income countries (HICs). AI techniques were most commonly employed for image-rich specialties, and authors were predominantly male, with non-clinical backgrounds. Development of technological infrastructure in data-poor regions, and diligence in external validation and model re-calibration prior to clinical implementation in the short-term, are crucial in ensuring clinical AI is meaningful for broader populations, and to avoid perpetuating global health inequity.
Author Charpignon, Marie-Laure
Situ, Julia
Dernoncourt, Franck
Moukheiber, Lama
Celi, Leo Anthony
Mitchell, William Greig
Yao, Seth
Eber, Rene
Schirmer, Julian
Wawira, Judy Gichoya
Dee, Edward Christopher
Park, Joel
Cellini, Jacqueline
Paguio, Joseph
AuthorAffiliation 1 Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, MA, United States of America
4 Harvard Medical School, Department of Library Services, Boston, MA, United States of America
7 Adobe Inc, Adobe Research, San Jose, CA, United States of America
9 Harvard TH Chan School of Public Health, Boston, MA, United States of America
6 Harvard Medical School, Boston, MA, United States of America
10 Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
14 Emory University, Department of Radiology and Biomedical Informatics, Atlanta, GA, United States of America
3 Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA, United States of America
11 Massachusetts Institute of Technology, Department of Computer Science and Molecular Biology, Cambridge, MA, United States of America
2 Harvard TH Chan School of Public Health, Department of Biostatistics, Boston, MA, United States of America
8 Montpellier Universit
AuthorAffiliation_xml – name: 3 Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA, United States of America
– name: 9 Harvard TH Chan School of Public Health, Boston, MA, United States of America
– name: 10 Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
– name: 6 Harvard Medical School, Boston, MA, United States of America
– name: 12 Einstein Medical Center Philadelphia, Department of Medicine, Philadelphia, PA, United States of America
– name: 14 Emory University, Department of Radiology and Biomedical Informatics, Atlanta, GA, United States of America
– name: 7 Adobe Inc, Adobe Research, San Jose, CA, United States of America
– name: 4 Harvard Medical School, Department of Library Services, Boston, MA, United States of America
– name: 2 Harvard TH Chan School of Public Health, Department of Biostatistics, Boston, MA, United States of America
– name: Brown University, UNITED STATES
– name: 13 BeiGene, Applied Innovation, Cambridge, MA, United States of America
– name: 1 Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, MA, United States of America
– name: 5 Massachusetts Institute of Technology, Institute for Data, Systems and Society, Cambridge, MA, United States of America
– name: 8 Montpellier University, Montpellier Research in Management, Montpellier, France
– name: 11 Massachusetts Institute of Technology, Department of Computer Science and Molecular Biology, Cambridge, MA, United States of America
Author_xml – sequence: 1
  givenname: Leo Anthony
  surname: Celi
  fullname: Celi, Leo Anthony
– sequence: 2
  givenname: Jacqueline
  surname: Cellini
  fullname: Cellini, Jacqueline
– sequence: 3
  givenname: Marie-Laure
  orcidid: 0000-0002-5786-2627
  surname: Charpignon
  fullname: Charpignon, Marie-Laure
– sequence: 4
  givenname: Edward Christopher
  orcidid: 0000-0001-6119-0889
  surname: Dee
  fullname: Dee, Edward Christopher
– sequence: 5
  givenname: Franck
  orcidid: 0000-0002-1119-1346
  surname: Dernoncourt
  fullname: Dernoncourt, Franck
– sequence: 6
  givenname: Rene
  orcidid: 0000-0002-4347-0198
  surname: Eber
  fullname: Eber, Rene
– sequence: 7
  givenname: William Greig
  orcidid: 0000-0002-2122-6741
  surname: Mitchell
  fullname: Mitchell, William Greig
– sequence: 8
  givenname: Lama
  surname: Moukheiber
  fullname: Moukheiber, Lama
– sequence: 9
  givenname: Julian
  surname: Schirmer
  fullname: Schirmer, Julian
– sequence: 10
  givenname: Julia
  surname: Situ
  fullname: Situ, Julia
– sequence: 11
  givenname: Joseph
  orcidid: 0000-0003-4054-5112
  surname: Paguio
  fullname: Paguio, Joseph
– sequence: 12
  givenname: Joel
  orcidid: 0000-0003-1319-6893
  surname: Park
  fullname: Park, Joel
– sequence: 13
  givenname: Judy Gichoya
  surname: Wawira
  fullname: Wawira, Judy Gichoya
– sequence: 14
  givenname: Seth
  orcidid: 0000-0003-0851-6223
  surname: Yao
  fullname: Yao, Seth
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36812532$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03857753$$DView record in HAL
BookMark eNp9UsGO0zAQtdAidin7BwhF4gKHljh24oQDUrUCdqVKHICzNbEnias0DrZTxI2P4Av5Ehzaot0e8MEe2--9mbHfU3Ix2AEJeU7TFWWCvtnayQ3Qr0Zt2lU6jyx7RK4yUYgloyK9uBdfkmvvtzOkpKmo6BNyyYqSZjnLroj6HJUU-sQ2SW3AJ2ZIwAXTGGWgj7uAfW9aHBQmoYOQjOhGDBMETDqEPnQKHCba-BGcCQb975-_1knb2zrSHe4Nfn9GHjfQe7w-rgvy9cP7Lze3y82nj3c3681S5awIy5yLFEHUIudpbFKUAKmuUOuMQpEVQmPFSi6qBjRSzkst8gYY5UXTAGUlYwtyd9DVFrZydGYH7oe0YOTfA-taObemepSiqLnOaqYLYBx0CRp0xmKIBWfAddR6d9Aap3qHWuEQHPQPRB_eDKaTrd3LqmKUxWoW5PVBoDuj3a43cj5LWZkLkbM9jdhXx2TOfpvQB7kzXsWHhwHt5GUmRMVyKugMfXkGPVrBS5aWeVHGWUTUi_vV_8t_-vcIeHsAKGe9d9hIZQIEY-dmTC9pKmefncTl7DN59Fkk8zPySf-_tD8XB9xC
CitedBy_id crossref_primary_10_1038_s41390_024_03719_x
crossref_primary_10_3389_fcomp_2022_1070493
crossref_primary_10_23736_S0375_9393_22_16739_8
crossref_primary_10_1136_bmjhci_2024_101120
crossref_primary_10_1038_s41379_022_01147_y
crossref_primary_10_1016_j_thorsurg_2023_03_001
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_3390_ai4030034
crossref_primary_10_1038_s44401_024_00001_4
crossref_primary_10_1016_j_crad_2024_04_009
crossref_primary_10_1016_j_jaccao_2024_05_005
crossref_primary_10_3390_electronics13193909
crossref_primary_10_3390_jcm12206524
crossref_primary_10_1016_j_lanepe_2024_101064
crossref_primary_10_1007_s41649_024_00282_9
crossref_primary_10_52711_0974_360X_2024_00714
crossref_primary_10_1001_jama_2023_26930
crossref_primary_10_3390_app131810258
crossref_primary_10_1016_j_clinimag_2024_110385
crossref_primary_10_1136_bmjgh_2023_013092
crossref_primary_10_1371_journal_pdig_0000599
crossref_primary_10_1080_17483107_2025_2477678
crossref_primary_10_1001_jamapediatrics_2025_0096
crossref_primary_10_3238_arztebl_m2023_0124
crossref_primary_10_1136_bmj_q490
crossref_primary_10_3389_frtra_2024_1399324
crossref_primary_10_1007_s11042_023_16029_x
crossref_primary_10_1016_j_compbiomed_2025_109984
crossref_primary_10_1136_bmjophth_2022_001216
crossref_primary_10_1007_s40615_024_02237_0
crossref_primary_10_1016_j_jcrc_2024_154796
crossref_primary_10_1038_s41467_023_40604_3
crossref_primary_10_1186_s40942_023_00459_8
crossref_primary_10_1038_s41746_024_01212_7
crossref_primary_10_3390_healthcare12242550
crossref_primary_10_3389_fdgth_2025_1550731
crossref_primary_10_1007_s11606_023_08209_0
crossref_primary_10_3389_fdgth_2024_1448351
crossref_primary_10_3390_diagnostics12112683
crossref_primary_10_3389_frai_2025_1545869
crossref_primary_10_1001_jamainternmed_2023_1832
crossref_primary_10_12968_jpar_2024_0084
crossref_primary_10_1016_j_ccrj_2023_04_003
crossref_primary_10_1109_ACCESS_2024_3369912
crossref_primary_10_1259_bjr_20220878
crossref_primary_10_1038_s41746_024_01306_2
crossref_primary_10_1007_s43681_024_00589_1
crossref_primary_10_1136_bmjhci_2022_100650
crossref_primary_10_1016_j_csbr_2024_100006
crossref_primary_10_1007_s12032_025_02617_4
crossref_primary_10_1016_j_neuroscience_2025_03_017
crossref_primary_10_1093_jamia_ocae060
crossref_primary_10_11159_jbeb_2024_005
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1371_journal_pdig_0000495
crossref_primary_10_1371_journal_pdig_0000651
crossref_primary_10_1007_s00146_024_02178_6
crossref_primary_10_1016_j_xcrm_2023_101356
crossref_primary_10_1097_CORR_0000000000002697
crossref_primary_10_1007_s00125_023_06038_8
crossref_primary_10_1007_s10278_024_01212_9
crossref_primary_10_1038_s41746_025_01503_7
crossref_primary_10_3390_healthcare12070706
crossref_primary_10_1016_j_mcpdig_2024_100189
crossref_primary_10_1097_PSY_0000000000001200
crossref_primary_10_1016_j_ejrai_2025_100006
crossref_primary_10_1016_j_wneu_2022_12_087
crossref_primary_10_1038_s41746_025_01485_6
crossref_primary_10_1088_1361_6579_acead2
crossref_primary_10_1007_s41649_024_00314_4
crossref_primary_10_1038_s41405_024_00198_4
crossref_primary_10_5492_wjccm_v13_i2_89644
crossref_primary_10_7705_biomedica_7242
crossref_primary_10_7759_cureus_61220
crossref_primary_10_7759_cureus_56317
crossref_primary_10_3390_diagnostics15020221
crossref_primary_10_1038_s41582_024_01033_y
crossref_primary_10_1093_jamiaopen_ooae035
crossref_primary_10_1097_NNE_0000000000001390
crossref_primary_10_1167_tvst_12_11_8
crossref_primary_10_1371_journal_pdig_0000368
crossref_primary_10_3390_systems12020047
crossref_primary_10_1177_17562848251321915
crossref_primary_10_2196_50903
crossref_primary_10_3390_s25020531
crossref_primary_10_1371_journal_pdig_0000390
crossref_primary_10_7717_peerj_cs_1630
crossref_primary_10_1080_00098655_2024_2393153
crossref_primary_10_1007_s00146_025_02198_w
crossref_primary_10_1007_s00238_024_02162_9
crossref_primary_10_1038_s41581_023_00763_4
crossref_primary_10_1017_S0266462323002593
crossref_primary_10_1371_journal_pgph_0004171
crossref_primary_10_1016_j_jacadv_2023_100578
crossref_primary_10_1186_s12939_023_01839_0
crossref_primary_10_3389_fpsyg_2024_1378904
crossref_primary_10_1016_j_lanwpc_2024_101254
crossref_primary_10_2196_60148
crossref_primary_10_4103_atm_atm_192_23
crossref_primary_10_1145_3610107
crossref_primary_10_1016_j_jbi_2024_104664
crossref_primary_10_26468_trakyasobed_1478054
crossref_primary_10_1016_S2589_7500_24_00224_3
crossref_primary_10_1093_jamiaopen_ooae091
crossref_primary_10_1177_00220345241272052
crossref_primary_10_1016_j_heliyon_2024_e40775
crossref_primary_10_2147_NSS_S455765
crossref_primary_10_69821_JoSME_v1iI_2
crossref_primary_10_1016_j_mcpdig_2023_02_003
crossref_primary_10_1007_s13721_024_00497_8
crossref_primary_10_1016_S2215_0366_22_00312_1
crossref_primary_10_1080_00461520_2024_2441661
crossref_primary_10_2174_0118742106279454240321044427
crossref_primary_10_1080_23299460_2025_2459451
crossref_primary_10_1016_j_tvir_2024_100990
crossref_primary_10_1038_s41746_025_01490_9
crossref_primary_10_1088_2516_1091_ad04c0
crossref_primary_10_1016_j_outlook_2023_102064
crossref_primary_10_1016_S2589_7500_23_00150_4
crossref_primary_10_1093_jamia_ocac156
crossref_primary_10_3390_diagnostics13121995
crossref_primary_10_1097_MOO_0000000000001041
crossref_primary_10_1371_journal_pdig_0000728
crossref_primary_10_2196_58578
crossref_primary_10_1007_s10389_024_02219_w
crossref_primary_10_1016_j_artmed_2024_102815
crossref_primary_10_1038_s41597_023_02256_2
crossref_primary_10_1038_s41571_024_00909_8
crossref_primary_10_1007_s00228_024_03780_9
crossref_primary_10_1016_j_ejrad_2024_111852
crossref_primary_10_3389_fmed_2024_1510792
crossref_primary_10_7759_cureus_69555
crossref_primary_10_1001_jamanetworkopen_2024_46615
crossref_primary_10_1016_j_rcl_2024_11_005
crossref_primary_10_1371_journal_pdig_0000574
crossref_primary_10_1007_s11882_023_01084_z
crossref_primary_10_3389_fdgth_2024_1351637
crossref_primary_10_3390_clinpract13040089
crossref_primary_10_1371_journal_pmed_1004432
crossref_primary_10_3390_dj11020043
crossref_primary_10_3390_bioengineering11090894
crossref_primary_10_7759_cureus_80676
crossref_primary_10_1016_j_jbi_2024_104643
crossref_primary_10_2196_57750
crossref_primary_10_1186_s13244_024_01833_2
crossref_primary_10_1016_j_ijmedinf_2025_105804
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1093_jnci_djad123
crossref_primary_10_1136_bmj_2024_081554
crossref_primary_10_1016_j_ijmedinf_2024_105626
crossref_primary_10_1200_GO_24_00613
crossref_primary_10_3390_cancers16010130
crossref_primary_10_1002_jmri_29101
crossref_primary_10_1109_JBHI_2024_3491946
crossref_primary_10_3390_jcm13206246
crossref_primary_10_1016_S2589_7500_23_00025_0
crossref_primary_10_3390_jcm13247833
crossref_primary_10_1007_s10877_024_01157_y
crossref_primary_10_3390_life14060652
crossref_primary_10_1136_bmj_q2194
crossref_primary_10_1016_j_jcjq_2023_03_009
crossref_primary_10_3389_fdgth_2024_1475092
crossref_primary_10_1002_mus_28023
crossref_primary_10_1056_AIp2401088
Cites_doi 10.1001/jama.2018.11100
10.1098/rsif.2017.0387
10.1038/s42256-021-00307-0
10.7326/M18-1990
10.1016/S2589-7500(20)30186-2
10.1016/j.ophtha.2013.02.034
10.1016/j.ijrobp.2018.05.070
10.1001/jama.2018.11103
10.1001/jama.2019.16842
10.1016/j.ophtha.2011.12.039
10.1001/jama.2016.17438
10.1038/s41746-020-00324-0
10.1093/bioinformatics/btz682
10.1017/CBO9781139046855.020
10.1177/0194599819827507
10.1016/S2589-7500(20)30292-2
10.7717/peerj.7702
10.1001/jamanetworkopen.2019.14051
10.1186/1748-5908-5-69
10.1200/JCO.20.01688
10.1001/jama.2017.18391
10.1038/s41746-019-0172-3
10.1038/s41746-021-00455-y
10.1371/journal.pmed.1002683
10.1016/S2589-7500(20)30065-0
10.12788/jhm.3248
10.1136/bmj.m689
10.1371/journal.pone.0066212
10.1186/s12874-018-0611-x
10.1038/s41591-018-0316-z
10.1038/s41746-020-0288-5
10.1001/jama.2020.12067
10.1080/1364557032000119616
10.1016/j.jstrokecerebrovasdis.2021.105832
10.1001/jamadermatol.2018.2348
10.1038/s41591-018-0300-7
10.25300/MISQ/2021/16564
10.1371/journal.pone.0198551
10.1287/isre.2021.1046
10.1016/j.radonc.2018.05.030
ContentType Journal Article
Copyright Copyright: © 2022 Celi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2022 Celi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2022 Celi et al 2022 Celi et al
Copyright_xml – notice: Copyright: © 2022 Celi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2022 Celi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2022 Celi et al 2022 Celi et al
CorporateAuthor for MIT Critical Data
CorporateAuthor_xml – name: for MIT Critical Data
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pdig.0000022
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database (subscription)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
DocumentTitleAlternate Sources of bias in ai that perpetuate healthcare disparities—A global review
EISSN 2767-3170
ExternalDocumentID oai_doaj_org_article_76b4d2b3d6a34ad8adad2334ae643a4d
PMC9931338
oai_HAL_hal_03857753v1
36812532
10_1371_journal_pdig_0000022
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB017205
GroupedDBID 53G
7X7
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABUWG
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EIHBH
FPL
FYUFA
GROUPED_DOAJ
HMCUK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c536t-5470ea7b754013778aa0d9edd21a6267de938479fade1448d75fa3146ffa13833
IEDL.DBID 7X7
ISSN 2767-3170
IngestDate Wed Aug 27 00:57:49 EDT 2025
Thu Aug 21 18:37:43 EDT 2025
Fri May 09 12:28:22 EDT 2025
Sun Aug 24 03:09:14 EDT 2025
Fri Jul 25 22:15:26 EDT 2025
Mon Jul 21 05:58:48 EDT 2025
Tue Jul 01 04:13:23 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2022 Celi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-5470ea7b754013778aa0d9edd21a6267de938479fade1448d75fa3146ffa13833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Leo Anthony Celi is the Editor-in Chief of PLOS Digital Health and Judy Gichoya Wawira is a Section Editor for PLOS Digital Health.
ORCID 0000-0002-5786-2627
0000-0003-0851-6223
0000-0003-4054-5112
0000-0001-6119-0889
0000-0002-2122-6741
0000-0002-1119-1346
0000-0002-4347-0198
0000-0003-1319-6893
OpenAccessLink https://www.proquest.com/docview/3085683087?pq-origsite=%requestingapplication%
PMID 36812532
PQID 3085683087
PQPubID 6980581
ParticipantIDs doaj_primary_oai_doaj_org_article_76b4d2b3d6a34ad8adad2334ae643a4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9931338
hal_primary_oai_HAL_hal_03857753v1
proquest_miscellaneous_2779351711
proquest_journals_3085683087
pubmed_primary_36812532
crossref_citationtrail_10_1371_journal_pdig_0000022
crossref_primary_10_1371_journal_pdig_0000022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS digital health
PublicationTitleAlternate PLOS Digit Health
PublicationYear 2022
Publisher Public Library of Science
PLOS
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: PLOS
– name: Public Library of Science (PLoS)
References D Levac (pdig.0000022.ref030) 2010; 5
K. Wiggers (pdig.0000022.ref047) 2020
JD West (pdig.0000022.ref065) 2013; 8
G. Hinton (pdig.0000022.ref004) 2018; 30
pdig.0000022.ref019
pdig.0000022.ref018
QD Nguyen (pdig.0000022.ref056) 2012; 119
B Hao (pdig.0000022.ref046) 2020
pdig.0000022.ref050
L Santamaria (pdig.0000022.ref037) 2018; 4
S-E Bursell (pdig.0000022.ref058) 2018; 13
T Mikolov (pdig.0000022.ref041) 2013
C. Naylor (pdig.0000022.ref006) 2018; 320
I Bardhan (pdig.0000022.ref020) 2020; 44
D Cirillo (pdig.0000022.ref064) 2020; 3
S Benjamens (pdig.0000022.ref010) 2020; 3
R Thompson (pdig.0000022.ref060) 2018; 129
AS Ahuja (pdig.0000022.ref014) 2019; 7
L Velagapudi (pdig.0000022.ref017) 2021; 30
EJ Topol (pdig.0000022.ref008) 2019; 25
L Rasmy (pdig.0000022.ref044) 2021; 4
QD Nguyen (pdig.0000022.ref054) 2012; 119
A Adamson (pdig.0000022.ref015) 2018; 154
pdig.0000022.ref040
E Alsentzer (pdig.0000022.ref043)
J Futoma (pdig.0000022.ref024) 2020; 2
MD McCradden (pdig.0000022.ref063) 2020; 2
J Pennington (pdig.0000022.ref042) 2014
(pdig.0000022.ref002) 2018
AL Beam (pdig.0000022.ref012) 2018; 319
M West (pdig.0000022.ref066) 2006
W Mitchell (pdig.0000022.ref052) 2021; 21
A Bur (pdig.0000022.ref001) 2019; 160
N Bostrom (pdig.0000022.ref021) 2014
H. Sucharew (pdig.0000022.ref026) 2019; 14
R Thompson (pdig.0000022.ref061) 2018; 102
A Rajkomar (pdig.0000022.ref016) 2018; 169
O Arksey H (pdig.0000022.ref028) 2005; 8
S Wada (pdig.0000022.ref045) 2021
J Lee (pdig.0000022.ref033) 2019; 36
Z Munn (pdig.0000022.ref027) 2018; 18
pdig.0000022.ref036
pdig.0000022.ref035
pdig.0000022.ref034
SM Khan (pdig.0000022.ref057) 2020
T Ching (pdig.0000022.ref005) 2018; 15
pdig.0000022.ref039
pdig.0000022.ref038
M Roberts (pdig.0000022.ref048) 2021; 3
pdig.0000022.ref032
A Kaushal (pdig.0000022.ref049) 2020; 324
pdig.0000022.ref031
S Jha (pdig.0000022.ref007) 2016; 316
B Beaulieu-Jones (pdig.0000022.ref009) 2019; 2
S Lebovitz (pdig.0000022.ref023) 2021; 45
M Tempelier (pdig.0000022.ref029) 2015
M Nagendran (pdig.0000022.ref011) 2020
A Esteva (pdig.0000022.ref051) 2019; 25
JR Zech (pdig.0000022.ref053) 2018; 15
JC Hong (pdig.0000022.ref059) 2020; 38
F Arcadu (pdig.0000022.ref025) 2019; 2
H. Jain (pdig.0000022.ref022) 2021; 32
T Hwang (pdig.0000022.ref062) 2019; 322
D Brown (pdig.0000022.ref055) 2013; 120
V Gulshan (pdig.0000022.ref013) 2019
UJ Muehlematter (pdig.0000022.ref003) 2021; 3
References_xml – volume: 30
  start-page: 1101
  issue: 11
  year: 2018
  ident: pdig.0000022.ref004
  article-title: Deep learning—a technology with the potential to transform health care
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
– volume: 15
  start-page: 20170387
  issue: 141
  year: 2018
  ident: pdig.0000022.ref005
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2017.0387
– volume: 3
  start-page: 199
  issue: 3
  year: 2021
  ident: pdig.0000022.ref048
  article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and ct scans
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-021-00307-0
– volume: 169
  start-page: 866
  issue: 12
  year: 2018
  ident: pdig.0000022.ref016
  article-title: Ensuring fairness in machine learning to advance health equity
  publication-title: Annals of Internal Medicine
  doi: 10.7326/M18-1990
– volume: 2
  start-page: e489
  issue: 9
  year: 2020
  ident: pdig.0000022.ref024
  article-title: The myth of generalisability in clinical research and machine learning in health care
  publication-title: The Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30186-2
– volume: 120
  start-page: 2013
  issue: 10
  year: 2013
  ident: pdig.0000022.ref055
  article-title: Long-term outcomes of ranibizumab therapy for diabetic macular edema: The 36-month results from two phase iii trials
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.02.034
– volume: 102
  start-page: 1159
  issue: 4
  year: 2018
  ident: pdig.0000022.ref061
  article-title: Artificial intelligence in radiation oncology imaging
  publication-title: INternational Journal of Radiation Oncology
  doi: 10.1016/j.ijrobp.2018.05.070
– volume: 320
  start-page: 1099
  issue: 11
  year: 2018
  ident: pdig.0000022.ref006
  article-title: On the prospects for a (deep) learning health care system
  publication-title: JAMA
  doi: 10.1001/jama.2018.11103
– volume: 322
  start-page: 2285
  issue: 23
  year: 2019
  ident: pdig.0000022.ref062
  article-title: Lifecycle regulation of artificial intelligence–and machine learning–based software devices in medicine
  publication-title: JAMA
  doi: 10.1001/jama.2019.16842
– ident: pdig.0000022.ref019
– volume: 21
  start-page: 1
  issue: 228
  year: 2021
  ident: pdig.0000022.ref052
  article-title: Generalisability through local validation: Overcoming barriers due to data disparity in healthcare
  publication-title: BMC Ophthalmology
– volume: 119
  start-page: 0
  issue: 4
  year: 2012
  ident: pdig.0000022.ref056
  article-title: Ranibizumab for diabetic macular edema
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.12.039
– volume: 316
  start-page: 2353
  issue: 22
  year: 2016
  ident: pdig.0000022.ref007
  article-title: Adapting to artificial intelligence
  publication-title: JAMA
  doi: 10.1001/jama.2016.17438
– year: 2014
  ident: pdig.0000022.ref042
  article-title: Glove: Global vectors for word representation.
  publication-title: Paper presented at: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
– volume: 3
  issue: 1
  year: 2020
  ident: pdig.0000022.ref010
  article-title: The state of artificial intelligence-based fda-approved medical devices and algorithms: An online database.
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-020-00324-0
– volume: 36
  start-page: 1234
  issue: 4
  year: 2019
  ident: pdig.0000022.ref033
  article-title: Biobert: A pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: pdig.0000022.ref038
– volume-title: The ethics of artificial intelligence
  year: 2014
  ident: pdig.0000022.ref021
  doi: 10.1017/CBO9781139046855.020
– volume: 160
  start-page: 603
  issue: 4
  year: 2019
  ident: pdig.0000022.ref001
  article-title: Artificial intelligence for the otolaryngologist: A state of the art review
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/0194599819827507
– ident: pdig.0000022.ref034
– ident: pdig.0000022.ref043
  article-title: Publicly available clinical bert embeddings.
  publication-title: arXiv pre-print server. 2019
– volume: 3
  start-page: e195
  issue: 3
  year: 2021
  ident: pdig.0000022.ref003
  article-title: Approval of artificial intelligence and machine learning-based medical devices in the USA and europe (2015–20): A comparative analysis.
  publication-title: The Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30292-2
– volume: 7
  start-page: e7702
  year: 2019
  ident: pdig.0000022.ref014
  article-title: The impact of artificial intelligence in medicine on the future role of the physician.
  publication-title: PeerJ
  doi: 10.7717/peerj.7702
– volume: 2
  start-page: e1914051
  issue: 10
  year: 2019
  ident: pdig.0000022.ref009
  article-title: Trends and focus of machine learning applications for health research
  publication-title: JAMA Network Open
  doi: 10.1001/jamanetworkopen.2019.14051
– volume: 5
  start-page: 69
  issue: 1
  year: 2010
  ident: pdig.0000022.ref030
  article-title: Scoping studies: Advancing the methodology.
  publication-title: Implement Sci
  doi: 10.1186/1748-5908-5-69
– volume: 38
  start-page: 3652
  issue: 31
  year: 2020
  ident: pdig.0000022.ref059
  article-title: System for high-intensity evaluation during radiation therapy (shield-rt): A prospective randomized study of machine learning–directed clinical evaluations during radiation and chemoradiation.
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.20.01688
– ident: pdig.0000022.ref018
– volume: 44
  start-page: 185
  issue: 1
  year: 2020
  ident: pdig.0000022.ref020
  article-title: Connecting systems, data, and people: A multidisciplinary research roadmap for chronic disease management.
  publication-title: MIS Quarterly
– volume: 319
  start-page: 1317
  issue: 13
  year: 2018
  ident: pdig.0000022.ref012
  article-title: Big data and machine learning in health care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– year: 2020
  ident: pdig.0000022.ref047
  article-title: Openai’s massive gpt-3 model is impressive, but size isn’t everything
  publication-title: The Machine: Making Sense of AIAccessed October
– volume: 2
  issue: 1
  year: 2019
  ident: pdig.0000022.ref025
  article-title: Deep learning algorithm predicts diabetic retinopathy progression in individual patients.
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-019-0172-3
– volume: 4
  issue: 1
  year: 2021
  ident: pdig.0000022.ref044
  article-title: Med-bert: Pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-021-00455-y
– year: 2020
  ident: pdig.0000022.ref046
  article-title: Enhancing clinical bert embedding using a biomedical knowledge.
  publication-title: Paper presented at: 28th International Conference on Computational Linguistics
– ident: pdig.0000022.ref039
– start-page: 37
  year: 2015
  ident: pdig.0000022.ref029
  article-title: framework for guiding and evaluating literature reviews. Communications of the association for information systems
  publication-title: Communications of the Association for Information Systems
– ident: pdig.0000022.ref035
– ident: pdig.0000022.ref031
– volume-title: Oxford english dictionary.
  year: 2018
  ident: pdig.0000022.ref002
– volume: 15
  start-page: e1002683
  issue: 11
  year: 2018
  ident: pdig.0000022.ref053
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002683
– volume: 2
  start-page: e221
  issue: 5
  year: 2020
  ident: pdig.0000022.ref063
  article-title: Ethical limitations of algorithmic fairness solutions in health care machine learning
  publication-title: The Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30065-0
– volume: 14
  start-page: 416
  issue: 7
  year: 2019
  ident: pdig.0000022.ref026
  article-title: Methods for research evidence synthesis: The scoping review approach
  publication-title: Journal of Hospital Medicine
  doi: 10.12788/jhm.3248
– year: 2019
  ident: pdig.0000022.ref013
  article-title: Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in india
  publication-title: JAMA Ophthalmol
– start-page: m689
  year: 2020
  ident: pdig.0000022.ref011
  article-title: Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies
  publication-title: BMJ
  doi: 10.1136/bmj.m689
– volume: 8
  start-page: e66212
  issue: 7
  year: 2013
  ident: pdig.0000022.ref065
  article-title: The role of gender in scholarly authorship.
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0066212
– volume: 18
  issue: 1
  year: 2018
  ident: pdig.0000022.ref027
  article-title: Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach.
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-018-0611-x
– volume: 25
  start-page: 24
  year: 2019
  ident: pdig.0000022.ref051
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0316-z
– volume: 3
  issue: 1
  year: 2020
  ident: pdig.0000022.ref064
  article-title: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
  publication-title: npj Digital Medicine
  doi: 10.1038/s41746-020-0288-5
– ident: pdig.0000022.ref036
– year: 2021
  ident: pdig.0000022.ref045
  article-title: Pre-training technique to localize medical bert and enhance biomedical bert.
  publication-title: arXiv pre-print server.
– ident: pdig.0000022.ref032
– volume: 324
  start-page: 1212
  issue: 12
  year: 2020
  ident: pdig.0000022.ref049
  article-title: Geographic distribution of us cohorts used to train deep learning algorithms
  publication-title: JAMA
  doi: 10.1001/jama.2020.12067
– year: 2020
  ident: pdig.0000022.ref057
  article-title: A global review of publicly available datasets for ophthalmological imaging: Barriers to access, usability, and generalisability
  publication-title: The Lancet Digital Health
– volume: 8
  start-page: 19
  issue: 1
  year: 2005
  ident: pdig.0000022.ref028
  article-title: ’Malley L. Scoping studies: Towards a methodological framework
  publication-title: International Journal of Social Research Methodology
  doi: 10.1080/1364557032000119616
– year: 2013
  ident: pdig.0000022.ref041
  article-title: Efficient estimation of word representations in vector space.
  publication-title: arXiv pre-print server
– volume: 30
  start-page: 105832
  issue: 7
  year: 2021
  ident: pdig.0000022.ref017
  article-title: Discrepancies in stroke distribution and dataset origin in machine learning for stroke
  publication-title: Journal of Stroke and Cerebrovascular Disease
  doi: 10.1016/j.jstrokecerebrovasdis.2021.105832
– volume: 154
  start-page: 1447
  issue: 11
  year: 2018
  ident: pdig.0000022.ref015
  article-title: Machine learning and health care disparities in dermatology
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2018.2348
– ident: pdig.0000022.ref040
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  ident: pdig.0000022.ref008
  article-title: High-performance medicine: The convergence of human and artificial intelligence
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0300-7
– volume: 119
  start-page: 789
  issue: 4
  year: 2012
  ident: pdig.0000022.ref054
  article-title: Ranibizumab for diabetic macular edema: Results from 2 phase iii randomized trials: Rise and ride
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.12.039
– volume: 45
  start-page: 1501
  issue: 3
  year: 2021
  ident: pdig.0000022.ref023
  article-title: Is ai ground truth really true? The dangers of training and evaluating ai tools based on experts’ know-what.
  publication-title: MIS Quarterly
  doi: 10.25300/MISQ/2021/16564
– volume: 13
  start-page: e0198551
  issue: 6
  year: 2018
  ident: pdig.0000022.ref058
  article-title: Prevalence of diabetic retinopathy and diabetic macular edema in a primary care-based teleophthalmology program for american indians and alaskan natives.
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0198551
– volume: 32
  start-page: 675
  issue: 3
  year: 2021
  ident: pdig.0000022.ref022
  article-title: Editorial for the special section on humans, algorithms, and augmented intelligence: The future of work, organizations, and society
  publication-title: Infromation Systems Research
  doi: 10.1287/isre.2021.1046
– ident: pdig.0000022.ref050
– volume: 4
  issue: e156
  year: 2018
  ident: pdig.0000022.ref037
  article-title: Comparison and benchmark of name-to-gender inference services
  publication-title: PeerJ Computer Science
– volume: 129
  start-page: 421
  issue: 3
  year: 2018
  ident: pdig.0000022.ref060
  article-title: Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?
  publication-title: Radiotherapy and Oncology.
  doi: 10.1016/j.radonc.2018.05.030
– volume-title: Aup faculty gender equity indicators 2006
  year: 2006
  ident: pdig.0000022.ref066
SSID ssj0002810791
Score 2.610387
Snippet While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on relatively...
BackgroundWhile artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on...
Background While artificial intelligence (AI) offers possibilities of advanced clinical prediction and decision-making in healthcare, models trained on...
Artificial Intelligence (AI) creates opportunities for accurate, objective and immediate decision support in healthcare with little expert input–especially...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0000022
SubjectTerms Artificial intelligence
Automation
Bias
Biology and Life Sciences
Clinical decision making
Computer and Information Sciences
Computer Science
Deep learning
Ecology and Environmental Sciences
Engineering and Technology
Global health
Health care
Machine learning
Medical Subject Headings-MeSH
Medicine and Health Sciences
Natural language processing
Neural networks
Patients
Radiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojxDS2UQ19CNncTOcYtarRDlApV6syZrmwSh7KrJ8vs7Y2ejLBx64Rb5FXtm7Jmxx58Z-1iWelFLW6e6chodlFyklS91qtZaal0QIgtdcL7-Vq5u8i-3xe3sqS-KCYvwwJFw56qscyuwuRJkDlaDBSskfjrUpZBbWn1R582cqV9hywjdmiob78pJlZ2PrPm0te3PCFooxIEuCpD9qGEaCoj819r8O2hypoWunrGno_nIl7Hbx-yR656zx9fjAfkLBt_DZnzPN57XLfS87TiNMeJE8HYGwMmHBga-dXdoN-_Q4uTNFArGbdvT64QEtpoueQQN4fGWy0t2c3X54_MqHV9RSNeFLIe0yNXCgapVkQd4QQ2wsJWzVmSA3oyyrpKooioP1qF3pa0qPEhcQL2HDP1X-YoddZvOvWHca6iVrdeVlFWOtUHUHnWsE5l33oJPmNzT06xHiHF66eK3CedmCl2NSCZDXDAjFxKWTrW2EWLjgfIXxKqpLAFkhwQUGzOKjXlIbBL2oaF2Z22sll8NpdFZqUIv7k-WsNO9HOx70huJRmqpCUgxYe-nbJyUdNICndvseiMULntFpjJs4nUUm-lXkhDfConDUAcCddCXw5yubQLwN9qStKXw9n8Q4IQ9EXSTI4TTnbKj4W7n3qF9NdRnYSrdAyWUKAY
  priority: 102
  providerName: Directory of Open Access Journals
Title Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review
URI https://www.ncbi.nlm.nih.gov/pubmed/36812532
https://www.proquest.com/docview/3085683087
https://www.proquest.com/docview/2779351711
https://hal.science/hal-03857753
https://pubmed.ncbi.nlm.nih.gov/PMC9931338
https://doaj.org/article/76b4d2b3d6a34ad8adad2334ae643a4d
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELaglRAXxD-BsjKIa-jGTmLnhLZVqxWiFQIq7S1yYruJVCXLJsuZh-gT9kmYcbzpbpHgEkVx4jiZsefX3xDyIU3ltOC6CGVmJBgoMQszm8pQlJJLmSAiC25wPjtP5xfx50Wy8A63zqdVbtZEt1DrtkQf-SEH3SCViF_3afkzxKpRGF31JTTuk32ELkPjSyzE6GNhEoybLPI75riIDj2BPi51fTlAFzK2I5EccD_ImQrTIv_WOe-mTm7JotPH5JFXIulsoPoTcs80T8mDMx8mf0bK784l39HW0qJWHa0biiwyoEXQeguGk_aV6unSrEB7XoPeSasxIYzqusMahQi5evP7ekYH8BA67HZ5Ti5OT34cz0NfTSEsE572YRKLqVGiEEnsYAalUlOdGa1ZpMCqEdpkHERVZpU2YGVJLRKrOCyk1qoI7Fj-guw1bWNeEWqlKoQuyozzLIanFSssyFrDImusVjYgfPNH89JDjWPFi6vcxc8EmBzDj8qRDrmnQ0DC8anlALXxn_uPkFjjvQiU7S60q8vcz7tcpEWsGXBjqnistFRaacbh1IAqpmIdkPcV9rvVx3z2JcdrGDMVYM39igJysOGEzUi6_JYhA_JubIbJiREX1Zh23eVMwPKXRCKCLl4OjDO-iiPyW8LhM8QOS-2MZbelqSsHAA46JboWXv97WG_IQ4Z7NVzC3AHZ61dr8xY0qL6YuGkCR3kcTcj-0cn5128T5434A5ToI6k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4rcEChgEx9CNncTOAaGlUG3pbi-0Um_Gie0mEkqWzS6IGw_Bc_BQPAkz-WMXJDj1tsqP17HH4288M98Q8iyO5SjlJvVlYiUYKCHzExdLX2SSSxkhIwsmOM-O48lp-O4sOtsiP_pcGAyr7HVio6hNleEZ-R4HbBBL5K97Nf_kY9Uo9K72JTRasTiyX7-AyVa_PHwD8_ucsYO3J_sTv6sq4GcRj5d-FIqR1SIVUdjQ7UmtRyaxxrBAA7oXxiYcVHbitLFgbUgjIqc5KBTndAD2HId2L5HLIecCufrlfjCc6TAJxlQSdBl6XAR7nUC8mJvivKVKZGxjB2wKBcC-lmMY5t8Y989QzbW97-AGud6BVjpupewm2bLlLXJl1rnlb5PsfeMCqGnlaFromhYlRZFs2SlosUb7SZe5XtK5XQBaXwHOpfkQgEZNUWNNRKR4_fnt-5i2ZCW0za65Q04vZJzvku2yKu09Qp3UqTBplnCehPC2ZqmDvd2ywFlntPMI70dUZR21OVbY-Kgaf50AE6cdKIXzoLp58Ig_vDVvqT3-8_xrnKzhWSTmbi5Ui3PVrXMl4jQ0DKQ_1jzURmqjDePw0wL006HxyNMc211rYzKeKryGPloB1uPnwCO7vST0PanV7wXgkSfDbVAG6OHRpa1WtWIC1G0UiACa2GkFZ_grjkxzEYfPEBsitdGXzTtlkTeE44Bh8Sjj_r-79ZhcnZzMpmp6eHz0gFxjmCfSBOvtku3lYmUfAnpbpo-aJUPJh4teo78AQU1cHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sources+of+bias+in+artificial+intelligence+that+perpetuate+healthcare+disparities%E2%80%94A+global+review&rft.jtitle=PLOS+digital+health&rft.au=Celi%2C+Leo+Anthony&rft.au=Cellini%2C+Jacqueline&rft.au=Charpignon%2C+Marie-Laure&rft.au=Dee%2C+Edward+Christopher&rft.date=2022-03-01&rft.pub=Public+Library+of+Science&rft.eissn=2767-3170&rft.volume=1&rft.issue=3&rft.spage=e0000022&rft_id=info:doi/10.1371%2Fjournal.pdig.0000022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-3170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-3170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-3170&client=summon