A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the...
Saved in:
Published in | Journal of inequalities and applications Vol. 2017; no. 1; pp. 130 - 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
2017
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order
α
∈
[
0
,
1
]
to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo (
A
B
C
) and Riemann (
A
B
R
) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order
2
<
α
≤
3
in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. |
---|---|
AbstractList | In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. Abstract In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] $\alpha\in[0,1]$ to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( A B C $ABC$ ) and Riemann ( A B R $ABR$ ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order 2 < α ≤ 3 $2<\alpha\leq3$ in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( A B C ) and Riemann ( A B R ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document} α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ABC$\end{document} A B C ) and Riemann ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ABR$\end{document} A B R ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\alpha\leq3$\end{document} 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order ... to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo (...) and Riemann (...) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order ... in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well. |
ArticleNumber | 130 |
Author | Abdeljawad, Thabet |
Author_xml | – sequence: 1 givenname: Thabet surname: Abdeljawad fullname: Abdeljawad, Thabet email: tabdeljawad@psu.edu.sa organization: Department of Mathematics and General Sciences, Prince Sultan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28680233$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1vFCEYhSemxn7oD_DGTOKNN6N8DAzcmDRN1SZrvNHEeEPeYd_ZsrLDFpia_feyTm22TfQKAs85HOCcVkdjGLGqXlLyllIl3yXKpSQNoV1DW0Ia8aQ6oYTphrXs-9HB_Lg6TWlNCKNctc-qY6akIozzk-rHeb3YwXYaw22dd1us3Yg3E3iXd_UQYj1EsNmFEXwdthghh5jqXy5f1yVLcuNq8hDrzy5nWDULHAaPsf6JcUT_vHo6gE_44m48q759uPx68alZfPl4dXG-aKzgMjeCyl63dtm2oFUnNGqURC170UlOiFRK9Hpg2IPtFe9Kbhh6LVTHLTItSM_PqqvZdxlgbbbRbSDuTABn_iyEuDIQs7MejQUle9Ag2JK0MBBAa4kViAwpDpYWr_ez13bqN7i0OOYI_oHpw53RXZtVuDWiVZ2Wshi8uTOI4WbClM3GJYvew4hhSoZqKjuiRcsL-voRug5TLC-9p4gkgjNOCvXqMNF9lL9fWAA6AzaGlCIO9wglZl8TM9fElJqYfU2MKJrukca6DPt_Lpdy_r9KNitTOWVcYTwI_U_Rb9Zv0po |
CitedBy_id | crossref_primary_10_1016_j_chaos_2021_111430 crossref_primary_10_3390_math8030408 crossref_primary_10_1186_s13662_021_03264_5 crossref_primary_10_1142_S0218348X23400339 crossref_primary_10_3390_fractalfract8050264 crossref_primary_10_1002_mma_7693 crossref_primary_10_1186_s13662_017_1285_0 crossref_primary_10_3390_math8010113 crossref_primary_10_1002_mma_6357 crossref_primary_10_1016_j_cam_2024_116262 crossref_primary_10_1142_S0218348X21500201 crossref_primary_10_1155_2018_5875108 crossref_primary_10_1177_10775463211016967 crossref_primary_10_1016_j_cam_2017_10_021 crossref_primary_10_1108_AJMS_06_2022_0147 crossref_primary_10_1142_S0218348X22402319 crossref_primary_10_3390_fractalfract4020017 crossref_primary_10_3390_sym14020207 crossref_primary_10_3390_axioms12090901 crossref_primary_10_3934_math_20221113 crossref_primary_10_1155_2020_1936461 crossref_primary_10_1155_2021_5974285 crossref_primary_10_1002_mma_6343 crossref_primary_10_1142_S0218348X22400370 crossref_primary_10_3934_math_20221071 crossref_primary_10_1016_j_chaos_2019_109477 crossref_primary_10_1155_2022_4741224 crossref_primary_10_1186_s13662_021_03595_3 crossref_primary_10_1515_math_2024_0036 crossref_primary_10_1142_S0218348X20400484 crossref_primary_10_1142_S1793524522500644 crossref_primary_10_1142_S0218348X23400236 crossref_primary_10_1155_2017_4149320 crossref_primary_10_1016_j_chaos_2019_06_014 crossref_primary_10_1016_j_chaos_2019_06_012 crossref_primary_10_1155_2024_4082683 crossref_primary_10_1007_s12215_021_00638_2 crossref_primary_10_1002_mma_5407 crossref_primary_10_1016_j_chaos_2019_07_022 crossref_primary_10_1186_s13660_018_1731_x crossref_primary_10_1016_j_aej_2020_02_003 crossref_primary_10_1186_s13660_023_03005_0 crossref_primary_10_3934_math_2024508 crossref_primary_10_1142_S0218348X21501541 crossref_primary_10_1016_j_heliyon_2024_e41525 crossref_primary_10_3390_math10071089 crossref_primary_10_3934_math_2024743 crossref_primary_10_1186_s13662_020_03196_6 crossref_primary_10_1186_s13660_023_03070_5 crossref_primary_10_3934_era_2024007 crossref_primary_10_1140_epjp_i2019_12772_1 crossref_primary_10_3390_fractalfract7120844 crossref_primary_10_1016_j_physa_2019_04_017 crossref_primary_10_3390_fractalfract5040266 crossref_primary_10_1186_s13662_019_2054_z crossref_primary_10_1016_j_cnsns_2017_12_003 crossref_primary_10_1186_s13662_018_1554_6 crossref_primary_10_3934_math_2023595 crossref_primary_10_3390_fractalfract7050407 crossref_primary_10_1016_j_chaos_2018_09_013 crossref_primary_10_1016_j_chaos_2019_07_001 crossref_primary_10_1063_1_5085726 crossref_primary_10_1155_2022_6387351 crossref_primary_10_1186_s13662_019_2047_y crossref_primary_10_1002_mma_7083 crossref_primary_10_1063_1_5086771 crossref_primary_10_1142_S0218348X23400248 crossref_primary_10_3390_sym14071436 crossref_primary_10_1007_s10958_023_06417_x crossref_primary_10_1186_s13661_022_01684_0 crossref_primary_10_1155_2023_5891342 crossref_primary_10_1186_s13662_019_2362_3 crossref_primary_10_1515_dema_2022_0028 crossref_primary_10_1186_s13662_020_02825_4 crossref_primary_10_1186_s13662_021_03551_1 crossref_primary_10_32604_cmes_2022_023694 crossref_primary_10_1007_s40324_017_0135_z crossref_primary_10_1186_s13660_019_2045_3 crossref_primary_10_1142_S0218348X2340042X crossref_primary_10_3934_dcdss_2020171 crossref_primary_10_1007_s40096_022_00486_w crossref_primary_10_3934_dcdss_2020212 crossref_primary_10_3934_math_2022115 crossref_primary_10_1186_s13660_020_02419_4 crossref_primary_10_3934_math_2022244 crossref_primary_10_1063_1_5083202 crossref_primary_10_1142_S0218348X24400413 crossref_primary_10_1186_s13661_021_01579_6 crossref_primary_10_1002_mma_7349 crossref_primary_10_1186_s13662_017_1383_z crossref_primary_10_3390_fractalfract6050269 crossref_primary_10_3934_math_2024380 crossref_primary_10_1186_s13662_018_1914_2 crossref_primary_10_1142_S0218348X21400168 crossref_primary_10_1186_s13661_018_1056_1 crossref_primary_10_1155_2020_8234892 crossref_primary_10_2298_FIL2321199L crossref_primary_10_1155_2022_1812445 crossref_primary_10_1080_16583655_2019_1640446 crossref_primary_10_3390_math7090807 crossref_primary_10_1142_S0218348X23400388 crossref_primary_10_3934_math_20231202 crossref_primary_10_1186_s13660_020_02351_7 crossref_primary_10_1186_s13662_020_02866_9 crossref_primary_10_1155_2022_9693005 crossref_primary_10_33889_IJMEMS_2024_9_3_033 crossref_primary_10_1155_2019_6926107 crossref_primary_10_1186_s13661_023_01736_z crossref_primary_10_1186_s13662_021_03229_8 |
Cites_doi | 10.1186/s13662-016-0949-5 10.2298/TSCI160111018A 10.1155/2017/5123240 10.22436/jnsa.010.03.20 10.1088/1751-8113/41/31/315403 10.1016/S0034-4877(10)00010-8 10.1016/j.cam.2016.03.035 10.1155/2012/871912 10.1016/j.cnsns.2011.01.019 10.1186/s13662-015-0430-x 10.7153/fdc-05-08 10.22436/jnsa.009.05.03 10.2478/s13540-013-0060-5 10.1186/s13660-015-0769-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Journal of Inequalities and Applications is a copyright of Springer, 2017. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Journal of Inequalities and Applications is a copyright of Springer, 2017. |
DBID | C6C AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s13660-017-1400-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1029-242X |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1 PMC5487966 28680233 10_1186_s13660_017_1400_5 |
Genre | Journal Article |
GroupedDBID | -A0 0R~ 29K 2WC 4.4 40G 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN ABDBF ABEEZ ABFTD ABJCF ACACY ACGFO ACGFS ACIPV ACIWK ACUHS ACULB ADBBV ADINQ AENEX AFGXO AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 D-I DU5 EBLON EBS EJD ESX GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M7S M~E OK1 P2P P62 PIMPY PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A ~8M AASML AAYXX AMVHM CITATION OVT PHGZM PHGZT NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM AHSBF PUEGO |
ID | FETCH-LOGICAL-c536t-516b94cd44a98759e9e608db5763006885b9f2ebacb837680afb95873ce2950b3 |
IEDL.DBID | DOA |
ISSN | 1029-242X 1025-5834 |
IngestDate | Wed Aug 27 01:24:46 EDT 2025 Thu Aug 21 13:57:46 EDT 2025 Fri Jul 11 12:34:03 EDT 2025 Fri Jul 25 11:19:18 EDT 2025 Thu Jan 02 22:22:17 EST 2025 Thu Apr 24 22:58:33 EDT 2025 Tue Jul 01 04:06:14 EDT 2025 Fri Feb 21 02:32:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lyapunov inequality fractional derivative boundary value problem Mittag-Leffler kernel higher order [Formula: see text] fractional derivative |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-516b94cd44a98759e9e608db5763006885b9f2ebacb837680afb95873ce2950b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/ca86ba9a52d04af0aecc0c5ee2e1efc1 |
PMID | 28680233 |
PQID | 1906053230 |
PQPubID | 237789 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5487966 proquest_miscellaneous_1916709543 proquest_journals_1906053230 pubmed_primary_28680233 crossref_primary_10_1186_s13660_017_1400_5 crossref_citationtrail_10_1186_s13660_017_1400_5 springer_journals_10_1186_s13660_017_1400_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: Heidelberg |
PublicationTitle | Journal of inequalities and applications |
PublicationTitleAbbrev | J Inequal Appl |
PublicationTitleAlternate | J Inequal Appl |
PublicationYear | 2017 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | LosadaJNietoJJProperties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792 Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. J. Rep. Math. Phys. (to appear). arXiv:1606.07958v1 JaradFAbdeljawadTBaleanuDFractional variational principles with delay within Caputo derivativesRep. Math. Phys.20106511728264221410.1016/S0034-4877(10)00010-81195.49030 RongJBaiCLyapunov-type inequality for a fractional differential equation with fractional boundary conditionsAdv. Differ. Equ.20152015331892310.1186/s13662-015-0430-x1343.34021 FerreiraRACA Lyapunov-type inequality for a fractional boundary value problemFract. Calc. Appl. Anal.20136497898431243471312.34013 JleliMSametBLyapunov-type inequalities for fractional boundary value problemsElectron. J. Differ. Equ.20152015333786510.1186/s13662-015-0429-31318.34007 AbdeljawadTBaleanuDIntegration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernelJ. Nonlinear Sci. Appl.201791098110710.22436/jnsa.010.03.20 CaputoMFabrizioMA new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385 LyapunovAMProblème général de la stabilité du mouvementAnn. Fac. Sci. Univ. Toulouse1907227247Reprinted in: Ann. Math. Stud., No. 17, Princeton (1947) KilbasASrivastavaMHTrujilloJJTheory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003 JleliMKiraneMSametBHartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another functionDiscrete Dyn. Nat. Soc.20172017361432210.1155/2017/5123240 Tenreiro MachadoJAKiryakovaVMainardiFA poster about the recent history of fractional calculusFract. Calc. Appl. Anal.201013332933427613571221.26013 OdzijewiczTMalinowskaABTorresDFMFractional calculus of variations in terms of a generalized fractional integral with applications to physicsAbstr. Appl. Anal.20122012292294010.1155/2012/8719121242.49019 ChdouhATorresDFMA generalized Lyapunov’s inequality for a fractional boundary value problemJ. Comput. Appl. Math.2017312192197355787310.1016/j.cam.2016.03.035 KilbasSGKilbasAAMarichevOIFractional Integrals and Derivatives: Theory and Applications1993YverdonGordon & Breach0818.26003 JleliMNietoJJSametBLyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditionsElectron. J. Qual. Theory Differ. Equ.2017201710.1186/s13662-016-1049-2 AbdeljawadTBaleanuDDiscrete fractional differences with nonsingular discrete Mittag-Leffler kernelsAdv. Differ. Equ.20162016354439710.1186/s13662-016-0949-5 JleliMSametBA Lyapunov-type inequality for a fractional q-difference boundary value problemJ. Nonlinear Sci. Appl.201691965197634703661334.26011 FerreiraRACSome discrete fractional Lyapunov-type inequalitiesFract. Differ. Calc.201558792338464110.7153/fdc-05-08 Tenreiro MachadoJAFractional dynamics of a system with particles subjected to impactsCommun. Nonlinear Sci. Numer. Simul.201116124596460110.1016/j.cnsns.2011.01.0191231.82044 AtanganaABaleanuDNew fractional derivative with non-local and non-singular kernelTherm. Sci.201620275776310.2298/TSCI160111018A BaleanuDAbdeljawadTJaradFFractional variational principles with delayJ. Phys. A, Math. Theor.20084131242582310.1088/1751-8113/41/31/3154031141.49321 PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008 O’ReganDSametBLyapunov-type inequalities for a class of fractional differential equationsJ. Inequal. Appl.20152015337795110.1186/s13660-015-0769-21338.34023 AM Lyapunov (1400_CR15) 1907; 2 I Podlubny (1400_CR2) 1999 M Caputo (1400_CR6) 2015; 1 SG Kilbas (1400_CR1) 1993 JA Tenreiro Machado (1400_CR5) 2011; 16 A Chdouh (1400_CR17) 2017; 312 D O’Regan (1400_CR19) 2015; 2015 A Kilbas (1400_CR3) 2006 T Abdeljawad (1400_CR11) 2016; 2016 M Jleli (1400_CR24) 2016; 9 F Jarad (1400_CR13) 2010; 65 RAC Ferreira (1400_CR23) 2015; 5 J Rong (1400_CR20) 2015; 2015 JA Tenreiro Machado (1400_CR4) 2010; 13 M Jleli (1400_CR18) 2015; 2015 1400_CR10 D Baleanu (1400_CR12) 2008; 41 T Abdeljawad (1400_CR9) 2017; 9 M Jleli (1400_CR21) 2017; 2017 M Jleli (1400_CR22) 2017; 2017 T Odzijewicz (1400_CR14) 2012; 2012 A Atangana (1400_CR8) 2016; 20 J Losada (1400_CR7) 2015; 1 RAC Ferreira (1400_CR16) 2013; 6 |
References_xml | – reference: JaradFAbdeljawadTBaleanuDFractional variational principles with delay within Caputo derivativesRep. Math. Phys.20106511728264221410.1016/S0034-4877(10)00010-81195.49030 – reference: JleliMSametBA Lyapunov-type inequality for a fractional q-difference boundary value problemJ. Nonlinear Sci. Appl.201691965197634703661334.26011 – reference: JleliMNietoJJSametBLyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditionsElectron. J. Qual. Theory Differ. Equ.2017201710.1186/s13662-016-1049-2 – reference: AbdeljawadTBaleanuDDiscrete fractional differences with nonsingular discrete Mittag-Leffler kernelsAdv. Differ. Equ.20162016354439710.1186/s13662-016-0949-5 – reference: KilbasASrivastavaMHTrujilloJJTheory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003 – reference: FerreiraRACA Lyapunov-type inequality for a fractional boundary value problemFract. Calc. Appl. Anal.20136497898431243471312.34013 – reference: JleliMKiraneMSametBHartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another functionDiscrete Dyn. Nat. Soc.20172017361432210.1155/2017/5123240 – reference: O’ReganDSametBLyapunov-type inequalities for a class of fractional differential equationsJ. Inequal. Appl.20152015337795110.1186/s13660-015-0769-21338.34023 – reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008 – reference: RongJBaiCLyapunov-type inequality for a fractional differential equation with fractional boundary conditionsAdv. Differ. Equ.20152015331892310.1186/s13662-015-0430-x1343.34021 – reference: AbdeljawadTBaleanuDIntegration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernelJ. Nonlinear Sci. Appl.201791098110710.22436/jnsa.010.03.20 – reference: LosadaJNietoJJProperties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792 – reference: AtanganaABaleanuDNew fractional derivative with non-local and non-singular kernelTherm. Sci.201620275776310.2298/TSCI160111018A – reference: OdzijewiczTMalinowskaABTorresDFMFractional calculus of variations in terms of a generalized fractional integral with applications to physicsAbstr. Appl. Anal.20122012292294010.1155/2012/8719121242.49019 – reference: LyapunovAMProblème général de la stabilité du mouvementAnn. Fac. Sci. Univ. Toulouse1907227247Reprinted in: Ann. Math. Stud., No. 17, Princeton (1947) – reference: Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. J. Rep. Math. Phys. (to appear). arXiv:1606.07958v1 – reference: FerreiraRACSome discrete fractional Lyapunov-type inequalitiesFract. Differ. Calc.201558792338464110.7153/fdc-05-08 – reference: ChdouhATorresDFMA generalized Lyapunov’s inequality for a fractional boundary value problemJ. Comput. Appl. Math.2017312192197355787310.1016/j.cam.2016.03.035 – reference: KilbasSGKilbasAAMarichevOIFractional Integrals and Derivatives: Theory and Applications1993YverdonGordon & Breach0818.26003 – reference: BaleanuDAbdeljawadTJaradFFractional variational principles with delayJ. Phys. A, Math. Theor.20084131242582310.1088/1751-8113/41/31/3154031141.49321 – reference: CaputoMFabrizioMA new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385 – reference: JleliMSametBLyapunov-type inequalities for fractional boundary value problemsElectron. J. Differ. Equ.20152015333786510.1186/s13662-015-0429-31318.34007 – reference: Tenreiro MachadoJAFractional dynamics of a system with particles subjected to impactsCommun. Nonlinear Sci. Numer. Simul.201116124596460110.1016/j.cnsns.2011.01.0191231.82044 – reference: Tenreiro MachadoJAKiryakovaVMainardiFA poster about the recent history of fractional calculusFract. Calc. Appl. Anal.201013332933427613571221.26013 – volume: 2016 year: 2016 ident: 1400_CR11 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-016-0949-5 – volume: 2017 year: 2017 ident: 1400_CR21 publication-title: Electron. J. Qual. Theory Differ. Equ. – volume-title: Fractional Integrals and Derivatives: Theory and Applications year: 1993 ident: 1400_CR1 – volume: 13 start-page: 329 issue: 3 year: 2010 ident: 1400_CR4 publication-title: Fract. Calc. Appl. Anal. – volume: 1 start-page: 87 issue: 2 year: 2015 ident: 1400_CR7 publication-title: Prog. Fract. Differ. Appl. – volume: 20 start-page: 757 issue: 2 year: 2016 ident: 1400_CR8 publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A – volume: 2 start-page: 27 year: 1907 ident: 1400_CR15 publication-title: Ann. Fac. Sci. Univ. Toulouse – volume: 2015 year: 2015 ident: 1400_CR18 publication-title: Electron. J. Differ. Equ. – ident: 1400_CR10 – volume: 2017 year: 2017 ident: 1400_CR22 publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2017/5123240 – volume: 9 start-page: 1098 year: 2017 ident: 1400_CR9 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.03.20 – volume: 41 issue: 31 year: 2008 ident: 1400_CR12 publication-title: J. Phys. A, Math. Theor. doi: 10.1088/1751-8113/41/31/315403 – volume: 1 start-page: 73 issue: 2 year: 2015 ident: 1400_CR6 publication-title: Prog. Fract. Differ. Appl. – volume: 65 start-page: 17 issue: 1 year: 2010 ident: 1400_CR13 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(10)00010-8 – volume: 312 start-page: 192 year: 2017 ident: 1400_CR17 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.03.035 – volume-title: Fractional Differential Equations year: 1999 ident: 1400_CR2 – volume: 2012 year: 2012 ident: 1400_CR14 publication-title: Abstr. Appl. Anal. doi: 10.1155/2012/871912 – volume: 16 start-page: 4596 issue: 12 year: 2011 ident: 1400_CR5 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.01.019 – volume: 2015 year: 2015 ident: 1400_CR20 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-015-0430-x – volume: 5 start-page: 87 year: 2015 ident: 1400_CR23 publication-title: Fract. Differ. Calc. doi: 10.7153/fdc-05-08 – volume: 9 start-page: 1965 year: 2016 ident: 1400_CR24 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.05.03 – volume: 6 start-page: 978 issue: 4 year: 2013 ident: 1400_CR16 publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-013-0060-5 – volume-title: Theory and Application of Fractional Differential Equations year: 2006 ident: 1400_CR3 – volume: 2015 year: 2015 ident: 1400_CR19 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-015-0769-2 |
SSID | ssj0021384 ssib044744598 ssib008501289 |
Score | 2.472802 |
Snippet | In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order
α
∈
[
0... In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In this article, we extend fractional operators with nonsingular Mittag-Leffler... In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order... Abstract In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | A B C $ABC$ fractional derivative A B R $ABR$ fractional derivative Analysis Applications of Mathematics boundary value problem Boundary value problems Existence theorems Fractional calculus higher order Kernels Lyapunov inequality Mathematical analysis Mathematics Mathematics and Statistics Mittag-Leffler kernel Operators Uniqueness theorems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtQw1ILpBQ4FytJAQUbiBIoax0vsE2pRqwp1KoSoVHGJHI_dVoySIZlB6t_zXuIJDEuvsZM4eftOyJsgg3aYF6ZkkCno_1mqgwCABBBmDkRG5bBQeHqmTs7Fxwt5ER1uXUyrXPPEnlHPGoc-8n0QXAqnGPDs_eJ7ilOjMLoaR2jcJVvAgrWekK3Do7NPn0eM0hIZ8CiwhSiEkGaMM-SM9zOJGQ51lZqLGPdkWu13jCuFSVtFCkZIlsoNydU3-P-XVvp3cuUfEdZecB0_JNtR46QHA4o8Ind8vUMeRO2TRtrudsj96djBtXtMvh7Q0xu7WNXND4puWgra6FCAeUNBz6WhHSoi4MnNwvex-o6iU5fWmHJb44T7lk6vl0t7mZ76EOa-pd98W_v5E3J-fPTlw0ka5zCkTnK1TCVTlRFuJoQ1YN4Yb7zK9KwCU4VjiYmWlQm5r6yrwNxVOrOhMlIX3PncyKziT8kE3u13CeWM8ZkREhQfJyTzBiASBLcKGUvhTEKy9T8uXWxSjrMy5mVvrGhVDmApASwlgqWUCXk73rIYOnTctvkQATduxOba_YWmvSwjrZbOalVZY2U-y4QNmQU0z5z0PvfMB8cSsrcGexkpvit_4WdCXo_LQKsYgLG1b1a4h2G7PCl4Qp4NWDKeJNcKe_HBSrGBPxtH3Vypr6_6fuBodILVmpB3a0z77Vj_-xPPb_-IF-RejqjfO5v2yGTZrvxLUL-W1atIYz8BRssoYQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXODAo7wCBRmJEyjCiR-xjwVRVajLiUoVF8v22qVilV0l2Ur99_U4TsRCQeIa24nlmYm_z_MwQm8DD9JBXJjggZcR_5NSBhYFEuJm5uKWYR0kCi--iuNT9uWMn-U87n6Kdp9ckulPncxaig99RYWAIKqmjKSAlPw2usOBuoOHFlIcMsuqqGTZfXnjsJ0NKNXpvwlc_hkj-ZujNO0_Rw_R_Qwc8eEo6Ufolm_30YMMInE20X4f3VvMhVj7x-j7IT65Mpttu77EcNqKI6gc8yivcISrOHRjYkN883rjk8u9x3A2i1uInG3hovoOLy6GwZyXJz6Ele_wT9-1fvUEnR59_vbpuMzXKZSOUzGUvBJWMbdkzKjIUpRXXhC5tJFxUMgUkdyqUHtrnI2sVUhiglVcNtT5WnFi6VO0F7_tnyNMq4ouFeMRvzjGK68YawKjRsD_oXGqQGRaY-1yrXG48mKlE-eQQo9i0VEsGsSieYHezUM2Y6GNf3X-CIKbO0KN7PRg3Z3rbHLaGSmsUYbXS8JMICZqK3Hc-9pXPriqQAeT2HU23F5HfCTgsgxKCvRmbo4mB34U0_r1FvpUUPWOM1qgZ6OWzDOppYCSerGl2dGfnanutrQXP1JZb-COkXwW6P2kab9M628r8eK_er9Ed2uwhHSEdID2hm7rX0VQNdjXyYiuAXifGk0 priority: 102 providerName: Springer Nature |
Title | A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel |
URI | https://link.springer.com/article/10.1186/s13660-017-1400-5 https://www.ncbi.nlm.nih.gov/pubmed/28680233 https://www.proquest.com/docview/1906053230 https://www.proquest.com/docview/1916709543 https://pubmed.ncbi.nlm.nih.gov/PMC5487966 https://doaj.org/article/ca86ba9a52d04af0aecc0c5ee2e1efc1 |
Volume | 2017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXDh_QgsKyNxAkXrxI_ax2zVsqq2KwRUWnGxHNeGFVVapSnSXvjtzCRpteV54TKRYiexPDOZ-ezxDCGvoozaY1yYklGm4P-zVEcBDIlgzDyYjNLjQeHpuTqdicmFvLhW6gtjwrr0wN3EHXunVemMk_mcCReZg28yL0PIQxaib4EP2LwtmOqhVsa16PcwM62O1xlXCgOwBikACpbKPSvUJuv_nYf5a6DkT7ulrREa3yN3eu-RFt2o75MboXpA7vaeJO31dP2QfCro2ZVbbarlN4qLrBR8ye745BUFL5XGujvPAO9arkK7076muCRLKwyYrbA-fU2nl03jPqdnIcZFqOnXUFdh8YjMxqOPw9O0r6KQeslVk8pMlUb4uRDOADgxwQTF9LwEoMHxgIiWpYl5KJ0vAawqzVwsjdQD7kNuJCv5Y3IA3w5PCeVZxudGSHBbvJBZMEIMouBO4W9h4E1C2HZWre9TjGOli4VtoYZWtmOEBUZYZISVCXm9e2TV5df4W-cTZNWuI6bGbm-AwNheYOy_BCYhh1tG215f1xbcIoU1MjhLyMtdM2gabp-4Kiw32CfDZHdS8IQ86eRiN5JcK8ykBy2DPYnZG-p-S3X5pc3mjZARMGdC3mxl69qw_jQTz_7HTDwnt3NUiXZB6ZAcNPUmvAAXqymPyE3B3gLVY6C3imLyYQLXk9H5u_dwd5gLpGp41God0On3EdBZXvwAmvItHA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKOQAHlrINFDASXECjzoyX2AeEylJSmvTUShUX1-PYoSKahEwCyp_iN_LebBCW3nqNnYkzb_ue30bIsyCCcpgXJkUQMeD_JFaBA0ECGDMHJiN3WCg8PJT9Y_7xRJxskB9tLQymVbY6sVLUo6nDO_IdMFwSpxiw5PXsa4xTozC62o7QqNniwK--g8tWvtp_B_R9nmV774_e9uNmqkDsBJOLWKQy19yNOLfgbwvttZeJGuUAvBkWTCiR65D53LocnDepEhtyLVSPOZ9pkeQMnnuJXOYMLDlWpu996PhXCVT3HTzgvMe50F1UI0tZNQE5xRGyQjHeRFlTJXfKlEmJKWK9GFyeJBZrdrIaJ_AvDPx3Kucf8dzKTO7dJNcbfEt3a4a8RTZ8sUVuNFiXNpqk3CLXhl2_2PI2-bRLBys7WxbTbxQvhSlg37rcc0UBVdMwr-sv4MnTma8yA0qKV8i0wATfYozJtHR4tljYcTzwIUz8nH7x88JP7pDjC6HPXbIJv-3vE8rSlI00FwCzHBep10CRwJmVqMZ6Tkckad-xcU1LdJzMMTGVa6SkqcligCwGyWJERF50X5nV_UDO2_wGCddtxFbe1QfT-dg0msE4q2RutRXZKOE2JBaEKnHC-8ynPrg0Itst2U2jX0rzSxoi8rRbBs2A4R5b-OkS96TYnE9wFpF7NZd0J8mUxM5_sNJb45-1o66vFGefq-7j6OKCjxyRly2n_Xas_72JB-f_iSfkSv9oODCD_cODh-RqhmJQXXNtk83FfOkfAfBb5I8raaPk9KLF-ychRWLX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJwYClLDQUGCS4gK7Zn8fiAUEsbtTSJKkSliosZT2ZC1cgJcQLKX-PX8Z43CEtvvWYmzsRv-968jZAXTjhlMC9MCid8wP-BrxwHgjgwZgZMRmawUHgwlIen_P2ZONsgP5paGEyrbHRiqahHU4N35F0wXBKnGLCg6-q0iJP93tvZVx8nSGGktRmnUbHIsV19B_eteHO0D7R-GUW9g4_vDv16woBvBJMLX4QyS7gZca7B9xaJTawM1CgDEM6weEKJLHGRzbTJwJGTKtAuS4SKmbFRIoKMwXOvkc0YvaIO2dw7GJ58aLlZCVT-LVjgPOZcJG2MIwpZOQ85xIGyQjFex1xDJbtFyKTEhLHYBwco8MWa1SyHC_wLEf-d2PlHdLc0mr075FaNduluxZ53yYbNt8jtGvnSWq8UW-TmoO0eW9wjn3Zpf6Vny3z6jeIVMQUkXBV_rihgbOrmVTUGPHk6s2WeQEHxQpnmmO6bjzG1lg7OFws99vvWuYmd0ws7z-3kPjm9Ego9IB34bbtNKAtDNkq4ANBluAhtAhRxnGmJSi02iUeC5h2npm6QjnM6JmnpKCmZVmRJgSwpkiUVHnnVfmVWdQe5bPMeEq7diI29yw-m83Fa64nUaCUznWgRjQKuXaBBxAIjrI1saJ0JPbLTkD2ttU2R_pINjzxvl0FPYPBH53a6xD0htuoTnHnkYcUl7UkiJbEPIKzEa_yzdtT1lfz8S9mLHB1e8Jg98rrhtN-O9b838ejyP_GMXAfRTvtHw-PH5EaEUlDeee2QzmK-tE8ABS6yp7W4UfL5qiX8JxCdaGk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lyapunov+type+inequality+for+fractional+operators+with+nonsingular+Mittag-Leffler+kernel&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Thabet+Abdeljawad&rft.date=2017&rft.pub=SpringerOpen&rft.eissn=1029-242X&rft.volume=2017&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs13660-017-1400-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon |