A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel

In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2017; no. 1; pp. 130 - 11
Main Author Abdeljawad, Thabet
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 2017
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( A B C ) and Riemann ( A B R ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
AbstractList In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
Abstract In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] $\alpha\in[0,1]$ to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( A B C $ABC$ ) and Riemann ( A B R $ABR$ ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order 2 < α ≤ 3 $2<\alpha\leq3$ in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order [Formula: see text] in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( A B C ) and Riemann ( A B R ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document} α ∈ [ 0 , 1 ] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ABC$\end{document} A B C ) and Riemann ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ABR$\end{document} A B R ) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2<\alpha\leq3$\end{document} 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order ... to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo (...) and Riemann (...) type initial value problems by using the Banach contraction theorem. Then we prove a Lyapunov type inequality for the Riemann type fractional boundary value problems of order ... in the frame of Mittag-Leffler kernels. Illustrative examples are analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.
ArticleNumber 130
Author Abdeljawad, Thabet
Author_xml – sequence: 1
  givenname: Thabet
  surname: Abdeljawad
  fullname: Abdeljawad, Thabet
  email: tabdeljawad@psu.edu.sa
  organization: Department of Mathematics and General Sciences, Prince Sultan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28680233$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1vFCEYhSemxn7oD_DGTOKNN6N8DAzcmDRN1SZrvNHEeEPeYd_ZsrLDFpia_feyTm22TfQKAs85HOCcVkdjGLGqXlLyllIl3yXKpSQNoV1DW0Ia8aQ6oYTphrXs-9HB_Lg6TWlNCKNctc-qY6akIozzk-rHeb3YwXYaw22dd1us3Yg3E3iXd_UQYj1EsNmFEXwdthghh5jqXy5f1yVLcuNq8hDrzy5nWDULHAaPsf6JcUT_vHo6gE_44m48q759uPx68alZfPl4dXG-aKzgMjeCyl63dtm2oFUnNGqURC170UlOiFRK9Hpg2IPtFe9Kbhh6LVTHLTItSM_PqqvZdxlgbbbRbSDuTABn_iyEuDIQs7MejQUle9Ag2JK0MBBAa4kViAwpDpYWr_ez13bqN7i0OOYI_oHpw53RXZtVuDWiVZ2Wshi8uTOI4WbClM3GJYvew4hhSoZqKjuiRcsL-voRug5TLC-9p4gkgjNOCvXqMNF9lL9fWAA6AzaGlCIO9wglZl8TM9fElJqYfU2MKJrukca6DPt_Lpdy_r9KNitTOWVcYTwI_U_Rb9Zv0po
CitedBy_id crossref_primary_10_1016_j_chaos_2021_111430
crossref_primary_10_3390_math8030408
crossref_primary_10_1186_s13662_021_03264_5
crossref_primary_10_1142_S0218348X23400339
crossref_primary_10_3390_fractalfract8050264
crossref_primary_10_1002_mma_7693
crossref_primary_10_1186_s13662_017_1285_0
crossref_primary_10_3390_math8010113
crossref_primary_10_1002_mma_6357
crossref_primary_10_1016_j_cam_2024_116262
crossref_primary_10_1142_S0218348X21500201
crossref_primary_10_1155_2018_5875108
crossref_primary_10_1177_10775463211016967
crossref_primary_10_1016_j_cam_2017_10_021
crossref_primary_10_1108_AJMS_06_2022_0147
crossref_primary_10_1142_S0218348X22402319
crossref_primary_10_3390_fractalfract4020017
crossref_primary_10_3390_sym14020207
crossref_primary_10_3390_axioms12090901
crossref_primary_10_3934_math_20221113
crossref_primary_10_1155_2020_1936461
crossref_primary_10_1155_2021_5974285
crossref_primary_10_1002_mma_6343
crossref_primary_10_1142_S0218348X22400370
crossref_primary_10_3934_math_20221071
crossref_primary_10_1016_j_chaos_2019_109477
crossref_primary_10_1155_2022_4741224
crossref_primary_10_1186_s13662_021_03595_3
crossref_primary_10_1515_math_2024_0036
crossref_primary_10_1142_S0218348X20400484
crossref_primary_10_1142_S1793524522500644
crossref_primary_10_1142_S0218348X23400236
crossref_primary_10_1155_2017_4149320
crossref_primary_10_1016_j_chaos_2019_06_014
crossref_primary_10_1016_j_chaos_2019_06_012
crossref_primary_10_1155_2024_4082683
crossref_primary_10_1007_s12215_021_00638_2
crossref_primary_10_1002_mma_5407
crossref_primary_10_1016_j_chaos_2019_07_022
crossref_primary_10_1186_s13660_018_1731_x
crossref_primary_10_1016_j_aej_2020_02_003
crossref_primary_10_1186_s13660_023_03005_0
crossref_primary_10_3934_math_2024508
crossref_primary_10_1142_S0218348X21501541
crossref_primary_10_1016_j_heliyon_2024_e41525
crossref_primary_10_3390_math10071089
crossref_primary_10_3934_math_2024743
crossref_primary_10_1186_s13662_020_03196_6
crossref_primary_10_1186_s13660_023_03070_5
crossref_primary_10_3934_era_2024007
crossref_primary_10_1140_epjp_i2019_12772_1
crossref_primary_10_3390_fractalfract7120844
crossref_primary_10_1016_j_physa_2019_04_017
crossref_primary_10_3390_fractalfract5040266
crossref_primary_10_1186_s13662_019_2054_z
crossref_primary_10_1016_j_cnsns_2017_12_003
crossref_primary_10_1186_s13662_018_1554_6
crossref_primary_10_3934_math_2023595
crossref_primary_10_3390_fractalfract7050407
crossref_primary_10_1016_j_chaos_2018_09_013
crossref_primary_10_1016_j_chaos_2019_07_001
crossref_primary_10_1063_1_5085726
crossref_primary_10_1155_2022_6387351
crossref_primary_10_1186_s13662_019_2047_y
crossref_primary_10_1002_mma_7083
crossref_primary_10_1063_1_5086771
crossref_primary_10_1142_S0218348X23400248
crossref_primary_10_3390_sym14071436
crossref_primary_10_1007_s10958_023_06417_x
crossref_primary_10_1186_s13661_022_01684_0
crossref_primary_10_1155_2023_5891342
crossref_primary_10_1186_s13662_019_2362_3
crossref_primary_10_1515_dema_2022_0028
crossref_primary_10_1186_s13662_020_02825_4
crossref_primary_10_1186_s13662_021_03551_1
crossref_primary_10_32604_cmes_2022_023694
crossref_primary_10_1007_s40324_017_0135_z
crossref_primary_10_1186_s13660_019_2045_3
crossref_primary_10_1142_S0218348X2340042X
crossref_primary_10_3934_dcdss_2020171
crossref_primary_10_1007_s40096_022_00486_w
crossref_primary_10_3934_dcdss_2020212
crossref_primary_10_3934_math_2022115
crossref_primary_10_1186_s13660_020_02419_4
crossref_primary_10_3934_math_2022244
crossref_primary_10_1063_1_5083202
crossref_primary_10_1142_S0218348X24400413
crossref_primary_10_1186_s13661_021_01579_6
crossref_primary_10_1002_mma_7349
crossref_primary_10_1186_s13662_017_1383_z
crossref_primary_10_3390_fractalfract6050269
crossref_primary_10_3934_math_2024380
crossref_primary_10_1186_s13662_018_1914_2
crossref_primary_10_1142_S0218348X21400168
crossref_primary_10_1186_s13661_018_1056_1
crossref_primary_10_1155_2020_8234892
crossref_primary_10_2298_FIL2321199L
crossref_primary_10_1155_2022_1812445
crossref_primary_10_1080_16583655_2019_1640446
crossref_primary_10_3390_math7090807
crossref_primary_10_1142_S0218348X23400388
crossref_primary_10_3934_math_20231202
crossref_primary_10_1186_s13660_020_02351_7
crossref_primary_10_1186_s13662_020_02866_9
crossref_primary_10_1155_2022_9693005
crossref_primary_10_33889_IJMEMS_2024_9_3_033
crossref_primary_10_1155_2019_6926107
crossref_primary_10_1186_s13661_023_01736_z
crossref_primary_10_1186_s13662_021_03229_8
Cites_doi 10.1186/s13662-016-0949-5
10.2298/TSCI160111018A
10.1155/2017/5123240
10.22436/jnsa.010.03.20
10.1088/1751-8113/41/31/315403
10.1016/S0034-4877(10)00010-8
10.1016/j.cam.2016.03.035
10.1155/2012/871912
10.1016/j.cnsns.2011.01.019
10.1186/s13662-015-0430-x
10.7153/fdc-05-08
10.22436/jnsa.009.05.03
10.2478/s13540-013-0060-5
10.1186/s13660-015-0769-2
ContentType Journal Article
Copyright The Author(s) 2017
Journal of Inequalities and Applications is a copyright of Springer, 2017.
Copyright_xml – notice: The Author(s) 2017
– notice: Journal of Inequalities and Applications is a copyright of Springer, 2017.
DBID C6C
AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s13660-017-1400-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 11
ExternalDocumentID oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1
PMC5487966
28680233
10_1186_s13660_017_1400_5
Genre Journal Article
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
ABDBF
ABEEZ
ABFTD
ABJCF
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBLON
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AASML
AAYXX
AMVHM
CITATION
OVT
PHGZM
PHGZT
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
AHSBF
PUEGO
ID FETCH-LOGICAL-c536t-516b94cd44a98759e9e608db5763006885b9f2ebacb837680afb95873ce2950b3
IEDL.DBID DOA
ISSN 1029-242X
1025-5834
IngestDate Wed Aug 27 01:24:46 EDT 2025
Thu Aug 21 13:57:46 EDT 2025
Fri Jul 11 12:34:03 EDT 2025
Fri Jul 25 11:19:18 EDT 2025
Thu Jan 02 22:22:17 EST 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 04:06:14 EDT 2025
Fri Feb 21 02:32:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lyapunov inequality
fractional derivative
boundary value problem
Mittag-Leffler kernel
higher order
[Formula: see text] fractional derivative
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-516b94cd44a98759e9e608db5763006885b9f2ebacb837680afb95873ce2950b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ca86ba9a52d04af0aecc0c5ee2e1efc1
PMID 28680233
PQID 1906053230
PQPubID 237789
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5487966
proquest_miscellaneous_1916709543
proquest_journals_1906053230
pubmed_primary_28680233
crossref_primary_10_1186_s13660_017_1400_5
crossref_citationtrail_10_1186_s13660_017_1400_5
springer_journals_10_1186_s13660_017_1400_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationTitleAlternate J Inequal Appl
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References LosadaJNietoJJProperties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792
Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. J. Rep. Math. Phys. (to appear). arXiv:1606.07958v1
JaradFAbdeljawadTBaleanuDFractional variational principles with delay within Caputo derivativesRep. Math. Phys.20106511728264221410.1016/S0034-4877(10)00010-81195.49030
RongJBaiCLyapunov-type inequality for a fractional differential equation with fractional boundary conditionsAdv. Differ. Equ.20152015331892310.1186/s13662-015-0430-x1343.34021
FerreiraRACA Lyapunov-type inequality for a fractional boundary value problemFract. Calc. Appl. Anal.20136497898431243471312.34013
JleliMSametBLyapunov-type inequalities for fractional boundary value problemsElectron. J. Differ. Equ.20152015333786510.1186/s13662-015-0429-31318.34007
AbdeljawadTBaleanuDIntegration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernelJ. Nonlinear Sci. Appl.201791098110710.22436/jnsa.010.03.20
CaputoMFabrizioMA new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385
LyapunovAMProblème général de la stabilité du mouvementAnn. Fac. Sci. Univ. Toulouse1907227247Reprinted in: Ann. Math. Stud., No. 17, Princeton (1947)
KilbasASrivastavaMHTrujilloJJTheory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003
JleliMKiraneMSametBHartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another functionDiscrete Dyn. Nat. Soc.20172017361432210.1155/2017/5123240
Tenreiro MachadoJAKiryakovaVMainardiFA poster about the recent history of fractional calculusFract. Calc. Appl. Anal.201013332933427613571221.26013
OdzijewiczTMalinowskaABTorresDFMFractional calculus of variations in terms of a generalized fractional integral with applications to physicsAbstr. Appl. Anal.20122012292294010.1155/2012/8719121242.49019
ChdouhATorresDFMA generalized Lyapunov’s inequality for a fractional boundary value problemJ. Comput. Appl. Math.2017312192197355787310.1016/j.cam.2016.03.035
KilbasSGKilbasAAMarichevOIFractional Integrals and Derivatives: Theory and Applications1993YverdonGordon & Breach0818.26003
JleliMNietoJJSametBLyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditionsElectron. J. Qual. Theory Differ. Equ.2017201710.1186/s13662-016-1049-2
AbdeljawadTBaleanuDDiscrete fractional differences with nonsingular discrete Mittag-Leffler kernelsAdv. Differ. Equ.20162016354439710.1186/s13662-016-0949-5
JleliMSametBA Lyapunov-type inequality for a fractional q-difference boundary value problemJ. Nonlinear Sci. Appl.201691965197634703661334.26011
FerreiraRACSome discrete fractional Lyapunov-type inequalitiesFract. Differ. Calc.201558792338464110.7153/fdc-05-08
Tenreiro MachadoJAFractional dynamics of a system with particles subjected to impactsCommun. Nonlinear Sci. Numer. Simul.201116124596460110.1016/j.cnsns.2011.01.0191231.82044
AtanganaABaleanuDNew fractional derivative with non-local and non-singular kernelTherm. Sci.201620275776310.2298/TSCI160111018A
BaleanuDAbdeljawadTJaradFFractional variational principles with delayJ. Phys. A, Math. Theor.20084131242582310.1088/1751-8113/41/31/3154031141.49321
PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008
O’ReganDSametBLyapunov-type inequalities for a class of fractional differential equationsJ. Inequal. Appl.20152015337795110.1186/s13660-015-0769-21338.34023
AM Lyapunov (1400_CR15) 1907; 2
I Podlubny (1400_CR2) 1999
M Caputo (1400_CR6) 2015; 1
SG Kilbas (1400_CR1) 1993
JA Tenreiro Machado (1400_CR5) 2011; 16
A Chdouh (1400_CR17) 2017; 312
D O’Regan (1400_CR19) 2015; 2015
A Kilbas (1400_CR3) 2006
T Abdeljawad (1400_CR11) 2016; 2016
M Jleli (1400_CR24) 2016; 9
F Jarad (1400_CR13) 2010; 65
RAC Ferreira (1400_CR23) 2015; 5
J Rong (1400_CR20) 2015; 2015
JA Tenreiro Machado (1400_CR4) 2010; 13
M Jleli (1400_CR18) 2015; 2015
1400_CR10
D Baleanu (1400_CR12) 2008; 41
T Abdeljawad (1400_CR9) 2017; 9
M Jleli (1400_CR21) 2017; 2017
M Jleli (1400_CR22) 2017; 2017
T Odzijewicz (1400_CR14) 2012; 2012
A Atangana (1400_CR8) 2016; 20
J Losada (1400_CR7) 2015; 1
RAC Ferreira (1400_CR16) 2013; 6
References_xml – reference: JaradFAbdeljawadTBaleanuDFractional variational principles with delay within Caputo derivativesRep. Math. Phys.20106511728264221410.1016/S0034-4877(10)00010-81195.49030
– reference: JleliMSametBA Lyapunov-type inequality for a fractional q-difference boundary value problemJ. Nonlinear Sci. Appl.201691965197634703661334.26011
– reference: JleliMNietoJJSametBLyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditionsElectron. J. Qual. Theory Differ. Equ.2017201710.1186/s13662-016-1049-2
– reference: AbdeljawadTBaleanuDDiscrete fractional differences with nonsingular discrete Mittag-Leffler kernelsAdv. Differ. Equ.20162016354439710.1186/s13662-016-0949-5
– reference: KilbasASrivastavaMHTrujilloJJTheory and Application of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: FerreiraRACA Lyapunov-type inequality for a fractional boundary value problemFract. Calc. Appl. Anal.20136497898431243471312.34013
– reference: JleliMKiraneMSametBHartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another functionDiscrete Dyn. Nat. Soc.20172017361432210.1155/2017/5123240
– reference: O’ReganDSametBLyapunov-type inequalities for a class of fractional differential equationsJ. Inequal. Appl.20152015337795110.1186/s13660-015-0769-21338.34023
– reference: PodlubnyIFractional Differential Equations1999San DiegoAcademic Press0924.34008
– reference: RongJBaiCLyapunov-type inequality for a fractional differential equation with fractional boundary conditionsAdv. Differ. Equ.20152015331892310.1186/s13662-015-0430-x1343.34021
– reference: AbdeljawadTBaleanuDIntegration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernelJ. Nonlinear Sci. Appl.201791098110710.22436/jnsa.010.03.20
– reference: LosadaJNietoJJProperties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792
– reference: AtanganaABaleanuDNew fractional derivative with non-local and non-singular kernelTherm. Sci.201620275776310.2298/TSCI160111018A
– reference: OdzijewiczTMalinowskaABTorresDFMFractional calculus of variations in terms of a generalized fractional integral with applications to physicsAbstr. Appl. Anal.20122012292294010.1155/2012/8719121242.49019
– reference: LyapunovAMProblème général de la stabilité du mouvementAnn. Fac. Sci. Univ. Toulouse1907227247Reprinted in: Ann. Math. Stud., No. 17, Princeton (1947)
– reference: Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. J. Rep. Math. Phys. (to appear). arXiv:1606.07958v1
– reference: FerreiraRACSome discrete fractional Lyapunov-type inequalitiesFract. Differ. Calc.201558792338464110.7153/fdc-05-08
– reference: ChdouhATorresDFMA generalized Lyapunov’s inequality for a fractional boundary value problemJ. Comput. Appl. Math.2017312192197355787310.1016/j.cam.2016.03.035
– reference: KilbasSGKilbasAAMarichevOIFractional Integrals and Derivatives: Theory and Applications1993YverdonGordon & Breach0818.26003
– reference: BaleanuDAbdeljawadTJaradFFractional variational principles with delayJ. Phys. A, Math. Theor.20084131242582310.1088/1751-8113/41/31/3154031141.49321
– reference: CaputoMFabrizioMA new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385
– reference: JleliMSametBLyapunov-type inequalities for fractional boundary value problemsElectron. J. Differ. Equ.20152015333786510.1186/s13662-015-0429-31318.34007
– reference: Tenreiro MachadoJAFractional dynamics of a system with particles subjected to impactsCommun. Nonlinear Sci. Numer. Simul.201116124596460110.1016/j.cnsns.2011.01.0191231.82044
– reference: Tenreiro MachadoJAKiryakovaVMainardiFA poster about the recent history of fractional calculusFract. Calc. Appl. Anal.201013332933427613571221.26013
– volume: 2016
  year: 2016
  ident: 1400_CR11
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-016-0949-5
– volume: 2017
  year: 2017
  ident: 1400_CR21
  publication-title: Electron. J. Qual. Theory Differ. Equ.
– volume-title: Fractional Integrals and Derivatives: Theory and Applications
  year: 1993
  ident: 1400_CR1
– volume: 13
  start-page: 329
  issue: 3
  year: 2010
  ident: 1400_CR4
  publication-title: Fract. Calc. Appl. Anal.
– volume: 1
  start-page: 87
  issue: 2
  year: 2015
  ident: 1400_CR7
  publication-title: Prog. Fract. Differ. Appl.
– volume: 20
  start-page: 757
  issue: 2
  year: 2016
  ident: 1400_CR8
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– volume: 2
  start-page: 27
  year: 1907
  ident: 1400_CR15
  publication-title: Ann. Fac. Sci. Univ. Toulouse
– volume: 2015
  year: 2015
  ident: 1400_CR18
  publication-title: Electron. J. Differ. Equ.
– ident: 1400_CR10
– volume: 2017
  year: 2017
  ident: 1400_CR22
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2017/5123240
– volume: 9
  start-page: 1098
  year: 2017
  ident: 1400_CR9
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.03.20
– volume: 41
  issue: 31
  year: 2008
  ident: 1400_CR12
  publication-title: J. Phys. A, Math. Theor.
  doi: 10.1088/1751-8113/41/31/315403
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  ident: 1400_CR6
  publication-title: Prog. Fract. Differ. Appl.
– volume: 65
  start-page: 17
  issue: 1
  year: 2010
  ident: 1400_CR13
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(10)00010-8
– volume: 312
  start-page: 192
  year: 2017
  ident: 1400_CR17
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.03.035
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 1400_CR2
– volume: 2012
  year: 2012
  ident: 1400_CR14
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2012/871912
– volume: 16
  start-page: 4596
  issue: 12
  year: 2011
  ident: 1400_CR5
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.01.019
– volume: 2015
  year: 2015
  ident: 1400_CR20
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-015-0430-x
– volume: 5
  start-page: 87
  year: 2015
  ident: 1400_CR23
  publication-title: Fract. Differ. Calc.
  doi: 10.7153/fdc-05-08
– volume: 9
  start-page: 1965
  year: 2016
  ident: 1400_CR24
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.009.05.03
– volume: 6
  start-page: 978
  issue: 4
  year: 2013
  ident: 1400_CR16
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-013-0060-5
– volume-title: Theory and Application of Fractional Differential Equations
  year: 2006
  ident: 1400_CR3
– volume: 2015
  year: 2015
  ident: 1400_CR19
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-015-0769-2
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.472802
Snippet In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order α ∈ [ 0...
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) In this article, we extend fractional operators with nonsingular Mittag-Leffler...
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order...
Abstract In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms A B C $ABC$ fractional derivative
A B R $ABR$ fractional derivative
Analysis
Applications of Mathematics
boundary value problem
Boundary value problems
Existence theorems
Fractional calculus
higher order
Kernels
Lyapunov inequality
Mathematical analysis
Mathematics
Mathematics and Statistics
Mittag-Leffler kernel
Operators
Uniqueness theorems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtQw1ILpBQ4FytJAQUbiBIoax0vsE2pRqwp1KoSoVHGJHI_dVoySIZlB6t_zXuIJDEuvsZM4eftOyJsgg3aYF6ZkkCno_1mqgwCABBBmDkRG5bBQeHqmTs7Fxwt5ER1uXUyrXPPEnlHPGoc-8n0QXAqnGPDs_eJ7ilOjMLoaR2jcJVvAgrWekK3Do7NPn0eM0hIZ8CiwhSiEkGaMM-SM9zOJGQ51lZqLGPdkWu13jCuFSVtFCkZIlsoNydU3-P-XVvp3cuUfEdZecB0_JNtR46QHA4o8Ind8vUMeRO2TRtrudsj96djBtXtMvh7Q0xu7WNXND4puWgra6FCAeUNBz6WhHSoi4MnNwvex-o6iU5fWmHJb44T7lk6vl0t7mZ76EOa-pd98W_v5E3J-fPTlw0ka5zCkTnK1TCVTlRFuJoQ1YN4Yb7zK9KwCU4VjiYmWlQm5r6yrwNxVOrOhMlIX3PncyKziT8kE3u13CeWM8ZkREhQfJyTzBiASBLcKGUvhTEKy9T8uXWxSjrMy5mVvrGhVDmApASwlgqWUCXk73rIYOnTctvkQATduxOba_YWmvSwjrZbOalVZY2U-y4QNmQU0z5z0PvfMB8cSsrcGexkpvit_4WdCXo_LQKsYgLG1b1a4h2G7PCl4Qp4NWDKeJNcKe_HBSrGBPxtH3Vypr6_6fuBodILVmpB3a0z77Vj_-xPPb_-IF-RejqjfO5v2yGTZrvxLUL-W1atIYz8BRssoYQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXODAo7wCBRmJEyjCiR-xjwVRVajLiUoVF8v22qVilV0l2Ur99_U4TsRCQeIa24nlmYm_z_MwQm8DD9JBXJjggZcR_5NSBhYFEuJm5uKWYR0kCi--iuNT9uWMn-U87n6Kdp9ckulPncxaig99RYWAIKqmjKSAlPw2usOBuoOHFlIcMsuqqGTZfXnjsJ0NKNXpvwlc_hkj-ZujNO0_Rw_R_Qwc8eEo6Ufolm_30YMMInE20X4f3VvMhVj7x-j7IT65Mpttu77EcNqKI6gc8yivcISrOHRjYkN883rjk8u9x3A2i1uInG3hovoOLy6GwZyXJz6Ele_wT9-1fvUEnR59_vbpuMzXKZSOUzGUvBJWMbdkzKjIUpRXXhC5tJFxUMgUkdyqUHtrnI2sVUhiglVcNtT5WnFi6VO0F7_tnyNMq4ouFeMRvzjGK68YawKjRsD_oXGqQGRaY-1yrXG48mKlE-eQQo9i0VEsGsSieYHezUM2Y6GNf3X-CIKbO0KN7PRg3Z3rbHLaGSmsUYbXS8JMICZqK3Hc-9pXPriqQAeT2HU23F5HfCTgsgxKCvRmbo4mB34U0_r1FvpUUPWOM1qgZ6OWzDOppYCSerGl2dGfnanutrQXP1JZb-COkXwW6P2kab9M628r8eK_er9Ed2uwhHSEdID2hm7rX0VQNdjXyYiuAXifGk0
  priority: 102
  providerName: Springer Nature
Title A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel
URI https://link.springer.com/article/10.1186/s13660-017-1400-5
https://www.ncbi.nlm.nih.gov/pubmed/28680233
https://www.proquest.com/docview/1906053230
https://www.proquest.com/docview/1916709543
https://pubmed.ncbi.nlm.nih.gov/PMC5487966
https://doaj.org/article/ca86ba9a52d04af0aecc0c5ee2e1efc1
Volume 2017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXDh_QgsKyNxAkXrxI_ax2zVsqq2KwRUWnGxHNeGFVVapSnSXvjtzCRpteV54TKRYiexPDOZ-ezxDCGvoozaY1yYklGm4P-zVEcBDIlgzDyYjNLjQeHpuTqdicmFvLhW6gtjwrr0wN3EHXunVemMk_mcCReZg28yL0PIQxaib4EP2LwtmOqhVsa16PcwM62O1xlXCgOwBikACpbKPSvUJuv_nYf5a6DkT7ulrREa3yN3eu-RFt2o75MboXpA7vaeJO31dP2QfCro2ZVbbarlN4qLrBR8ye745BUFL5XGujvPAO9arkK7076muCRLKwyYrbA-fU2nl03jPqdnIcZFqOnXUFdh8YjMxqOPw9O0r6KQeslVk8pMlUb4uRDOADgxwQTF9LwEoMHxgIiWpYl5KJ0vAawqzVwsjdQD7kNuJCv5Y3IA3w5PCeVZxudGSHBbvJBZMEIMouBO4W9h4E1C2HZWre9TjGOli4VtoYZWtmOEBUZYZISVCXm9e2TV5df4W-cTZNWuI6bGbm-AwNheYOy_BCYhh1tG215f1xbcIoU1MjhLyMtdM2gabp-4Kiw32CfDZHdS8IQ86eRiN5JcK8ykBy2DPYnZG-p-S3X5pc3mjZARMGdC3mxl69qw_jQTz_7HTDwnt3NUiXZB6ZAcNPUmvAAXqymPyE3B3gLVY6C3imLyYQLXk9H5u_dwd5gLpGp41God0On3EdBZXvwAmvItHA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKOQAHlrINFDASXECjzoyX2AeEylJSmvTUShUX1-PYoSKahEwCyp_iN_LebBCW3nqNnYkzb_ue30bIsyCCcpgXJkUQMeD_JFaBA0ECGDMHJiN3WCg8PJT9Y_7xRJxskB9tLQymVbY6sVLUo6nDO_IdMFwSpxiw5PXsa4xTozC62o7QqNniwK--g8tWvtp_B_R9nmV774_e9uNmqkDsBJOLWKQy19yNOLfgbwvttZeJGuUAvBkWTCiR65D53LocnDepEhtyLVSPOZ9pkeQMnnuJXOYMLDlWpu996PhXCVT3HTzgvMe50F1UI0tZNQE5xRGyQjHeRFlTJXfKlEmJKWK9GFyeJBZrdrIaJ_AvDPx3Kucf8dzKTO7dJNcbfEt3a4a8RTZ8sUVuNFiXNpqk3CLXhl2_2PI2-bRLBys7WxbTbxQvhSlg37rcc0UBVdMwr-sv4MnTma8yA0qKV8i0wATfYozJtHR4tljYcTzwIUz8nH7x88JP7pDjC6HPXbIJv-3vE8rSlI00FwCzHBep10CRwJmVqMZ6Tkckad-xcU1LdJzMMTGVa6SkqcligCwGyWJERF50X5nV_UDO2_wGCddtxFbe1QfT-dg0msE4q2RutRXZKOE2JBaEKnHC-8ynPrg0Itst2U2jX0rzSxoi8rRbBs2A4R5b-OkS96TYnE9wFpF7NZd0J8mUxM5_sNJb45-1o66vFGefq-7j6OKCjxyRly2n_Xas_72JB-f_iSfkSv9oODCD_cODh-RqhmJQXXNtk83FfOkfAfBb5I8raaPk9KLF-ychRWLX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJwYClLDQUGCS4gK7Zn8fiAUEsbtTSJKkSliosZT2ZC1cgJcQLKX-PX8Z43CEtvvWYmzsRv-968jZAXTjhlMC9MCid8wP-BrxwHgjgwZgZMRmawUHgwlIen_P2ZONsgP5paGEyrbHRiqahHU4N35F0wXBKnGLCg6-q0iJP93tvZVx8nSGGktRmnUbHIsV19B_eteHO0D7R-GUW9g4_vDv16woBvBJMLX4QyS7gZca7B9xaJTawM1CgDEM6weEKJLHGRzbTJwJGTKtAuS4SKmbFRIoKMwXOvkc0YvaIO2dw7GJ58aLlZCVT-LVjgPOZcJG2MIwpZOQ85xIGyQjFex1xDJbtFyKTEhLHYBwco8MWa1SyHC_wLEf-d2PlHdLc0mr075FaNduluxZ53yYbNt8jtGvnSWq8UW-TmoO0eW9wjn3Zpf6Vny3z6jeIVMQUkXBV_rihgbOrmVTUGPHk6s2WeQEHxQpnmmO6bjzG1lg7OFws99vvWuYmd0ws7z-3kPjm9Ego9IB34bbtNKAtDNkq4ANBluAhtAhRxnGmJSi02iUeC5h2npm6QjnM6JmnpKCmZVmRJgSwpkiUVHnnVfmVWdQe5bPMeEq7diI29yw-m83Fa64nUaCUznWgRjQKuXaBBxAIjrI1saJ0JPbLTkD2ttU2R_pINjzxvl0FPYPBH53a6xD0htuoTnHnkYcUl7UkiJbEPIKzEa_yzdtT1lfz8S9mLHB1e8Jg98rrhtN-O9b838ejyP_GMXAfRTvtHw-PH5EaEUlDeee2QzmK-tE8ABS6yp7W4UfL5qiX8JxCdaGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Lyapunov+type+inequality+for+fractional+operators+with+nonsingular+Mittag-Leffler+kernel&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Thabet+Abdeljawad&rft.date=2017&rft.pub=SpringerOpen&rft.eissn=1029-242X&rft.volume=2017&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs13660-017-1400-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca86ba9a52d04af0aecc0c5ee2e1efc1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon