Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning

In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5t...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 3; p. 1230
Main Authors Baek, Suwhan, Kim, Juhyeong, Yu, Hyunsoo, Yang, Geunbo, Sohn, Illsoo, Cho, Youngho, Park, Cheolsoo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.
AbstractList In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.
In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.
Audience Academic
Author Sohn, Illsoo
Cho, Youngho
Yu, Hyunsoo
Yang, Geunbo
Baek, Suwhan
Park, Cheolsoo
Kim, Juhyeong
AuthorAffiliation 3 Department of Electrical and Communication Engineering, Daelim University, Kyoung 13916, Republic of Korea
1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
2 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
AuthorAffiliation_xml – name: 3 Department of Electrical and Communication Engineering, Daelim University, Kyoung 13916, Republic of Korea
– name: 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
– name: 2 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
Author_xml – sequence: 1
  givenname: Suwhan
  orcidid: 0000-0002-5913-4471
  surname: Baek
  fullname: Baek, Suwhan
– sequence: 2
  givenname: Juhyeong
  surname: Kim
  fullname: Kim, Juhyeong
– sequence: 3
  givenname: Hyunsoo
  orcidid: 0000-0003-4750-6941
  surname: Yu
  fullname: Yu, Hyunsoo
– sequence: 4
  givenname: Geunbo
  surname: Yang
  fullname: Yang, Geunbo
– sequence: 5
  givenname: Illsoo
  orcidid: 0000-0003-3943-4781
  surname: Sohn
  fullname: Sohn, Illsoo
– sequence: 6
  givenname: Youngho
  surname: Cho
  fullname: Cho, Youngho
– sequence: 7
  givenname: Cheolsoo
  orcidid: 0000-0001-8042-007X
  surname: Park
  fullname: Park, Cheolsoo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36772269$$D View this record in MEDLINE/PubMed
BookMark eNptktFu2yAUhtHUaW2zXewFJku72S7SYsDY3EzKsraLFGnTtl4jjA8ukQ0p2JP29sNJlzVVhQQIvvNzzuE_RyfOO0DobY4vKBX4MhKKaZ6mF-gsZ4TNK0LwyaP9KTqPcYMxoZRWr9Ap5WVJCBdnCFZugK6zLbghuwY1jAGyn9CBHqx3mfEhu1rezD-rCE32HUL0TnXZYhzuUoDVakfdRuva7AvANvsB1qUgDf0kuAYVXLp7jV4a1UV487DO0O311a_l1_n6281quVjPdUH5MGfKcN1wRjkIrEEZxoymolJFxXNR5aQhtVGKl00ONa5xo5lWTNfAOOWMFHSGVnvdxquN3Abbq_BHemXl7sCHVqqQ0u5AVk16SFVE0KpimNdVXZfaMJLXylCj86T1aa-1HeseGp3qCao7Ej2-cfZOtv63FILgkk_JfHgQCP5-hDjI3kadmq0c-DFKUpYFJ5zTCX3_BN34MaRO7ygmSkwK8Z9qVSpg6nN6V0-iclEymj5VpHmGLp6h0migtzoZx9h0fhTw7nGhhwr_mSQBH_eADj7GAOaA5FhOBpQHAyb28gmr7bBzScrCds9E_AVqe9tA
CitedBy_id crossref_primary_10_1080_15325008_2024_2337858
crossref_primary_10_1109_ACCESS_2024_3390722
crossref_primary_10_3389_frai_2024_1458230
crossref_primary_10_1109_ACCESS_2024_3447096
crossref_primary_10_48084_etasr_8702
crossref_primary_10_58496_MJCS_2023_007
crossref_primary_10_1016_j_jfca_2025_107371
Cites_doi 10.3390/electronics9010142
10.4249/scholarpedia.1883
10.1038/s41591-018-0310-5
10.1016/j.comnet.2007.02.001
10.1613/jair.953
10.1109/ICPR.2014.296
10.1111/exsy.12547
10.1109/JBHI.2015.2402199
10.1016/S0004-3702(98)00023-X
10.3390/s21216966
10.1007/978-3-642-01793-3_128
10.1145/2968456.2973748
10.1016/j.patcog.2004.05.014
10.1016/j.patrec.2007.01.014
10.1109/WIFS.2010.5711466
10.1007/s11227-017-2216-2
10.1109/MSECP.2003.1193209
10.1109/JPROC.2003.819611
10.1155/2019/5176705
10.1007/978-1-84882-254-2
10.1109/TGRS.2006.880628
10.1109/WICT.2011.6141226
10.1016/j.sigpro.2003.08.001
10.1016/j.icte.2020.06.004
10.1109/5254.708428
10.1054/jelc.2000.20356
10.1080/03772063.2020.1725663
10.1109/2.820041
10.1016/S0735-1097(86)80494-6
10.1109/10.918594
10.1145/3005745.3005750
10.1016/j.knosys.2020.106622
10.1016/j.patrec.2018.03.028
10.1109/ICCV.2007.4409066
10.1109/19.930458
10.1145/234313.234412
10.1016/j.eswa.2011.02.155
10.1016/j.comnet.2014.11.008
10.1109/TNN.1998.712192
10.1016/j.comnet.2020.107118
10.1109/TIP.2014.2332396
10.1016/j.jnca.2017.04.002
10.1007/BF00992698
10.1016/j.cor.2021.105400
10.1109/EMBC.2017.8036858
10.1109/JPROC.2015.2494218
10.1038/nature14236
10.1016/j.future.2019.06.008
10.1161/01.CIR.71.2.244
10.1109/34.709601
10.1109/TIFS.2006.873653
10.5402/2012/712032
10.1609/aaai.v31i1.10827
10.1023/A:1025667309714
10.1016/j.jbi.2018.07.014
10.1145/1541880.1541882
10.1007/s11633-015-0893-y
10.1109/TGRS.2009.2039484
10.1109/TBME.1985.325532
10.1109/TIM.2007.909996
10.1109/JIOT.2020.3016297
10.1109/2.820038
10.1016/j.inffus.2020.06.014
10.1109/TIFS.2012.2215324
10.3390/s21051568
10.1007/s11760-015-0845-6
10.1109/TCSVT.2003.818349
10.1109/ACCESS.2017.2707460
10.1109/ACCT.2015.87
10.1109/TGRS.2004.827257
10.1016/j.patcog.2014.01.016
10.1016/j.future.2018.05.060
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23031230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1
PMC9920765
A743367943
36772269
10_3390_s23031230
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Kwangwoon University
  grantid: Excellent Researcher Support Project
– fundername: Ministry of Trade, Industry and Energy
  grantid: RS-2022-00154678
– fundername: National Research Foundation of Korea
  grantid: NRF-2017R1A5A1015596
– fundername: Kwangwoon University
– fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2017R1A5A1015596
– fundername: Ministry of Trade, Industry & Energy (MOTIE, Korea)
  grantid: RS-2022-00154678
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c536t-4af6cd6436e90ceaf44fc398a58619812d2bfaa67d1eb0b0dc4ca4cbe46364253
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:18 EDT 2025
Thu Aug 21 18:38:33 EDT 2025
Tue Aug 05 11:00:54 EDT 2025
Fri Jul 25 20:22:42 EDT 2025
Thu Jul 03 02:32:59 EDT 2025
Tue Jul 01 05:44:25 EDT 2025
Mon Jul 21 05:42:25 EDT 2025
Tue Jul 01 01:19:46 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ECG
biometrics
hyperparameter optimization
feature selection
authentication
reinforcement learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-4af6cd6436e90ceaf44fc398a58619812d2bfaa67d1eb0b0dc4ca4cbe46364253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3943-4781
0000-0002-5913-4471
0000-0001-8042-007X
0000-0003-4750-6941
OpenAccessLink https://doaj.org/article/8dd64a829388406b8bb7cf421baf3fc1
PMID 36772269
PQID 2774970259
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920765
proquest_miscellaneous_2775626635
proquest_journals_2774970259
gale_infotracmisc_A743367943
gale_infotracacademiconefile_A743367943
pubmed_primary_36772269
crossref_primary_10_3390_s23031230
crossref_citationtrail_10_3390_s23031230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230120
PublicationDateYYYYMMDD 2023-01-20
PublicationDate_xml – month: 1
  year: 2023
  text: 20230120
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Alaba (ref_1) 2017; 88
ref_50
Okafor (ref_66) 2020; 6
Shahriari (ref_73) 2015; 104
Li (ref_76) 2017; 18
Peterson (ref_84) 2009; 4
Mitchell (ref_61) 1997; 7
He (ref_94) 2021; 212
Singh (ref_20) 2012; 2012
ref_90
Sandhu (ref_5) 1996; 28
ref_14
Sun (ref_40) 2014; 23
ref_57
ref_56
Mazyavkina (ref_95) 2021; 134
Patro (ref_42) 2020; 68
ref_53
ref_52
ref_51
Bazi (ref_87) 2006; 44
ref_18
(ref_7) 2003; 91
ref_17
ref_16
ref_15
Mnih (ref_70) 2015; 518
Hoekema (ref_24) 2000; 33
Green (ref_25) 1985; 71
Labati (ref_27) 2019; 126
Tawfik (ref_79) 2011; 3
ref_68
ref_67
ref_22
ref_21
Dy (ref_58) 2018; Volume 80
Patcha (ref_91) 2007; 51
Pankanti (ref_10) 2000; 33
Biel (ref_30) 2001; 50
Chawla (ref_83) 2002; 16
Chan (ref_38) 2008; 57
Farmanbar (ref_41) 2016; 10
Odinaka (ref_19) 2012; 7
Israel (ref_32) 2005; 38
Jain (ref_11) 2006; 1
Foody (ref_89) 2004; 42
ref_35
ref_78
Jain (ref_6) 2004; 14
ref_31
Watkins (ref_69) 1992; 8
Prabhakar (ref_13) 2003; 1
Wang (ref_72) 2020; 8
ref_74
Venkatesh (ref_65) 2019; 19
Gottesman (ref_47) 2019; 25
Ho (ref_86) 1998; 20
Sicari (ref_3) 2015; 76
Pan (ref_82) 1985; BME-32
ref_37
Liau (ref_39) 2011; 38
Wang (ref_2) 2020; 170
Frischholz (ref_8) 2000; 33
Frank (ref_26) 1986; 7
Fan (ref_55) 2021; 35
Hammad (ref_29) 2019; 101
Kumar (ref_4) 2014; 90
Aghzout (ref_12) 2003; 83
Snoek (ref_75) 2012; 25
Hoekema (ref_23) 2001; 48
Liu (ref_54) 2015; 12
ref_80
Hammad (ref_81) 2020; 38
Lin (ref_63) 2019; 75
ref_46
Kononenko (ref_59) 2003; 53
Sun (ref_62) 2018; 89
ref_45
ref_44
ref_43
Malik (ref_93) 2014; 2
Zhang (ref_28) 2017; 5
(ref_33) 2015; 65
Pal (ref_88) 2010; 48
Hearst (ref_85) 1998; 13
Chandola (ref_92) 2009; 41
Memon (ref_64) 2019; 2019
Unar (ref_9) 2014; 47
ref_49
Zemel (ref_77) 2011; Volume 24
ref_48
Urbanowicz (ref_60) 2018; 85
Kaelbling (ref_71) 1998; 101
Stavridis (ref_34) 2007; 28
Gutta (ref_36) 2015; 20
References_xml – ident: ref_48
  doi: 10.3390/electronics9010142
– ident: ref_78
– volume: 4
  start-page: 1883
  year: 2009
  ident: ref_84
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 25
  start-page: 16
  year: 2019
  ident: ref_47
  article-title: Guidelines for reinforcement learning in healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0310-5
– ident: ref_49
– ident: ref_74
– volume: 51
  start-page: 3448
  year: 2007
  ident: ref_91
  article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2007.02.001
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_83
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: ref_16
  doi: 10.1109/ICPR.2014.296
– volume: 38
  start-page: e12547
  year: 2020
  ident: ref_81
  article-title: ResNet-Attention model for human authentication using ECG signals
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12547
– volume: 20
  start-page: 460
  year: 2015
  ident: ref_36
  article-title: Joint feature extraction and classifier design for ECG-based biometric recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2402199
– volume: 101
  start-page: 99
  year: 1998
  ident: ref_71
  article-title: Planning and acting in partially observable stochastic domains
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(98)00023-X
– volume: 35
  start-page: 1624
  year: 2021
  ident: ref_55
  article-title: Interactive reinforcement learning for feature selection with decision tree in the loop
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_44
  doi: 10.3390/s21216966
– ident: ref_31
  doi: 10.1007/978-3-642-01793-3_128
– ident: ref_35
– ident: ref_22
  doi: 10.1145/2968456.2973748
– volume: 38
  start-page: 133
  year: 2005
  ident: ref_32
  article-title: ECG to identify individuals
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.05.014
– volume: 28
  start-page: 1172
  year: 2007
  ident: ref_34
  article-title: Verification of humans using the electrocardiogram
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.01.014
– ident: ref_37
  doi: 10.1109/WIFS.2010.5711466
– volume: 75
  start-page: 3010
  year: 2019
  ident: ref_63
  article-title: The individual identification method of wireless device based on dimensionality reduction and machine learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2216-2
– volume: 65
  start-page: 591
  year: 2015
  ident: ref_33
  article-title: ECG authentication for mobile devices
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 1
  start-page: 33
  year: 2003
  ident: ref_13
  article-title: Biometric recognition: Security and privacy concerns
  publication-title: IEEE Secur. Priv.
  doi: 10.1109/MSECP.2003.1193209
– volume: 91
  start-page: 2021
  year: 2003
  ident: ref_7
  article-title: Comparing passwords, tokens, and biometrics for user authentication
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.819611
– volume: 90
  start-page: 20
  year: 2014
  ident: ref_4
  article-title: A survey on internet of things: Security and privacy issues
  publication-title: Int. J. Comput. Appl.
– ident: ref_56
– ident: ref_52
– volume: 2019
  start-page: 5176705
  year: 2019
  ident: ref_64
  article-title: Breast cancer detection in the IOT health environment using modified recursive feature selection
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2019/5176705
– volume: Volume 80
  start-page: 1437
  year: 2018
  ident: ref_58
  article-title: BOHB: Robust and Efficient Hyperparameter Optimization at Scale
  publication-title: Proceedings of the 35th International Conference on Machine Learning
– volume: 7
  start-page: 2
  year: 1997
  ident: ref_61
  article-title: Introduction to machine learning
  publication-title: Mach. Learn.
– volume: 19
  start-page: 3
  year: 2019
  ident: ref_65
  article-title: A review of feature selection and its methods
  publication-title: Cybern. Inf. Technol.
– ident: ref_14
  doi: 10.1007/978-1-84882-254-2
– volume: 44
  start-page: 3374
  year: 2006
  ident: ref_87
  article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.880628
– ident: ref_18
  doi: 10.1109/WICT.2011.6141226
– volume: 83
  start-page: 2539
  year: 2003
  ident: ref_12
  article-title: Biometric identification systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.08.001
– volume: 6
  start-page: 220
  year: 2020
  ident: ref_66
  article-title: Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.06.004
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_85
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Appl.
  doi: 10.1109/5254.708428
– volume: 33
  start-page: 219
  year: 2000
  ident: ref_24
  article-title: Geometrical factors affecting the interindividual variability of the ECG and the VCG
  publication-title: J. Electrocardiol.
  doi: 10.1054/jelc.2000.20356
– volume: 68
  start-page: 2743
  year: 2020
  ident: ref_42
  article-title: An efficient optimized feature selection with machine learning approach for ECG biometric recognition
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2020.1725663
– volume: 33
  start-page: 64
  year: 2000
  ident: ref_8
  article-title: BiolD: A multimodal biometric identification system
  publication-title: Computer
  doi: 10.1109/2.820041
– volume: 7
  start-page: 295
  year: 1986
  ident: ref_26
  article-title: The electrocardiogram in obesity: Statistical analysis of 1029 patients
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(86)80494-6
– ident: ref_53
– volume: 48
  start-page: 551
  year: 2001
  ident: ref_23
  article-title: Geometrical aspects of the interindividual variability of multilead ECG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.918594
– ident: ref_51
  doi: 10.1145/3005745.3005750
– volume: 212
  start-page: 106622
  year: 2021
  ident: ref_94
  article-title: AutoML: A survey of the state-of-the-art
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106622
– volume: 2
  start-page: 46
  year: 2014
  ident: ref_93
  article-title: Reference threshold calculation for biometric authentication
  publication-title: IJ Image Graph. Signal Process.
– volume: 126
  start-page: 78
  year: 2019
  ident: ref_27
  article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.028
– volume: 18
  start-page: 6765
  year: 2017
  ident: ref_76
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: Volume 24
  start-page: 2546
  year: 2011
  ident: ref_77
  article-title: Algorithms for Hyper-Parameter Optimization
  publication-title: Proceedings of the Advances in Neural Information Processing Systems 24 (NIPS 2011), Granada, Spain, 12–15 December 2011
– ident: ref_90
  doi: 10.1109/ICCV.2007.4409066
– volume: 50
  start-page: 808
  year: 2001
  ident: ref_30
  article-title: ECG analysis: A new approach in human identification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930458
– volume: 28
  start-page: 241
  year: 1996
  ident: ref_5
  article-title: Authentication, access control, and audit
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/234313.234412
– volume: 38
  start-page: 11105
  year: 2011
  ident: ref_39
  article-title: Feature selection for support vector machine-based face-iris multimodal biometric system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.155
– ident: ref_67
– volume: 76
  start-page: 146
  year: 2015
  ident: ref_3
  article-title: Security, privacy and trust in Internet of Things: The road ahead
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2014.11.008
– ident: ref_68
  doi: 10.1109/TNN.1998.712192
– volume: 170
  start-page: 107118
  year: 2020
  ident: ref_2
  article-title: User authentication on mobile devices: Approaches, threats and trends
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107118
– volume: 23
  start-page: 3922
  year: 2014
  ident: ref_40
  article-title: Ordinal feature selection for iris and palmprint recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2332396
– volume: 88
  start-page: 10
  year: 2017
  ident: ref_1
  article-title: Internet of Things security: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.04.002
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_69
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– volume: 134
  start-page: 105400
  year: 2021
  ident: ref_95
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105400
– ident: ref_21
– ident: ref_43
  doi: 10.1109/EMBC.2017.8036858
– volume: 104
  start-page: 148
  year: 2015
  ident: ref_73
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_70
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 101
  start-page: 180
  year: 2019
  ident: ref_29
  article-title: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.06.008
– volume: 71
  start-page: 244
  year: 1985
  ident: ref_25
  article-title: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects
  publication-title: Circulation
  doi: 10.1161/01.CIR.71.2.244
– volume: 20
  start-page: 832
  year: 1998
  ident: ref_86
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 1
  start-page: 125
  year: 2006
  ident: ref_11
  article-title: Biometrics: A tool for information security
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2006.873653
– volume: 2012
  start-page: 712032
  year: 2012
  ident: ref_20
  article-title: Bioelectrical signals as emerging biometrics: Issues and challenges
  publication-title: ISRN Signal Process.
  doi: 10.5402/2012/712032
– ident: ref_50
– ident: ref_57
  doi: 10.1609/aaai.v31i1.10827
– volume: 53
  start-page: 23
  year: 2003
  ident: ref_59
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 85
  start-page: 189
  year: 2018
  ident: ref_60
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– ident: ref_46
– volume: 41
  start-page: 1
  year: 2009
  ident: ref_92
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 12
  start-page: 229
  year: 2015
  ident: ref_54
  article-title: Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-015-0893-y
– volume: 48
  start-page: 2297
  year: 2010
  ident: ref_88
  article-title: Feature selection for classification of hyperspectral data by SVM
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2039484
– volume: BME-32
  start-page: 230
  year: 1985
  ident: ref_82
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 57
  start-page: 248
  year: 2008
  ident: ref_38
  article-title: Wavelet distance measure for person identification using electrocardiograms
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.909996
– volume: 8
  start-page: 16153
  year: 2020
  ident: ref_72
  article-title: Deep Q-network-based feature selection for multisourced data cleaning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3016297
– volume: 25
  start-page: 2951
  year: 2012
  ident: ref_75
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 46
  year: 2000
  ident: ref_10
  article-title: Biometrics: The future of identification [guest eeditors’ introduction]
  publication-title: Computer
  doi: 10.1109/2.820038
– ident: ref_15
– volume: 3
  start-page: 1
  year: 2011
  ident: ref_79
  article-title: Human identification using QT signal and QRS complex of the ECG
  publication-title: Online J. Electron. Electr. Eng. (OJEEE)
– ident: ref_17
  doi: 10.1016/j.inffus.2020.06.014
– volume: 7
  start-page: 1812
  year: 2012
  ident: ref_19
  article-title: ECG biometric recognition: A comparative analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2012.2215324
– ident: ref_45
  doi: 10.3390/s21051568
– volume: 10
  start-page: 951
  year: 2016
  ident: ref_41
  article-title: Feature selection for the fusion of face and palmprint biometrics
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-015-0845-6
– volume: 14
  start-page: 4
  year: 2004
  ident: ref_6
  article-title: An introduction to biometric recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.818349
– volume: 5
  start-page: 11805
  year: 2017
  ident: ref_28
  article-title: HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2707460
– ident: ref_80
  doi: 10.1109/ACCT.2015.87
– volume: 42
  start-page: 1335
  year: 2004
  ident: ref_89
  article-title: A relative evaluation of multiclass image classification by support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.827257
– volume: 47
  start-page: 2673
  year: 2014
  ident: ref_9
  article-title: A review of biometric technology along with trends and prospects
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.01.016
– volume: 89
  start-page: 606
  year: 2018
  ident: ref_62
  article-title: Feature selection for IoT based on maximal information coefficient
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.05.060
SSID ssj0023338
Score 2.4421606
Snippet In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1230
SubjectTerms Algorithms
authentication
Bayes Theorem
Biometrics
Classification
Data encryption chips
ECG
Electrocardiogram
Electrocardiography
Electrocardiography - methods
Experiments
Feature selection
Humans
hyperparameter optimization
Intelligence
Internet of Things
Neural networks
Optimization
Personal identification numbers
reinforcement learning
Research methodology
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIcInq2I7tnFBbWgoSCAGV9hb5lYKEstt9_H9mHG-6EYhrPIlij8fzzWTyDSGvrQq8c9aWom5kKaVnpe00L6OotQjKhCr9Pvb5izq_kJ9m9Swn3Fa5rHJ7JqaDOsw95sgPOeCURoOHbt4trkrsGoVfV3MLjZvkFlKXYUmXnl0HXALir4FNSEBof7gCuC3gpGYTH5So-v8-kHc80rRacsf9nN0l-xk30qNB0ffIjdjfJ3d22AQfkPhxpNdcU4R2m2Wk31OfG1h8CuiUnp58KI_BbwX6NYNwijkyrBgaUnc0lRDQ9zEu6LeYWFV9SiDSTMR6-ZBcnJ3-ODkvcxeF0tdCrUtpO-UDAA8VG-aj7aTsvGiMrQ0ET-DfA3edtUqHKjrmWPDSW-ldRCoxsGjxiOz18z4-IdTyaE1kgcMzJYvSiRp8m5dGuMr4hhXk7XZdW58pxrHTxe8WQg1UQTuqoCCvRtHFwKvxL6FjVM4ogFTY6cJ8edlmy2pNgMlZA7DFQLCqnHFO-07yytlOdL4qyBtUbYtLBi_jbf7vAKaE1FftEWAooZAnryAHE0kwND8d3m6ONhv6qr3elgV5OQ7jnVi81sf5JskAykRoV5DHw14apwSP1oCA4W492WWTOU9H-l8_Ew1403CmVf30_6_1jNzmYAmYNeLsgOytl5v4HHDU2r1IxvIHPVoehw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoED4k1oQQYhwSXg2I7tHBBqS0tBKkLASr1FfhakKttudyX498w42WgjeuQaj614xpP5xrG_IeSlVYEnZ20p6kaWUnpW2qR5GUWtRVAmVPn62MkXdTyTn0_r0y2yrrE5KPDq2tQO60nNFudvfl_-eQ8O_w4zTkjZ314BjBbwBYbM_QYEJI3-eSLHnwlcQBrWkwpNxSehKDP2__td3ghM00OTG1Ho6A65PcBHutfb-y7Zit09cmuDVPA-iZ9Gls0lRYS3WkT6PZe7ARtQAKn08OBjuQ_hK9CvAxanuFWGB4f6HTyaTxLQDzFe0G8xk6v6vI9IBz7WswdkdnT44-C4HIoplL4WallKm5QPgD9UbJiPNkmZvGiMrQ3kUBDmA3fJWqVDFR1zLHjprfQuIqMYOLZ4SLa7eRcfE2p5tCaywGFMyaJ0ooYQ56URrjK-YQV5vdZr6wemcSx4cd5CxoEmaEcTFOTFKHrR02tcJ7SPxhkFkBE7P5gvztrBwVoTYHLWAHoxkLMqZ5zTPkleOZtE8lVBXqFpW1QZvIy3w_UDmBIyYLV7AKWEQrq8guxOJMHf_LR5vTja9XJtOaDoRgN-bAryfGzGnniGrYvzVZYBsIkIryCP-rU0TgmG1gCEobeerLLJnKct3a-fmQ28aTjTqn7yP5S0Q25y8BfcYuJsl2wvF6v4FEDX0j3LLvUXaqotDA
  priority: 102
  providerName: Scholars Portal
Title Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/36772269
https://www.proquest.com/docview/2774970259
https://www.proquest.com/docview/2775626635
https://pubmed.ncbi.nlm.nih.gov/PMC9920765
https://doaj.org/article/8dd64a829388406b8bb7cf421baf3fc1
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucABQXkFyspFSHCJ6rUd2zl2y25bpFZVodLeIr8CSCit2t3_z9jxRhuBxKUXH-JxFI9nMt9Y488AH430rLXGlLyqRSmEo6VpFSsDrxT3UvtpOj52di5PrsTXZbXcuuor1oT19MC94g6091IYjVFJYy4irbZWuVawqTUtb11KfDDmbZKpnGpxzLx6HiGOSf3BHQJtjv9oOoo-iaT_71_xViwa10luBZ7FM3iaESM57L_0OTwI3S482eIRfAHhdCDWXJEI6ta3gXxLN9yg2gniUjI_Oi5nGLE8ucjwm8TdsVgr1G_akVQ8QL6EcEMuQ-JTdWnrkGQK1h8v4Wox_350Uub7E0pXcbkqhWmlQ-1xGWrqgmmFaB2vtak0pk0Y2T2zrTFS-Wmw1FLvhDPC2RBJxNCX-SvY6a678AaIYcHoQD3DdwoahOUVRjUnNLdT7WpawOeNXhuXycXjHRe_G0wy4hI0wxIU8GEQvekZNf4lNIuLMwhEEuz0AE2jyabR_M80CvgUl7aJKsOPcSafOMApRdKr5hDRE5eRIa-AvZEkupgbd2-Mo8kuftcwBM61QshYF7A_dMeRsWytC9frJIP4MoK6Al73tjRMCV-tEPviaDWystGcxz3dr5-JALyuGVWyensfSnoHjxn6S9xVYnQPdla36_AecdbKTuChWips9eJ4Ao9m8_OLy0lyM2zPhP4DNMQrsQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BLVazuvA0J9sksfQtBKewt-pa2Edpd9CPGn-I3MONl0IxC3XteOFXtm8n3jtb8BeK1TJyqjdSyTQsVKWR7rKhOxl0kmXZq7Xrg-dnSc9k_Vp2EyXIPfy7swdKxy-U0MH2o3trRHvimQpxQZInTxYfIjpqpR9O_qsoRG7RYH_tdPTNlm7we7aN83Quzvnez046aqQGwTmc5jpavUOgTi1Bfcel0pVVlZ5DrJMZlAvHPCVFqnmet5ww13VlmtrPEkrYUeLnHca3AdgZdTRGXDywRPYr5XqxdJWfDNGdJ7icjAO5gXSgP8DQArCNg9nbkCd_t34HbDU9lW7Vh3Yc2P7sGtFfXC--AHrZznnBGVXEw9-xrq6qCxGbJhtrfzMd5GnHTsc0P6Ge3J0QmlequQhSMLbNf7Cfvig4qrDRuWrBF-PXsAp1eyvg9hfTQe-cfAtPA699wJHFNxr4xMEEutyqXp5bbgEbxbrmtpG0lzqqzxvcTUhkxQtiaI4FXbdVLrePyr0zYZp-1A0tvhh_H0rGwiucwdTk7nSJNyTI5TkxuT2UqJntGVrGwvgrdk2pKWDF_G6uaeA06JpLbKLeRsMiVdvgg2Oj0xsG23eekcZfNhmZWXYRDBy7aZnqTDciM_XoQ-yGqJSkbwqPaldko4dIaMG5_OOl7WmXO3ZXRxHmTHi0LwLE2e_P-1XsCN_snRYXk4OD54CjcFRgXtWAm-Aevz6cI_Qw43N89D4DD4dtWR-gdh1VyY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSVax3ZeB4TabpcuhaoCKu3N-JWChLLLPoT4a_w6ZpxsuhGIW6-xY8WeGc83zvgbQp7rzPHKaB2LtJSxlJbFusp57EWaC5cVLgnXxz4cZ4en8t0knWyR3-u7MJhWud4Tw0btphbPyAcccEqZg4cuB1WbFnEyHL2Z_YixghT-aV2X02hU5Mj_-gnh2-L1eAiyfsH56ODz_mHcVhiIbSqyZSx1lVkHTjnzJbNeV1JWVpSFTgsILMD3OW4qrbPcJd4ww5yVVktrPNJsgbYLGPcSuZyLNEEbyyfnwZ6A2K9hMhKiZIMFQH0BXoL1_F8oE_C3M9jwhv1MzQ3XN7pBrreYle42SnaTbPn6Frm2wWR4m_hxR-25pAgrV3NPP4UaOyB4CsiYHuy_jffAZzp60gYAFM_nMFupOTakIX2BDr2f0Y8-MLracHhJWxLYszvk9ELW9y7Zrqe1v0-o5l4XnjkOY0rmpREp-FUrC2GSwpYsIq_W66psS2-OVTa-KwhzUASqE0FEnnVdZw2nx7867aFwug5Iwx0eTOdnqrVqVTiYnC4AMhUQKGemMCa3leSJ0ZWobBKRlyhahUsGH2N1e-cBpoS0W2oX8JvIkKMvIju9nmDktt-8Vg7VbjILdW4SEXnaNeObmDhX--kq9AGEi7AyIvcaXeqmBEPngL7h7bynZb0591vqb18DBXlZcpZn6YP_f9YTcgVsVL0fHx89JFc5GAUeXnG2Q7aX85V_BHBuaR4Hu6Hky0Ub6h90fWDO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Feature+Selection+for+ECG-Based+Personal+Authentication+Using+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Suwhan+Baek&rft.au=Juhyeong+Kim&rft.au=Hyunsoo+Yu&rft.au=Geunbo+Yang&rft.date=2023-01-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft.spage=1230&rft_id=info:doi/10.3390%2Fs23031230&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon