Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5t...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 3; p. 1230 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features. |
---|---|
AbstractList | In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features. In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features. |
Audience | Academic |
Author | Sohn, Illsoo Cho, Youngho Yu, Hyunsoo Yang, Geunbo Baek, Suwhan Park, Cheolsoo Kim, Juhyeong |
AuthorAffiliation | 3 Department of Electrical and Communication Engineering, Daelim University, Kyoung 13916, Republic of Korea 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea 2 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea |
AuthorAffiliation_xml | – name: 3 Department of Electrical and Communication Engineering, Daelim University, Kyoung 13916, Republic of Korea – name: 1 Department of Computer Engineering, Kwangwoon University, Seoul 01897, Republic of Korea – name: 2 Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea |
Author_xml | – sequence: 1 givenname: Suwhan orcidid: 0000-0002-5913-4471 surname: Baek fullname: Baek, Suwhan – sequence: 2 givenname: Juhyeong surname: Kim fullname: Kim, Juhyeong – sequence: 3 givenname: Hyunsoo orcidid: 0000-0003-4750-6941 surname: Yu fullname: Yu, Hyunsoo – sequence: 4 givenname: Geunbo surname: Yang fullname: Yang, Geunbo – sequence: 5 givenname: Illsoo orcidid: 0000-0003-3943-4781 surname: Sohn fullname: Sohn, Illsoo – sequence: 6 givenname: Youngho surname: Cho fullname: Cho, Youngho – sequence: 7 givenname: Cheolsoo orcidid: 0000-0001-8042-007X surname: Park fullname: Park, Cheolsoo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36772269$$D View this record in MEDLINE/PubMed |
BookMark | eNptktFu2yAUhtHUaW2zXewFJku72S7SYsDY3EzKsraLFGnTtl4jjA8ukQ0p2JP29sNJlzVVhQQIvvNzzuE_RyfOO0DobY4vKBX4MhKKaZ6mF-gsZ4TNK0LwyaP9KTqPcYMxoZRWr9Ap5WVJCBdnCFZugK6zLbghuwY1jAGyn9CBHqx3mfEhu1rezD-rCE32HUL0TnXZYhzuUoDVakfdRuva7AvANvsB1qUgDf0kuAYVXLp7jV4a1UV487DO0O311a_l1_n6281quVjPdUH5MGfKcN1wRjkIrEEZxoymolJFxXNR5aQhtVGKl00ONa5xo5lWTNfAOOWMFHSGVnvdxquN3Abbq_BHemXl7sCHVqqQ0u5AVk16SFVE0KpimNdVXZfaMJLXylCj86T1aa-1HeseGp3qCao7Ej2-cfZOtv63FILgkk_JfHgQCP5-hDjI3kadmq0c-DFKUpYFJ5zTCX3_BN34MaRO7ygmSkwK8Z9qVSpg6nN6V0-iclEymj5VpHmGLp6h0migtzoZx9h0fhTw7nGhhwr_mSQBH_eADj7GAOaA5FhOBpQHAyb28gmr7bBzScrCds9E_AVqe9tA |
CitedBy_id | crossref_primary_10_1080_15325008_2024_2337858 crossref_primary_10_1109_ACCESS_2024_3390722 crossref_primary_10_3389_frai_2024_1458230 crossref_primary_10_1109_ACCESS_2024_3447096 crossref_primary_10_48084_etasr_8702 crossref_primary_10_58496_MJCS_2023_007 crossref_primary_10_1016_j_jfca_2025_107371 |
Cites_doi | 10.3390/electronics9010142 10.4249/scholarpedia.1883 10.1038/s41591-018-0310-5 10.1016/j.comnet.2007.02.001 10.1613/jair.953 10.1109/ICPR.2014.296 10.1111/exsy.12547 10.1109/JBHI.2015.2402199 10.1016/S0004-3702(98)00023-X 10.3390/s21216966 10.1007/978-3-642-01793-3_128 10.1145/2968456.2973748 10.1016/j.patcog.2004.05.014 10.1016/j.patrec.2007.01.014 10.1109/WIFS.2010.5711466 10.1007/s11227-017-2216-2 10.1109/MSECP.2003.1193209 10.1109/JPROC.2003.819611 10.1155/2019/5176705 10.1007/978-1-84882-254-2 10.1109/TGRS.2006.880628 10.1109/WICT.2011.6141226 10.1016/j.sigpro.2003.08.001 10.1016/j.icte.2020.06.004 10.1109/5254.708428 10.1054/jelc.2000.20356 10.1080/03772063.2020.1725663 10.1109/2.820041 10.1016/S0735-1097(86)80494-6 10.1109/10.918594 10.1145/3005745.3005750 10.1016/j.knosys.2020.106622 10.1016/j.patrec.2018.03.028 10.1109/ICCV.2007.4409066 10.1109/19.930458 10.1145/234313.234412 10.1016/j.eswa.2011.02.155 10.1016/j.comnet.2014.11.008 10.1109/TNN.1998.712192 10.1016/j.comnet.2020.107118 10.1109/TIP.2014.2332396 10.1016/j.jnca.2017.04.002 10.1007/BF00992698 10.1016/j.cor.2021.105400 10.1109/EMBC.2017.8036858 10.1109/JPROC.2015.2494218 10.1038/nature14236 10.1016/j.future.2019.06.008 10.1161/01.CIR.71.2.244 10.1109/34.709601 10.1109/TIFS.2006.873653 10.5402/2012/712032 10.1609/aaai.v31i1.10827 10.1023/A:1025667309714 10.1016/j.jbi.2018.07.014 10.1145/1541880.1541882 10.1007/s11633-015-0893-y 10.1109/TGRS.2009.2039484 10.1109/TBME.1985.325532 10.1109/TIM.2007.909996 10.1109/JIOT.2020.3016297 10.1109/2.820038 10.1016/j.inffus.2020.06.014 10.1109/TIFS.2012.2215324 10.3390/s21051568 10.1007/s11760-015-0845-6 10.1109/TCSVT.2003.818349 10.1109/ACCESS.2017.2707460 10.1109/ACCT.2015.87 10.1109/TGRS.2004.827257 10.1016/j.patcog.2014.01.016 10.1016/j.future.2018.05.060 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23031230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1 PMC9920765 A743367943 36772269 10_3390_s23031230 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Kwangwoon University grantid: Excellent Researcher Support Project – fundername: Ministry of Trade, Industry and Energy grantid: RS-2022-00154678 – fundername: National Research Foundation of Korea grantid: NRF-2017R1A5A1015596 – fundername: Kwangwoon University – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2017R1A5A1015596 – fundername: Ministry of Trade, Industry & Energy (MOTIE, Korea) grantid: RS-2022-00154678 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c536t-4af6cd6436e90ceaf44fc398a58619812d2bfaa67d1eb0b0dc4ca4cbe46364253 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Thu Aug 21 18:38:33 EDT 2025 Tue Aug 05 11:00:54 EDT 2025 Fri Jul 25 20:22:42 EDT 2025 Thu Jul 03 02:32:59 EDT 2025 Tue Jul 01 05:44:25 EDT 2025 Mon Jul 21 05:42:25 EDT 2025 Tue Jul 01 01:19:46 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ECG biometrics hyperparameter optimization feature selection authentication reinforcement learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-4af6cd6436e90ceaf44fc398a58619812d2bfaa67d1eb0b0dc4ca4cbe46364253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3943-4781 0000-0002-5913-4471 0000-0001-8042-007X 0000-0003-4750-6941 |
OpenAccessLink | https://doaj.org/article/8dd64a829388406b8bb7cf421baf3fc1 |
PMID | 36772269 |
PQID | 2774970259 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920765 proquest_miscellaneous_2775626635 proquest_journals_2774970259 gale_infotracmisc_A743367943 gale_infotracacademiconefile_A743367943 pubmed_primary_36772269 crossref_primary_10_3390_s23031230 crossref_citationtrail_10_3390_s23031230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230120 |
PublicationDateYYYYMMDD | 2023-01-20 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230120 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Alaba (ref_1) 2017; 88 ref_50 Okafor (ref_66) 2020; 6 Shahriari (ref_73) 2015; 104 Li (ref_76) 2017; 18 Peterson (ref_84) 2009; 4 Mitchell (ref_61) 1997; 7 He (ref_94) 2021; 212 Singh (ref_20) 2012; 2012 ref_90 Sandhu (ref_5) 1996; 28 ref_14 Sun (ref_40) 2014; 23 ref_57 ref_56 Mazyavkina (ref_95) 2021; 134 Patro (ref_42) 2020; 68 ref_53 ref_52 ref_51 Bazi (ref_87) 2006; 44 ref_18 (ref_7) 2003; 91 ref_17 ref_16 ref_15 Mnih (ref_70) 2015; 518 Hoekema (ref_24) 2000; 33 Green (ref_25) 1985; 71 Labati (ref_27) 2019; 126 Tawfik (ref_79) 2011; 3 ref_68 ref_67 ref_22 ref_21 Dy (ref_58) 2018; Volume 80 Patcha (ref_91) 2007; 51 Pankanti (ref_10) 2000; 33 Biel (ref_30) 2001; 50 Chawla (ref_83) 2002; 16 Chan (ref_38) 2008; 57 Farmanbar (ref_41) 2016; 10 Odinaka (ref_19) 2012; 7 Israel (ref_32) 2005; 38 Jain (ref_11) 2006; 1 Foody (ref_89) 2004; 42 ref_35 ref_78 Jain (ref_6) 2004; 14 ref_31 Watkins (ref_69) 1992; 8 Prabhakar (ref_13) 2003; 1 Wang (ref_72) 2020; 8 ref_74 Venkatesh (ref_65) 2019; 19 Gottesman (ref_47) 2019; 25 Ho (ref_86) 1998; 20 Sicari (ref_3) 2015; 76 Pan (ref_82) 1985; BME-32 ref_37 Liau (ref_39) 2011; 38 Wang (ref_2) 2020; 170 Frischholz (ref_8) 2000; 33 Frank (ref_26) 1986; 7 Fan (ref_55) 2021; 35 Hammad (ref_29) 2019; 101 Kumar (ref_4) 2014; 90 Aghzout (ref_12) 2003; 83 Snoek (ref_75) 2012; 25 Hoekema (ref_23) 2001; 48 Liu (ref_54) 2015; 12 ref_80 Hammad (ref_81) 2020; 38 Lin (ref_63) 2019; 75 ref_46 Kononenko (ref_59) 2003; 53 Sun (ref_62) 2018; 89 ref_45 ref_44 ref_43 Malik (ref_93) 2014; 2 Zhang (ref_28) 2017; 5 (ref_33) 2015; 65 Pal (ref_88) 2010; 48 Hearst (ref_85) 1998; 13 Chandola (ref_92) 2009; 41 Memon (ref_64) 2019; 2019 Unar (ref_9) 2014; 47 ref_49 Zemel (ref_77) 2011; Volume 24 ref_48 Urbanowicz (ref_60) 2018; 85 Kaelbling (ref_71) 1998; 101 Stavridis (ref_34) 2007; 28 Gutta (ref_36) 2015; 20 |
References_xml | – ident: ref_48 doi: 10.3390/electronics9010142 – ident: ref_78 – volume: 4 start-page: 1883 year: 2009 ident: ref_84 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 25 start-page: 16 year: 2019 ident: ref_47 article-title: Guidelines for reinforcement learning in healthcare publication-title: Nat. Med. doi: 10.1038/s41591-018-0310-5 – ident: ref_49 – ident: ref_74 – volume: 51 start-page: 3448 year: 2007 ident: ref_91 article-title: An overview of anomaly detection techniques: Existing solutions and latest technological trends publication-title: Comput. Netw. doi: 10.1016/j.comnet.2007.02.001 – volume: 16 start-page: 321 year: 2002 ident: ref_83 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: ref_16 doi: 10.1109/ICPR.2014.296 – volume: 38 start-page: e12547 year: 2020 ident: ref_81 article-title: ResNet-Attention model for human authentication using ECG signals publication-title: Expert Syst. doi: 10.1111/exsy.12547 – volume: 20 start-page: 460 year: 2015 ident: ref_36 article-title: Joint feature extraction and classifier design for ECG-based biometric recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2402199 – volume: 101 start-page: 99 year: 1998 ident: ref_71 article-title: Planning and acting in partially observable stochastic domains publication-title: Artif. Intell. doi: 10.1016/S0004-3702(98)00023-X – volume: 35 start-page: 1624 year: 2021 ident: ref_55 article-title: Interactive reinforcement learning for feature selection with decision tree in the loop publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_44 doi: 10.3390/s21216966 – ident: ref_31 doi: 10.1007/978-3-642-01793-3_128 – ident: ref_35 – ident: ref_22 doi: 10.1145/2968456.2973748 – volume: 38 start-page: 133 year: 2005 ident: ref_32 article-title: ECG to identify individuals publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.05.014 – volume: 28 start-page: 1172 year: 2007 ident: ref_34 article-title: Verification of humans using the electrocardiogram publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.01.014 – ident: ref_37 doi: 10.1109/WIFS.2010.5711466 – volume: 75 start-page: 3010 year: 2019 ident: ref_63 article-title: The individual identification method of wireless device based on dimensionality reduction and machine learning publication-title: J. Supercomput. doi: 10.1007/s11227-017-2216-2 – volume: 65 start-page: 591 year: 2015 ident: ref_33 article-title: ECG authentication for mobile devices publication-title: IEEE Trans. Instrum. Meas. – volume: 1 start-page: 33 year: 2003 ident: ref_13 article-title: Biometric recognition: Security and privacy concerns publication-title: IEEE Secur. Priv. doi: 10.1109/MSECP.2003.1193209 – volume: 91 start-page: 2021 year: 2003 ident: ref_7 article-title: Comparing passwords, tokens, and biometrics for user authentication publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.819611 – volume: 90 start-page: 20 year: 2014 ident: ref_4 article-title: A survey on internet of things: Security and privacy issues publication-title: Int. J. Comput. Appl. – ident: ref_56 – ident: ref_52 – volume: 2019 start-page: 5176705 year: 2019 ident: ref_64 article-title: Breast cancer detection in the IOT health environment using modified recursive feature selection publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2019/5176705 – volume: Volume 80 start-page: 1437 year: 2018 ident: ref_58 article-title: BOHB: Robust and Efficient Hyperparameter Optimization at Scale publication-title: Proceedings of the 35th International Conference on Machine Learning – volume: 7 start-page: 2 year: 1997 ident: ref_61 article-title: Introduction to machine learning publication-title: Mach. Learn. – volume: 19 start-page: 3 year: 2019 ident: ref_65 article-title: A review of feature selection and its methods publication-title: Cybern. Inf. Technol. – ident: ref_14 doi: 10.1007/978-1-84882-254-2 – volume: 44 start-page: 3374 year: 2006 ident: ref_87 article-title: Toward an optimal SVM classification system for hyperspectral remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.880628 – ident: ref_18 doi: 10.1109/WICT.2011.6141226 – volume: 83 start-page: 2539 year: 2003 ident: ref_12 article-title: Biometric identification systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.08.001 – volume: 6 start-page: 220 year: 2020 ident: ref_66 article-title: Improving Data Quality of Low-cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach publication-title: ICT Express doi: 10.1016/j.icte.2020.06.004 – volume: 13 start-page: 18 year: 1998 ident: ref_85 article-title: Support vector machines publication-title: IEEE Intell. Syst. Appl. doi: 10.1109/5254.708428 – volume: 33 start-page: 219 year: 2000 ident: ref_24 article-title: Geometrical factors affecting the interindividual variability of the ECG and the VCG publication-title: J. Electrocardiol. doi: 10.1054/jelc.2000.20356 – volume: 68 start-page: 2743 year: 2020 ident: ref_42 article-title: An efficient optimized feature selection with machine learning approach for ECG biometric recognition publication-title: IETE J. Res. doi: 10.1080/03772063.2020.1725663 – volume: 33 start-page: 64 year: 2000 ident: ref_8 article-title: BiolD: A multimodal biometric identification system publication-title: Computer doi: 10.1109/2.820041 – volume: 7 start-page: 295 year: 1986 ident: ref_26 article-title: The electrocardiogram in obesity: Statistical analysis of 1029 patients publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(86)80494-6 – ident: ref_53 – volume: 48 start-page: 551 year: 2001 ident: ref_23 article-title: Geometrical aspects of the interindividual variability of multilead ECG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.918594 – ident: ref_51 doi: 10.1145/3005745.3005750 – volume: 212 start-page: 106622 year: 2021 ident: ref_94 article-title: AutoML: A survey of the state-of-the-art publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106622 – volume: 2 start-page: 46 year: 2014 ident: ref_93 article-title: Reference threshold calculation for biometric authentication publication-title: IJ Image Graph. Signal Process. – volume: 126 start-page: 78 year: 2019 ident: ref_27 article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.03.028 – volume: 18 start-page: 6765 year: 2017 ident: ref_76 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – volume: Volume 24 start-page: 2546 year: 2011 ident: ref_77 article-title: Algorithms for Hyper-Parameter Optimization publication-title: Proceedings of the Advances in Neural Information Processing Systems 24 (NIPS 2011), Granada, Spain, 12–15 December 2011 – ident: ref_90 doi: 10.1109/ICCV.2007.4409066 – volume: 50 start-page: 808 year: 2001 ident: ref_30 article-title: ECG analysis: A new approach in human identification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.930458 – volume: 28 start-page: 241 year: 1996 ident: ref_5 article-title: Authentication, access control, and audit publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/234313.234412 – volume: 38 start-page: 11105 year: 2011 ident: ref_39 article-title: Feature selection for support vector machine-based face-iris multimodal biometric system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.155 – ident: ref_67 – volume: 76 start-page: 146 year: 2015 ident: ref_3 article-title: Security, privacy and trust in Internet of Things: The road ahead publication-title: Comput. Netw. doi: 10.1016/j.comnet.2014.11.008 – ident: ref_68 doi: 10.1109/TNN.1998.712192 – volume: 170 start-page: 107118 year: 2020 ident: ref_2 article-title: User authentication on mobile devices: Approaches, threats and trends publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107118 – volume: 23 start-page: 3922 year: 2014 ident: ref_40 article-title: Ordinal feature selection for iris and palmprint recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2332396 – volume: 88 start-page: 10 year: 2017 ident: ref_1 article-title: Internet of Things security: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.04.002 – volume: 8 start-page: 279 year: 1992 ident: ref_69 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – volume: 134 start-page: 105400 year: 2021 ident: ref_95 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105400 – ident: ref_21 – ident: ref_43 doi: 10.1109/EMBC.2017.8036858 – volume: 104 start-page: 148 year: 2015 ident: ref_73 article-title: Taking the human out of the loop: A review of Bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 518 start-page: 529 year: 2015 ident: ref_70 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 101 start-page: 180 year: 2019 ident: ref_29 article-title: A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.008 – volume: 71 start-page: 244 year: 1985 ident: ref_25 article-title: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects publication-title: Circulation doi: 10.1161/01.CIR.71.2.244 – volume: 20 start-page: 832 year: 1998 ident: ref_86 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 1 start-page: 125 year: 2006 ident: ref_11 article-title: Biometrics: A tool for information security publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2006.873653 – volume: 2012 start-page: 712032 year: 2012 ident: ref_20 article-title: Bioelectrical signals as emerging biometrics: Issues and challenges publication-title: ISRN Signal Process. doi: 10.5402/2012/712032 – ident: ref_50 – ident: ref_57 doi: 10.1609/aaai.v31i1.10827 – volume: 53 start-page: 23 year: 2003 ident: ref_59 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – volume: 85 start-page: 189 year: 2018 ident: ref_60 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – ident: ref_46 – volume: 41 start-page: 1 year: 2009 ident: ref_92 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1541880.1541882 – volume: 12 start-page: 229 year: 2015 ident: ref_54 article-title: Feature selection and feature learning for high-dimensional batch reinforcement learning: A survey publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-015-0893-y – volume: 48 start-page: 2297 year: 2010 ident: ref_88 article-title: Feature selection for classification of hyperspectral data by SVM publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2039484 – volume: BME-32 start-page: 230 year: 1985 ident: ref_82 article-title: A Real-Time QRS Detection Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 57 start-page: 248 year: 2008 ident: ref_38 article-title: Wavelet distance measure for person identification using electrocardiograms publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.909996 – volume: 8 start-page: 16153 year: 2020 ident: ref_72 article-title: Deep Q-network-based feature selection for multisourced data cleaning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3016297 – volume: 25 start-page: 2951 year: 2012 ident: ref_75 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 46 year: 2000 ident: ref_10 article-title: Biometrics: The future of identification [guest eeditors’ introduction] publication-title: Computer doi: 10.1109/2.820038 – ident: ref_15 – volume: 3 start-page: 1 year: 2011 ident: ref_79 article-title: Human identification using QT signal and QRS complex of the ECG publication-title: Online J. Electron. Electr. Eng. (OJEEE) – ident: ref_17 doi: 10.1016/j.inffus.2020.06.014 – volume: 7 start-page: 1812 year: 2012 ident: ref_19 article-title: ECG biometric recognition: A comparative analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2012.2215324 – ident: ref_45 doi: 10.3390/s21051568 – volume: 10 start-page: 951 year: 2016 ident: ref_41 article-title: Feature selection for the fusion of face and palmprint biometrics publication-title: Signal Image Video Process. doi: 10.1007/s11760-015-0845-6 – volume: 14 start-page: 4 year: 2004 ident: ref_6 article-title: An introduction to biometric recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2003.818349 – volume: 5 start-page: 11805 year: 2017 ident: ref_28 article-title: HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2707460 – ident: ref_80 doi: 10.1109/ACCT.2015.87 – volume: 42 start-page: 1335 year: 2004 ident: ref_89 article-title: A relative evaluation of multiclass image classification by support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.827257 – volume: 47 start-page: 2673 year: 2014 ident: ref_9 article-title: A review of biometric technology along with trends and prospects publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.01.016 – volume: 89 start-page: 606 year: 2018 ident: ref_62 article-title: Feature selection for IoT based on maximal information coefficient publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.05.060 |
SSID | ssj0023338 |
Score | 2.4421606 |
Snippet | In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1230 |
SubjectTerms | Algorithms authentication Bayes Theorem Biometrics Classification Data encryption chips ECG Electrocardiogram Electrocardiography Electrocardiography - methods Experiments Feature selection Humans hyperparameter optimization Intelligence Internet of Things Neural networks Optimization Personal identification numbers reinforcement learning Research methodology Wearable Electronic Devices |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIcInq2I7tnFBbWgoSCAGV9hb5lYKEstt9_H9mHG-6EYhrPIlij8fzzWTyDSGvrQq8c9aWom5kKaVnpe00L6OotQjKhCr9Pvb5izq_kJ9m9Swn3Fa5rHJ7JqaDOsw95sgPOeCURoOHbt4trkrsGoVfV3MLjZvkFlKXYUmXnl0HXALir4FNSEBof7gCuC3gpGYTH5So-v8-kHc80rRacsf9nN0l-xk30qNB0ffIjdjfJ3d22AQfkPhxpNdcU4R2m2Wk31OfG1h8CuiUnp58KI_BbwX6NYNwijkyrBgaUnc0lRDQ9zEu6LeYWFV9SiDSTMR6-ZBcnJ3-ODkvcxeF0tdCrUtpO-UDAA8VG-aj7aTsvGiMrQ0ET-DfA3edtUqHKjrmWPDSW-ldRCoxsGjxiOz18z4-IdTyaE1kgcMzJYvSiRp8m5dGuMr4hhXk7XZdW58pxrHTxe8WQg1UQTuqoCCvRtHFwKvxL6FjVM4ogFTY6cJ8edlmy2pNgMlZA7DFQLCqnHFO-07yytlOdL4qyBtUbYtLBi_jbf7vAKaE1FftEWAooZAnryAHE0kwND8d3m6ONhv6qr3elgV5OQ7jnVi81sf5JskAykRoV5DHw14apwSP1oCA4W492WWTOU9H-l8_Ew1403CmVf30_6_1jNzmYAmYNeLsgOytl5v4HHDU2r1IxvIHPVoehw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcoED4k1oQQYhwSXg2I7tHBBqS0tBKkLASr1FfhakKttudyX498w42WgjeuQaj614xpP5xrG_IeSlVYEnZ20p6kaWUnpW2qR5GUWtRVAmVPn62MkXdTyTn0_r0y2yrrE5KPDq2tQO60nNFudvfl_-eQ8O_w4zTkjZ314BjBbwBYbM_QYEJI3-eSLHnwlcQBrWkwpNxSehKDP2__td3ghM00OTG1Ho6A65PcBHutfb-y7Zit09cmuDVPA-iZ9Gls0lRYS3WkT6PZe7ARtQAKn08OBjuQ_hK9CvAxanuFWGB4f6HTyaTxLQDzFe0G8xk6v6vI9IBz7WswdkdnT44-C4HIoplL4WallKm5QPgD9UbJiPNkmZvGiMrQ3kUBDmA3fJWqVDFR1zLHjprfQuIqMYOLZ4SLa7eRcfE2p5tCaywGFMyaJ0ooYQ56URrjK-YQV5vdZr6wemcSx4cd5CxoEmaEcTFOTFKHrR02tcJ7SPxhkFkBE7P5gvztrBwVoTYHLWAHoxkLMqZ5zTPkleOZtE8lVBXqFpW1QZvIy3w_UDmBIyYLV7AKWEQrq8guxOJMHf_LR5vTja9XJtOaDoRgN-bAryfGzGnniGrYvzVZYBsIkIryCP-rU0TgmG1gCEobeerLLJnKct3a-fmQ28aTjTqn7yP5S0Q25y8BfcYuJsl2wvF6v4FEDX0j3LLvUXaqotDA priority: 102 providerName: Scholars Portal |
Title | Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36772269 https://www.proquest.com/docview/2774970259 https://www.proquest.com/docview/2775626635 https://pubmed.ncbi.nlm.nih.gov/PMC9920765 https://doaj.org/article/8dd64a829388406b8bb7cf421baf3fc1 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucABQXkFyspFSHCJ6rUd2zl2y25bpFZVodLeIr8CSCit2t3_z9jxRhuBxKUXH-JxFI9nMt9Y488AH430rLXGlLyqRSmEo6VpFSsDrxT3UvtpOj52di5PrsTXZbXcuuor1oT19MC94g6091IYjVFJYy4irbZWuVawqTUtb11KfDDmbZKpnGpxzLx6HiGOSf3BHQJtjv9oOoo-iaT_71_xViwa10luBZ7FM3iaESM57L_0OTwI3S482eIRfAHhdCDWXJEI6ta3gXxLN9yg2gniUjI_Oi5nGLE8ucjwm8TdsVgr1G_akVQ8QL6EcEMuQ-JTdWnrkGQK1h8v4Wox_350Uub7E0pXcbkqhWmlQ-1xGWrqgmmFaB2vtak0pk0Y2T2zrTFS-Wmw1FLvhDPC2RBJxNCX-SvY6a678AaIYcHoQD3DdwoahOUVRjUnNLdT7WpawOeNXhuXycXjHRe_G0wy4hI0wxIU8GEQvekZNf4lNIuLMwhEEuz0AE2jyabR_M80CvgUl7aJKsOPcSafOMApRdKr5hDRE5eRIa-AvZEkupgbd2-Mo8kuftcwBM61QshYF7A_dMeRsWytC9frJIP4MoK6Al73tjRMCV-tEPviaDWystGcxz3dr5-JALyuGVWyensfSnoHjxn6S9xVYnQPdla36_AecdbKTuChWips9eJ4Ao9m8_OLy0lyM2zPhP4DNMQrsQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BLVazuvA0J9sksfQtBKewt-pa2Edpd9CPGn-I3MONl0IxC3XteOFXtm8n3jtb8BeK1TJyqjdSyTQsVKWR7rKhOxl0kmXZq7Xrg-dnSc9k_Vp2EyXIPfy7swdKxy-U0MH2o3trRHvimQpxQZInTxYfIjpqpR9O_qsoRG7RYH_tdPTNlm7we7aN83Quzvnez046aqQGwTmc5jpavUOgTi1Bfcel0pVVlZ5DrJMZlAvHPCVFqnmet5ww13VlmtrPEkrYUeLnHca3AdgZdTRGXDywRPYr5XqxdJWfDNGdJ7icjAO5gXSgP8DQArCNg9nbkCd_t34HbDU9lW7Vh3Yc2P7sGtFfXC--AHrZznnBGVXEw9-xrq6qCxGbJhtrfzMd5GnHTsc0P6Ge3J0QmlequQhSMLbNf7Cfvig4qrDRuWrBF-PXsAp1eyvg9hfTQe-cfAtPA699wJHFNxr4xMEEutyqXp5bbgEbxbrmtpG0lzqqzxvcTUhkxQtiaI4FXbdVLrePyr0zYZp-1A0tvhh_H0rGwiucwdTk7nSJNyTI5TkxuT2UqJntGVrGwvgrdk2pKWDF_G6uaeA06JpLbKLeRsMiVdvgg2Oj0xsG23eekcZfNhmZWXYRDBy7aZnqTDciM_XoQ-yGqJSkbwqPaldko4dIaMG5_OOl7WmXO3ZXRxHmTHi0LwLE2e_P-1XsCN_snRYXk4OD54CjcFRgXtWAm-Aevz6cI_Qw43N89D4DD4dtWR-gdh1VyY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSVax3ZeB4TabpcuhaoCKu3N-JWChLLLPoT4a_w6ZpxsuhGIW6-xY8WeGc83zvgbQp7rzPHKaB2LtJSxlJbFusp57EWaC5cVLgnXxz4cZ4en8t0knWyR3-u7MJhWud4Tw0btphbPyAcccEqZg4cuB1WbFnEyHL2Z_YixghT-aV2X02hU5Mj_-gnh2-L1eAiyfsH56ODz_mHcVhiIbSqyZSx1lVkHTjnzJbNeV1JWVpSFTgsILMD3OW4qrbPcJd4ww5yVVktrPNJsgbYLGPcSuZyLNEEbyyfnwZ6A2K9hMhKiZIMFQH0BXoL1_F8oE_C3M9jwhv1MzQ3XN7pBrreYle42SnaTbPn6Frm2wWR4m_hxR-25pAgrV3NPP4UaOyB4CsiYHuy_jffAZzp60gYAFM_nMFupOTakIX2BDr2f0Y8-MLracHhJWxLYszvk9ELW9y7Zrqe1v0-o5l4XnjkOY0rmpREp-FUrC2GSwpYsIq_W66psS2-OVTa-KwhzUASqE0FEnnVdZw2nx7867aFwug5Iwx0eTOdnqrVqVTiYnC4AMhUQKGemMCa3leSJ0ZWobBKRlyhahUsGH2N1e-cBpoS0W2oX8JvIkKMvIju9nmDktt-8Vg7VbjILdW4SEXnaNeObmDhX--kq9AGEi7AyIvcaXeqmBEPngL7h7bynZb0591vqb18DBXlZcpZn6YP_f9YTcgVsVL0fHx89JFc5GAUeXnG2Q7aX85V_BHBuaR4Hu6Hky0Ub6h90fWDO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Feature+Selection+for+ECG-Based+Personal+Authentication+Using+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Suwhan+Baek&rft.au=Juhyeong+Kim&rft.au=Hyunsoo+Yu&rft.au=Geunbo+Yang&rft.date=2023-01-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft.spage=1230&rft_id=info:doi/10.3390%2Fs23031230&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8dd64a829388406b8bb7cf421baf3fc1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |