Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans

Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 , Gary W. Cline 1 and Gerald I. Shulman 1 2 3 1 Internal Medicine and 2 Cellular and Molecular Physiology and the 3 Howard Hughes Medical Institut...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 50; no. 6; pp. 1263 - 1268
Main Authors Petersen, Kitt Falk, Laurent, Didier, Yu, Chunli, Cline, Gary W., Shulman, Gerald I.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.06.2001
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
DOI10.2337/diabetes.50.6.1263

Cover

Loading…
Abstract Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 , Gary W. Cline 1 and Gerald I. Shulman 1 2 3 1 Internal Medicine and 2 Cellular and Molecular Physiology and the 3 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut Abstract Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13 C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5 μmol · kg –1 · min –1 ). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg –1 · min –1 ) and insulin (240 pmol · m –2 · min –1 ). During the initial 120 min, [1- 13 C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the 13 C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ± 0.16 mmol/l per min ( P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. Footnotes Address correspondence and reprint requests to Kitt Falk Petersen, Dept. of Internal Medicine, Yale University School of Medicine, 333 Cedar St., FMP 104, P.O. Box 208020, New Haven, CT 06520-8020. E-mail: kitt.petersen{at}yale.edu . Received for publication 1 August 2000 and accepted in revised form 5 March 2001. APE, atom percent enrichment; GC-MS, gas chromatography–mass spectrometry; GCRC, General Clinical Research Center; NMR, nuclear magnetic resonance.
AbstractList Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.
Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.
Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 , Gary W. Cline 1 and Gerald I. Shulman 1 2 3 1 Internal Medicine and 2 Cellular and Molecular Physiology and the 3 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut Abstract Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13 C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5 μmol · kg –1 · min –1 ). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg –1 · min –1 ) and insulin (240 pmol · m –2 · min –1 ). During the initial 120 min, [1- 13 C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the 13 C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ± 0.16 mmol/l per min ( P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. Footnotes Address correspondence and reprint requests to Kitt Falk Petersen, Dept. of Internal Medicine, Yale University School of Medicine, 333 Cedar St., FMP 104, P.O. Box 208020, New Haven, CT 06520-8020. E-mail: kitt.petersen{at}yale.edu . Received for publication 1 August 2000 and accepted in revised form 5 March 2001. APE, atom percent enrichment; GC-MS, gas chromatography–mass spectrometry; GCRC, General Clinical Research Center; NMR, nuclear magnetic resonance.
Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5 μmol · kg–1 · min–1). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg–1 · min–1) and insulin (240 pmol · m–2 · min–1). During the initial 120 min, [1-13C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the 13C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ± 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.
Audience Professional
Author Gary W. Cline
Chunli Yu
Gerald I. Shulman
Kitt Falk Petersen
Didier Laurent
Author_xml – sequence: 1
  givenname: Kitt Falk
  surname: Petersen
  fullname: Petersen, Kitt Falk
  organization: Internal Medicine and
– sequence: 2
  givenname: Didier
  surname: Laurent
  fullname: Laurent, Didier
  organization: Internal Medicine and
– sequence: 3
  givenname: Chunli
  surname: Yu
  fullname: Yu, Chunli
  organization: Cellular and Molecular Physiology and the
– sequence: 4
  givenname: Gary W.
  surname: Cline
  fullname: Cline, Gary W.
  organization: Internal Medicine and
– sequence: 5
  givenname: Gerald I.
  surname: Shulman
  fullname: Shulman, Gerald I.
  organization: Internal Medicine and, Cellular and Molecular Physiology and the, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1097043$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11375325$$D View this record in MEDLINE/PubMed
BookMark eNp90l1r2zAUBmAxOta02x_YxTBjjMHqTB-2ZV-WrE0KgV50g90JRT52VBQpk2S6_PspJKFLCUMXks3ziiPpXKAz6ywg9J7gMWWMf2u1XECEMC7xuBoTWrFXaEQa1uSM8l9naIQxoTnhDT9HFyE8YoyrNN6gc0IYLxktR0g9RL0ajIza9tlN14GKIXNdNndP-XcXILv1g4rbhbPZnQ2D0TY_ZKDNZrBOWZVNzUa5Hmz2sLFxCUGHTNtsNqykDW_R606aAO_28yX6eXvzYzLL5_fTu8n1PFclq2JeNBIUqQrgpFUYaINhQbFqAeNGVYSWsABFeUFqDlhC-q5rKHhR8aroMFbsEn3e7bv27vcAIYqVDgqMkRbcEATHdYlJQxL8-AI-usHbVJugqYCKp_tL6GqHemlAaNu56KVKRwQvTXqITqff1zVmDa0JTTw_wdNoYaXVKf_lyCcS4U_s5RCCqKfzI3p1iipnDPQg0h1O7o_4h_3phsUKWrH2eiX9RhwePYFPeyCDkqbz0iodnh1uOC5YYnTHlHcheOj-EWLbgOLQgKLEohLbBkyh-kVI6Zg6JJXspTb_j37dRZe6Xz5pD8_ohP4LamXvHg
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_clnesp_2018_11_008
crossref_primary_10_4082_kjfm_20_0225
crossref_primary_10_3390_nu9020164
crossref_primary_10_1038_s41387_018_0066_5
crossref_primary_10_1016_j_jada_2010_12_001
crossref_primary_10_1002_mrm_27378
crossref_primary_10_1016_j_jada_2010_12_003
crossref_primary_10_1007_s00394_016_1345_3
crossref_primary_10_1111_j_1753_4887_2005_tb00132_x
crossref_primary_10_1002_14651858_CD011840_pub2
crossref_primary_10_1016_j_metabol_2010_08_006
crossref_primary_10_1002_jsfa_11128
crossref_primary_10_1016_j_clnu_2020_03_002
crossref_primary_10_1093_ajcn_79_4_537
crossref_primary_10_3390_nu16142186
crossref_primary_10_1016_j_metop_2023_100245
crossref_primary_10_1093_ajcn_nqy092
crossref_primary_10_1016_S1521_690X_03_00036_8
crossref_primary_10_1093_jn_134_3_545
crossref_primary_10_3390_nu16040535
crossref_primary_10_1016_j_heliyon_2019_e01357
crossref_primary_10_1152_ajpendo_00120_2002
crossref_primary_10_1007_s00394_022_03079_4
crossref_primary_10_3390_jcm10040596
crossref_primary_10_1002_dmrr_173
crossref_primary_10_3402_fnr_v57i0_19214
crossref_primary_10_1007_s11892_019_1195_5
crossref_primary_10_1093_jn_132_6_1219
crossref_primary_10_1152_physrev_00063_2017
crossref_primary_10_1136_bmj_k4644
crossref_primary_10_1146_annurev_med_042010_113026
crossref_primary_10_1017_S0954422414000018
crossref_primary_10_3390_nu9091026
crossref_primary_10_1016_j_numecd_2015_05_005
crossref_primary_10_4162_nrp_2008_2_4_252
crossref_primary_10_1016_j_clnu_2021_01_026
crossref_primary_10_1007_s00018_019_03348_2
crossref_primary_10_1016_j_cmet_2021_09_010
crossref_primary_10_1016_j_nut_2014_09_009
crossref_primary_10_1016_S0007_9960_08_71550_5
crossref_primary_10_1093_ajcn_nqaa332
crossref_primary_10_1007_s10439_007_9410_y
crossref_primary_10_1093_ajcn_nqz271
crossref_primary_10_1016_j_lfs_2020_118235
crossref_primary_10_1111_1440_1681_12162
crossref_primary_10_1017_S1368980009991145
crossref_primary_10_1093_ajcn_87_5_1194
crossref_primary_10_1016_j_cmet_2021_09_004
crossref_primary_10_1111_apt_17930
crossref_primary_10_2337_db10_0592
crossref_primary_10_1002_oby_21410
crossref_primary_10_1016_j_tem_2010_10_003
crossref_primary_10_1113_JP278267
crossref_primary_10_1152_ajpendo_00027_2018
crossref_primary_10_1016_j_clnu_2005_11_013
crossref_primary_10_1249_MSS_0b013e318218ca5a
crossref_primary_10_1210_jc_2013_3248
crossref_primary_10_2337_dc12_0073
crossref_primary_10_1016_j_tem_2022_07_007
crossref_primary_10_1097_01_mco_0000078990_96795_cd
crossref_primary_10_3923_ijps_2017_56_59
crossref_primary_10_1016_j_metabol_2005_04_004
crossref_primary_10_2337_diabetes_51_4_893
crossref_primary_10_1172_JCI0214596
crossref_primary_10_3945_ajcn_117_161539
crossref_primary_10_1097_00075197_200303000_00005
crossref_primary_10_3390_nu13072470
crossref_primary_10_1017_S000711451000190X
crossref_primary_10_1016_j_cmet_2012_05_002
crossref_primary_10_1080_09637486_2020_1862068
crossref_primary_10_2337_diabetes_54_3_609
crossref_primary_10_3390_nu10111805
crossref_primary_10_3109_19390211_2014_952856
crossref_primary_10_2337_diabetes_51_3_606
crossref_primary_10_1016_j_molmet_2024_101984
crossref_primary_10_1152_ajpendo_00391_2004
crossref_primary_10_1016_j_mayocp_2015_04_017
crossref_primary_10_3945_ajcn_2010_29566
crossref_primary_10_1080_07315724_2004_10719386
crossref_primary_10_1042_BJ20080595
crossref_primary_10_1113_JP277115
crossref_primary_10_1186_1743_7075_10_45
crossref_primary_10_3390_medicina58010008
crossref_primary_10_3390_nu6072632
crossref_primary_10_1016_j_cell_2021_04_015
crossref_primary_10_1152_ajpregu_00260_2006
crossref_primary_10_1093_ajcn_76_5_911
crossref_primary_10_1017_S000711451200013X
crossref_primary_10_2337_diabetes_51_1_49
crossref_primary_10_1016_j_peptides_2015_10_006
crossref_primary_10_1113_JP277116
crossref_primary_10_1172_JCI77812
crossref_primary_10_3390_molecules17021900
crossref_primary_10_1155_2018_4757893
crossref_primary_10_3390_nu14132678
crossref_primary_10_1017_S0007114520004845
crossref_primary_10_1007_s00125_010_1927_1
crossref_primary_10_2337_dc09_0619
crossref_primary_10_1016_j_jcjd_2016_05_006
crossref_primary_10_3390_nu6083117
crossref_primary_10_1038_s41598_020_69820_3
crossref_primary_10_1111_dom_13374
crossref_primary_10_3390_nu14173617
crossref_primary_10_3945_ajcn_115_129866
crossref_primary_10_1113_JP277767
crossref_primary_10_3389_fnut_2024_1407108
crossref_primary_10_1016_j_tem_2016_06_005
Cites_doi 10.1152/physrev.1992.72.4.1019
10.1172/JCI115997
10.2337/diabetes.47.6.867
10.1152/ajpendo.1991.260.5.E731
10.1016/S0022-2275(20)38029-9
10.1172/JCI118460
10.1006/abbi.1993.1078
10.1126/science.1948033
10.1042/bj2320133
10.1172/JCI118410
10.1096/fasebj.8.6.8168691
10.1152/ajpendo.1996.271.2.E215
10.1172/JCI579
10.1172/JCI117727
10.1007/BF01219739
10.1152/ajpendo.1994.266.5.E796
10.1016/B978-0-12-395630-9.50058-X
10.1042/bj2960785
10.1016/S0021-9258(18)66660-8
10.1016/S0021-9258(17)32313-X
10.1152/ajpendo.1990.259.3.E335
10.1042/bj2400309
ClassificationCodes 2834
2833
8733
8731
8000212
541714
3832684
541715
ContentType Journal Article
Copyright 2001 INIST-CNRS
COPYRIGHT 2001 American Diabetes Association
Copyright American Diabetes Association Jun 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: COPYRIGHT 2001 American Diabetes Association
– notice: Copyright American Diabetes Association Jun 2001
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
DOI 10.2337/diabetes.50.6.1263
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest eLibrary (NC LIVE)
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Consumer Health Database (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
ProQuest Biological Science
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 1268
ExternalDocumentID 77152294
A80392812
11375325
1097043
10_2337_diabetes_50_6_1263
diabetes_50_6_1263
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK-45735
– fundername: NCRR NIH HHS
  grantid: MO1 RR-00125
– fundername: NIDDK NIH HHS
  grantid: R01 DK-42930
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZGI
ZXP
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
1CY
354
6PF
AAFWJ
AAYOK
AAYXX
ACGFO
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
AAKAS
ADGHP
ADZCM
AI.
H~9
IQODW
MVM
O5R
O5S
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c536t-49aec164e71dc0e290eb20cde009c6125ebec274187e0ae25e88e4746764f00c3
IEDL.DBID BENPR
ISSN 0012-1797
IngestDate Sun Aug 24 04:10:32 EDT 2025
Fri Jul 25 19:34:08 EDT 2025
Fri Jun 13 00:42:22 EDT 2025
Tue Jun 10 21:27:08 EDT 2025
Fri Jun 27 05:37:20 EDT 2025
Tue Jun 10 20:05:18 EDT 2025
Wed Feb 19 02:35:12 EST 2025
Mon Jul 21 09:13:59 EDT 2025
Tue Jul 01 04:24:22 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Fri Jan 15 19:45:57 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Digestive system
Glycogen
Liver
Biosynthesis
Glycogenolysis
Metabolism
Fructose
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c536t-49aec164e71dc0e290eb20cde009c6125ebec274187e0ae25e88e4746764f00c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 11375325
PQID 216467327
PQPubID 34443
PageCount 6
ParticipantIDs gale_incontextcollege_GICCO_A80392812
pubmed_primary_11375325
gale_infotracacademiconefile_A80392812
highwire_diabetes_diabetes_50_6_1263
pascalfrancis_primary_1097043
crossref_primary_10_2337_diabetes_50_6_1263
crossref_citationtrail_10_2337_diabetes_50_6_1263
proquest_journals_216467327
gale_incontextgauss_8GL_A80392812
proquest_miscellaneous_70850191
gale_infotracgeneralonefile_A80392812
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-06-01
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 2001-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2001
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022031207093906800_R19
2022031207093906800_R18
2022031207093906800_R17
2022031207093906800_R16
2022031207093906800_R15
2022031207093906800_R14
2022031207093906800_R13
2022031207093906800_R12
2022031207093906800_R11
2022031207093906800_R22
2022031207093906800_R10
2022031207093906800_R21
2022031207093906800_R1
2022031207093906800_R20
2022031207093906800_R2
2022031207093906800_R3
2022031207093906800_R4
2022031207093906800_R5
2022031207093906800_R6
2022031207093906800_R7
2022031207093906800_R8
2022031207093906800_R9
References_xml – ident: 2022031207093906800_R10
  doi: 10.1152/physrev.1992.72.4.1019
– ident: 2022031207093906800_R22
  doi: 10.1172/JCI115997
– ident: 2022031207093906800_R5
  doi: 10.2337/diabetes.47.6.867
– ident: 2022031207093906800_R17
  doi: 10.1152/ajpendo.1991.260.5.E731
– ident: 2022031207093906800_R14
  doi: 10.1016/S0022-2275(20)38029-9
– ident: 2022031207093906800_R8
  doi: 10.1172/JCI118460
– ident: 2022031207093906800_R3
  doi: 10.1006/abbi.1993.1078
– ident: 2022031207093906800_R12
  doi: 10.1126/science.1948033
– ident: 2022031207093906800_R19
  doi: 10.1042/bj2320133
– ident: 2022031207093906800_R16
  doi: 10.1172/JCI118410
– ident: 2022031207093906800_R1
  doi: 10.1096/fasebj.8.6.8168691
– ident: 2022031207093906800_R15
  doi: 10.1152/ajpendo.1996.271.2.E215
– ident: 2022031207093906800_R7
  doi: 10.1172/JCI579
– ident: 2022031207093906800_R21
  doi: 10.1172/JCI117727
– ident: 2022031207093906800_R11
  doi: 10.1007/BF01219739
– ident: 2022031207093906800_R6
  doi: 10.1152/ajpendo.1994.266.5.E796
– ident: 2022031207093906800_R13
  doi: 10.1016/B978-0-12-395630-9.50058-X
– ident: 2022031207093906800_R2
  doi: 10.1042/bj2960785
– ident: 2022031207093906800_R20
  doi: 10.1016/S0021-9258(18)66660-8
– ident: 2022031207093906800_R4
  doi: 10.1016/S0021-9258(17)32313-X
– ident: 2022031207093906800_R9
  doi: 10.1152/ajpendo.1990.259.3.E335
– ident: 2022031207093906800_R18
  doi: 10.1042/bj2400309
SSID ssj0006060
Score 2.0370421
Snippet Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 ,...
Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown....
SourceID proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1263
SubjectTerms Adult
Biological and medical sciences
Carbohydrates
Diabetes
Diabetes research
Dose-Response Relationship, Drug
Female
Fructose
Fructose - administration & dosage
Fructose - pharmacology
Fundamental and applied biological sciences. Psychology
Gas chromatography
Glucose
Glucose - pharmacology
Glycogen
Glycogen - biosynthesis
Glycogen - metabolism
Glycogen Synthase - metabolism
Hormones - blood
Humans
Insulin
Insulin - pharmacology
Liver
Liver - drug effects
Liver - metabolism
Male
Mass spectrometry
Metabolism
Metabolisms and neurohumoral controls
NMR
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Osmolar Concentration
Phosphorylases - metabolism
Physiological aspects
Proteins
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans
URI http://diabetes.diabetesjournals.org/content/50/6/1263.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11375325
https://www.proquest.com/docview/216467327
https://www.proquest.com/docview/70850191
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJyFeEN8LY8NIGy_InfNp5wmNamNCbCDEpL5Z7sUpSCUZuBXaf89d43StNPZSpcolin3n88_n8-8YO9DgksrVpXBqAiLTWS5wGgJhca5wYBM9AQoNnF8UZ5fZp3E-Drk5PqRV9j5x6airFihGfpQQEZZKE_X-6regolG0uRoqaGyxbfTAOh-w7Q8nF1-_rVwxovPuDEqcEA-n6k7NJGmqjvrQ5jCXw2IYJ0W6MTP1_rknDaacSeux2-qu3sX_AelyYjp9xB4GRMmPOxN4zO655gm7fx72zJ8ywEH8a1mkq5nykL7B25rP2r-iar3jNTHI0kXb8JCaLvpnXMV_OEq6Bj6dXUOL5sb9dYOo0f_0KM2XNf78M3Z5evJ9dCZCaQUBeVrMRVZaB9ijTsUVSJeUElfYEiqHkAsI9JBul8w2yknr8L_WLqPSJEVWSwnpczZo2sbtMJ5ZSRxsFtK4yqC0JVSTArUc17rWqqojFvfdaiDwjlP5i5nB9QepwvSqMLk0hSFVROzd6pmrjnXjTulD0pYhOouG8mWgi7kYbPHoiznWEkEgApmIvdmUm9qF90Z__Lwu8zbI1C1-JdhwSgHbSkRZ64KHG4LTjiX8FrmD3oZuPv22Nuxt2Ndas0slM7y_29ubCV7Gm9WYiNjr1V10D7TnYxvXLrxRREmIa_KIveiM9ObFcYpL1SR_eeebd9mDLuuO4k6v2GD-Z-H2EIbNJ_tsS40V_upRvB8G3j8-NzYb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviG_KGDPSygtK5zjfDwiNsdGxtiC0SXvz3ItTkEoycKupfxT_I3dN3LXS2NveEuVixbnzffn8O8Z2UjAyN0XmmWQIXpiGkYdmCDyNtsKAlukQKDXQH8Td0_DLWXS2xv66szBUVul04lxR5xVQjnxXEhBWEsjkw8Vvj5pG0eaq66BRS8WxmV1ixGbfH31C9ralPDw42e96TVMBD6Ignnhhpg3gWCbxcxBGZgJjSwG5QWcDyNzTrOaYLokR2uB9mpqQmnLEYSEEBDjuHbaBXkaGi2jj48Hg2_eF6sdooD7z4kvC_UzqUzoyCJJdl0rtRKITd3wZByuW0NkDB1JMNZraIpuKur_G_x3guSE8fMgeNB4s36tF7hFbM-Vjdrff7NE_YYBK49e8KVg54k25CK8KPq4uvbyyhheEWEsXVcmbUnjPvWNy_sNQkTfw0XgGFYo3t7MSvVT70yI1n_cUtE_Z6a389WdsvaxK84LxUAvCfNMQ-HkImc4gH8YoVX6RFmmSFy3mu9-qoME5p3YbY4XxDrFCOVaoSKhYESta7N3inYsa5eNG6jZxSxF8Rkn1OVDneBTOeP-r2ksFOp3oOLXYm1W6kZ5aq9LPvWWatw1NUeFXgm5OReBcCZhrmbC9QjiqUcmvodtxMnT16dfNYWtFvpamnSUixOebTt5Uo9WsWqzBFttePEV1RHtMujTV1KqEIBD9zG-x57WQXg3sBxgay-jljSNvs3vdk35P9Y4Gx5vsfl3xRzmvV2x98mdqttAFnAxfNwuPs_PbXuv_ACmkcQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIqG9TPteYQxPonuZUpzv5GGaGNDBgA5NQ-LNcx2nQ-oSNrdC_dP23-2usUsrMd54S5SLlcudfR8-_w5gO1M6KHSZezodKC_KothDM6Q8ibZCKxlkA0WpgdN-cngefbmIL1bgrzsLQ2WVbk2cLdRFrShHvhMQEFYaYqRe2qqIs_3ex6vfHjWQoo1W102j0ZBjPb3G6M18ONpHUXeCoHfwfe_Qsw0GPBWHydiLcqkVjqtTv1BcBznHOJOrQqPjocj0E4czfJdUc6nxPst0RA06kqjkXIU47gNYTdEoZi1Y_XTQP_s2NwMYGTTnX_yAMEDT5sROEIbpjkurdmPeTbp-kIRLVtHZBgdYTPWa0qDIyqbXxv-d4ZlR7D2GR9abZbuN-j2BFV09hbVTu1__DBQuIL9mDcKqIbOlI6wu2ai-9oraaFYSei1d1BWzZfGee0cX7Kemgm_FhqOpqlHVmZlW6LGaS4PUbNZf0DyH83v56y-gVdWVfgUskpzw36QK_SJSucxVMUhQw_wyK7O0KNvgu98qlMU8p9YbI4GxD4lCOFGImItEkCja8H7-zlWD-HEndYekJQhKoyKtVE2-RyDHe1_FbsbRAUUnqg1vl-mGcmKMyD6fLNK8szRljV-ppD0hgbwSSNciYWeJcNgglN9Ct-106ObTb-Nhc0m_FtjOUx7h8w2nb8KucEbM52MbtuZPcWmi_SZZ6XpiREpwiH7ut-Flo6Q3A_shhslBvH7nyFuwhnNcnBz1jzfgYVP8R-mv19Aa_5noTfQGx4M3dt4x-HHfU_0fMd51OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulating+effects+of+low-dose+fructose+on+insulin-stimulated+hepatic+glycogen+synthesis+in+humans&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Petersen%2C+K+F&rft.au=Laurent%2C+D&rft.au=Yu%2C+C&rft.au=Cline%2C+G+W&rft.date=2001-06-01&rft.issn=0012-1797&rft.volume=50&rft.issue=6&rft.spage=1263&rft_id=info:doi/10.2337%2Fdiabetes.50.6.1263&rft_id=info%3Apmid%2F11375325&rft.externalDocID=11375325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon