Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans
Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 , Gary W. Cline 1 and Gerald I. Shulman 1 2 3 1 Internal Medicine and 2 Cellular and Molecular Physiology and the 3 Howard Hughes Medical Institut...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 50; no. 6; pp. 1263 - 1268 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.06.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X |
DOI | 10.2337/diabetes.50.6.1263 |
Cover
Loading…
Abstract | Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans
Kitt Falk Petersen 1 ,
Didier Laurent 1 ,
Chunli Yu 2 ,
Gary W. Cline 1 and
Gerald I. Shulman 1 2 3
1 Internal Medicine and
2 Cellular and Molecular Physiology and the
3 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
Abstract
Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen
metabolism in humans is unknown. To address this question, we used 13 C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis
under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5
μmol · kg –1 · min –1 ). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg –1 · min –1 ) and insulin (240 pmol · m –2 · min –1 ). During the initial 120 min, [1- 13 C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates
of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic)
pathways of glycogen synthesis by the 13 C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and
glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen
synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ±
0.16 mmol/l per min ( P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis
(0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We
conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic
glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been
shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis
by this mechanism may be of potential therapeutic value.
Footnotes
Address correspondence and reprint requests to Kitt Falk Petersen, Dept. of Internal Medicine, Yale University School of Medicine,
333 Cedar St., FMP 104, P.O. Box 208020, New Haven, CT 06520-8020. E-mail: kitt.petersen{at}yale.edu .
Received for publication 1 August 2000 and accepted in revised form 5 March 2001.
APE, atom percent enrichment; GC-MS, gas chromatography–mass spectrometry; GCRC, General Clinical Research Center; NMR, nuclear
magnetic resonance. |
---|---|
AbstractList | Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value.Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used (13)C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (approximately 5 mmol/l) hyperinsulinemic conditions (approximately 400 pmol/l) with and without a low-dose infusion of fructose (approximately 3.5 micromol. kg(-1). min(-1)). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 micromol. kg(-1). min(-1)) and insulin (240 pmol. m(-2). min(-1)). During the initial 120 min, [1-(13)C]glucose was infused to assess glycogen synthase flux followed by an approximately 120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the (13)C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 +/- 0.06 and 0.17 +/- 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 +/- 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 +/- 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 +/- 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 +/- 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway approximately 60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans Kitt Falk Petersen 1 , Didier Laurent 1 , Chunli Yu 2 , Gary W. Cline 1 and Gerald I. Shulman 1 2 3 1 Internal Medicine and 2 Cellular and Molecular Physiology and the 3 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut Abstract Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13 C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5 μmol · kg –1 · min –1 ). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg –1 · min –1 ) and insulin (240 pmol · m –2 · min –1 ). During the initial 120 min, [1- 13 C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the 13 C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ± 0.16 mmol/l per min ( P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. Footnotes Address correspondence and reprint requests to Kitt Falk Petersen, Dept. of Internal Medicine, Yale University School of Medicine, 333 Cedar St., FMP 104, P.O. Box 208020, New Haven, CT 06520-8020. E-mail: kitt.petersen{at}yale.edu . Received for publication 1 August 2000 and accepted in revised form 5 March 2001. APE, atom percent enrichment; GC-MS, gas chromatography–mass spectrometry; GCRC, General Clinical Research Center; NMR, nuclear magnetic resonance. Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown. To address this question, we used 13C nuclear magnetic resonance (NMR) spectroscopy to noninvasively assess rates of hepatic glycogen synthesis and glycogenolysis under euglycemic (∼5 mmol/l) hyperinsulinemic conditions (∼400 pmol/l) with and without a low-dose infusion of fructose (∼3.5 μmol · kg–1 · min–1). Six healthy overnight-fasted subjects were infused for 4 h with somatostatin (0.1 μg · kg–1 · min–1) and insulin (240 pmol · m–2 · min–1). During the initial 120 min, [1-13C]glucose was infused to assess glycogen synthase flux followed by an ∼120-min infusion of unlabeled glucose to assess rates of glycogen phosphorylase flux. Acetaminophen was given to assess the percent contribution of the direct and indirect (gluconeogenic) pathways of glycogen synthesis by the 13C enrichment of plasma UDP-glucuronide and C-1 of glucose. In the control studies, the flux through glycogen synthase and glycogen phosphorylase was 0.31 ± 0.06 and 0.17 ± 0.04 mmol/l per min, respectively, and the rate of net hepatic glycogen synthesis was 0.14 ± 0.05 mmol/l per min. In the fructose studies, the glycogen synthase flux increased 2.5-fold to 0.79 ± 0.16 mmol/l per min (P = 0.018 vs. control), whereas glycogen phosphorylase flux remained unchanged (0.24 ± 0.06; P = 0.16 vs. control). The infusion of fructose resulted in a threefold increase in rates of net hepatic glycogen synthesis (0.54 ± 0.12 mmol/l per min; P = 0.008 vs. control) without affecting the pathways of hepatic glycogen synthesis (direct pathway ∼60% in both groups). We conclude that during euglycemic hyperinsulinemia, a low-dose fructose infusion causes a threefold increase in net hepatic glycogen synthesis exclusively through stimulation of glycogen synthase flux. Because net hepatic glycogen synthesis has been shown to be diminished in patients with poorly controlled type 1 and type 2 diabetes, stimulation of hepatic glycogen synthesis by this mechanism may be of potential therapeutic value. |
Audience | Professional |
Author | Gary W. Cline Chunli Yu Gerald I. Shulman Kitt Falk Petersen Didier Laurent |
Author_xml | – sequence: 1 givenname: Kitt Falk surname: Petersen fullname: Petersen, Kitt Falk organization: Internal Medicine and – sequence: 2 givenname: Didier surname: Laurent fullname: Laurent, Didier organization: Internal Medicine and – sequence: 3 givenname: Chunli surname: Yu fullname: Yu, Chunli organization: Cellular and Molecular Physiology and the – sequence: 4 givenname: Gary W. surname: Cline fullname: Cline, Gary W. organization: Internal Medicine and – sequence: 5 givenname: Gerald I. surname: Shulman fullname: Shulman, Gerald I. organization: Internal Medicine and, Cellular and Molecular Physiology and the, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1097043$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11375325$$D View this record in MEDLINE/PubMed |
BookMark | eNp90l1r2zAUBmAxOta02x_YxTBjjMHqTB-2ZV-WrE0KgV50g90JRT52VBQpk2S6_PspJKFLCUMXks3ziiPpXKAz6ywg9J7gMWWMf2u1XECEMC7xuBoTWrFXaEQa1uSM8l9naIQxoTnhDT9HFyE8YoyrNN6gc0IYLxktR0g9RL0ajIza9tlN14GKIXNdNndP-XcXILv1g4rbhbPZnQ2D0TY_ZKDNZrBOWZVNzUa5Hmz2sLFxCUGHTNtsNqykDW_R606aAO_28yX6eXvzYzLL5_fTu8n1PFclq2JeNBIUqQrgpFUYaINhQbFqAeNGVYSWsABFeUFqDlhC-q5rKHhR8aroMFbsEn3e7bv27vcAIYqVDgqMkRbcEATHdYlJQxL8-AI-usHbVJugqYCKp_tL6GqHemlAaNu56KVKRwQvTXqITqff1zVmDa0JTTw_wdNoYaXVKf_lyCcS4U_s5RCCqKfzI3p1iipnDPQg0h1O7o_4h_3phsUKWrH2eiX9RhwePYFPeyCDkqbz0iodnh1uOC5YYnTHlHcheOj-EWLbgOLQgKLEohLbBkyh-kVI6Zg6JJXspTb_j37dRZe6Xz5pD8_ohP4LamXvHg |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_clnesp_2018_11_008 crossref_primary_10_4082_kjfm_20_0225 crossref_primary_10_3390_nu9020164 crossref_primary_10_1038_s41387_018_0066_5 crossref_primary_10_1016_j_jada_2010_12_001 crossref_primary_10_1002_mrm_27378 crossref_primary_10_1016_j_jada_2010_12_003 crossref_primary_10_1007_s00394_016_1345_3 crossref_primary_10_1111_j_1753_4887_2005_tb00132_x crossref_primary_10_1002_14651858_CD011840_pub2 crossref_primary_10_1016_j_metabol_2010_08_006 crossref_primary_10_1002_jsfa_11128 crossref_primary_10_1016_j_clnu_2020_03_002 crossref_primary_10_1093_ajcn_79_4_537 crossref_primary_10_3390_nu16142186 crossref_primary_10_1016_j_metop_2023_100245 crossref_primary_10_1093_ajcn_nqy092 crossref_primary_10_1016_S1521_690X_03_00036_8 crossref_primary_10_1093_jn_134_3_545 crossref_primary_10_3390_nu16040535 crossref_primary_10_1016_j_heliyon_2019_e01357 crossref_primary_10_1152_ajpendo_00120_2002 crossref_primary_10_1007_s00394_022_03079_4 crossref_primary_10_3390_jcm10040596 crossref_primary_10_1002_dmrr_173 crossref_primary_10_3402_fnr_v57i0_19214 crossref_primary_10_1007_s11892_019_1195_5 crossref_primary_10_1093_jn_132_6_1219 crossref_primary_10_1152_physrev_00063_2017 crossref_primary_10_1136_bmj_k4644 crossref_primary_10_1146_annurev_med_042010_113026 crossref_primary_10_1017_S0954422414000018 crossref_primary_10_3390_nu9091026 crossref_primary_10_1016_j_numecd_2015_05_005 crossref_primary_10_4162_nrp_2008_2_4_252 crossref_primary_10_1016_j_clnu_2021_01_026 crossref_primary_10_1007_s00018_019_03348_2 crossref_primary_10_1016_j_cmet_2021_09_010 crossref_primary_10_1016_j_nut_2014_09_009 crossref_primary_10_1016_S0007_9960_08_71550_5 crossref_primary_10_1093_ajcn_nqaa332 crossref_primary_10_1007_s10439_007_9410_y crossref_primary_10_1093_ajcn_nqz271 crossref_primary_10_1016_j_lfs_2020_118235 crossref_primary_10_1111_1440_1681_12162 crossref_primary_10_1017_S1368980009991145 crossref_primary_10_1093_ajcn_87_5_1194 crossref_primary_10_1016_j_cmet_2021_09_004 crossref_primary_10_1111_apt_17930 crossref_primary_10_2337_db10_0592 crossref_primary_10_1002_oby_21410 crossref_primary_10_1016_j_tem_2010_10_003 crossref_primary_10_1113_JP278267 crossref_primary_10_1152_ajpendo_00027_2018 crossref_primary_10_1016_j_clnu_2005_11_013 crossref_primary_10_1249_MSS_0b013e318218ca5a crossref_primary_10_1210_jc_2013_3248 crossref_primary_10_2337_dc12_0073 crossref_primary_10_1016_j_tem_2022_07_007 crossref_primary_10_1097_01_mco_0000078990_96795_cd crossref_primary_10_3923_ijps_2017_56_59 crossref_primary_10_1016_j_metabol_2005_04_004 crossref_primary_10_2337_diabetes_51_4_893 crossref_primary_10_1172_JCI0214596 crossref_primary_10_3945_ajcn_117_161539 crossref_primary_10_1097_00075197_200303000_00005 crossref_primary_10_3390_nu13072470 crossref_primary_10_1017_S000711451000190X crossref_primary_10_1016_j_cmet_2012_05_002 crossref_primary_10_1080_09637486_2020_1862068 crossref_primary_10_2337_diabetes_54_3_609 crossref_primary_10_3390_nu10111805 crossref_primary_10_3109_19390211_2014_952856 crossref_primary_10_2337_diabetes_51_3_606 crossref_primary_10_1016_j_molmet_2024_101984 crossref_primary_10_1152_ajpendo_00391_2004 crossref_primary_10_1016_j_mayocp_2015_04_017 crossref_primary_10_3945_ajcn_2010_29566 crossref_primary_10_1080_07315724_2004_10719386 crossref_primary_10_1042_BJ20080595 crossref_primary_10_1113_JP277115 crossref_primary_10_1186_1743_7075_10_45 crossref_primary_10_3390_medicina58010008 crossref_primary_10_3390_nu6072632 crossref_primary_10_1016_j_cell_2021_04_015 crossref_primary_10_1152_ajpregu_00260_2006 crossref_primary_10_1093_ajcn_76_5_911 crossref_primary_10_1017_S000711451200013X crossref_primary_10_2337_diabetes_51_1_49 crossref_primary_10_1016_j_peptides_2015_10_006 crossref_primary_10_1113_JP277116 crossref_primary_10_1172_JCI77812 crossref_primary_10_3390_molecules17021900 crossref_primary_10_1155_2018_4757893 crossref_primary_10_3390_nu14132678 crossref_primary_10_1017_S0007114520004845 crossref_primary_10_1007_s00125_010_1927_1 crossref_primary_10_2337_dc09_0619 crossref_primary_10_1016_j_jcjd_2016_05_006 crossref_primary_10_3390_nu6083117 crossref_primary_10_1038_s41598_020_69820_3 crossref_primary_10_1111_dom_13374 crossref_primary_10_3390_nu14173617 crossref_primary_10_3945_ajcn_115_129866 crossref_primary_10_1113_JP277767 crossref_primary_10_3389_fnut_2024_1407108 crossref_primary_10_1016_j_tem_2016_06_005 |
Cites_doi | 10.1152/physrev.1992.72.4.1019 10.1172/JCI115997 10.2337/diabetes.47.6.867 10.1152/ajpendo.1991.260.5.E731 10.1016/S0022-2275(20)38029-9 10.1172/JCI118460 10.1006/abbi.1993.1078 10.1126/science.1948033 10.1042/bj2320133 10.1172/JCI118410 10.1096/fasebj.8.6.8168691 10.1152/ajpendo.1996.271.2.E215 10.1172/JCI579 10.1172/JCI117727 10.1007/BF01219739 10.1152/ajpendo.1994.266.5.E796 10.1016/B978-0-12-395630-9.50058-X 10.1042/bj2960785 10.1016/S0021-9258(18)66660-8 10.1016/S0021-9258(17)32313-X 10.1152/ajpendo.1990.259.3.E335 10.1042/bj2400309 |
ClassificationCodes | 2834 2833 8733 8731 8000212 541714 3832684 541715 |
ContentType | Journal Article |
Copyright | 2001 INIST-CNRS COPYRIGHT 2001 American Diabetes Association Copyright American Diabetes Association Jun 2001 |
Copyright_xml | – notice: 2001 INIST-CNRS – notice: COPYRIGHT 2001 American Diabetes Association – notice: Copyright American Diabetes Association Jun 2001 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 |
DOI | 10.2337/diabetes.50.6.1263 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest eLibrary (NC LIVE) ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection Consumer Health Database (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library Science Database ProQuest Biological Science Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 1268 |
ExternalDocumentID | 77152294 A80392812 11375325 1097043 10_2337_diabetes_50_6_1263 diabetes_50_6_1263 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK-45735 – fundername: NCRR NIH HHS grantid: MO1 RR-00125 – fundername: NIDDK NIH HHS grantid: R01 DK-42930 |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFFNX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ IAG IAO IEA IHR INH INR IOF IPO J5H K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZGI ZXP ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 1CY 354 6PF AAFWJ AAYOK AAYXX ACGFO AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM AAKAS ADGHP ADZCM AI. H~9 IQODW MVM O5R O5S PJZUB PPXIY PQGLB VH1 XOL YQJ AFHIN CGR CUY CVF ECM EIF NPM PKN PMFND 7XB 8FK K9. PKEHL Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c536t-49aec164e71dc0e290eb20cde009c6125ebec274187e0ae25e88e4746764f00c3 |
IEDL.DBID | BENPR |
ISSN | 0012-1797 |
IngestDate | Sun Aug 24 04:10:32 EDT 2025 Fri Jul 25 19:34:08 EDT 2025 Fri Jun 13 00:42:22 EDT 2025 Tue Jun 10 21:27:08 EDT 2025 Fri Jun 27 05:37:20 EDT 2025 Tue Jun 10 20:05:18 EDT 2025 Wed Feb 19 02:35:12 EST 2025 Mon Jul 21 09:13:59 EDT 2025 Tue Jul 01 04:24:22 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Fri Jan 15 19:45:57 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Human Digestive system Glycogen Liver Biosynthesis Glycogenolysis Metabolism Fructose |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c536t-49aec164e71dc0e290eb20cde009c6125ebec274187e0ae25e88e4746764f00c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 11375325 |
PQID | 216467327 |
PQPubID | 34443 |
PageCount | 6 |
ParticipantIDs | gale_incontextcollege_GICCO_A80392812 pubmed_primary_11375325 gale_infotracacademiconefile_A80392812 highwire_diabetes_diabetes_50_6_1263 pascalfrancis_primary_1097043 crossref_primary_10_2337_diabetes_50_6_1263 crossref_citationtrail_10_2337_diabetes_50_6_1263 proquest_journals_216467327 gale_incontextgauss_8GL_A80392812 proquest_miscellaneous_70850191 gale_infotracgeneralonefile_A80392812 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-06-01 |
PublicationDateYYYYMMDD | 2001-06-01 |
PublicationDate_xml | – month: 06 year: 2001 text: 2001-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2001 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | 2022031207093906800_R19 2022031207093906800_R18 2022031207093906800_R17 2022031207093906800_R16 2022031207093906800_R15 2022031207093906800_R14 2022031207093906800_R13 2022031207093906800_R12 2022031207093906800_R11 2022031207093906800_R22 2022031207093906800_R10 2022031207093906800_R21 2022031207093906800_R1 2022031207093906800_R20 2022031207093906800_R2 2022031207093906800_R3 2022031207093906800_R4 2022031207093906800_R5 2022031207093906800_R6 2022031207093906800_R7 2022031207093906800_R8 2022031207093906800_R9 |
References_xml | – ident: 2022031207093906800_R10 doi: 10.1152/physrev.1992.72.4.1019 – ident: 2022031207093906800_R22 doi: 10.1172/JCI115997 – ident: 2022031207093906800_R5 doi: 10.2337/diabetes.47.6.867 – ident: 2022031207093906800_R17 doi: 10.1152/ajpendo.1991.260.5.E731 – ident: 2022031207093906800_R14 doi: 10.1016/S0022-2275(20)38029-9 – ident: 2022031207093906800_R8 doi: 10.1172/JCI118460 – ident: 2022031207093906800_R3 doi: 10.1006/abbi.1993.1078 – ident: 2022031207093906800_R12 doi: 10.1126/science.1948033 – ident: 2022031207093906800_R19 doi: 10.1042/bj2320133 – ident: 2022031207093906800_R16 doi: 10.1172/JCI118410 – ident: 2022031207093906800_R1 doi: 10.1096/fasebj.8.6.8168691 – ident: 2022031207093906800_R15 doi: 10.1152/ajpendo.1996.271.2.E215 – ident: 2022031207093906800_R7 doi: 10.1172/JCI579 – ident: 2022031207093906800_R21 doi: 10.1172/JCI117727 – ident: 2022031207093906800_R11 doi: 10.1007/BF01219739 – ident: 2022031207093906800_R6 doi: 10.1152/ajpendo.1994.266.5.E796 – ident: 2022031207093906800_R13 doi: 10.1016/B978-0-12-395630-9.50058-X – ident: 2022031207093906800_R2 doi: 10.1042/bj2960785 – ident: 2022031207093906800_R20 doi: 10.1016/S0021-9258(18)66660-8 – ident: 2022031207093906800_R4 doi: 10.1016/S0021-9258(17)32313-X – ident: 2022031207093906800_R9 doi: 10.1152/ajpendo.1990.259.3.E335 – ident: 2022031207093906800_R18 doi: 10.1042/bj2400309 |
SSID | ssj0006060 |
Score | 2.0370421 |
Snippet | Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans
Kitt Falk Petersen 1 ,
Didier Laurent 1 ,
Chunli Yu 2 ,... Fructose has been shown to have a catalytic effect on glucokinase activity in vitro; however, its effects on hepatic glycogen metabolism in humans is unknown.... |
SourceID | proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1263 |
SubjectTerms | Adult Biological and medical sciences Carbohydrates Diabetes Diabetes research Dose-Response Relationship, Drug Female Fructose Fructose - administration & dosage Fructose - pharmacology Fundamental and applied biological sciences. Psychology Gas chromatography Glucose Glucose - pharmacology Glycogen Glycogen - biosynthesis Glycogen - metabolism Glycogen Synthase - metabolism Hormones - blood Humans Insulin Insulin - pharmacology Liver Liver - drug effects Liver - metabolism Male Mass spectrometry Metabolism Metabolisms and neurohumoral controls NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Osmolar Concentration Phosphorylases - metabolism Physiological aspects Proteins Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Stimulating Effects of Low-Dose Fructose on Insulin-Stimulated Hepatic Glycogen Synthesis in Humans |
URI | http://diabetes.diabetesjournals.org/content/50/6/1263.abstract https://www.ncbi.nlm.nih.gov/pubmed/11375325 https://www.proquest.com/docview/216467327 https://www.proquest.com/docview/70850191 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJyFeEN8LY8NIGy_InfNp5wmNamNCbCDEpL5Z7sUpSCUZuBXaf89d43StNPZSpcolin3n88_n8-8YO9DgksrVpXBqAiLTWS5wGgJhca5wYBM9AQoNnF8UZ5fZp3E-Drk5PqRV9j5x6airFihGfpQQEZZKE_X-6regolG0uRoqaGyxbfTAOh-w7Q8nF1-_rVwxovPuDEqcEA-n6k7NJGmqjvrQ5jCXw2IYJ0W6MTP1_rknDaacSeux2-qu3sX_AelyYjp9xB4GRMmPOxN4zO655gm7fx72zJ8ywEH8a1mkq5nykL7B25rP2r-iar3jNTHI0kXb8JCaLvpnXMV_OEq6Bj6dXUOL5sb9dYOo0f_0KM2XNf78M3Z5evJ9dCZCaQUBeVrMRVZaB9ijTsUVSJeUElfYEiqHkAsI9JBul8w2yknr8L_WLqPSJEVWSwnpczZo2sbtMJ5ZSRxsFtK4yqC0JVSTArUc17rWqqojFvfdaiDwjlP5i5nB9QepwvSqMLk0hSFVROzd6pmrjnXjTulD0pYhOouG8mWgi7kYbPHoiznWEkEgApmIvdmUm9qF90Z__Lwu8zbI1C1-JdhwSgHbSkRZ64KHG4LTjiX8FrmD3oZuPv22Nuxt2Ndas0slM7y_29ubCV7Gm9WYiNjr1V10D7TnYxvXLrxRREmIa_KIveiM9ObFcYpL1SR_eeebd9mDLuuO4k6v2GD-Z-H2EIbNJ_tsS40V_upRvB8G3j8-NzYb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgEviG_KGDPSygtK5zjfDwiNsdGxtiC0SXvz3ItTkEoycKupfxT_I3dN3LXS2NveEuVixbnzffn8O8Z2UjAyN0XmmWQIXpiGkYdmCDyNtsKAlukQKDXQH8Td0_DLWXS2xv66szBUVul04lxR5xVQjnxXEhBWEsjkw8Vvj5pG0eaq66BRS8WxmV1ixGbfH31C9ralPDw42e96TVMBD6Ignnhhpg3gWCbxcxBGZgJjSwG5QWcDyNzTrOaYLokR2uB9mpqQmnLEYSEEBDjuHbaBXkaGi2jj48Hg2_eF6sdooD7z4kvC_UzqUzoyCJJdl0rtRKITd3wZByuW0NkDB1JMNZraIpuKur_G_x3guSE8fMgeNB4s36tF7hFbM-Vjdrff7NE_YYBK49e8KVg54k25CK8KPq4uvbyyhheEWEsXVcmbUnjPvWNy_sNQkTfw0XgGFYo3t7MSvVT70yI1n_cUtE_Z6a389WdsvaxK84LxUAvCfNMQ-HkImc4gH8YoVX6RFmmSFy3mu9-qoME5p3YbY4XxDrFCOVaoSKhYESta7N3inYsa5eNG6jZxSxF8Rkn1OVDneBTOeP-r2ksFOp3oOLXYm1W6kZ5aq9LPvWWatw1NUeFXgm5OReBcCZhrmbC9QjiqUcmvodtxMnT16dfNYWtFvpamnSUixOebTt5Uo9WsWqzBFttePEV1RHtMujTV1KqEIBD9zG-x57WQXg3sBxgay-jljSNvs3vdk35P9Y4Gx5vsfl3xRzmvV2x98mdqttAFnAxfNwuPs_PbXuv_ACmkcQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIqG9TPteYQxPonuZUpzv5GGaGNDBgA5NQ-LNcx2nQ-oSNrdC_dP23-2usUsrMd54S5SLlcudfR8-_w5gO1M6KHSZezodKC_KothDM6Q8ibZCKxlkA0WpgdN-cngefbmIL1bgrzsLQ2WVbk2cLdRFrShHvhMQEFYaYqRe2qqIs_3ex6vfHjWQoo1W102j0ZBjPb3G6M18ONpHUXeCoHfwfe_Qsw0GPBWHydiLcqkVjqtTv1BcBznHOJOrQqPjocj0E4czfJdUc6nxPst0RA06kqjkXIU47gNYTdEoZi1Y_XTQP_s2NwMYGTTnX_yAMEDT5sROEIbpjkurdmPeTbp-kIRLVtHZBgdYTPWa0qDIyqbXxv-d4ZlR7D2GR9abZbuN-j2BFV09hbVTu1__DBQuIL9mDcKqIbOlI6wu2ai-9oraaFYSei1d1BWzZfGee0cX7Kemgm_FhqOpqlHVmZlW6LGaS4PUbNZf0DyH83v56y-gVdWVfgUskpzw36QK_SJSucxVMUhQw_wyK7O0KNvgu98qlMU8p9YbI4GxD4lCOFGImItEkCja8H7-zlWD-HEndYekJQhKoyKtVE2-RyDHe1_FbsbRAUUnqg1vl-mGcmKMyD6fLNK8szRljV-ppD0hgbwSSNciYWeJcNgglN9Ct-106ObTb-Nhc0m_FtjOUx7h8w2nb8KucEbM52MbtuZPcWmi_SZZ6XpiREpwiH7ut-Flo6Q3A_shhslBvH7nyFuwhnNcnBz1jzfgYVP8R-mv19Aa_5noTfQGx4M3dt4x-HHfU_0fMd51OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulating+effects+of+low-dose+fructose+on+insulin-stimulated+hepatic+glycogen+synthesis+in+humans&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Petersen%2C+K+F&rft.au=Laurent%2C+D&rft.au=Yu%2C+C&rft.au=Cline%2C+G+W&rft.date=2001-06-01&rft.issn=0012-1797&rft.volume=50&rft.issue=6&rft.spage=1263&rft_id=info:doi/10.2337%2Fdiabetes.50.6.1263&rft_id=info%3Apmid%2F11375325&rft.externalDocID=11375325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |